抽象代数Chapter11(1)习题答案

合集下载

抽象代数复习题与答案

抽象代数复习题与答案

《抽象代数》试题及答案 本科一、单项选择题(在每小题的四个备选答案中,选出一个正确答案, 并将正确答案的序号填在题干的括号内。

每小题3分)1. 设Q 是有理数集,规定f(x)= x +2;g(x)=2x +1,则(fg )(x)等于( B )A. 221x x ++B. 23x + C. 245x x ++ D. 23x x ++2. 设f 是A 到B 的单射,g 是B 到C 的单射,则gf 是A 到C 的 ( A )A. 单射B. 满射C. 双射D. 可逆映射3. 设 S 3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S 3中与元素(1 32)不能交换的元的个数是( C )。

A. 1B. 2C. 3D. 44. 在整数环Z 中,可逆元的个数是( B )。

A. 1个B. 2个C. 4个D. 无限个5. 剩余类环Z 10的子环有( B )。

A. 3个B. 4个C. 5个D. 6个 6. 设G 是有限群,a ∈G, 且a 的阶|a|=12, 则G 中元素8a 的阶为( B ) A . 2 B. 3 C. 6 D. 97.设G 是有限群,对任意a,b ∈G ,以下结论正确的是( A )A. 111)(---=a b ab B. b 的阶不一定整除G 的阶C. G 的单位元不唯一D. G 中消去律不成立8. 设G 是循环群,则以下结论不正确...的是( A ) A. G 的商群不是循环群 B. G 的任何子群都是正规子群 C. G 是交换群 D. G 的任何子群都是循环群9. 设集合 A={a,b,c}, 以下A ⨯A 的子集为等价关系的是( C )A. 1R = {(a,a),(a,b),(a,c),(b,b)}B. 2R = {(a,a),(a,b),(b,b),(c,b),(c,c)}C. 3R = {(a,a),(b,b),(c,c),(b,c),(c,b)}D. 4R = {(a,a),(a,b),(b,a),(b,b),(b,c),(c,b)}10. 设f 是A 到B 的满射,g 是B 到C 的满射,则gf 是A 到C 的 ( B )A. 单射B. 满射C. 双射D. 可逆映射11. 设 S 3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S 3中与元素(1 2)能交换的元的个数是( B )。

第十一章部分习题及参考答案.doc

第十一章部分习题及参考答案.doc

第十一章部分习题及参考答案1.判断下列集合和运算是否构成半群和独异点(1)a是正整数,G=(a n lnGZ}.运算是普通乘法.(2)Q+是正有•理数集,运算为普通加法.(3)一元实系数多项式的集合关于多项式加法.分析:判断给定集合和运算是否构成半群主要验证以下两个条件:•集合对于给定二兀运算封闭•运算满足结合律判断给定集合和运算是否构成独异点则需要验证三个条件,艮化•集合对于给定二兀运算封闭•运算满足结合律•运算有单位元具体分析如下:(1)倡取G中兀素a n, a m. a n a m=a n+ra.仍旧是G中兀素,运算封闭.普通乘法满足结合律.a°=l是单位元.(2)易见加法满足封闭性和结合律,但是。

不是正有理数,没有单位兀.(3)容易证明多项式加法满足封闭性和结合律,单位元为0,它是一元零次多项式. 答案:(D 是半群和独异点;(2)是半群但不是独异点;(3)是半群和独异点.2.设Vl=<Z,+>, V2=<Z, •>,其中Z为整数集合,+和•分别代表普通加法和乘法.判断下述集合S 是否构成成VI和V2的子半群和子独异点.(1)S={2klkeZ}(2)S={2k+llkeZ}(3)S={-1.0.1}分析:判断子集关于给定半群是否构成子半群应该验证以下两个条件:•子集非空•子集对于给定半群的二元运算封闭判断独异点的子集是否构成子独异点则应该验证三个条件:•子集非空•子集对于给定半群的二元运算封闭•子集含有原来独异点的单位元具体分析如下:(1)易见S非空,S关于普通加法和乘法都封闭,VI关于加法的单位兀是0,属于S,但是V2关于乘法的单位元是1,不属于S.(2)因为两个奇数相加不是奇数,S关于VI不封闭.但是两个奇数相乘仍旧是奇数,因此S关于V2封闭.结合律显然满足.单位兀1也属于S.(3) S关于加法不封闭,例如1+1= 2, 2不属于S.但是,S关于乘法封闭,结合律成立, 且单位元是1.答案:(1)S关于VI构成子半群和子独异点,但是关于V2仅构成子半群;(2)S关于VI不构成子半群也不构成子独异点,S关于V2构成子半群和子独异点;(3)S关于VI不构成子半群和子独异点,关于V2构成子半群和子独异点.3.下列集合S和运算是否构成代数系统?构成哪一类代数系统?CD S={ 1,1/2,2,1/33,1/4,4}; *是普通乘法.(2)S={al,a2,a3,...,an}; ai*aj=ai; lWi,jWn,其中nN2.(3)S=(0.1};*是普通乘法.分析:⑴S对*不封闭,例如,2*3=6不属于S,故S和*不构成代数系统.⑵显然*是S上的二元运算,即S对*封闭.又*满足结合律:对所有的lWi,j,kW n,(ai*aj)*ak=ai*(aj*ak)=ai,故是一个半群.没有单位元,故不是独异点.事实上,对每一个ai(lWiWn),因为nN2,存在旬Nai(lWjWn),有ai*aj=ai # aj,故ai 不是单位元.(3)显然,*是、上的二兀运算,满足结合律,具有单位兀1,故是一个独异点.答案:(1)不是代数系统.(2)是半群但不是独异点.(3)是半群也是独异点.4 设G为非0实数集R*关于普通乘法构成的群,判断下述函数是否为G的自同态?为什么?如果是,判别它们是否为单同态、满同态、同构.(1)f(x)=lxl+l(2)f(x)=lxl(3)f(x)=O(4)f(x)=2分析:判断同态的步骤是:⑴先判断(或证明)f是G1到G2的映射f: G1-G2.即判定f是函数,domf=Gl,ranfj G2.如果已知f:Gl-G2,则这步判断可以省去.(2)其次,Vx,y'Gl,验证 f (xy)=f (x)f (y).(3)判断同态的性质只需判断函数的单射、满射、双射性即可.答案:(1)不是同态,因为f(2X2)=f(4)=5,f(2)Xf(2)=3X3=9.(2)是同态,因为f(xy)=lxyl=lxllyl=f(x)f(y).不是单同态,也不是满同态,因为f(l)=f(-l), ran f中没有负数.(3)不是G的自同态,因为f不是G到G的函数,0不是R*中的数.(4)不是G 的自同态.因为f(2X2)=2,f(2)Xf(2)=2X2=4.5 定义群G上的函数f,f(x)=x: VxGG,证明f为自同构当且仅当G为交换群. 证明:必要性.任取x.yGG,xy = f((xy)‘) = f(y-1x-1) = f(y-i)f(x") = yx充分性.易见f为双射.任取x,yeQ有f(xy) = f(yx) = (yx)-1 = x'y1 = f(x)f(y)。

近世代数初步_习题解答(抽象代数)(优选.)

近世代数初步_习题解答(抽象代数)(优选.)

《近世代数初步》习题答案与解答引 论 章一、知识摘要1.A 是非空集合,集合积A A b a b a A A 到},:),{(∈=⨯的一个映射就称为A 的一个代数运算(二元运算或运算).2. 设G 非空集合,在G 上有一个代数运算,称作乘法,即对G 中任意两个元素a,b,有唯一确定的元素c 与之对应,c 称为a 与b 的积,记为c=ab.若这个运算还满足:,,,G c b a ∈∀(1),ba ab =(2)),()(bc a c ab =(3)存在单位元e 满足,a ae ea ==(4)存在,'G a ∈使得.''e a a aa =='a 称为a 的一个逆元素.则称G 为一个交换群.(i)若G 只满足上述第2、3和4条,则称G 为一个群.(ii) 若G 只满足上述第2和3条,则称G 为一个幺半群.(iii) 若G 只满足上述第2条,则称G 为一个半群.3.设F 是至少包含两个元素的集合,在F 上有一个代数运算,称作加法,即对F 中任意两个元素a,b,有唯一确定的元素c 与之对应,c 称为a 与b 的和,记为c=a+b.在F 上有另一个代数运算,称作乘法,即对F 中任意两个元素a,b,有唯一确定的元素d 与之对应,d 称为a 与b 的积,记为d=ab.若这两个运算还满足:I. F 对加法构成交换群.II. F*=F\{0}对乘法构成交换群.III..)(,,,ac ab c b a F c b a +=+∈∀就称F 为一个域.4.设R 是至少包含两个元素的集合,在R 上有加法和乘法运算且满足:I. R 对加法构成交换群(加法单位元称为零元,记为0;加法单位逆元称为负元).II. R *=R\{0}对乘法构成幺半群(乘法单位元常记为1).III. .)(,)(,,,ca ba a c b ac ab c b a R c b a +=++=+∈∀就称R 为一个环.5.群G 中满足消去律:.,,,c b ca ba c b ac ab G c b a =⇒==⇒=∈∀且6.R 是环,),0(00,,0,==≠∈≠∈ba ab b R b a R a 或且若有则称a 是R 中的一个左(右)零因子.7.广义结合律:半群S 中任意n 个元a 1,a 2,…,a n 的乘积a 1a 2…a n 在次序不变的情况下可以将它们任意结合.8.群G 中的任意元素a 及任意正整数n,定义:个n n a aa a ...=, 个n n a a a a e a 1110...,----==.则由广义结合律知,,,Z n m G a ∈∀∈∀有.)(,)(,1m m mn n m n m n m a a a a a a a --+===(在加法群中可写出相应的形式.)9.关于数域上的行列式理论、多项式理论(包括除法算式、整除性、最大公因式、因式分解唯一性定理等)、线性方程组理论、矩阵运算及理论、线性空间及线性变换理论在一般域F 上都成立.二、习题解答1、(1)否,(2)否,(3)是,(4)是。

