北师大版数学高二选修2试题 1.1 归纳与类比基础巩固
数学北师大版选修2-2同步练习 第一章§1归纳与类比 含
高手支招6体验成功 基础巩固1.根据给出的数塔猜测123 456×9+7等于( ) 1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111A.1 111 110B.1 111 111C.1 111 112D.1 111 113 答案:B思路分析:由数塔猜测应是各位数字都是1的七位数,即1 111 111. 2.在数列{a n }中,a 1=0,a n+1=2a n+2,则a n 是( ) A.2n-221-B.2n -2C.2n-1+1D.2n+1-4 答案:B思路分析:当n=1,2,3时,求得a 2=2,a 3=6,a 4=14,观察知a n =2 n -2. 3.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( )A.15B.30C.31D.64 答案:A 思路分析:用等差数列的性质:等差数列中项数之和相等的对应两项的和也相等.a 7+a 9=a 4+a 12,故选A 项. 4.已知322+=232,833+=383,1544+=4154,…,若b a +6=6ba (a,b 均为实数),请推测a=________________,b=________________.答案:6 35思路分析:由前面三个等式,推测归纳被开方数的整数与分数的关系,发现规律.由三个等式知,整数和这个分数的分子相同,而分母是这个分子的平方减1,由此推测ba +6中,a=6,b=62-1=35. 即a=6,b=35. 5.已知f(n)=1+21+31+…+n 1(n ∈N +),经计算:f(2)=23,f(4)>24,f(8)>25,f(16)>3,f(32)>27,推测当n≥2时,有_______________. 答案:f(2n )>22+n 思路分析:对问题进行归纳时,要尽可能将结论的形式统一,这样便于找到共性特征,看出其规律,故本题应将所给的式子写成f(21)=23,f(22)>2,f(23)>25,f(24)>26,f(25)>27,从而归纳出当n≥2时的一般结论为n≥2时,f(2n )>22+n .6.若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比为:212211OM OM S S N OM N OM =∆∆·21ON ON .若从点O 所作的不在同一个平面内的三条射线OP 、OQ 和OR 上分别有点P 1、P 2与点Q 1、Q 2和R 1、R 2,则类似的结论为:_______________. 答案:21222111OP OP V V R Q P O R Q P O =--=21OQ OQ ·21OR OR 思路分析:在平面中是两三角形的面积之比,凭直觉可猜想在空间应是体积之比,所以有21222111OP OP V V R Q P O R Q P O =--=21OQ OQ ·21OR OR 7.已知数列{a n }的通项公式a n =2)1(1+n (n ∈N +),f(n)=(1-a 1)(1-a 2)…(1-a n ),试通过计算f(1),f(2),f(3)的值,推测出f(n)的值. 答案:(1)f(1)=1-a 1=14341=-,f(2)=(1-a 1)(1-a 2)=f(1)·(191-)=43·98=32=64, f(3)=(1-a 1)(1-a 2)(1-a 3)=f(2)·(1161-)=32·1615=85,由此猜想f(n)=)1(22++n n . 思路分析:利用题目所给的关系式,可以计算出函数值,根据f(1),f(2),f(3)的值,找到共性特征,进而可得f(n)的值.8.已知:sin 230°+sin 290°+sin 2150°=23,sin 25°+sin 265°+sin 2125°=23. 观察上述两等式的规律,请你写出一般性的命题,并证明之. 答案:一般性的命题为sin 2θ+sin 2(60°+θ)+sin 2(120°+θ)=23. 证明如下:sin 2θ+sin 2(60°+θ)+sin 2(120°+θ)=2)2240cos(12)2120cos(122cos 1θθθ+++++++ =2123+[cos2θ+cos(120°+2θ)+cos(240°+2θ)] =2123+[2cos60°cos(60°+2θ)+cos(180°+60°+2θ)] =2123+[cos(60°+2θ)-cos(60°+2θ)]=23. 思路分析:仔细分析两个式子中角的特点,就会发现角的度数成等差数列,从而找到了规律.对角的观察是本题的突破口,若从两个式子中未能找到规律,可将两个式子中的三个角同时变化较小的度数,即可发现角的关系,从而找到式子的规律. 综合应用9.设数列{a n }的首项a 1=a≠41,且a n+1=⎪⎪⎩⎪⎪⎨⎧+.,41,,21为奇数为偶数n a n a n n记b n =a 2n-141-,n =1,2,3,… (1)求a 2,a 3;(2)判断数列{b n }是否为等比数列,并证明你的结论.答案:(1)a 2=a 1+41=a+41,a 3=21a 2=21a+81; (2)∵a 4=a 3+41=21a+83,所以a 5=21a 4=41a+163,所以b 1=a 1-41=a-41,b 2=a 3-41=21(a-41),b 3=a 5-41=41(a-41),猜想:{b n }是公比为21的等比数列.证明如下:∵b n+1=a 2n+1-41=21a 2n -41=21(a 2n-1-41)=21b n ,(n ∈N *) ∴{b n }是首项为a-41,公比为21的等比数列.思路分析:本题是考查猜想归纳能力及等比数列的定义.10.如图,点P 为斜三棱柱状ABC-A 1B 1C 1的侧棱BB 1上一点,PM ⊥B 1B 交AA 1于点M,PN ⊥BB 1交CC 1于点N.(1)求证:CC 1⊥MN;(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF·EFcos ∠DFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.答案:(1)证明:∵PM ⊥BB 1,PN ⊥BB 1,∴BB 1⊥平面PMN. ∴BB 1⊥MN.又CC 1∥BB 1,∴CC 1⊥MN. (2)解:在斜三棱柱ABC-A 1B 1C 1中,有S a BB 1A 12=211B BCC S +211A ACC S -211B BCC S ·11A ACC S cosα.其中α为平面CC 1B 1B 与平面CC 1A 1A 所成的二面角. ∵CC 1⊥平面PMN,∴上述的二面角的平面角为∠MNP. 在△PMN 中,PM 2=PN 2+MN 2-2PN·MN·cos ∠MNPPM 2·CC 12=PN 2·CC 12+MN 2·CC 12-2(PN·CC 1)·(MN·CC 1)·cos ∠MNP, 由于11B BCC S =PN·CC 1,11A ACC S =MN·CC 1,11A ABB S =MP·BB 1, ∴211A AAB S =211B BCC S +211A ACC S -211B BCC S ·11A ACC S cosα.思路分析:考虑到三个侧面的面积需要作出三个侧面的高,由已知条件可得△PMN 为三棱柱的直截面,选取三棱柱的直截面三角形作类比对象.11.找出三角形和四面体的相似性质,并用三角形的下列性质类比四面体的有关性质. (1)三角形的两边之和大于第三边;(2)三角形的中位线等于第三边的一半且平行于第三边;(3)三角形的三条内角平分线交于一点,且这个点是三角形内切圆的圆心; (4)三角形的面积为S=21(a+b+c)r(r 为内切圆的半径). 解:三角形与四面体有下列共同性质:(1)三角形是平面内由线段围成的最简单的封闭图形,四面体是空间中由平面三角形所围成的最简单的封闭图形.(2)三角形可以看作平面上一条线段外一点与这条直线段上的各点连线所形成的图形,四面体可以看作三角形外一点与这个三角形上各点连线所形成的图形.根据三角形的性质可以推测空间四面体的性质如下:有与另一类事物类似(或相同)的性质,充分分析出三角形和四面体之间所具有的共同性质,再进行类比推理.。
北师大数学选修22新素养应用案巩固提升:第一章 1.1 归纳推理 含解析
[A基础达标]1.数列2,5,11,20,x,47,…中的x等于()A.28B.32C.33D.27解析:选B.因为5-2=3,11-5=6,20-11=9,则x-20=12,47-x=15,所以x=32,故选B.2.观察:(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义域在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于()A.f(x)B.-f(x)C.g(x) D.-g(x)解析:选D.通过观察可归纳推理出一般结论:若f(x)为偶函数,则导函数g(x)为奇函数.故选D.3.已知数列1,a+a2,a2+a3+a4,a3+a4+a5+a6,…,则数列的第k项是() A.a k+a k+1+…+a2kB.a k-1+a k+…+a2k-1C.a k-1+a k+…+a2kD.a k-1+a k+…+a2k-2解析:选D.利用归纳推理可知,第k项中第一个数为a k-1,且第k项中有k项,且次数连续,故第k项为a k-1+a k+…+a2k-2,故选D.4.用火柴棒摆“金鱼”,如图所示.按照图中的规律,第n个“金鱼”图需要火柴棒的根数为()A.6n-2 B.8n-2C.6n+2 D.8n+2解析:选 C.从①②③可以看出,从图②开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n+2.5.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是()A.n+(n+1)+(n+2)+…+(3n-2)=n2B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2C.n+(n+1)+(n+2)+…+(3n-1)=n2D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2解析:选B.可以发现:第一个式子的第一个数是1,第二个式子的第一个数是2,…,故第n个式子的第一个数是n;第一个式子中有1个数相加,第二个式子中有3个数相加,…,故第n个式子中有2n-1个数相加;第一个式子的结果是1的平方,第二个式子的结果是3的平方,故第n个式子应该是2n-1的平方,故可以得到n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.6.一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前100个圈中●的个数是________.解析:由1+2+3+…+12=78(个)白圈,78+12=90.依规律再出现13个白圈,所以前100个圈中●的个数为12.答案:127.在数列{a n}中,a1=2,a n+1=a2n-na n+1(n∈N+),归纳推理a n=________.解析:a1=2;a2=a21-1×a1+1=3;a3=a22-2×a2+1=4;a4=a23-3×a3+1=5;故推出a n=n+1.答案:n+18.如图所示,图(1)是棱长为1的小正方体,图(2)、图(3)是由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,…,第n层,第n层的小正方体的个数记为S n.