【答案】华师18年9月课程考试抽象代数作业考核试题答案

【答案】华师18年9月课程考试抽象代数作业考核试题答案

【奥鹏】[华中师范大学]华师18年9月课程考试《抽象代数》作业考核试题试卷总分:100 得分:100第1题,题面见图片:A、AB、BC、CD、D[答案]:C第2题,题面见图片:A、AB、BC、CD、D[答案]:C第3题,设S3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S3中与元素(1 2)能交换的元的个数是A、1B、2C、3D、4[答案]:B第4题,S3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S3中与元素(1 32)不能交换的元的个数是A、1B、2C、3D、4[答案]:C第5题,在剩余类环Z8中,其可逆元的个数是A、1B、2C、3D、4[答案]:D第6题,关于半群,下列说法正确的是A、半群可以有无穷多个右单位元B、半群一定有一个右单位元C、半群如果有右单位元则一定有左单位元D、半群一定至少有一个左单位元[答案]:A第7题,题面见图片:A、AB、BC、CD、D[答案]:B第8题,题面见图片:A、AB、BC、CD、D[答案]:A第9题,题面见图片:A、AB、BC、CD、D[答案]:C第10题,题面见图片:A、AB、BC、CD、D[答案]:B第11题,题面见图片:A、AB、BC、CD、D[答案]:B第12题,剩余类加群Z8的子群有A、3个B、4个C、5个D、6个[答案]:B第13题,题面见图片:A、AB、BC、CD、D[答案]:B第14题,设G是交换群,则以下结论正确的是A、G的商群不是交换群B、G的任何子群都是正规子群C、G是循环群D、G的任何子群都是循环群[答案]:B第15题,剩余类环Z10的子环有A、3个B、4个C、5个D、6个[答案]:B第16题,数域P上的n阶可逆上三角矩阵的集合关于矩阵的乘法A、构成一个交换群B、构成一个循环群C、构成一个群D、构成一个交换环[答案]:C第17题,题面见图片:A、AB、BC、CD、D[答案]:D第18题,在高斯整数环Z[i]中,可逆元的个数为A、1B、2C、3D、4[答案]:D第19题,设G是循环群,则以下结论不正确的是A、G的商群不是循环群B、G的任何子群都是正规子群C、G是交换群D、G的任何子群都是循环群[答案]:A第20题,题面见图片:A、AB、BC、CD、D[答案]:B第21题,下列正确的命题是A、欧氏环一定是唯一分解环B、主理想环必是欧氏环C、唯一分解环必是主理想环D、唯一分解环必是欧氏环。

抽象代数Chapter11(2)习题答案

抽象代数Chapter11(2)习题答案

Math5286H:FundamentalStructures of Algebra IIHW2Solutions,(February17th,2012)Problems from Chapter11of Artin’s Algebra:6.2Yes,Z/(6)is isomorphic to Z/(2)×Z/(3).Consider the explicit mapϕ:Z/(2)×Z/(3)→Z/(6)defined byϕ((x+(2))×(y+(3)))=x+(2))×(3and−2.(Try squaring them modulo6and note that1−3.)Thus, Z/(6)∼=3S×(−2)S by Proposition11.6.2,and we verify that3S∼=Z/(2)and(−2)S∼=Z/(3).In the second case,Z/(8)has no non-trivial idempotents:22=62=4,32=52=72=1,42=0,and thus we cannot write Z/(8)as a product ring.6.3We will show that the only ring(using our usual definitions,mutativity of multiplication andcontaining an multiplicative identity)of order10is the ring Z/(10).Firstly note that if|R|=10,then(R,+)is afinite abelian group of order10.Since10is square-free, (R,+)∼=Z/10Z.Thus the only question is whether R could be given a multiplicative structure different than that of Z/(10).However,since(R,+)∼=Z/10Z,we know that the characteristic of R is10and thus {1,9}are all distinct elements.(Here,a·c where c=ab=(1+1+1+···+1)(1+1+···+1)mod10,and hence no exotic multiplication structures are possible.Remark:One might try to break R,a ring of order10into product rings using idempotents.In fact, Z/(10)contains the idempotents6=Remark2:This proof uses the fact that R contains a multiplicative identity1R.If we relax this restriction,as is sometimes done in the literature,for instance if one looks at certain matrix rings,then other“rings”of order10are possible.For example,R= 0000 , 0100 , 0200 ,..., 0900 .Note that the product of any two elements in this ring is zero and there is in fact no multiplicative identity.6.4(a)F2[α],such thatα2+α+1=0,is isomorphic to the quotient ringR={0,1,α,α+1}whereα2=α+1,(α+1)2=α,andα(α+1)=1.HenceR=F2[x]/(x2+1).In F2[x],the polynomial x2+1factors as(x+1)(x+1)since12+1≡0 mod2and x2+2x+1≡x2+1mod2.The ringR=F2[x]/(x2+x).In F2[x],the polynomial x2+x factors as x(x+1)and soR∼=αR∼=F2×F2.6.5Adjoining an elementαto R that satisfies the relationα2−1=0is equivalent to considering thequotient ring2(α+1)and e′=−122(α+1)2=12(α+1).Note also thate+e′=1.Thus R×e′R and e′R or e′f which has no non-constant terms where the coefficient is not0or1.Also let f0denote the constant term of f and write it as f0=2q f+r f where q f∈Z and r f∈{0,1}.We then have the mapϕ:Z[x]/(2x)→F2[x]×Z defined byϕ(f−2q f,f0). To see that this map is a ring homomorphism,note thatϕ(g)=(g−2q f−2q g,f0+g0)=(g−2q g,g0),ϕ(g)=(g−2q fg,f0g0)=(g−2q g,g0)(since the cross-terms vanish mod2),andfinallyϕ(to the subring of F2[x]×Z corresponding to its image.Noting that(b∈J.The cross-termβ·b=0since IJ=0and so we are left with a contribution from the quotient R/J.The same argument shows thatγR∼=R/I.Example:If we let R=Z/(6),I=(2)and J=(3),notice that IJ=(6),which is the zero ideal in R. We have R=I+J since1≡4−3mod6.We obtain Z/(6)∼=R/(2)×R/(3)∼=Z/(2)×Z/(3).If we try the same argument with R′=Z/(8)and I′=(2),(J)′=4,we still have I′J′=(0)but we do not have R′=I′+J′in this case.7.1Let R be afinite integral domain,i.e.a ring with no zero divisors.For every nonzero element r∈R,welook at powers r n and note that since R isfinite,r d=1for some d>0.Hence r·(r d−1)=r and all nonzero elements of R are units.Thus R is afield.7.2Suppose that R[x]is not an integral domain and that f(x)g(x)=0where f(x)and g(x)are both nonzero.Let f(x)=a n x n+a n−1x n−1+···+a1x+a0and g(x)=b m x m+b m−1x m−1+···+b1x+b0where a n andb m are both nonzero.Then f(x)g(x)=0has a term of degree m+n,a n b m x m+n,and so a n b m must equal0.However,a n and b m are both nonzero so R cannot be an integral domain.Thus by the contrapositive,R[x]is an integral domain whenever R is.Furthermore,if f(x)=a n x n+a n−1x n−1+···+a1x+a0with a n=0and n≥1,then f(x)g(x)is a non-constant polynomial,of degree≥n≥1,for any g(x).Thusany non-constant polynomial cannot have a multiplicative inverse.Since R⊂R[x],any unit of R is alsoa unit in R[x],and these are the only units in R[x].7.3Anyfinite integral domain is afield,by Exercise7.1.Furthermore,by Lemma3.2.10,the characteristic ofafinitefield is a prime integer.However,as in Exercise6.3,for any ring R with15elements,(R,+)must be Z/15Z.But then the characteristic would be15,which is not prime.Thus,no integral domain with 15elements exists.8.2(a)Since R is afield,(0)and(1)are only ideals in R.We now consider R×R,whose ideals are theproducts(0)×(0),(0)×(1),(1)×(0),or(1)×(1).To see that no other ideals are possible,simply note that if I is an ideal of R×R and I contains an element(x,y)whosefirst coordinate is nonzero,then I also contains(1,y).By similar logic,the second coordinate is either always zero or I contains the element (0,1)or(1,1).Since(1)×(1)is the unit ideal and we have the inclusions(0)×(0) (0)×(1) (1)×(1) and(0)×(0) (1)×(0) (1)×(1),we conclude that the maximal ideals of R×R are0×R and R×0.For(b),(c),and(d),we determine the ideals in a quotient ring by using the Correspondence Theorem.(b)The ideals in R[x]/(x2)are the ideals in R[x]containing(x2).Since R is afield,R[x]is a Principal IdealDomain,and the ideals of R[x]containing(x2)are(0),(x),and(x2).By the Correspondence Theorem, we get three ideals in R[x]/(x2),the unique maximal ideal being(x).(c)Analogously,we factor x2−3x+2=(x−2)(x−1)in R[x]and we obtain the maximal ideals in R[x]/(x2−3x+2)are(x−2)and(x−1).(d)Lastly,we note that x2+x+1has non-real roots so is irreducible in R[x].Hence,R[x]/(x2+x+1)is afield where the unique maximal ideal is(0).8.3In F2[x],the polynomial x3+x+1has no roots.In particular,03+0+1≡13+1+1≡1mod2.Thusx3+x+1has no linear factors and is irreducible so F2[x]/(x3+x+1)is afield.However,in F3[x],the polynomial x3+x+1has root1since13+1+1≡0mod3.Thus(x−1)≡(x+2) is a linear factor of x3+x+1.In fact,x3+x+1factors as(x+2)(x2+x+2)in F3[x].(But we do not need the exact factorization.)We conclude that F3[x]/(x3+x+1)has a nontrivial maximal ideal like parts(b)and(c)of the previous problem and hence is not afield.Problems from Chapter12of Artin’s Algebra:1.4Wefirst note(see Exercise1.3of Chapter12)that the Chinese Remainder Theorem,proven for generalideals in Exercise6.8,works also in the special case that R=Z.In fact,it wasfirst demonstrated for such examples.(There is also a generalization to more than two ideals as long as each pair I i,I j of ideals satisfy R=I i+I j.)From this theorem,we have the isomorphismϕ:Z/(mn)→Z/(m)×Z/(n)given by x+(mn)→(x+(n))when gcd(m,n)=1.We construct the inverse mapϕ−1by noting that since gcd(m,n)=1,there exist integers r and s so that rm+sn=1.We thus let x=(sn)a+(rm)b and obtain x≡a mod m and x≡b mod n.Having outlined the general procedure,we now apply it to the examples.(a)If x≡3mod8and x≡2mod5,we notice gcd(8,5)=1,and in particular2·8−3·5=1.So letx=3(−15)+2(16)=−13≡27mod40.We indeed verify that27≡3mod8and27≡2mod5.Remark:This might also be found by inspection by looking at the intersection of the sets{3,11,19,27,35} and{2,7,12,17,22,27,32,37}.(b)We do this problem in two steps since there are three congruences.First wefind y mod120so thaty≡3mod15and y≡5mod8(120=15·8).With the same method,we see gcd(8,15)=1,and it is easy to eyeball2·8−1·15=1.So we let y≡3(16)+5(−15)≡93mod120.Next we wish tofind x mod840so that x≡93mod120and x≡2mod7.We see gcd(120,7)=1and1·120−17·7=1.(This is still easy to spot but otherwise there is the extended Euclidean algorithm,which we have not discussed in class,that can be used tofind r and s.)So we choose x≡2(120)+93(−119)≡−10827≡93mod840.Actually,the fact that x and y both equal93is a coincidence since93≡2mod7.So if we would have checked all the congruences at that point instead of continuing we would have had a pleasant surprise.(c)Again gcd(43,71)=1,and we do an adhoc version of the extended Euclidean algorithm:71=1·43+28,43=1·28+15,28=1·15+13,15=1·13+2,13=6·2+1.Thus we can back-solve,and obtain1=13−6¨2=13−6·(15−13)=−6·15+7·13=−6·15+7(28−15)=−13·15+7·28.Continuing,1=−13(43−28)+7·28=20·28−13·43=20(71−43)−13·43=20·71−33·43.Thus if we want x ≡13mod 43and x ≡7mod 71,we take x ≡13(20·71)+7(−33·43)≡2421mod 3053where 3053=43·71.Like magic,you can verify that x =2421satisfies the desired congruences.2.1(a)Since x 3+x 2+x +1is a cubic,we look for possible roots in F 2.We see 03+02+0+1≡1mod 2and 13+12+1+1≡0mod 2.Thus (x −1)≡(x +1)is a root.By synthetic division,we obtain x 3+x 2+x +1=(x +1)(x 2+1).We see that 1is again a factor of x 2+1,and in fact x 3+x 2+x +1=(x +1)3in F 2[x ].This can also be done by inspection and using the Binomial Theorem to expand this cube.(b)We again try to find roots,this time in F 5.By inspection,12−3−3≡0mod 5and so (x −1)is a linear factor.We obtain x 2−3x −3=(x −1)(x −2)in F 5.(c)We attempt to find a square-root of −1≡6in F 7.We see that no such root of x 2+1exists,hence x 2+1is irreducible in F 7[x ].2.3This is similar to Monday’s question about x 2−1in class.By trying out 0,1,2,...,7we see that the polynomial x 2−2has no roots in Z /(8)[x ].Note that it is actually sufficient to test 0,1,2,3,4since 5,6,7are equivalent to −3,−2,−1.A similar shortcut holds for part (c)of the previous problem.2.6(a)We wish to show that Z [ω](with ω=e 2πi/3)is a Euclidean Domain with the size function σ(a +bω)=a 2−ab +b 2when a and b are not simultaneously zero.Note that as a complex number,ω=−1+√2,andif we think of α=a +bωas a complex number,then σ(α)=|α|2=α2)2+(b√2)2.We use the fact that ωis a primitive cube root of unity to see that each principal ideal (α)⊂Z [ω]is a triangular lattice.(As opposed to Z [i ]where the fundamental regions of the lattice were squares instead.)In particular,we see that α,ωα,and ω2αare all elements of Z [ω].Furthermore,since x 3−1factors as (x −1)(x 2+x +1)and ω=1is a root of x 3−1,we have the identity ω2+ω+1=0.(This identity can also be proven explicitly using ω2=−1−√2.)Thus α+ωα+ω2α=0,hence why we get triangles as fundamental regions,in fact equilateral triangles.(This is similar to Z [i ]where 1+i +(−1)+(−i )=0and so the fundamental regions have four sides and are squares.)The centroid of an equilateral triangle (with side lengths |α|is at most a squared distance of 13σ(α)away from a lattice point,i.e.multiple of α.(This is done using 30-60-90triangles to calculate the lengths of the segments in the associated barycentric subdivision.)So if we write β=αq +r ,we get σ(r )≤1−3]and then finding the nearest element of Z [ω]whose two components are half-integers satisfying a parity contraint.Some crude bounds give that the remainder has the form 2r 0+r 12√4and |r 1|≤14σ(α)+316σ(α)when r =0.√(b)The case of Z[−2)=a2+2b2,which is again|α|2ifα=a+bi√−2],the principal ideal(α)is again a lattice,only this time√the fundamental domains are rectangles where one side has length|α|and the other one has size|α|−2],β−qα=r is either zero orσ(r)is at most(12)2=34σ(α).√2in R which acts trivially in Z[x],we get that the polynomial 3.1(a)By applying the automorphism√2)=x2−2x−1is in the kernel ofϕ:Z[x]→R sending x to1+√(x−1−2+b=0unless a=0and b=0.Thus the kernel ofϕis a principal ideal with the named prime element as a generator.(b)By similar logic,we try tofind an element of the kernel ofϕwhich sends x to1 2.To make this easier, wefirst think ofϕof sending Q[x]to R,and obtain element of the kernel(x−12)(x−12)=x2−x−7(4x2−4x−7)where4x2−4x−7is the unique primitive integer4polynomial in such a factorization.Thus4x2−4x−7is a prime element of Z[x]that is in the kernel ofϕ.We apply Theorem12.3.6(a)here to show that the kernel is again principal.Suppose that f(x)is another element in the kernel that is not a multiple of4x2−4x−7.But Q[x]is a principal ideal domain and so thinking of them as polynomials with rational coefficients,we have that f(x)must be a multiple of 4x2−4x−7in Q[x].However,since4x2−4x−7is a primitive polynomial,4x2−4x−7must therefore divide f(x)in Z[x]as well.3.2Suppose that two polynomials,f and g,in Z[x]are relatively prime elements of Q[x].Since Q[x]is of theform F[x],with F afield,it is a Principal Ideal Domain and relatively prime means that gcd(f,g)=1.Thus there exists r(x)and s(x)∈Q[x]so that r(x)f+s(x)g=1.However we multiply through bya common integer d to clear denominators in r(x)and s(x),obtaining r′(x)and s′(x)∈Z[x]so thatr′(x)f+s′(x)g=d.Thus the ideal(f,g)contains the integer d in Z[x]and we obtain the forward direction.To see the reverse direction,assume that the ideal(f,g)contains the integer d.Then there exists r′(x) and s′(x)∈Z[x]such that r′(x)f+s′(x)g=d,and dividing by d,we obtain r(x)f+s(x)g=1as above.Hence f and g are relatively prime in Q[x],completing the proof.。