解答下列问题:(1)按照要求填表:n 1234…S n136____…10(3)S n =________.解析:S 1=1,S 2=3=1+2,S 3=6=1+2+3, 推测S 4=1+2+3+4=10,S 10=1+2+3+…+10=55,S n =1+2+3+…+n =n (n +1)2.答案:(1)10 (2)55 (3)n (n +1)29.观察如图所示的图形,设第n 个图形中黑点的总数为f (n ).(1)求出f (2),f (3),f (4),f (5)的值;(2)找出f (n )与f (n +1)的关系,并求出f (n )的表达式. 解:(1)由题意知,f (1)=3,f (2)=f (1)+3+3×2=12, f (3)=f (2)+3+3×4=27, f (4)=f (3)+3+3×6=48, f (5)=f (4)+3+3×8=75.(2)由(1)知,f (n +1)=f (n )+3+3×2n =f (n )+6n +3, 即f (n +1)-f (n )=6n +3,所以当n >1时,f (2)-f (1)=6×1+3, f (3)-f (2)=6×2+3, f (4)-f (3)=6×3+3, …f (n )-f (n -1)=6×(n -1)+3, 将上面(n -1)个式子相加,得:f (n )-f (1)=6[1+2+3+…+(n -1)]+3(n -1) =6×(1+n -1)(n -1)2+3(n -1)=3n 2-3,所以f (n )=3n 2,当n =1时,f (1)=3,符合上式,所以f (n )=3n 2.10.已知f (x )=13x +3,分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并证明你的结论.解:f (x )=13x +3,所以f (0)+f (1)=130+3+131+3=33, f (-1)+f (2)=13-1+3+132+3=33,f (-2)+f (3)=13-2+3+133+3=33.归纳猜想一般性结论:f (-x )+f (x +1)=33. 证明如下:f (-x )+f (x +1)=13-x +3+13x +1+3=3x 1+3·3x +13x +1+3=3·3x 3+3x +1+13x +1+3=3·3x +13+3x +1=3·3x +13(1+3·3x )=33.[B 能力提升]11.观察下列数表规律则数2 015的箭头方向是( )解析:选D.因上行奇数是首项为3,公差为4的等差数列,若2 015在上行,则2 015=3+(n -1)·4⇒n =504∈N +.故2 015在上行,又因为在上行奇数的箭头为→a n ,故选D. ↓12.已知数对如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是________.解析:由前面的几个数对不难发现,数对中两数之和为2的有1个,为3的有2个,为4的有3个,…,为11的有10个,则根据数对规律可推出第56个数对为(1,11),往下的数对依次为(2,10),(3,9),(4,8),(5,7),(6,6),….所以第60个数对是(5,7). 答案:(5,7) 13.观察下面两式:(1)tan 10°·tan 20°+tan 20°·tan 60°+tan 60°·tan 10°=1; (2)tan 5°·tan 10°+tan 10°·tan 75°+tan 75°·tan 5°=1.分析上面两式的共同特点,写出反映一般规律的等式,并证明你的结论. 解:猜想:如果α+β+γ=π2,α,β,γ都不为π2,则tan αtan β+tan β tan γ+tan γtan α=1.证明如下:因为α+β+γ=π2,所以α+β=π2-γ,所以tan(α+β)=tan ⎝⎛⎭⎫π2-γ=1tan γ, 所以tan αtan β+tan β tan γ+tan γtan α =tan αtan β+(tan α+tan β)tan γ=tan αtan β+tan(α+β)(1-tan αtan β)tan γ =tan αtan β+(1-tan αtan β)1tan γtan γ =tan αtan β+1-tan αtan β=1.14.(选做题)如图所示为m 行m +1列的士兵方阵(m ∈N +,m ≥2).(1)写出一个数列,用它表示当m 分别是2,3,4,5,…时,方阵中士兵的人数; (2)若把(1)中的数列记为{a n },归纳该数列的通项公式; (3)求a 10,并说明a 10表示的实际意义;(4)已知a n=9 900,问a n是数列第几项?解:(1)当m=2时,表示一个2行3列的士兵方阵,共有6人,依次可以得到当m=3,4,5,…时的士兵人数分别为12,20,30,….故所求数列为6,12,20,30,….(2)因为a1=2×3,a2=3×4,a3=4×5,…,所以猜想a n=(n+1)(n+2),n∈N+.(3)a10=11×12=132.a10表示11行12列的士兵方阵的人数为132.(4)令(n+1)(n+2)=9 900,所以n=98,即a n是数列的第98项,此时方阵为99行100列.。
数学北师大选修22教材基础 第一章§1归纳与类比 含答案
第一章推理与证明走近学科思想推理与证明是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式,合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.合情推理具有猜想和发现新结论、探究和提供解决问题思路的作用;演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程,演绎推理具有证明结论,整理和构建知识体系的作用,是公理体系中的基本推理方法.知识要点重要指数链接考题学习策略合情推理★★P5,例1(2007浙江高考,理8);P6,例2(2007福建高考,理16)通过对具体实例的推理过程的分析、体会,概括出合情推理的描述性定义和常用的归纳和类比的思维方法综合法和分析法★★★★P22,例4(2006辽宁高考,理18文19);P24,例5(2007海南、宁夏高考,理22(A))弄清综合法和分析法的证明方法特征,通过一些实例证明熟练两种证明方法的证明过程反证法★★★P42,例6(2007河南郑州模拟);P43,例7(2007江西高考,理16)弄清楚使用反证法的常见情形及适用条件,形成使用反证法的意识数学归纳法★★★★P60,例9(2007天津高考,理21);P60,例8(2006湖南高考,理19)关键是找出从n=k到n=k+1时的递推关系式§1 归纳与类比在日常生活中,人们常常需要进行各种各样的推理.如医生诊断病人的病症,警察侦破案件,数学家论证命题的真假等,其中都包含了推理活动.在数学中,证明的过程更离不开推理.本节就开始学习有关数学推理的知识.高手支招1细品教材一、推理1.推理的概念根据一个或几个已知的事实(或假设)得出一个判断,这种思维方式叫推理.推理一般由两部分组成:前提和结论.状元笔记合情推理中,当前提为真时,结论可能为真,也可能为假.2.合情推理(1)当前提为真时,结论可能为真的推理,叫做合情推理.合情推理是指“合乎情理”的推理.数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向,其推理过程为:(2)两种合情推理:归纳推理和类比推理.二、归纳推理1.概念根据一类事物的部分事物具有某种性质,推出这类事物中每一个都具有这种属性的推理方式,叫做归纳推理(有时简称归纳).归纳推理是从个别到一般.由部分到整体的过程. 状元笔记归纳推理的前提与结论不具有必然性联系,其结论不一定正确.2.特点(1)归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包容的范围.(2)由归纳推理得到的结论具有猜测的性质,结论是否真实,还需要经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.(3)归纳推理是一种具有创造性的推理.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.3.归纳推理的步骤其一般步骤为:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表述的一般性命题.示例:已知:数列{a n }的第1项a 1=1,且a n+1=nn a a +1(n=1,2,3,…),试归纳出这个数列的通项公式. 思路分析:数列{a n }的通项公式是第n 项a n 与序号n 之间的对应关系,我们可以先根据已知条件算出数列{a n }的前几项,然后去归纳出一般性的公式.解:当n=1时,a 1=1,当n=2时,a 2=21111=+,当n=3时,a 3=3121121=+,当n=4时,a 4=4131131=+,…… 通过观察可得:数列的前四项都等于相应序号的倒数,由此归纳出:a n =n1. 三、类比推理1.概念两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,这类推理叫做类比推理(简称类比).类比推理是数学推理的一种重要形式,它的实质是根据两对象之间的相似,把信息从一个对象转移到另外一个对象,类比推理不仅是一种从特殊到特殊的推理方法,也是一种探索解题思路、猜测问题答案或结论的一种有效的方法.这在事物规律的发现和事物本质的认识等方面都有着极其重要的作用.2.特点(1)类比推理是由特殊到特殊的推理.(2)类比推理是从人们已经掌握了的事物的特征,推测正在被研究的事物的特征,所以,类比推理的结果具有猜测性,不一定可靠.(3)类比推理以旧的知识作基础,推测新的结果,具有发现的功能.类比推理在数学发现中有重要作用.(4)由于类比推理的前提是两类对象之间具有某些可以清楚定义的类似特征,所以进行类比推理的关键是明确地指出两类对象在某些方面的类似特征.状元笔记类比推理是一种由特殊到特殊的推理形式,目的是寻找事物之间的共同或相似性质,它是一种似真推理.类比推理的结论需要进一步证明其正确性,类比的性质相似性越多,相似的性质与推测的性质之间就越相关,从而类比得出的结论就越可靠.例如,据科学史上的记载,光波概念的提出者,荷兰物理学家、数学家赫尔斯坦·惠更斯曾将光和声这两类现象进行比较,发现它们具有一系列相同的性质:如直线传播、有反射和干扰等.又已知声是由一种周期运动所引起的、呈波动的状态,由此,惠更斯作出推理,光也可能有呈波动状态的属性,从而提出了光波这一科学概念.惠更斯在这里运用的推理就是类比推理. 3.类比推理的步骤其一般步骤为:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).状元笔记类比推理是两类事物特征之间的推理,利用类比推理得出的结论可能是正确的,也可能是错误的.【示例】类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列哪些性质,你认为比较恰当的是()①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.A.①B.①②C.①②③D.③思路分析:因为正三角形的边和角可以与正四面体的面(或棱)和相邻的两面成的二面角(或共顶点的两棱夹角)类比,所以①②③都恰当.答案:C高手支招2基础整理推理是由一个或几个已知的判断推出一个新的判断的思维形式.任何推理都由前提和结论两部分组成,前提与结论的关系是理由与推断.原因与结果的关系.本节则主要讲述合情推理的两种类型:归纳推理和类比推理.其主要知识结构如下:。
【高中课件】北师大版选修22高考数学1.1归纳与类比课件ppt.ppt
答案:B
点评
归纳推理是立足于观察、经验或实验的基础上的,认真全面地分析已知 条件是得出正确结论的关键.