抽象代数

抽象代数

贵州师范大学 抽象代数答案 淞2013.9.9第一章 基本概念1 集合1.A B ⊂,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ׃只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ∉,显然矛盾;若A B ⊂,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A =2.假定B A ⊂,?=B A ,A ∩B=? 解׃ 此时, A ∩B=A,这是因为A ∩B=A 及由B A ⊂得A ⊂A ∩B=A,故A B A = ,B B A ⊃ ,及由B A ⊂得B B A ⊂ ,故B B A = ,2 映射 1.A =}{100,3,2,1,⋯⋯,找一个A A ⨯到A 的映射. 解׃ 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ易证21,φφ都是A A ⨯到A 的映射.2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ⨯到A 的一个元的的象?解׃容易说明在1φ之下,有A 的元不是A A ⨯的任何元的象;容易验证在2φ之下,A 的每个元都是A A ⨯的象.3 代数运算1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ⨯到D 的代数运算;是不是找的到这样的D ?解׃取D 为全体有理数集,易见普通除法是A A ⨯到D 的代数运算;同时说明这样的D 不只一个.2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解׃a b caa b c a b c b b c a a a a a c c a b b d a aca a a4 结合律1.A ={所有不等于零的实数}. 是普通除法:bab a = .这个代数运算适合不适合结合律?贵州师范大学 抽象代数答案 淞2013.9.9解׃ 这个代数运算不适合结合律:212)11(= , 2)21(1= ,从而 )21(12)11( ≠.2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律?解׃ 这个代数运算不适合结合律c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c .3.A ={c b a ,,},由表所给的代数运算适合不适合结合律?解׃ 经过27个结合等式后可以得出所给的代数运算适合结合律.5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律?解׃ 一般地a b b a -≠- 除非b a =.2.},,,{d c b a A =,由表a b c d a a b c d b b d a c c c a b d dd c a b所给出代数运算适合不适合交换律? 解׃ d d c = , a c d =从而c d d c ≠.故所给的代数运算不适合交换律.6 分配律假定:⊗⊕,是A 的两个代数运算,并且⊕适合结合律,⊕⊗,适合两个分配律.证明)()()()(22122111b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗ )()()()(22211211b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗= 证׃)()()()(22122111b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗ =])[(])[(221121b a a b a a ⊗⊕⊕⊗⊕ =)()(2121b b a a ⊕⊗⊕ =)]([)]([212211b b a b b a ⊕⊗⊕⊕⊗a b ca ab cb bc ac c a b贵州师范大学 抽象代数答案 淞2013.9.9)()()()(22211211b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗=7 一 一 映射、变换 1.A ={所有0〉的实数},=-A {所有实数}.找一个A 与-A 间的意义映射.证 φ:a a a log =→-因为a 是大于零的实数,所以a log 是实数即 A a ∈,而--∈A a ,而且b a b a log log =⇒=.因此φ是A 到-A 的映射.又给了一个-A 的任意元-a ,一定有一个A 的元a ,满足-=a a log ,因此φ是A 到-A 的满射. a a a log =→-b b b l o g =→-若 b a ≠, 则 b a log log ≠.即 --≠⇒≠b a b a 因此φ又是A到-A 的单射.总之,φ是A 到-A 的一一映射.2. A ={所有0≥的实数},=-A {所有实数-a ,10≤≤-a }. 找一个A 到-A 的满射.证 a a a s i n :=→-φ,容易验证φ是A 到-A 的满射.3.假定φ是A 与-A 间的一个一一映射,a 是A 的一个元.?)]([1=-A φφ ?)]([1=-a φφ若φ是A 的一个一一变换,这两个问题的回答又该是什么?解׃ a a =-)]([1φφ, a a =-)]([1φφ未必有意义;当φ是A 的一一变换时,.)]([,)]([11a a a a ==--φφφφ8 同态 1.A ={所有实数x },A 的代数运算是普通乘法.以下映射是不是A 到A 的一个子集-A 的同态满射?x x a →) x x b 2)→ 2)x x c → x x d -→)证׃ )a 显然=-A {所有0≥的实数}.又由于 y x xy xy =→可知x x →是A 到-A 的同态满射. )b 由于)2)(2(2y x xy xy ≠→ ( 除非0=xy )所以x x 2→不是A 到-A 的同态满射.)c 由于222)()()(y x xy xy =→,易知2x x →是A 到-A 的同态满射.这里-A ={所有0≥的实数}.)d 一般来说,))((y x xy --≠-,:所以x x -→不是A 到-A 的同态满射.2. 假定A 和-A 对于代数运算ο和-ο来说同态,-A 和=A 对于代数运算-ο和=ο来说同态,证明 A 和=A 对于代数运算ο和=ο来说同态。

抽象函数-题型大全(例题-含答案)[1]

抽象函数-题型大全(例题-含答案)[1]

抽象函数-题型大全(例题-含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(抽象函数-题型大全(例题-含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为抽象函数-题型大全(例题-含答案)(word版可编辑修改)的全部内容。

高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质.现将常见解法及意义总结如下: 一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211xf x x =++,求()f x 。

解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=- 2.凑合法:在已知(())()fg xh x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x 。