探究一
探究二
探究三
������变式训练 1������观察下列等式:
1=1,
13=1,
1+2=3,
13+23=9,
1+2+3=6, 13+23+33=36,
1+2+3+4=10, 13+23+33+43=100,
质为
.
解析:圆心类比椭圆焦点,圆外一点类比椭圆外一点,圆的切线类比椭圆
的切线,∠POA=∠POB 类比∠PFA=∠PFB,于是可得类比结论为:过椭圆
������2 ������2
+
������������22=1(a>b>0)外一点
P
作椭圆的两条切线
PA,PB,其中
A,B
为切点,若
F
为椭圆的一个焦点,则∠PFA=∠PFB.
探究三
探究二类比推理
1.类比推理的一般步骤: (1)找出两类事物之间的相似性或一致性; (2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题 (猜想). 2.类比推理得到的结论不一定正确,所以我们要进行验证或证明.
北师大版高二数学选修2-1试题及答案(K12教育文档)
(直打版)北师大版高二数学选修2-1试题及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)北师大版高二数学选修2-1试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)北师大版高二数学选修2-1试题及答案(word版可编辑修改)的全部内容。
(选修2—1)孙 敏一、选择题(本大题共12小题,每小题6分,共72分) 1、a 3>8是a >2的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件 2、全称命题“所有被5整除的整数都是奇数”的否定是( )A .所有被5整除的整数都不是奇数;B .所有奇数都不能被5整除C .存在一个被5整除的整数不是奇数;D .存在一个奇数,不能被5整除3、抛物线281x y -=的准线方程是( )A . 321=x B . 2=y C . 321=y D . 2-=y 4、有下列命题:①20ax bx c ++=是一元二次方程(0a ≠);②空集是任何集合的真子集;③若a ∈R ,则20a ≥;④若,a b ∈R 且0ab >,则0a >且0b >.其中真命题的个数有( )A .1B . 2C . 3D . 45、椭圆1162522=+y x 的离心率为( )A .35B . 34C .45D .9256、以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程是( )A .23x y =或23x y -=B .23x y =C .x y 92-=或23x y =D .23x y -=或x y 92=7、已知a =(2,-3,1),b =(4,-6,x ),若a ⊥b ,则x 等于( ) A .-26 B .-10 C .2 D .10 8、如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则BD BC AB 2121++等于( )A .ADB .GAC .AGD .MG9、已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是( )A .OM OA OB OC =++ B . 2OM OA OB OC =--C .1123OM OA OB OC =++D .111333OM OA OB OC =++10、设3=a ,6=b , 若a •b =9,则,<>a b 等于( )A .90°B .60°C .120°D .45°11、已知向量a =(1,1,-2),b =12,1,x ⎛⎫ ⎪⎝⎭,若a ·b ≥0,则实数x 的取值范围为( )A .2(0,)3B .2(0,]3C .(,0)-∞∪2[,)3+∞D .(,0]-∞∪2[,)3+∞12、设R x x ∈21,,常数0>a ,定义运算“﹡”:22122121)()(x x x x x x --+=*,若0≥x ,则动点),(a x x P *的轨迹是( )A .圆B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分 二、填空题(本大题共5小题,每小题5分,共25分)13、命题“若2430x x -+=,则x =1或x =3”的逆否命题为 . 14、给出下列四个命题:①x ∃∈R ,是方程3x -5=0的根;②,||0x x ∀∈>R ;③2,1x x ∃∈=R ;④2,330x x x ∀∈-+=R 都不是方程的根. 其中假命题...的序号有 . 15、若方程11222=-+-k y k x 表示的图形是双曲线,则k 的取值范围为 . 16、抛物线24y x =的准线方程是 .17、由向量(102)=,,a ,(121)=-,,b 确定的平面的一个法向量是()x y =,,2n ,则x = ,y = .三、解答题(本大题共5小题,共53分.解答应写出文字说明、演算步骤或推证过程)18、(本小题满分8分)双曲线的离心率等于2,且与椭圆221259x y +=有相同的焦点,求此双曲线方程.19、(本小题满分10分)已知命题:P “若,0≥ac 则二次方程02=++c bx ax 没有实根". (1)写出命题P 的否命题;(2)判断命题P 的否命题的真假, 并证明你的结论.20、(本小题满分11分)已知0≠ab ,求证1=+b a 的充要条件是02233=--++b a ab b a21、(本小题满分12分)如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是BB 1、CD的中点.(Ⅰ)证明:AD ⊥D 1F ; (Ⅱ)求AE 与D 1F 所成的角; (Ⅲ)证明:面AED ⊥面A 1FD 1.22、(本小题满分12分)设椭圆12222=b y a x +(a >b >0)的左焦点为F 1(-2,0),左准线 L 1 :ca x 2-=与x 轴交于点N(-3,0),过点N 且倾斜角为300的直线L 交椭圆于A 、B 两点. (1)求直线L 和椭圆的方程;(2)求证:点F 1(-2,0)在以线段AB 为直径的圆上。
2021-2022高二数学北师大版选修2-2课后作业:1.1 归纳与类比 Word版含解析
第一章 推理与证明§1 归纳与类比课后作业提升1观看下列事实:|x|+|y|=1的不同整数解(x ,y )的个数为4,|x|+|y|=2的不同整数解(x ,y )的个数为8,|x|+|y|=3的不同整数解(x ,y )的个数为12,……,则|x|+|y|=20的不同整数解(x ,y )的个数为( ) A.76B.80C.86D.92解析:由已知条件得,|x|+|y|=n (n ∈N +)的不同整数解(x ,y )的个数为4n ,所以|x|+|y|=20的不同整数解(x ,y )的个数为80,故选B . 答案:B2将自然数0,1,2,…,依据如下形式进行摆放:依据以上规律判定,从2021到2022的箭头方向是( )解析:本题中的数字及箭头方向都有肯定的规律.箭头每经过四个数就要重复消灭,即以4为周期变化.2022恰好是4的倍数,2021应当与1的起始位置相同. 答案:B3已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S=底×高2,可推知扇形面积公式S 扇等于()A.r 22B.l 22C.lr 2D.不行类比解析:由扇形的弧长与半径分别类比三角形的底边与高,可得扇形的面积公式. 答案:C4三角形的面积为S=12(a+b+c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四周体的体积为( )A.V=13abcB.V=13ShC.V=13(S 1+S 2+S 3+S 4)r (S 1,S 2,S 3,S 4为四个面的面积,r 为内切球的半径)D.V=13(ab+bc+ac )h (h 为四周体的高)解析:设△ABC 的内心为O ,连接OA ,OB ,OC ,将△ABC 分割为三个小三角形,这三个小三角形的高都是r ,底边长分别为a ,b ,c ;类比:设四周体A BCD 的内切球的球心为O ,连接OA ,OB ,OC ,OD ,将四周体分割为四个以O 为顶点,以原来面为底面的四周体,高都为r ,所以有V=13(S 1+S 2+S 3+S 4)r. 答案:C5在平面几何里,可以得出正确结论:“正三角形的内切圆半径等于这个正三角形的高的13”.拓展到空间,类比平面几何的上述结论,则正四周体的内切球半径等于这个正四周体的高的 . 解析:三角形有三条边→13;而正四周体有四个面→14,可接受分割法证明. 答案:146观看下列不等式:①√2<1;②√2√6<√2;③√2√6√12<√3;……则第5个不等式为 .答案:√2+√6√12√20√30<√57已知a ,b 为正整数,设两直线l 1:y=b-b a x 与l 2:y=b ax 的交点为P 1(x 1,y 1),且对于n ≥2的自然数,两点(0,b ),(x n-1,0)的连线与直线y=b ax 交于点P n (x n ,y n ). (1)求点P 1,P 2的坐标;(2)猜想点P n 的坐标公式.分析:两直线的交点坐标可通过解方程组求出,由两点坐标又可写出新的直线方程,从而猜想出点P n 的坐标. 解:(1)解方程组{y =b -bax ,y =bax ,得P 1(a 2,b2).过(0,b ),(a 2,0)两点的直线方程为2x a +yb=1,与y=b a x 联立,解得P 2(a 3,b 3).(2)由(1)可猜想P n (a n+1,bn+1).8图(1)(2)(3)(4)为刺绣中较简洁的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越秀丽;现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n+1)与f (n )之间的关系式,并依据你得到的关系式求出f (n )的表达式; (3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. 解:(1)f (5)=41.(2)由于f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, …由以上规律,可得出f (n+1)-f (n )=4n , 由于f (n+1)-f (n )=4n , 所以f (n+1)=f (n )+4n , 所以f (n )=f (n-1)+4(n-1) =f (n-2)+4(n-1)+4(n-2)=f (n-3)+4(n-1)+4(n-2)+4(n-3) =……=f [n-(n-1)]+4(n-1)+4(n-2)+4(n-3)+…+4[n-(n-1)] =2n 2-2n+1. (3)当n ≥2时,1f (n )-1=12n (n -1)=12(1n -1-1n), 所以1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12(1-12+12-13+13-14+…+1n -1-1n )=1+12(1-1n )=32−12n.。
2019-2020学年北师大版高中数学选修2-2同步配套课件:1.1 归纳与类比1.1.1
目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
【做一做】 观察下列不等式:
1+
1 22
<
3 2
,
1
+
1 22
+
1 32
<
5 3
,
1
+
1 22
+
1 32
+
1 42
<
7 4
,
…
…
照此规律,第五个不等式为 .
解析:观察不等式的左边发现,第 n 个不等式的左边为
数是
.
目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
题型一 题型二 题型三
解析:(1)(方法一)有菱形纹的正六边形地面砖的块数如下表:
由表可以看出有菱形纹的正六边形地面砖的块数依次组成一个
以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
题型一 题型二 题型三
【变式训练2】 将自然数0,1,2,…按照如下形式进行摆放:
根据以上规律判定,从2 017到2 019的箭头方向是 ( )
解析:本题中的数及箭头方向都有一定的规律.箭头每经过四个 数就要重复出现,即以4为周期变化.2 016恰好是4的倍数,2 017应该 与1的起始位置相同.
=
2×23 23+2
=
1 2
=
24,
1 .1归纳与类比-北师大版高中数学选修2-2练习
第一章推理与证明§1 归纳与类比课后训练案巩固提升A组1.观察如图所示的正方形图案,每条边(包括两个端点)有n(n≥2)个圆点,第n个图案中圆点的总数是S n.按此规律推断出S n与n的关系式为( )A.S n=2nB.S n=4nC.S n=2nD.S n=4n-4n=2,n=3,n=4的图案,推断第n个图案是这样构成的:圆点排成正方形的四条边,每条边上有n个圆点,则圆点的个数为S n=4n-4.2.下列几种推理中是合情推理的是( )①由圆的性质类比出球的有关性质.②由直角三角形、等腰三角形、等边三角形的内角和均为180°,归纳出所有三角形的内角和均为180°.③教室内有一把椅子坏了,猜想该教室内所有的椅子都坏了.④由a1=1,a2=3,a3=5,a4=7,归纳出数列{a n}的通项公式为a n=2n-1.A.①②B.①③④C.①②④D.②④,②④是归纳推理,故①②④都是合情推理.3.下面使用类比推理恰当的是( )A.“若a·3=b·3,则a=b”类比推出“若a·0=b·0,则a=b”B.“(a+b)c=ac+bc”类比推出“(a·b)c=ac·bc”C.“(a+b)c=ac+bc”类比推出“a+bc =ac+bc(c≠0)”D.“(ab)n=a n b n”类比推出“(a+b)n=a n+b n”4.已知数对如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是( )A.(3,8)B.(4,7)C.(4,8)D.(5,7),数对中两数之和为2的有1个,为3的有2个,为4的有3个,…,为11的有10个,则根据数对规律可推出第56个数对为(1,11),往下的数对依次为(2,10),(3,9),(4,8),(5,7),(6,6),….故选D.5.已知{b n}为等比数列,b5=2,则b1·b2·b3·b4·b5·b6·b7·b8·b9=29,若{a n}为等差数列,a5=2,则{a n}的类似结论为( )A.a1·a2·a3·…·a9=29B.a1+a2+a3+…+a9=29C.a1·a2·a3·…·a9=2×9D.a1+a2+a3+…+a9=2×9{b n}为等比数列,且b1b2b3b4…b9=29.等式左边为前9项的积,类比到等差数列{a n}中,则应为前9项的和,即a1+a2+a3+…+a9.等式右边为29,则类比到等差数列{a n}中应为2×9,即可得类似结论为a1+a2+a3+…+a9=2×9.6.观察下列等式:1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n个等式为.1=12,2+3+4=9=32,3+4+5+6+7=25=52, ∴第n个等式为n+(n+1)+…+(3n-2)=(2n-1)2.…+(3n-2)=(2n-1)27.观察下列等式:sin30°+sin90°cos30°+cos90°=√3,sin15°+sin75°cos15°+cos75°=1,sin20°+sin40°cos20°+cos40°=√33.照此规律,对于一般的角α,β,有等式.,发现tan30°+90°2=√3,tan15°+75°2=1,tan20°+40°2=√33,故对于一般的角α,β的等式为sinα+sinβcosα+cosβ=tanα+β2.=tanα+β28.阅读以下求1+2+3+…+n(n∈N+)的过程:因为(n+1)2-n2=2n+1,n2-(n-1)2=2(n-1)+1,…,22-12=2×1+1,以上各式相加得(n+1)2-12=2(1+2+…+n)+n,所以1+2+3+…+n=n2+2n-n2=n(n+1)2.类比上述过程,可得12+22+32+…+n2=(n∈N+).(n+1)3-n3=3n2+3n+1,n3-(n-1)3=3(n-1)2+3(n-1)+1,…,23-13=3×12+3×1+1,以上各式相加得(n+1)3-13=3(12+22+…+n2)+3(1+2+…+n)+n,所以12+22+32+…+n2=n(n+1)(2n+1)6.9.已知数列{a n}满足a1=1,a na n+1=nn+1(n∈N+).(1)求a2,a3,a4,a5,并猜想通项公式a n;(2)根据(1)中的猜想,有下面的数阵:S1=a1S2=a2+a3S3=a4+a5+a6S4=a7+a8+a9+a10S5=a11+a12+a13+a14+a15试求S1,S1+S3,S1+S3+S5,并猜想S1+S3+S5+…+S2n-1的值.因为a1=1,由a na n+1=nn+1,知a n+1=n+1na n,故a2=2,a3=3,a4=4,a5=5,可归纳猜想出a n=n(n∈N+).(2)根据(1)中的猜想,数阵为:S1=1S2=2+3=5S3=4+5+6=15S4=7+8+9+10=34S5=11+12+13+14+15=65故S1=1=14S1+S3=1+15=16=24S1+S3+S5=1+15+65=81=34可猜想S1+S3+S5+…+S2n-1=n4.10.导学号88184000在Rt△ABC中,∠C=90°,当n>2时,有c n>a n+b n成立,请你类比直角三角形的这个性质,猜想一下空间四面体的性质.,与Rt△ABC对应的是四面体P-DEF;与Rt△ABC的两条边交成一个直角相对应的是四面体P-DEF的三个面在一个顶点D处构成3个直二面角;与Rt△ABC直角边a,b相对应的是四面体P-DEF的平面△DEF,△FPD,△DPE的面积S1,S2,S3;与Rt△ABC的斜边c相对应的是四面体P-DEF的平面△PEF的面积S.由此猜想:当n>2时,S n>S1n+S2n+S3n.B组1.如图所示,椭圆中心在坐标原点,F为左焦点,当FB⃗⃗⃗⃗⃗ ⊥AB⃗⃗⃗⃗⃗ 时,其离心率为√5-12,此类椭圆称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于( )A.√5+12B.√5-12C.√5-1D.√5+1,设双曲线方程为x 2a 2−y 2b 2=1(a>0,b>0),则F(-c,0),B(0,b),A(a,0),∴FB ⃗⃗⃗⃗⃗ =(c,b),AB ⃗⃗⃗⃗⃗ =(-a,b). 又∵FB ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ , ∴FB ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =b 2-ac=0. ∴c 2-a 2-ac=0,即e 2-e-1=0. ∴e=1+√52或e=1-√52(舍).故选A.2.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点1,2,3,4,5,6的横、纵坐标分别对应数列{a n }{n ∈N +}的前12项(即横坐标为奇数项,纵坐标为偶数项),按如此规律下去,则a 2013+a 2014+a 2015=( )A.1006B.1007C.1008D.2015,偶数项的值等于其项数的一半,则a 4n-3=n,a 4n-1=-n,a 2n =n, ∵2013=4×504-3,2015=4×504-1, ∴a 2013=504,a 2015=-504,a 2014=1007. ∴a 2013+a 2014+a 2015=1007.3.记等差数列{a n}的前n项和为S n,利用倒序求和法,可将S n表示成首项a1,末项a n与项数n的一个关系式,即S n=n(a1+a n)2;类似地,记等比数列{b n}的前n项积为T n,且b n>0(n∈N+),试类比等差数列求和的方法,可将T n表示成首项b,末项b n与项数n的一个关系式,即T n=( )A.n(b1+b n)2B.(b1+b n)n2C.√b1b nn D.(b1b n)n2,若m+n=p+q,则b m·b n=b p·b q,利用倒序求积法可得{T n=b1·b2·…·b n,T n=b n.b n-1 (1)两式相乘得T n2=(b1b n)n,故T n=(b1b n)n2.4.观察下列不等式.1+122<32,1+122+132<53,1+122+132+142<74,…照此规律第五个不等式为.(n-1)个不等式为1+122+132+142+…+1n2<2n-1n,所以第五个不等式为1+12+13+14+15+16<116.1+122+132+142+152+162<1165.导学号88184001在长方形ABCD中,对角线AC与两邻边所成的角分别为α,β,则cos2α+cos2β=1,请在立体几何中,给出类比猜想.,如图.ABCD中,cos2α+cos2β=(ac )2+(bc)2=a2+b2c2=c2c2=1.于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为α,β,γ,则cos2α+cos2β+cos2γ=1.证明如下:cos2α+cos2β+cos2γ=(ml )2+(nl)2+(gl)2=m2+n2+g2l2=l2l2=1.6.导学号88184002一种十字绣作品由相同的小正方形构成,图①②③④分别是制作该作品前四步所对应的图案,按照如此规律,第n步完成时对应图案中所包含小正方形的个数记为f(n).(1)求出f(2),f(3),f(4),f(5)的值;(2)利用归纳推理,归纳出f(n+1)与f(n)的关系式;(3)猜想f(n)的表达式,并写出推导过程.图①中只有一个小正方形,得f(1)=1;图②中有3层,以第2层为对称轴,有1+3+1=5(个)小正方形,得f(2)=5;图③中有5层,以第3层为对称轴,有1+3+5+3+1=13(个)小正方形,得f(3)=13;图④中有7层,以第4层为对称轴,有1+3+5+7+5+3+1=25(个)小正方形,得f(4)=25;第五步所对应的图案中有9层,以第5层为对称轴,有1+3+5+7+9+7+5+3+1=41(个)小正方形,得f(5)=41.(2)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,f(5)=41,∴f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,∴f(n+1)-f(n)=4n.∴f(n+1)与f(n)的关系式为f(n+1)-f(n)=4n.(3)猜想f(n)的表达式为f(n)=2n2-2n+1.由(2)可知f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,……f(n)-f(n-1)=4×(n-1)=4n-4,将上述n-1个式子相加,得f(n)-f(1)=4[1+2+3+4+…+(n-1)],则f(n)=2n2-2n+1.。
北师大版高中数学选修2-2同步配套课件:1.1 归纳与类比1.1.2
【例 3】 有对称中心的曲线叫作有心曲线,显然,椭圆、双曲线
都是有心曲线.过有心圆锥曲线中心的弦叫作有心圆锥曲线的直径. 定理:过圆 x2+y2=r2(r>0)上异于直径两端点的任意一点与这条
直径的两个端点连线,则两条连线所在直线的斜率之积为定值-1.