此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3。

待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

抽象代数 孟道骥版 习题解答 第一章

抽象代数 孟道骥版 习题解答 第一章

Chapter1Ч1.11. ?ѩ .1) R ,x R y, x≥y;2) R ,x R y, |x|=|y|;3) R ,x R y, |x−y|≤3;4) Z ,x R y, x−y ;5) C n×n( C n ) ,A R B,P,Q A=P BQ;6) C n×n ,A R B, P,Q A=P BQ;7) C n×n ,A R B, P A=P−1BP.1)҂ đ҂ ӫ .2) .a)∀x∈R,|x|=|x|.b) |x|=|y|, |y|=|x|.c) |x|=|y|,|y|=|z|, |x|=|z|.3)҂ đ҂ Ԯ .4)҂ . x∈Z,x−x=0 , x R x,R҂ .5) Ġ ğA=IAI; ӫ ğ A=P BQčp,Q ĎđB=P−1AQ−1;Ԯ ğ A=P1BQ1,B=P2CQ2, A= P1P2CQ2Q1, A R C.č đ Ď.6)҂ . A=0,B , P=0,Q, A=P BQ=0, ҂թ P,Q, B=P AQ.҂ ӫ .7) .č ս Ď.2. R A , ӫ Ԯ .R . :“ a,b∈A,Ֆa R b b R a. ՖԮ12a R a. R , .” ?҂ . A a đ թ a∈A, b∈A,a R b҂Ӯ , a .3. R A , A R1,R2 љx R1y, x=y,x R y y R x Ӯ ;x R2y, x0,x1,···,x nx0=x,x n=y, x0R1x1,x1R1x2,···,x n−1R1x n.1) R2 ;2) R , R2=R, x R2y iffx R y.3) A=Z,n .R :x R y, x−y=n.R1 R2.1)R1 đ ӫ .Ֆ R2 đ ӫ .R2R2 Ԯ . R2 .2) x R y, x R1y,x R2y, x R2y, x0,x1,···,x n x=x0,x n=y x0R1x1,x1R1x2,···,x n−1R1x n, R đ R1 x0R x1,x1R x2,···,x n−1R x n.Ֆ x0R x n x R y, R2=R.3)x R1y⇐⇒x−y=0,m,−m.x R2y⇐⇒x≡y(mod m).4. ∗ đ ?1) Z đa∗b=a−b;2) Q đa∗b=ab+1;3) Q đa∗b=ab/2;4) N đa∗b=2ab;5) N đa∗b=a b.1)҂ đ҂ .2)a)∵b∗a=ba+1=a∗b,∀a,b∈Q∴ .b)(a∗b)∗c=(ab+1)∗c=(ab+1)c+1,a∗(b∗c)=a∗(bc+1)=a(bc+1)+1, a=c đ(a∗b)∗c=a∗(b∗c),∴҂ .3)a)b∗a=ba/2=a∗b,∀a,b∈Q∴ Ġb)(a∗b)∗c=ab/2∗c=abc/4,a∗(b∗c)=a∗bc/2=abc/4,∀a,b,c∈Q, .4)a)b∗a=2ba=a∗b,∀a,b∈N Ġb)(a∗b)∗c= 2ab∗c=22ab c,a∗(b∗c)=a∗2bc=22bc a, a=1,b=c=2, (a∗b)∗c= 28,a∗(b∗c)=216, (a∗b)∗c=a∗(b∗c), ҂ .5)҂ .5. m∈Z,m=0. Z :a b, a≡b(mod m).Z Վ Z m( Z/m Z).31)Z m Ġ2) Z ԛ Z3 Ӱ Ġ3) Z ԛ Z6 Ӱ .đ ӰđZ m m đ љ 0,1,2,···,m−2,m−1, Z3 đ0,1,2,0+0=0,0+1=1,0+2=2,1+1=2,1+2=0,2+2=1,0×0=0,0×1=0,0×2=0,1×1=1,1×2=2,2×2=2.Z m Ӱ .Z6 Ӱ .č Ď1.2 ϶1. ∗ . đ ϶ đ϶ đ ҂ Ĥ1)Z,a∗b=abĠ2)Z,a∗b=a−bĠ3)R+={x∈R|x>0},a∗b=abĠ4)Q−{0,1},a∗b=abĠ5)[0,1],a∗b=δ1a b+δ1b a−δ1aδ1b. δ1a=0, a=1δ1a=1, a=1,δ1b .6)Z,a∗b=a+b−ab.1) đ Վ Ӯ .2) đ Վ ҂ Ӯ϶ . Վ ҂.3) đ Վ Ӯ .4)҂ .∵2,0.5∈Q,2∗0.5=1∈Q,∴ ҂ Ġ5) .∵a∗b=0,a=1,b=1;a∗b=1,a=1=b;a∗b=a,a=1,b=1;a∗b=b,a=1,b=1.∴ о đ (a∗b)∗c=a∗(b∗c),∴҂ đ∴ ҂ .6) .∵Z ∗ о đ(a∗b)∗c=(a+b−ab)∗c=a+b−ab+c−c(a+b−ab)=a+b+c−ca−bc+abc,a∗(b∗c)=a∗(b+c−bc)=a+b+c−bc−a(b+c−bc)=a+b+c−ab−bc−ac+abc.∴ .∀c∈Z,0∗c=0+c−0c=c,∴0 , ,0, c ,∀d∈Z,d∗1=d+1−d1=1=0,∴1 , Z ϶2. Z×Z Ӱ(x1,x2)(y1,y2)=(x1y1+2x2y2,x1y2+x2y1). :41)Z×Z ՎӰ ϶ .2) (x1,x2)=(0,0) đ (x1,x2)(y1,y2)=(x1,x2)(z1,z2)(y1,y2)=(z1,z2).1) đՎ .((x1,x2)(y1,y2))(z1,z2)=(x1y1+2x2y2,x1y2+x2y1)(z1,z2)=(x1y1z1+ 2(x2y2z1+y2z2x1+z2x2y1),x1y1z2+y1z1x2+z1x1y2+2x2y2z2)= (x1,x2)((y1,y2(z1,z2).x1,x2)(y1,y2)=(y1,y2)(x1,x2).(1,0)(x1,x2)=(x1,x2)=(x1,x2)(1,0).(1,0) Վ ϶ .Z×Z ՎӰ ϶ .2)∵(x1,x2)(y1,y2)=(x1,x2)(z1,z2),∴x1(y1−z1)+2x2(y2−z2)=0,x1(y2−z2)+x2(y1−z1)=0,∵(x1,x2)=(0,0),∴y1−z1=0,y2−z2=0.∴(y1,y2)=(z1,z2).3. S={x|x∈R,x=−1} o∗p a∗b=a+b+ab.S ∗ .ѩ ӱ2∗x∗3=7 .(a)∵a=−1 b=1 ,a∗b=−1,∴S ∗ о ;(b)(a∗b)∗c=(a+b+ab)∗c=a+b+ab+c+ac+bc+abca∗(b∗c)=a∗(b+c+bc)=a+b+c+ab+ac+bc+abc ;(c)∀c∈S,0∗c=c,0 ;(d)∀d∈S,−dd+1=−1 d .S ∗ .2∗x∗3=(2+x+2x)∗3=12x+11=7,∴x=−134. ϶ G đax=ay=⇒x=y;xa=ya=⇒x=yđ G .Վ ϶ Ӯ Ĥğ ϶ G ∀a,b∈G, ӱxa=b,ax=b đG .ğxa=a đ e a, e a a=a, c∈G,ax=c5đ d , ad =c , e a c =e a (ad )=ad =c,∴G թ Ġ∀f ∈G,xf =e a đx f . đG .∀a ∈G,∵ax =ay ⇔x =y , |G | aG =G ,Ֆ ∀a,b ∈G,ax =b đ xa =b .Ֆ .Վ ϶ ҂Ӯ đ {N ,+}.5. ϶ G o p č G G ğa −→a Ďđ a (ab )=(ba )a ,∀a,b ∈G .Վ϶ с .∀a,b,c ∈G,a ac =c =b bc , a a =a acc =b bc =b b. e =a a , e G đa a .∴G .6. ϶ G e đ ∀a ∈G đ č a ∈G aa=e Ď. G Ĥ҂ . ğG = 1100 , 1−100 , −1−100 , −1100 G ϶ . 1100 , 1100 1100 đ 1−100 1100 đ −1−100 −1−100 đ −1100 −1−100 7. P (X ) X č X Ď.1) P (X ) ӫҵ (A B =(A −B )∪(B −A ),∀A,B ∈P (X )) Ӯ Ġ 2.2) P (X ) .1) о .(A B ) C =A (B C ), ∅, A −1=A ,A A =∅, 2.2)|P (X )|=2|X |.8. G 2. G Abel .6∀a,b ∈G ,a 2=b 2=e,(ab )(ab )=e =a 2 bab =a,∴b (bab )=ba b 2=e ab =ba ,∴G Abel .9. S 5 στ,σ−1τσ,σ2,σ3. σ= 1234523154 ,τ= 1234534152. στ= 1234515243 ,σ−1τσ= 1234553214 σ2= 1234531245 ,σ3= 1234512354 10. ԛS 3 і.X ={a,b,c },S 3={τ1,τ2,τ3,τ4,τ5,τ6},τ1= a b c a b c ,τ2= ab c ac b ,τ3= a b c b a c ,τ4= a b c b c a ,τ5= a b c c a b ,τ6= ab c c b a, і :·τ1τ2τ3τ4τ5τ6τ1τ1τ2τ3τ4τ5τ6τ2τ2τ1τ5τ6τ3τ4τ3τ3τ4τ1τ2τ6τ5τ4τ4τ3τ6τ5τ1τ2τ5τ5τ6τ2τ1τ4τ3τ6τ6τ5τ4τ3τ2τ111.N э Ӯ ϶ M (N ) f ğf (n )=n +1,∀n ∈Nf đ .g k (n )=n −1,n ≥2;g k (1)=k,k ∈N , ∀k,g k f đ h f đ fh (1)=h (1)+1,∵h (1)≥1,∴fh (1)≥2, fh (1)=1 .Ֆ .12. M ϶ đm ∈M . M Ӱ o ∗pğa ∗b =amb .1)M ∗ ϶ .2) đM ∗ ϶ Ĥ1) о .(a ∗b )∗c =ambmc =a ∗(b ∗c ), M ∗ ϶ .2)m .71.31. H G . {H a } G đ R 1 a R 1b , ba −1∈H .R 1 .e =aa −1∈H ⇒aR 1a,∀a ∈G , aR 1b , ab −1∈H , ba −1=(a −1b )−1∈H , bR 1a , aR 1b,bR 1c ab −1,bc −1∈H , ac −1=(ab −1)(bc −1)∈H , aR 1c .R 1 .aR 1b ⇔ba −1∈H ⇔b ∈aH b aH .