(1)写出定理在椭圆
������2 ������2
侧棱长分别为������, ������, ������”, 类比上述处理方法,
可得该三棱锥的外接球半径������ =
.
解析:由求直角三角形外接圆的半径的方法,通过类比得出求三
棱锥的外接球的半径的方法为:将三棱锥补全为长方体,而长方体的
对角线长就是三棱锥的外接球的直径,从而得出该三棱锥的外接球
半径 R=
1.2 类比推理
-1-
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
D 典例透析 IANLI TOUXI
S 随堂演练 UITANGYANLIAN
1.理解类比推理的概念,能利用类比推理进行简单的推理,掌握类 比推理解决问题的思维过程.
2.理解合情推理的含义,体会并认识合情推理在数学发展中的作 用.
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
题型一 题型二 题型三
题型一 等差数列与等比数列之间的类比
D 典例透析 IANLI TOUXI
S 随堂演练 UITANGYANLIAN
���������3���
于是 bmbnbp=b1qm-1·b1qn-1·b1qp-1=������ 13qm+n+p-3=������13q3r-3=(b1qr-1)3=���������3��� ,
2020-2021学年数学高中北师大版选修2-2课后习题:1.1 归纳与类比 Word版含解析
第一章DIYIZHANG推理与证明§1归纳与类比课后训练案巩固提升A组1.观察如图所示的正方形图案,每条边(包括两个端点)有n(n≥2)个圆点,第n个图案中圆点的总数是S n.按此规律推断出S n与n的关系式为()A。
S n=2n B.S n=4nC。
S=2n D。
S n=4n-4n=2,n=3,n=4的图案,推断第n个图案是这样构成的:圆点排成正方形的四条边,每条S n=4n-4。
()①由圆的性质类比出球的有关性质。
②由直角三角形、等腰三角形、等边三角形的内角和均为180°,归纳出所有三角形的内角和均为180°。
③教室内有一把椅子坏了,猜想该教室内所有的椅子都坏了.④由a1=1,a2=3,a3=5,a4=7,归纳出数列{a n}的通项公式为a n=2n-1.A.①②B.①③④C.①②④D。
②④是类比推理,②④是归纳推理,故①②④都是合情推理.()A.“若a·3=b·3,则a=b”类比推出“若a·0=b·0,则a=b”B。
“(a+b)c=ac+bc”类比推出“(a·b)c=ac·bc"C.“(a+b)c=ac+bc”类比推出“a+bc=ac+bc(c≠0)”D.“(ab)n=a n b n”类比推出“(a+b)n=a n+b n”:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是()A。
(3,8) B。
(4,7) C。
(4,8)D。
(5,7)2的有1个,为3的有2个,为4的有3 11的有10个,则根据数对规律可推出第56个数对为(1,11),往下的数对依次为(2,10),(3,9),(4,8),(5,7),(6,6),…。
故选D.5。
已知{b n }为等比数列,b 5=2,则b 1·b 2·b 3·b 4·b 5·b 6·b 7·b 8·b 9=29,若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A 。
北师大版高二数学选修2-1.1归纳与类比学案(无答案)
3.由 , , ,运用归纳推理,可猜测出的一般结论是.
4.从37×3=111,37×6=222,37×9=333,37×12=444中得出的一般性结论是
___________.
5.已知 ,若 , 均为实数,猜测 , .
【巩固提高】
1、在数列 中, 猜想这个数列的通项公式?
2、右图是杨辉三角形的前5行,请你写出第8行,并归纳猜想出一般规律.从上面等式中,你能猜想出什么结论?
⑶归纳推理的特点:
1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.
2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.结论是否真实,还需经过逻辑证明和实践检验。它不能作为数学证明的工具。
3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验或实验的基础之上.
推理的一般思维过程是:.
知识小结:
⑴归纳推理的定义:根据一类事物中部分事物具有某些属性,推断该类事物中每一个事物都有这种属性,这种推理方式称为归纳推理.(简称:归纳)简言之,归纳推理是的推理.
⑵归纳推理的一般步骤:
①通过观察特例发现某些共性或规律;
②由这种共性或规律猜想出一般结论(命题);
③对所提出的命题进行检验。
三、教学过程
【导学释疑】
1、预习教材P1内容回答:书上的三个推理案例,各有什么特点?
a.
b. c.
知识小结:
推理是从一个或几个已知命题得出另一个新命题的.任何推理都包含和两个部分.依据推理在结构形式上表现出的不同,推理可分为与.
2、预习教材P3-P5内容回答:
①哥德巴赫猜想:即.
②对一些多面体考察,结合统计出的多面体的面数(F)、顶点数(E)和棱数(V).通过我的观察发现,形成的猜想是:
高中数学北师大版选修2-2同步训练:(1)归纳与类比
(1)归纳与类比1、已知扇形的弧长为l ,半径为r ,类比三角形的面积公式:,可推出扇形的面积公式( )A. 22rB. 22lC.2lr D.不可类比2、下面使用类比推理正确的是( )A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =”B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+”类推出“()0a b a b c ccc+=+≠”D.“() nn n ab a b =”类推出“()nn n a b a b +=+”3、由数列1,10,100,1000⋯,,猜测该数列的第n 项可能是( ) A.10nB.110n -C.110n +D.11n4、如果对象A 和对象B 都具有相同的属性P 、Q 、R 等,此外已知对象A 还有一个属性S ,而对象B 还有一个属性x ,由此类比推理,可以得出下列哪个结论可能成立?( ) A. x 就是P B. x 就是Q C. x 就是R D. x 就是S5、下列推理正确的是( )A.把()a b c +与()log a x y +类比,则有: ()log log log a a a x y x y +=+B.把()a b c +与()sin x y +类比,则有: ()sin sin sin x y x y +=+C.把()nab 与()n x y +类比,则有: ()nn n x y x y +=+ D.把()a b c ++与()xy z 类比,则有: ()()xy z x yz =6、已知,αβ是两个不同的平面,直线a α⊂,直线b β⊂,命题p :a 与b 没有公共点,命题q ://αβ,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 7、α、β是两个不重合的平面, a 、b 是两条不同的直线,在下列条件下,可判定//αβ的是( )A.α、β都平行于直线a 、bB.a 、b 是相交直线,且//a α,//b βC.a 、b 是α内的两条直线,且//a β,//b βD.a 、b 是两条异面直线,且//a α,//b α,//a β,//b β 8、已知13a =,26a =,且21n n n a a a ++=-,则33a 为( )A.3B.-3C.6D.-6 9、给定数列, 1,234++,56789++++,10111213141516++++++,…则这个数列的通项公式是( )A. 2231n a n n =+- B. 255n a n n =+-C. 322331n a n n n =-+- D. 3222n a n n n =-+-10、设[]x 表示不超过x 的最大整数(如[]22=,514⎡⎤=⎢⎥⎣⎦),对于给定的*x N ∈,定义()[]()()[]()1111x nn n n x Cx x x x --+=--+,[1,)x ∈+∞,则当3,2x ⎡⎫∈+∞⎪⎢⎣⎭时,函数8xC 的值域是( )A. 16,283⎡⎤⎢⎥⎣⎦B. 16,563⎡⎫⎪⎢⎣⎭C. [)284,28,563⎛⎫⋃ ⎪⎝⎭D. 16284,,2833⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦11、观察下列等式:11=2349++= 3456725++++= 4567891049++++++=⋅⋅⋅⋅⋅⋅照此规律,第五个等式应为_____________________.12、设平面内有n 条直线(3n ≥),其中有且仅有两条直线互相平行,且任意三条直线不过同一点.若用()f n 表示这n 条直线交点的个数,则(4)f =__________;当4n >时,()f n =__________.(用含n 的数学表达式表示)13、现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a 的正方形,其中一个正方形的某顶点在另一个正方形的中心,则这两个正方形重叠部分的面积恒为24a .类比到空间,有两个棱长均为a 的正方体,其中一个正方体的某顶点在另一个正方体的中心,则这两个正方体重叠部分的体积恒为 .14、把1,3,6,10,15,21这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图所示).试求第七个三角形数是__________.15、根据下列条件,写出数列中的前4项,并归纳猜想它的通项公式。
北师大版数学高二选修2试题 1-1.2类比推理
一、选择题1.下列平面图形中,与空间的平行六面体作为类比对象较为合适的是() A.三角形 B.梯形C.平行四边形D.矩形【解析】只有平行四边形与平行六面体较为接近,故选C.【答案】 C2.关于合情推理的说法不正确的是()①合情推理是“合乎情理”的推理,因此其猜想的结论一定是正确的;②合情推理是由一般到特殊的推理;③合情推理可以用来对一些数学命题进行证明;④归纳推理是合情推理,因此合情推理就是归纳推理A.①④ B.②④C.③④ D.①②③④【解析】根据合情推理的定义可知,归纳推理与类比推理统称为合情推理,其中的归纳推理是由部分到整体,由个别到一般的推理,类比推理是由特殊到特殊的推理,他们的结论可真可假,但都不能用来证明数学命题,因此①②③④均不正确.【答案】 D3.下列几种推理过程是类比推理的是()A.两直线平行,内错角相等B.由平面三角形性质,猜想空间四面体性质C.由数列的前几项,猜想数列的通项公式D.某校高二年级有10个班,1班51人,2班53人,3班52人,猜想各班都超过50人【解析】四个选项中,只有B为类比推理,故选B.【答案】 B4.下列类比推理:①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n;②log a(xy)=log a x+log a y与sin(a+b)类比,则有sin(a+b)=sin ab;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.其中正确结论的个数为()A.0 B.1C.2 D.3【解析】由类比定义知①②的结论错,③的结论正确.【答案】 B5.已知扇形的弧长为l,半径为r,类比三角形的面积公式S=底×高2,可推知扇形面积公式S扇等于()A.r22 B.l22C.lr2D.不可类比【解析】由扇形的弧长与半径分别类比三角形的底边与高,可得扇形的面积公式.【答案】 C二、填空题6.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.【解析】由面积公式和体积公式的特点可以知道,面积是二条线乘积,而体积涉及到三条线段乘积,故体积比应是棱长比的立方,即1∶8.【答案】1∶87.已知{a n}是等差数列,m,n,p是互不相等的正整数,则有:(m-n)a p+(n-p)a m+(p-m)a n=0类比上述性质,相应地,对等比数列{b n},有________.【解析】由等差、等比数列的运算的类比“和―→积,差―→商,积―→乘方”得a m -n p·a n -p m ·a p -m n =1. 【答案】 a m -n p ·a n -p m ·a p -mn =18.在Rt △ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 的外接圆半径r =a 2+b 22,将此结论类比到空间有___________________________________.【解析】 Rt △ABC 类比到空间为三棱锥A -BCD ,且AB ⊥AC ,AB ⊥AD ,AC ⊥AD ;△ABC 的外接圆类比到空间为三棱锥A -BCD 的外接球.【答案】 在三棱锥A -BCD 中,若AB ⊥AC ,AB ⊥AD ,AC ⊥AD ,AB =a ,AC =b ,AD =c ,则三棱锥A -BCD 的外接球半径R =a 2+b 2+c 22.三、解答题9.在椭圆中,有一结论:过椭圆x 2a 2+y 2b 2=1(a >b >0)上不在顶点的任意一点P 与长轴两端点A 1、A 2连线,则直线PA 1与PA 2斜率之积为-b 2a 2,类比该结论推理出双曲线的类似性质,并加以证明.【解】 过双曲线x 2a 2-y 2b 2=1上不在顶点的任意一点P 与实轴两端点A 1、A 2连线,则直线PA 1与PA 2斜率之积为b 2a 2.证明如下:设点P (x 0,y 0),点A 1(a,0),A 2(-a,0).椭圆中:kPA 1·kPA 2=y 0x 0-a ·y 0x 0+a =y 20x 20-a 2=b 2(1-x 20a 2)x 20-a2=-b 2a 2;双曲线中:kPA 1·kPA 2=y 20x 20-a 2=b 2(x 20a 2-1)x 20-a2=b2a 2.10.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想?并说明理由.图①【解】如图①所示,由射影定理知AD2=BD·DC,AB2=BD·BC,AC2=BC·DC,∴1 AD2=1 BD·DC=BC2 BD·BC·DC·BC =BC2 AB2·AC2.又BC2=AB2+AC2,∴1 AD2=AB2+AC2AB2·AC2=1AB2+1AC2.所以1AD2=1AB2+1AC2.类比AB⊥AC,AD⊥BC猜想:四面体A-BCD中,AB、AC、AD两两垂直,AE⊥平面BCD,则1AE2=1AB2+1AC2+1AD2.图②如图②,连接BE并延长交CD于F,连接AF.∵AB ⊥AC ,AB ⊥AD , ∴AB ⊥平面ACD . 而AF ⊂平面ACD , ∴AB ⊥AF ,在Rt △ABF 中,AE ⊥BF , ∴1AE 2=1AB 2+1AF 2.在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD 2, ∴1AE 2=1AB 2+1AC 2+1AD 2,故猜想正确.11.在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a+P bh b+P ch c =1.把它类比到空间,写出三棱锥中的类似结论.【解】 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是我们可以得到结论:P a h a +P b h b +P c h c +P dh d =1.。
【成才之路】高中数学 1.1 归纳与类比基础巩固 北师大版选修2-2
【成才之路】2014-2015学年高中数学 1.1 归纳与类比基础巩固 北师大版选修2-2一、选择题1.(2014·太原模拟)如图是2012年元宵节灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )[答案] A[解析] 观察题干中的三个图形,前一个图形以中心为原点沿顺时针旋转144°得到后一图形,类比可知选A.2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可推知扇形面积公式S 扇等于( )A.r 22 B .l 22C .lr2D .不可类比[答案] C[解析] 由扇形的弧长与半径分别类比三角形的底边与高,可得扇形的面积公式. 3.(2013·华池一中期中)平面几何中,有边长为a 的正三角形内任一点到三边距离之和为定值32a ,类比上述命题,棱长为a 的正四面体内任一点到四个面的距离之和为( ) A.43a B.63a C.54a D.64a [答案] B[解析] 将正三角形一边上的高32a 类比到正四面体一个面上的高63a ,由正三角形“分割成以三条边为底的三个三角形面积的和等于正三角形的面积”,方法类比为“将四面体分割成以各面为底的三棱锥体积之和等于四面体的体积”证明.二、填空题4.若数列{a n }中,a 1=1,a 2=3+5,a 3=7+9+11,a 4=13+15+17+19,…,则a 10=________.[答案] 1 000[解析] 前10项共使用了1+2+3+4+…+10=55个奇数,a 10为由第46个到第55个奇数的和,即a 10=(2×46-1)+(2×47-1)+…+(2×55-1)=+2=1 000.5.设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=xx +2,f 2(x )=f (f 1(x ))=x3x +4, f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________. [答案]x-x +2[解析] 本题主要考查了归纳推理及分析解决问题的能力. 依题意:f 1(x )=x x +2=x-x +2,f 2(x )=x 3x +4=x2-x +22, f 3(x )=x 7x +8=x 3-x +23, f 4(x )=x15x +16=14-x +24.∴当n ∈N *且n ≥2时,f n (x )=xn-x +2n.三、解答题6.已知a ,b 为正整数,设两直线l 1:y =b -b a x 与l 2:y =b ax 的交点为P 1(x 1,y 1),且对于n ≥2的自然数,两点(0,b ),(x n -1,0)的连线与直线y =b ax 交于点P n (x n ,y n ).(1)求点P 1、P 2的坐标; (2)猜想点P n 的坐标公式.[分析] 两直线的交点坐标可通过解方程组求出,由两点坐标又可写出新的直线方程,从而猜想出点P n 的坐标.[解析] (1)解方程组⎩⎪⎨⎪⎧y =b -b ax ,y =ba x ,得P 1(a 2,b2).过(0,b ),(a 2,0)两点的直线方程为2x a +y b =1,与y =b a x 联立,解得P 2(a 3,b3).(2)由(1)可猜想P n (a n +1,bn +1).一、选择题1.三角形的面积为S =12(a +b +c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为( )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r (S 1、S 2、S 3、S 4为四个面的面积,r 为内切球的半径)D .V =13(ab +bc +ac )h (h 为四面体的高)[答案] C[解析] 设△ABC 的内心为O ,连接OA 、OB 、OC ,将△ABC 分割为三个小三角形,这三个小三角形的高都是r ,底边长分别为a 、b 、c ;类比:设四面体A -BCD 的内切球的球心为O ,连接OA 、OB 、OC 、OD ,将四面体分割为四个以O 为顶点,以原来面为底面的四面体,高都是r ,所以有V =13(S 1+S 2+S 3+S 4)r .2.下列哪个平面图形与空间图形中的平行六面体作为类比对象较合适( ) A .三角形 B .梯形 C .平行四边形D .矩形[答案] C[解析] 从构成几何图形的几何元素的数目、位置关系、度量等方面考虑,用平行四边形作为平行六面体的类比对象较为合适.3.(2014·三峡名校联考)观察式子:1+122<32,1+122+132<53,1+122+132+142<74,…,则可归纳出第n -1个式子为( )A .1+122+132+…+1n 2<12n -1B .1+122+132+…+1n 2<12n +1C .1+122+132+…+1n 2<2n -1nD .1+122+132+…+1n 2<n 2n +1[答案] C[解析] 观察可得第n -1个式子中不等式的左边为数列{1i2]的前n 项的和,右边为分式2n -1n.4.(2014·临沂模拟)如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N +)的前12项(即横坐标为奇数项,纵坐标为偶数项),按如此规律下去,则a 2 009+a 2 010+a 2 011等于( )A .1 003B .1 005C .1 006D .2 011[答案] B[解析] 观察点坐标的规律可知,偶数项的值等于其序号的一半. 则a 4n -3=n ,a 4n -1=-n ,a 2n =n .又2 009=4×503-3,2 011=4×503-1, ∴a 2 009=503,a 2 011=-503,a 2 010=1 005, ∴a 2 009+a 2 010+a 2 011=1 005.5.