Ֆ {aH } G .2. H Z . с m H =m Z .m =min {|n ||n ∈H,n =0}, mz 0+r ∈H,0≤r <m,r ∈N,∵mz 0∈H , r ∈H , m r =0,Ֆ H =m Z .3. ԛS 3 ҆ .ѩ ԛ . X ={a,b,c },S 3={τ1,τ2,τ3,τ4,τ5,τ6},τ1= a b c a b c ,τ2= a b c a c b ,τ3= a b c b a c ,τ4= a b c b c a ,τ5= a b c c a b ,τ6= a b cc b aH 1={τ1},H 2={τ1,τ2},H 3={τ1,τ3},H 4={τ1,τ6},H 5={τ1,τ4,τ5},H 6={τ1,τ2,τ3,τ4,τ5,τ6}∴H 1,H 2,H 3,H 4,H 5,H 6 S 3 ҆ đ H 1,H 5,H 6 .4. H G đ [G :H ]=2. H G .∵[G :H ]=2,∴,∃a ∈G, a −1∈H , G =eH ∪aH eH =aH ∀h,g ∈H, ghg −1∈H ∀h ∈H,g ∈aH,∃h 1∈H , g =ah 1,ghg −1=ah 1hh −11a−1∵ghg −1∈G . ghg −1∈H , с ghg −1∈aH ,Ֆ ∃h 2∈H , ghg −1=ah 2 ah 1hh −11a −1=ah 2đ h 1hh −11=h 2⇒h −12h 1hh −11=a ⇒a ∈H.∵H G ,∴a −1∈H a −1∈H ∴ghg −1∈H , ∀h ∈H,g ∈G,ghg −1Ӯ .∴H G .5. H 1,H 2 G . |H 1H 2|=[H 1:1][H 2:1]/[H 1∩H 2:1].8 aH2,a∈H1, {aH2} H1H2 .1) aH2=bH2,a,b∈H1, ab−1∈H2,Ֆ ab−1∈H1∩H2,b∈a(H1∩H2).2)∀b∈a(H1∩H2), aH2=bH2,∴|H1H2|=[H1:1][H2:1]/[H1∩H2:1]6. G Abel đn∈N. {g∈G|g n=1} G .H={g∈G|g n=1},∀g1,g2∈H,(g1g−12)n=g n1(g n2)−1=e,∴H<G7. G҂ Ӯ ѩ.H1<G,H2<G,H1=G,H2=G,H1∪H2=G, a∈H1,b∈H2, a∈H2,b∈H1, ab∈H1,ab∈H2,Ֆ ab∈G, Ć8. H,K G đ H∩K={1}. hk=kh,∀h∈H,k∈K.∵(kh)−1hk=h−1k−1hk,h−1k−1h∈K,∀h∈H,k∈K, (kh)−1hk∈K,∵k−1hk∈H,∴h−1k−1hk∈H,∵H∩K={1},∴(kh)−1hk=1,∴kh=hk.9. H G . G/H Abel ԉgkg−1k−1∈H,∀g,k∈G.G/H Abel ⇐⇒gHkH=kHgH⇐⇒gkH=kgH⇐⇒gk(kg)−1=gkg−1k−1∈H10. H,K . H×K={(h,k)|h∈H,k∈K} Ӱ(h1,k1)(h2,k2)=(h1h2,k1k2). ğ1)H×K čӫ H K Ď.2)H1={(h,1 )|h∈H,1 K } K1={(1,k)|k∈H,1 H} H×K .3)H1∩K1={(1,1 )};H×K=H1K1.čH×Kӫ H1 K1.Ď1) e h H đe k K đ (e h,e k)∈H×K∴H×K đ∀(h1,k1),(h2,k2)∈H×K,(h1,k1)(h2,k2)=(h1h2,k1k2)∈H×K,∴H×K Ӱ о Ġ∀(h1,k1),(h2,k2),(h3,k3)∈H×K,((h1,k1)(h2,k2))(h3,k3)= (h1h2,k1k2)(h3,k3)=(h1h2h3,k1k2k3)=(h1,k1)((h2,k2)(h3,k3))= (h1,k1)((h2,k2)(h3,k3))∴H×K Ӱ∀(h,k)∈H×K,(e h,e k)(h,k)=(h,k),∴(e h,e k) Ġ9∀(h,k)∈H×K,(h−1,k−1)(h,k)=(e h,e k),∴(h−1,k−1)∈H×K∴H×K .2)∵(e h,1 )∈H1,∴H1 H×K .∀(h1,1 )∈H1,(h2,1 )∈H1,(h1,1 )(h2,1 )−1=(h1,1 )(h−12,1 )=(h1h−12,1 )∈H1,∴H1 H×K ;∀(h1,1 )∈H1,(h,k)∈H×K(h,k)(h1,1 )(h,k)−1=(hh1h−1,kk−1)=(hh1h−1,1 )∈H1,∴H1 H×K ĠK1 H×K .3) (h,k)∈H1 (h,k)∈K1, k=1 ,h=1,∴H1∩K1={(1,1 )}(h,k)∈H×K, (h,k)=(h,1 )(1,k)∈H1K1,∴H×K⊆H1K1(h1,1 )∈H1,(1,k1)∈K1đ (h1,1 )(1,k1)∈H1K1, (h1,1 )(1,k1)=(h1,k1),∴H1K1⊆H×K∴H×K=H1K1.11. ϶ M aӫ đ ∃a−1∈M aa−1=a−1a=1.ğ1) a∈Mđ ∃b,c∈M ba=ac=1 a đ a−1=b=cĠč ӫa−1 a .Ď2) Ġ3) a đ b=a−1 ԉ aba=a,ab2a=1Ġ4)M G ԉ G∀g1,g2∈G g1g2∈GĠ5)M Ӯ .1)b=bac=c, a đ a−1=b=c.2) b1,b2 a đ b1=b1ab2=b2.3)“⇒” .“⇐”:ab=abaa−1=aa−1=1,ba=a−1aba=a−1a=1,∴b=a−1.4)“⇐” .“⇒” о đ đ թ .∀g∈G,с g−1∈G,Ֆ 1=gg−1∈G5) g1,g2 đ (g1g2)(g−12g−11)=1, g1g2 đ ՎӮ .1.41. Z×Z Ӱ ğ(a,b)+(c,d)=(a+c,b+d);10 (a,b)(c,d)=(ac,bd),∀(a,b),(c,d)∈Z×Z.ğZ×Z .(a)Z×Z Abel .(b)((a,b)(c,d))(e,f)=(ac,bd)(e,f)=(ace,bd f)=(a,b)(ce,d f)=(a,b)((c,d)(e,f));(a,b)(c,d)=(ac,bd)=(ca,db)=(c,d)(a,b).∀(a,b),(c,d),(e,f)∈Z×Z. Z×Z Ӱ϶ .(c)(a,b)((c,d)+(e,f))=(a,b)(c+e,d+f)=(ac,bd)+(ae,bf)=(a,b)(c,d)+(a,b)(e,f);((c,d)+(e,f))(a,b)=(c,d)(a,b)+(e,f)(a,b) ՎZ×ZӰ .Z×Z .∵(1,1)(a,b)=(a,b)=(a,b)(1,1),∴ Ӱ ϶ .∵(0,1)=0,(0,1)=0,(0,1)(1,0)=(0,0)=0ՎZ×Z .2. C (−∞,+∞) đ C Ӱ(f+g)(x)=f(x)+g(x);(fg)(x)=f(g(x)),∀f,g∈C,x∈(−∞,+∞).C Ӱ Ӯ Ĥf(x)=x,g(x)=x2,h(x)=x2, h(f+g)(x)=(x+ x2)2,hf(x)+hg(x)=x2+x4, Վ҂ Ӯ .3. R Ӱ .1)R Ġ2)R Ӱ ϶ Ġ3) Ӱ .R .∀a,b∈R,(a+1)(b+1)=a(b+1)+b+1=ab+a+b+1,(a+1)(b+1)=(a+1)b+a+1=ab+b+a+1,∴a+b=b+a, R.4. R đ . R .R đ ∀a∈R,a=0,ab=ac⇔b=c, aR=R,Ra=R,∴ax=b,xa=b,b∈R R đ R Ӱ Ӯ đ R .11 5. Q Z Q/Z .∀a,b∈Q/Z, a,b 0, ab=0, a=0,b=0, a=q1 p1,b=q2p2, ab=q1p1q2p2=q1p1p1q2p1p2=q1p1p1q2p1p2=p1q1p1q2p1p2=0. ՎӮ .6. R e e2=eđ ӫe .R eđ R đ e R .∵e(ea−a)=ea−ea=0 R đ ea=aae=a∴R đ e R .7. R 1lč 1l a=a,∀a∈R). Rđ 1l=1.(ae−a+e)b=b⇒ae−a+e=e⇒ae=a8. R .u∈R,u đ v∈R uv=1.ğ1)u ҂ Ġ2)u҂ Ġ3)u .1⇒2: u đ w wu=uw=1, wuv=v, wuv=w(uv)=w,∴v=w, u đ 1 .u҂ .2⇒3: u҂ đ vu=1, vu−1=0u(vu−1)=(uv)u−u=u−u=0∴u .3⇒1:∵u∴∃w=0, uw=0,∴w=vv−w=0, u(v−w)=uv−uw=1∴v−w u đ v−w=v∴u ҂ .9. թ ҂ đ Վ.u v1, v n+1=v1−v n u+1, v n u đ w wu=0, w=w(uv1)=wuv1=0, v1u=1, v1u−1=0, Վ v n+1=v1,n 1, v n+1= v m+1(m<n), ԛv n=v m,Ֆ đ n= m đ v n=v m, Վ Ӯ .10. R đa,b∈R. 1−ab 1−ba .1−ab đc đ d=1+bca, (1−ba)d=12(1−ba )(1+bca )=1−ba +(1−ba )bca =1−ba +b (1−ab )ca =1−ba +ab =1,d (1−ab )=(1+bca )(1−ba )=1−ba +bca (1−ba )=1−ba +bc (1−ab )a =1−ba +ba =1,∴1−ba . 1−ba đ 1−ab .11. R đa,b ab −1 .1)a −b −1,(a −b −1)−1−a −1 Ġ2) Ӯ ğ((a −b −1)−1−a −1)−1=aba −a1)a −b −1=abb −1−b −1=(ab −1)b −1,∵b,ab −1 đ a −b −1 đ (a −b −1)−1=b (ab −1)−1.2)(a −b −1)−1−a −1=b (ab −1)−1−a −1=a −1(ab (ab −1)−1−1)=a −1(ab −(ab −1))(ab −1)−1=a −1(ab −1)−1,∴((a −b −1)−1−a −1)−1=(ab −1)a =aba −a.12. Z m n =n +m Z ԉ Ĥѩ Z m .(n,m )=1,∃u,v ∈Z , nu +mv =1⇒nu =1,Ֆ n đ (n,m )=k =1, n m k =0Ֆ n .∴n ⇔(n,m )=1, ϕ(m ),ϕ đn ⇔(n,m )=1, m −ϕ(m ).13. m 1,m 2∈Z . m 1,m 2 č m 1 m 2 Ӯ Ď.m 1,m 2 ={um 1+vM 2|u,v ∈Z }, m 1,m 2 = d ,d =(m 1,m 2).14. đ R R/I (I R ) .Z đ6Z Z đZ /6Z =Z 6,Z 6 23=0.15. R .a ∈R . ∃m ∈N a m =0, ӫa .R R . R 1={a |∃m ∈N ,a m =0},∀a,b ∈R 1,∃m,n ∈N , a m =0,b n =0, (a −b )m +n = m +n k =0a k (−b )m +n −k =0,(ab )m =a m b m =0.∀r ∈R,(ar )m =a m r m =0.∴R 1 R .16. K .R =K n ×n . C i ={a ∈R |col j (a )=0,j =i };R i ={a ∈R |row j (a )=0,j =i },1≤n .1)C i R č A R A ⊆C i đ A ={0} A =C i ĎĠ2)R i R Ġ3)R .1)∀α,β∈C i ,col j (α−β)=0,j =i ;col j (αβ)=0,j =i ;∀c ∈13K,col j(cα)=0,j=i.∴C i R .A R đ A⊆C i,A={0}, α∈A,҂ αj0l =0,l=i,j0=i,∴E jl∈C i,E jl=α−1j0l E jjα∈A,∴A=C i,∴C i R.2) R i R .3) R R đ ∃α∈R ,α=0,҂ αi0j0=0, E ij=α−1i0j0E iiαE j0j∈R ,∴R =R. R .1.51. A Abel đ đ End Aі Ač A A Ď . End A Ӱ đ(σ+τ)(α)=σ(α)+τ(α),∀σ,τ∈End A,α∈A.End A čӫ A Ď.đ о đ đ č 0Ď Ġ Ӱ đ о đ đ č idĎĠ Ӱ đ .2. S3 ӫ đAut S3=Int S3 S3.∵C(S3)=id,∴S3∼=Int S3, S3=<{(1,2),(1,3),(2,3)}>, Ϝ2 эӮ2 đ∴|Aut S3|≤3!=6,∵Int S3 Aut S3,|Int S3|=6,∴|Aut S3|=6,∴Aut S3=Int S3.3. a,b đ R эT(a,b):T(a,b)(x)=ax+b,∀x∈R.ğ1)a=0 đT(a,b) Ġ2)G={T(a,b)|a=0} Ġ3)H={T(1,b)|b∈R} G ĠčT(1,b)ӫ b.Ď4)G/H R∗čR∗ Ӱ .Ď1) x=y, T(a,b)(x)=ax+b=ay+b=T(a,b)(y),∴T(a,b).T(a,b)(x)=Y(a,b)(y), ax+b=ay+b, a=0 x=y,∴T(a,b) ֆ14.∀x ∈R ,∃x =x −b a ∈R ,T (a,b )(x )=ax +b =x,∴T (a,b ) .∴a =0 đT (a,b ) .2)∀T (a 1,b 1),T (a 2,b 2)∈G,T (a 1,b 1)T (a 2,b 2)=T (a 1,b 1)(a 2x +b 2)=a 1(a 2x +b 2)+b 1=T (a 1a 2,b 1b 2)(x ), a 1a 2=0,∴T (a 1a 2,b 1b 2)∈G ∴G о Ġ∀(T (a 1,b 1)T (a 2,b 2))T (a 3,b 3)=T (a 1,b 1)(T (a 2,b 2)T (a 3,b 3))∴G Ġ∀T (a,b )∈G,T (1,0)T (a,b )=T (a,b )∴T (1,0) G Ġ∀T (a,b )∈G,T (1a ,−b a )T (a,b )=T (1,0)∴T (1a ,−b a) T (a,b ) ∴G .3) H G đ∀T (1,a ),T (1,b )∈H,T (1,a )T −1(1,b )=T (1,a )T (1,−b )=T (1,a −b )∈H ∴H <G,∀T (1,b )∈H,T (a,c )∈G,T (a,c )T (1,b )T −1(a,c )=T (a,ab +c )T (1a ,−c a)=T (1,ab )∈H ∴H G.4) ϕ:G −→R ∗,ϕ(T (a,b ))=a,∀a ∈R ∗,∃T (a,b )∈G, ϕ(T (a,b ))=a,∴ϕ .∀T (a 1,b 1),T (a 2,b 2)∈G,ϕ(T (a 1,b 1)T (a 2,b 2)=ϕ(T (a 1a 2,a 1b 2+b 1))=a 1a 2=ϕ(T (a 1,b 1))ϕ(T (a 2,b 2))∴ϕ .∴G/ker ϕ∼=R ∗∀T (a,b )∈ker ϕ,ϕ(T (a,b ))=1⇒a =1⇒T (a,b )∈H,∀T (1,b )∈H,ϕ(T (1,b ))=1,∴T (a,b )∈ker ϕ,∴H =ker ϕ,∴G/H ∼=R ∗4. G ={e,a,b,c } і. G đ Aut G G S 3 .čՎ ӫ Klein đ K 4і .Ďe a b ce e a b c a ae c b b bc e a c cb a e(a)Ֆ ԛG Վ оĠ(b) a,b,c , (ab )c =cc =e,a (bc )=aa =e,∴(ab )c =a (bc ) a,b,c e đ (ab )c =a (bc ), Ӯ Ġ(c)e ӰG Ч∴e G Ġ(d)aa =bb =cc =e,∴a,b,c љ .∴G . ϕ:ϕ(A )=A|X , ∀A ∈Aut G,X ={a,b,c }, Ϝ҂15 э ҂ đ A|X∈S3, A(e)=e,ϕ Aut G−→S3 đ A|X=B|X, A(e)=B(e)=e⇒A=B∴ϕ ֆ ,∴ϕ đ∀A,B∈Aut G,ϕ(AB)=AB|X=A|X B|X=ϕ(A)ϕ(B)∴ϕ đ∴Aut G∼=S3;σ:Aut G−→Aut G/Inn G,σ(A)=A Inn G, σ đ G đ Inn G={id G},∴σ .∴Aut G∼=Aut G/Inn G∼=S3.5. G .1)a→a−1 G G Ġ2) G đ ∀k∈Z,a→a k G .č G G.Ď1)∀a∈G,ϕ(a)=a−1,∵a−1∈G,∴ϕ G−→G эđϕ ,∀a∈G, ϕ(a−1)=a,∴ϕ đϕ(a)=ϕ(b)đ a−1=b−1⇒a=b∴ϕ ֆ Ġϕ .“⇐”:∀a,b∈G,ϕ(ab)=(ab)−1=b−1a−1, G Abel đ ϕ(ab)=ϕ(a)ϕ(b),∴ϕ đ∴ϕ .“⇒”:∀a,b∈G,ϕ(a−1b−1)=(b−1a−1)−1=ba,∵ϕ đ∴ϕ(a−1b−1)=ϕ(a−1)ϕ(b−1)=ab,∴ab=ba,∴G Abel .2) ϕ:ϕ(a)=a k,k∈Z, ϕ G−→G đ∀a,b∈G,G Abel đϕ(ab)=(ab)k=a k b k=ϕ(a)ϕ(b),∴ϕ G .6. a G đa(g)=g⇒g=1.1)g a(g)g−1 Ġ162) G đ G Ӯa (g )g −1 Ġ3) a 2=id G , G .1) ϕ:ϕ(g )=a (g )g −1,ϕ G −→G đ ϕ(g 1)=ϕ(g 2), a (g 1)g −11=a (g 2)g −12⇒a (g 1)−1a (g 2)=g −11g −12⇒a (g −11g 2)=g −11g 2⇒g −11g 2=1⇒g 1=g 2,∴ϕ Ġ2)∵G đG đ∴ϕс đ ϕ:G −→G.∴G Ӯa (g )g −1 Ġ3)∀g ∈G,∃g 1∈G, g =a (g 1)g −11,a (g )=a (g 1)2a (g −11)=g 1a (g −11)=g −1,∀a,b ∈G, a (a −1b −1)=a (a −1)a (b −1)=ab, a (a −1b −1)=(a −1b −1)−1=ba,∴ab =ba,∴G Abel .∀g ∈G, g =g −1, a (g )=g −1=g ⇒g =1∴∀a ∈G,a =1,a a −1 G ҂ đ1∈G,∴G .7. G đK G , H a K č H a G . H a ⊇K Ďđa (H a /K )=( aH a )/K .ğgk ∈a (H a /K )⇒gk ∈H αK (∀α)⇒∀α,∃g α∈H α gK =g αK ⇒g −1g α∈K ⇒g ∈H α(∀α)⇒g ∈ αH α⇒ a (H a /K )⊆( a H a )/K.đ ( a H a )/K ⊆ a (H a /K ).8. Z o ◦pa ◦b =a +b −ab,∀a,b ∈Z ,(Z ,◦) ϶ đ Z Ӱ ϶ .ğa ◦(b ◦c )=a ◦(b +c −bc )=a +b +c −bc −a (b +c −bc )=a +b +c −ab −bc −ca +abc,(a ◦b )◦c =(a +b −ab )◦c =a +b +c −ab −bc −ca −abc,∴a ◦(b ◦c )=(a ◦b )◦c,a ◦0=0,0◦a =0,∴(Z ,◦) ϶ đ0 .f :(Z ,·)−→(Z ,◦),f (a )=1−a , f đ f (ab )=1−ab =17 (1−a)+(1−b)−(1−a)(1−b)=f(a)+f(b)−f(a)f(b)=f(a)◦f(b),∴(Z,◦)∼=(Z,·).9. .T:End Z−→Z,T(σ)=σ(1),∀σ∈End Z,∀m∈Z,∃σ∈End Z, σ(1)=m,σ(n)=mn(n∈Z),∴T . ∀σ,τ∈End Z,σ(1)=τ(1), σ=τ,∴T ֆ đ∴T .∀σ,τ∈End Z,T(σ+τ)=σ(1)+τ(1)=T(σ)+T(τ),T(στ)=στ(1)=σ(τ(1))=σ(1)τ(1)=T(σ)T(τ),∴T End Z−→Z . 10.H 1.4.8 đ1=1001,i=√−100−√−1,j=01−10,k=√−1√−101)∀a∈H,թ (a,b,c,d)∈R(1)đ a=a+bi+cj+dk.2)H э σ:σ(a+bi+cj+dk)=a−bi−cj−dkđH .1) .2)∀α,β∈H,α=a1+b1i+c1j+d1k,β=a2=a2+b2i+c2j+d2k,σ(α+β)=σ(α)+σ(β),σ(αβ)=σ(β)σ(α),σ(α)2=α,∴σ H .11.