(2014·湖北理,8)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈136L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈275L2h相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.355113[答案] B[解析] 设圆锥的底面圆半径为r,则L=2πr,由136L2h≈13sh,代入s=πr2化简得π≈3;类比推理,若V≈275L2h时,π≈258.本题的关键是理解“若V≈136L2h,π近似取为3”的意义,类比求解,这是高考考查新定义型试题的一种常见模式,求解此类试题时,关键是要理解试题所列举的例子.二、填空题6.(2014·湖南长沙实验中学、沙城一中联考)在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC上的射影,则AB2=BD·BC.拓展到空间,在四面体A-BCD中,DA⊥平面ABC,点O是A在平面BCD内的射影,类比平面三角形射影定理,△ABC、△BOC、△BDC三者面积之间关系为________.[答案] S2△ABC=S△OBC·S△DBC[解析] 将直角三角形的一条直角边长类比到有一侧棱AD与一侧面ABC垂直的四棱锥的侧面ABC的面积,将此直角边AB在斜边上的射影及斜边的长,类比到△ABC在底面的射影△OBC及底面△BCD的面积可得S2△ABC=S△OBC·S△DBC.7.(2014·陕西理,14)观察分析下表中的数据:[答案] F+V-E=2[解析] 5+6-9=2,6+6-10=2,6+8-12=2, ∴F +V -E =2. 三、解答题8.已知S n =11×2+12×3+13×4+…+1n n +,写出S 1,S 2,S 3,S 4的值,并由此归纳出S n 的表达式.[分析] 在S n 中分别令n =1,2,3,4,可以求得S 1,S 2,S 3,S 4的值,再进行归纳推测. [解析] S 1=11×2=-12=12;S 2=11×2+12×3=(1-12)+(12-13)=1-13=23; S 3=11×2+12×3+13×4=(1-12)+(12-13)+(13-14)=1-14=34; S 4=11×2+12×3+13×4+14×5=(1-12)+(12-13)+(13-14)+(14-15)=1-15=45; 由此猜想:S n =nn +1(n ∈N +).[点评] 本题利用归纳猜想的思想求得了S n 的表达式,有两点应注意:①正确理解与把握数列求和中S n 的含义;②在对特殊值进行规律观察时,有时需要将所得结果作变形处理,以显示隐藏的规律性.9.(2014·洛阳市高二期中)观察等式: sin50°+sin20°=2sin35°cos15° sin66°+sin32°=2sin49°cos17°猜想符合以上两式规律的一般结论,并进行证明. [解析] 猜想:sin α+sin β=2sin α+β2cos α-β2.下面证明:左边=sin(α+β2+α-β2)+sin(α+β2-α-β2)=(sinα+β2cos α-β2+cos α+β2sin α-β2)+(sin α+β2cos α-β2-cos α+β2sin α-β2)=2sin α+β2cos α-β2=右边.所以原等式成立.10.已知等差数列{a n },公差为d ,前n 项和为S n ,有如下的性质:(1)通项a n=a m+(n-m)·d;(2)若m+n=p+q,其中m,n,p,q∈N+,则a m+a n=a p+a q;(3)若m+n=2p,m,n,p∈N+,则a m+a n=2a p;(4)S n,S2n-S n,S3n-S2n构成等差数列.类比上述性质,在等比数列{b n}中,写出相类似的性质.[解析] 在等比数列{b n}中,公比为q,前n项和为S n,则可推出:(1)通项b n=b m·q n-m;(2)若m+n=p+q,其中m,n,p,q∈N+,则b m·b n=b p·b q;(3)若m+n=2p,m,n,p∈N+,则b m·b n=b2p;(4)S n,S2n-S n,S3n-S2n构成等比数列.。
2019_2020学年高中数学第一章推理与证明1归纳与类比1.1归纳推理课后巩固提升北师大版选修2_2
1.1 归纳推理[A组基础巩固]1.已知数列{a n}的前n项和S n=n2·a n(n≥2,n∈N+),a1=1,通过计算a2,a3,a4,猜想a n 等于( )A.2(n+1)2B.2n(n+1)C.22n-1D.22n-1解析:由S n=n2·a n(n≥2,n∈N+)可以分别求出a2,a3,a4,然后猜想a n,也可以取n为特殊值进行验证.答案:B2.如图所示的是一串黑白相间排列的珠子,按这种规律往下排列,那么第36颗珠子的颜色是( )A.白色B.黑色C.白色可能性大D.黑色可能性大解析:由图可知,三白二黑,为一周期进行排列,因为36=5×7+1,则第36颗珠子与第1颗颜色相同,为白色.答案:A3.已知数列1,a+a2,a2+a3+a4,a3+a4+a5+a6,…,则数列的第k项是( )A.a k+a k+1+…+a2kB.a k-1+a k+…+a2k-1C.a k-1+a k+…+a2kD.a k-1+a k+…+a2k-2解析:由所给的四项可知第k项的第一个因式为a k-1,最后一个因式为a2k-2.答案:D4.定义A*B,B*C,C*D,D*B依次对应下列4个图形:那么下列4个图形中,可以表示A*D,A*C的分别是( )A.(1),(2) B.(1),(3)C.(2),(4) D.(1),(4)解析:由①②③④可归纳得出:A表示竖线,B表示大矩形,C表示横线,D表示小矩形,所以A*D是(2),A*C是(4),故选C.答案:C5.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )A.28 B.76C.123 D.199解析:利用归纳法:a+b=1,a2+b2=3,a3+b3=3+1=4,a4+b4=4+3=7,a5+b5=7+4=11,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18=47,a9+b9=47+29=76,a10+b10=76+47=123.规律为从第三组开始,其结果为前两组结果的和.答案:C6.一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前100个圈中●的个数是________.解析:由1+2+3+…+12=78个白圈,78+12=90.依规律再出现13个白圈,所以前100个圈中“●”的个数为12.答案:127.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49……照此规律,第n个等式为________________________________________.解析:∵1=12,2+3+4=9=32,3+4+5+6+7=25=52,∴第n个等式为n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.答案:n+(n+1)+(n+2)+…+(3n-2)=(2n-1)28.给出若干数:2+23, 3+38, 4+415, 5+524,…,由此猜想第n 个数为________. 解析:根据已经给出的前4个数的规律,可归纳得第n 个数为 (n +1)+n +1(n +1)2-1. 答案:(n +1)+n +1(n +1)2-19.设S n =11×2+12×3+13×4+…+1n (n +1),写出S 1,S 2,S 3,S 4的值,归纳并猜想出S n 的结果.解析:当n =1,2,3,4时,计算原式的值分别为S 1=12,S 2=23,S 3=34,S 4=45,观察这4个结果都是分数,每个分数的分子与项数对应,且分子比分母小1,归纳猜想:S n =n n +1.10.已知数列{a n }的前n 项和为S n ,a 1=-23,且S n +1S n +2=a n (n ≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.解析:当n =1时,S 1=a 1=-23;当n =2时,1S 2=-2-S 1=-43,所以S 2=-34;当n =3时,1S 3=-2-S 2=-54,所以S 3=-45;当n =4时,1S 4=-2-S 3=-65,所以S 4=-56.猜想:S n =-n +1n +2,n ∈N +. [B 组 能力提升]1.甲、乙、丙、丁四位小朋友做换位游戏,开始时,甲、乙、丙、丁分别坐在1、2、3、4号座位(如图).第一次前后排小朋友互换座位,第二次左右列小朋友互换座位,第三次再前后排小朋友互换座位,…,这样交替进行下去,那么第2 016次互换座位后,小朋友丁的座位号是( )A .1B .2C.3 D.4解析:从题中所给换位方法及图示可知,每交换4次回复到开始位置,故第2 016次互换座位后与第四次互换座位后相同.答案:D2.观察下列数表规律2→3 6 → 7 10→11↑ ↓↑ ↓ ↑ ↓0 → 1 4→5 8→ 9 12→…则数2 015的箭头方向是( )A.↑→B.↓→C.→↑ D.→↓解析:因上行奇数是首项为3,公差为4的等差数列,若2 015在上行,则2 015=3+(n-1)·4⇒n=504∈N+.故2 015在上行,又因为在上行奇数的箭头为→↓,故选D.答案:D3.已知数对如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是________.解析:由前面的几个数对不难发现,数对中两数之和为2的有1个,为3的有2个,为4的有3个,…,为11的有10个,则根据数对规律可推出第56个数对为(1,11),往下的数对依次为(2,10),(3,9),(4,8),(5,7),(6,6),….答案:(5,7)4.设函数f(x)=xx+2(x>0),观察:f1(x)=f(x)=xx+2,f2(x)=f(f1(x))=x3x+4,f3(x)=f(f2(x))=x7x+8,f4(x)=f(f3(x))=x15x+16,……根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n-1(x))=________. 解析:分母中x前的系数为2n-1,常数为2n.答案:x(2n-1)x+2n5.已知a 、b 为正整数,设两直线l 1:y =b -b a x 与l 2:y =b ax 的交点为P 1(x 1,y 1),且对于n ≥2的自然数,两点(0,b ),(x n -1,0)的连线与直线y =ba x 交于点P n (x n ,y n ).(1)求点P 1、P 2的坐标; (2)猜想点P n 的坐标公式.解析:(1)解方程组⎩⎪⎨⎪⎧y =b -b ax ,y =ba x ,得P 1(a 2,b2).过(0,b ),(a 2,0)两点的直线方程为2x a +yb=1,与y =b a x 联立,解得P 2(a 3,b3). (2)由(1)可猜想P n (a n +1,bn +1).6.某少数民族的刺绣有着悠久的历史,如图(1)(2)(3)(4)所示,为她们刺绣中最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式; (3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. 解析:(1)f (5)=41. (2)f (2)-f (1)=4=4×1,f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4,……由上述规律,得f (n +1)-f (n )=4n .∴f (n +1)=f (n )+4n ,f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4=2n 2-2n +1. (3)当n ≥2时,1f (n )-1=12n (n -1)=12(1n -1-1n),∴1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12[(1-12)+(12-13)+(13-14)+…+(1n -1-1n )]=1+12(1-1n )=32-12n .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 归纳与类比基础巩固一、选择题1.如图是2012年元宵节灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )观察题干中的三个图形,前一个图形以中心为原点沿顺时针旋转144°得到后一图形,类比可知选A.2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可推知扇形面积公式S 扇等于( )A.r 22 B .l 22C .lr 2D .不可类比由扇形的弧长与半径分别类比三角形的底边与高,可得扇形的面积公式. 3.平面几何中,有边长为a 的正三角形内任一点到三边距离之和为定值32a ,类比上述命题,棱长为a 的正四面体内任一点到四个面的距离之和为( )A.43a B.63a C.54a D.64a 将正三角形一边上的高32a 类比到正四面体一个面上的高63a ,由正三角形“分割成以三条边为底的三个三角形面积的和等于正三角形的面积”,方法类比为“将四面体分割成以各面为底的三棱锥体积之和等于四面体的体积”证明.二、填空题4.若数列{a n }中,a 1=1,a 2=3+5,a 3=7+9+11,a 4=13+15+17+19,…,则a 10=________.前10项共使用了1+2+3+4+…+10=55个奇数,a 10为由第46个到第55个奇数的和,即a 10=(2×46-1)+(2×47-1)+…+(2×55-1)=1091+1092=1 000.5.设函数f (x )=xx +2(x >0),观察: f 1(x )=f (x )=xx +2, f 2(x )=f (f 1(x ))=x3x +4, f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________. 本题主要考查了归纳推理及分析解决问题的能力. 依题意:f 1(x )=xx +2=x2-1x +2,f 2(x )=x3x +4=x22-1x +22,f 3(x )=x7x +8=x23-1x +23,f 4(x )=x15x +16=124-1x +24. ∴当n ∈N *且n ≥2时,f n (x )=x2n -1x +2n.三、解答题6.已知a ,b 为正整数,设两直线l 1:y =b -b a x 与l 2:y =ba x 的交点为P 1(x 1,y 1),且对于n ≥2的自然数,两点(0,b ),(x n -1,0)的连线与直线y =bax 交于点P n (x n ,y n ).(1)求点P 1、P 2的坐标; (2)猜想点P n 的坐标公式.两直线的交点坐标可通过解方程组求出,由两点坐标又可写出新的直线方程,从而猜想出点P n 的坐标.(1)解方程组⎩⎨⎧y =b -b ax ,y =ba x ,得P 1(a 2,b 2).过(0,b ),(a 2,0)两点的直线方程为2x a +y b =1,与y =b a x 联立,解得P 2(a 3,b3).(2)由(1)可猜想P n (a n +1,bn +1).一、选择题1.三角形的面积为S =12(a +b +c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为( )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r (S 1、S 2、S 3、S 4为四个面的面积,r 为内切球的半径)D .V =13(ab +bc +ac )h (h 为四面体的高)设△ABC 的内心为O ,连接OA 、OB 、OC ,将△ABC 分割为三个小三角形,这三个小三角形的高都是r ,底边长分别为a 、b 、c ;类比:设四面体A -BCD 的内切球的球心为O ,连接OA 、OB 、OC 、OD ,将四面体分割为四个以O 为顶点,以原来面为底面的四面体,高都是r ,所以有V =13(S 1+S 2+S 3+S 4)r .2.下列哪个平面图形与空间图形中的平行六面体作为类比对象较合适( ) A .三角形 B .梯形 C .平行四边形D .矩形从构成几何图形的几何元素的数目、位置关系、度量等方面考虑,用平行四边形作为平行六面体的类比对象较为合适.3.观察式子:1+122<32,1+122+132<53,1+122+132+142<74,…,则可归纳出第n -1个式子为( )A .1+122+132+…+1n 2<12n -1B .1+122+132+…+1n 2<12n +1C .1+122+132+…+1n 2<2n -1nD .1+122+132+…+1n 2<n2n +1观察可得第n -1个式子中不等式的左边为数列{1i 2]的前n 项的和,右边为分式2n -1n .4.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N +)的前12项(即横坐标为奇数项,纵坐标为偶数项),按如此规律下去,则a 2 009+a 2 010+a 2 011等于( )A .1 003B .1 005C .1 006D .2 011观察点坐标的规律可知,偶数项的值等于其序号的一半. 则a 4n -3=n ,a 4n -1=-n ,a 2n =n . 又2 009=4×503-3,2 011=4×503-1, ∴a 2 009=503,a 2 011=-503,a 2 010=1 005, ∴a 2 009+a 2 010+a 2 011=1 005.5.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.355113设圆锥的底面圆半径为r ,则L =2πr ,由136L 2h ≈13sh ,代入s =πr 2化简得π≈3;类比推理,若V ≈275L 2h 时,π≈258.本题的关键是理解“若V ≈136L 2h ,π近似取为3”的意义,类比求解,这是高考考查新定义型试题的一种常见模式,求解此类试题时,关键是要理解试题所列举的例子.二、填空题6.在平面几何里有射影定理:设△ABC 的两边AB ⊥AC ,D 是A 点在BC 上的射影,则AB 2=BD ·BC .拓展到空间,在四面体A -BCD 中,DA ⊥平面ABC ,点O 是A 在平面BCD 内的射影,类比平面三角形射影定理,△ABC 、△BOC 、△BDC 三者面积之间关系为________.S 2△ABC =S △OBC ·S △DBC 将直角三角形的一条直角边长类比到有一侧棱AD 与一侧面ABC 垂直的四棱锥的侧面ABC 的面积,将此直角边AB 在斜边上的射影及斜边的长,类比到△ABC 在底面的射影△OBC 及底面△BCD 的面积可得S 2△ABC =S △OBC ·S △DBC . 7.观察分析下表中的数据:多面体 面数(F ) 顶点数(V ) 棱数(E ) 三棱柱 5 6 9 五棱锥 6 6 10 立方体68125+6-9=2, 6+6-10=2, 6+8-12=2, ∴F +V -E =2.三、解答题8.已知S n =11×2+12×3+13×4+…+1n n +1,写出S 1,S 2,S 3,S 4的值,并由此归纳出S n 的表达式.在S n 中分别令n =1,2,3,4,可以求得S 1,S 2,S 3,S 4的值,再进行归纳推测. S 1=11×2=-12=12;S 2=11×2+12×3=(1-12)+(12-13)=1-13=23;S 3=11×2+12×3+13×4=(1-12)+(12-13)+(13-14)=1-14=34;S 4=11×2+12×3+13×4+14×5=(1-12)+(12-13)+(13-14)+(14-15)=1-15=45;由此猜想:S n =n n +1(n ∈N +).本题利用归纳猜想的思想求得了S n 的表达式,有两点应注意:①正确理解与把握数列求和中S n 的含义;②在对特殊值进行规律观察时,有时需要将所得结果作变形处理,以显示隐藏的规律性.9.观察等式:sin50°+sin20°=2sin35°cos15° sin66°+sin32°=2sin49°cos17°猜想符合以上两式规律的一般结论,并进行证明. 猜想:sin α+sin β=2sin α+β2cos α-β2.下面证明:左边=sin(α+β2+α-β2)+sin(α+β2-α-β2)=(sin α+β2cos α-β2+cos α+β2sin α-β2)+(sin α+β2cos α-β2-cos α+β2sin α-β2)=2sinα+β2cos α-β2=右边.所以原等式成立.10.已知等差数列{a n },公差为d ,前n 项和为S n ,有如下的性质: (1)通项a n =a m +(n -m )·d ;(2)若m +n =p +q ,其中m ,n ,p ,q ∈N +,则a m +a n =a p +a q ; (3)若m +n =2p ,m ,n ,p ∈N +,则a m +a n =2a p ; (4)S n ,S 2n -S n ,S 3n -S 2n 构成等差数列.类比上述性质,在等比数列{b n }中,写出相类似的性质. 在等比数列{b n }中,公比为q ,前n 项和为S n ,则可推出: (1)通项b n =b m ·q n-m;(2)若m +n =p +q ,其中m ,n ,p ,q ∈N +, 则b m ·b n =b p ·b q ;(3)若m +n =2p ,m ,n ,p ∈N +,则 b m ·b n =b 2p ;(4)S n ,S 2n -S n ,S 3n -S 2n 构成等比数列.。