č Ď σ R R đ ∀a,b∈R1)σ(a+b)=σ(a)+σ(b),2)σ(ab)=σ(a)σ(b) σ(ab)=σ(b)σ(a).σ . .σ҂ đ σс . σ҂ đ ∃c,d∈R,σ(cd)=σ(c)σ(d)=σ(d)σ(c)∀x∈R,σ(cx)=σ(c)σ(x),σ(xd)=σ(x)σ(d)18đσ(cx)=σ(x)σ(c)σ(c(d+x))=σ(cd+cx)=σ(c)σ(d)+σ(x)σ(c)(1.1)đσ(c(d+x))=σ(d+x)σ(c)=σ(d)σ(c)+σ(x)σ(c)(1.2) (1.2) (1.1) бσ(c)σ(d)=σ(d)σ(c).сσ(c(d+x))=σ(c)σ(d)+σ(c)σ(x)(1.3) (1.3) (1.1) бσ(x)σ(c)=σ(c)σ(x)∀x∈R,σ(cx)=σ(c)σ(x)σ(xd)=σ(x)σ(d)∀x,y∈R,σ(xy)=σ(y)σ(x)∀z∈R,σ(xz)=σ(x)σ(z)σ(zy)=σ(z)σ(y)σ((x+c)(y+d))=σ(y)σ(x)+σ(x)σ(d)+σ(c)σ(y)+σ(c)σ(d)(1.4)đσ((x+c)(y+d))=σ(y+d)σ(x+c)=σ(y)σ(x)+σ(d)σ(x)+σ(y)σ(c)+σ(d)σ(c)(1.5)∵σ(x)σ(d)=σ(d)σ(x),σ(c)σ(y)=σ(y)σ(c)∴ (1.4)đ(1.5)σ(c)σ(d)=σ(d)σ(c)19 .сσ((x+c)(y+d))=σ(x+c)σ(y+d)=σ(x)σ(y)+σ(x)σ(d)+σ(c)σ(y)+σ(c)σ(d)(1.6)(1.4),(1.6)σ(x)σ(y)=σ(y)σ(x)∴Վ σ R .12. R đ R R đR Z pčp Ď đ Z .13. R đ G(R) R .Aut R R. G(R) Ӱ Ӯ đ [G(R):Aut R]1 2.(1): о đ∀σ,η∈G(R).σ đη đ ση Ġσ đη đ ση Ġσ,η đ đ ση ..ğσid=σ=idσ.ğσσ−1=id.(2): Aut R G(R) .∀σ,η∈G(R),σAut R=ηAut R⇔η−1σ∈Aut R, σ,η đ .G(R)=Aut R, [G(R):Aut R]=1;Aut R⊂G(R), [G(R):Aut R]=2.1.61. R đM Abel . թ R End M u, u(1)=id M. R×M M (a,x)→ax=u(a)(x),a∈R,x∈M MӮ R⚷ .∀x,y∈M,a,b∈R, u(a)∈End M;(a)a(x+y)=u(a)(x+y)=u(a)(x)+u(a)(y)=ax+ay;(b)(a+b)x=u(a+b)(x)=(u(a)+u(b))(x)=u(a)(x)+u(b)(x)=ax+bx;(c)(ab)x=u(ab)(x)=(u(a)u(b))(x)=u(a)(u(b)(x))=u(a)(bx)=a(bx);(d)1x=u(1)(x)=id M(x)=x.20∴ Վ MӮ R⚷ .2. R đM R⚷ . R End M f f(1)=id M.f:R−→End M,∀a∈R,f(a)=a id M, f(1)= id M,f R End M .3. R,S đ1 ,1 љ S R đ f:S→R đf(1 )=1. M R⚷ . ğS×M M (s,x)→f(s)x,s∈S,x∈M MӮ S⚷ .∀s,s1,s2∈S,x,x1,x2∈M1):(s1+s2,x)=f(s1+s2)x=[f(s1)+f(s2)]x=f(s1)x+f(s2)x=s1x+s2x;2):(s,x1+x2)=f(s)(x1+x2)=f(s)x1+f(s)x2;3):(s1s2,x)=f(s1s2)x=f(s1)f(s2)x=(s1,(s2,x));4):(1 ,x)=f(1 )x=1x=x.∴f MӮ s− .4. R đM R⚷ đ a∈R. aM={ax|x∈M},M(a)={x|x∈M,ax=0}. aM M(a) M .1):∀x1,x2∈M,ax1,ax2∈aM, ax1−ax2=a(x1−x2)∈aM.∀x∈M,r∈R,r(ax)=a(rx)∈aM,∴aM M .2):∀x1,x2∈M(a),ax1=ax2=0, ax1−ax2=a(x1−x2)=0,∴x1−x2∈M(a).∀x∈M(a),r∈Ra(rx)=r(ax)=0,∴rx∈M(a),∴M(a) M .5. n∈N,a,b∈Z,n=ab,(a,b)=1, Z n Z⚷ . a Z n=Z n(b).Z n={0,1,2,···,n−1},∀x∈Z n(b)⇔n|bx⇔a|x(∵n= ab,(a,b)=1)⇔x∈a Z n6. R⚷ Mӫ ֆ . M ֆ ∀x∈M,x=0 M=Rx.“⇒”:∀x∈M,x=0, {0}⊂Rx⊆M,∀ax∈Rx,bx∈Rx, a,b∈R,ax−bx=(a−b)x∈Rx,∴Rx<M.čRx҂ Ď∀r∈R,ax∈Rx,r(ax)=(ra)x∈Rx,∴Rx M .∵M ֆ đ∴Rx M .∴M=Rx.“⇐”: N M đN={0}, RN⊆N,∀x∈N,x=0, Rx⊆RN.x∈M,x=0,∴ M=Rx,∴M=Rx⊆RN⊆N.Ֆ M=N,∴M .∴M ֆ .21 7. Rč Ď ֆR⚷ R .“⇐”: R đ R đ I R⇔I R .∴R đ∴R ֆ .“⇒”: R ֆ đ 6 ∀x∈R,x=0, R=Rx.∀x∈R,x=0,∃r∈R, 1=rx.∴x đ R đ∴{R∗;·}Ӯ đ R .8. M R⚷ đS M .S Rann R S={a∈R|ax=0,∀x∈S}:1)ann R S R čM R⚷ đ Ď;2) S M đ ann R S R .1)∀a,b∈ann R S, ax=bx=0,∀x∈S,Ֆ ax−bx=(a−b)x=0,∀x∈S,∴a−b∈ann R S.∀a∈ann R S,r∈R,rax=0,∀x∈S,∴ra∈ann R S. ann R S R .2)∀a∈ann R S,r∈R,x∈S,∵S M đ∴rx∈S,∴arx=a(rx)=0,∴ar∈ann R S,∴ann R S R .9. Z⚷ Z m Z ann Z Z m Z/ann Z Z m.k·n=0,∀n∈Z m,k∈Z⇔k∈m Z.∴ann Z Z m= m Z,Z/ann Z Z m=Z m.10. R . ğ1) R⚷ R End L R R Ġ2) R⚷ End R R R .1.6.14 End L R∼=R r R,End R R∼=L r∼=R,(R rіR Ӱэ đL rі R Ӱэ .)11. V P đA V э đ P[λ]×V V (f(λ),x)→f(A)x,f(λ)∈P[λ],x∈V. V P[λ]⚷ . ğ1)End p[λ]V={ϕ∈End(V)|ϕA=Aϕ}, End(V) V эĠ2)ann p[λ]V={f(λ)∈P[λ]|f(A)=0}= g(λ) , g(λ) A.1) đ∀ϕ∈End p[λ]V, ϕ(x+y)=ϕ(x)+ϕ(y),∀x,y∈V.ϕ(ax)=aϕ(x),∀a∈P,x∈V.∴ϕ∈End(V).22ϕ(λx)=λϕ(x),∀x∈V,∴ϕA=Aϕ.đ∀ϕ∈End(V),ϕA=Aϕ, ϕ(x+y)=ϕ(x)+ϕ(y),∀x,y∈V,ϕ(f(λ)x)=ϕ(f(A)x)=f(A)ϕ(x)= f(λ)ϕ(x),∀f(x)∈P[λ],x∈V,∴End p[λ]V={ϕ∈End(V)|ϕA= Aϕ}.2)f(λ)∈ann p[λ]V⇔f(A)x=0,∀x∈V⇔f(A)=0⇔g(λ)|f(λ)⇔f(λ)∈ g(λ) ,∴ann p[λ]V={f(λ)∈P[λ]|f(A)=0}= g(λ) .12. V C n đ V э AC[λ]⚷ V ԉ A (λ−λ0)n,λ0∈C.1.7 Ч1. đϕ G H đ ϕ . đkerϕ.1)G=R,H=Z đϕ(x)=[x]čx ҆ đx ն ĎĠ2)G=R∗,H=R∗ Ӱ đϕ(x)=|x|;3)G=S n,H={1,−1},ϕ(σ)=sgnσ;4)G=GL(n,P),H=P∗čP Ď,ϕ(A)=det A;5)G=O(n,P),H={1,−1},ϕ(A)=det A;6)G=Z9,H=Z2,ϕ(x) xԢ 2 .1)҂ .ϕ(1.5+0.5)=ϕ(2)=2,ϕ(1.5)+ϕ(0.5)=1+0=12) .kerϕ={1,−1}3) .kerϕ=A n.4) .kerϕ={A|det A=1}.5) .kerϕ=SO(n,p).6)҂ .ϕ(4)=0,ϕ(5)=1,ϕ(4+5)=ϕ(0)=0.2. G1,G2 H đ f i G i H đi=1,2. ker f1ker f2. G1 G2 Ĥ҂ .G1=S3,f1:S3−→Z2,ker f1= (1,2,3) ,G2=Z6,f2:Z6−→Z2,ker f2= 2 ={0,2,4}Z6 đS3҂ đ ՎS3҂ Z6.3. R đC∗ Ӱ .R C∗ ϕϕ(x)=cos x+√−1sin x,∀x∈R.23ϕ đѩ ker ϕ. ∀x,y ∈R ,ϕ(x +y )=cos(x +y )+√−1sin(x +y ),ϕ(x )ϕ(y )=(cos x +√−1sin x )(cos y +√−1sin y )=cos x cos y −sin x sin y +√−1(sin x cos y +cos x sin y )=cos(x +y )+√−1sin(x +y ),∴ϕ(x +y )=ϕ(x )+ϕ(y ),∴ϕ .C ∗ 1, ϕ(x )=1 cos x +√−1sin x =1, x =2kπ,(k ∈Z )∴ker ϕ={x |x =2kπ,k ∈Z }.4. G n ӫ S n đ G Ї . G с H [G :H ]=2.H ={σ∈G |σ },∵id ∈H,∴H G .∀σ1,σ2∈H,σ1σ−12∈G đ∴σ1σ−12∈H,∴H <G. τ∈G, ∀τ1∈G,τ1 đ τ−1τ1∈H,∴τH =τ1H. id ∈G , ∀τ2∈G,τ2 đ id −1τ2∈H,∴id H =τ2H.∴[G :H ]=2.5. G,G đ H G,H G , ϕ G G đ ϕ(H )⊆H , ϕ ԛG/H G /H ϕ∗. m đѩ .G ϕ−−−→G π⏐⏐ ⏐⏐ πG/H ϕ−−−→G /Hϕ π(g )=π ϕ(g ). ϕ .∀g 1,g 2∈G,π(g 1)=π(g 2), g −11g 2∈H ,Ֆ ϕ(g −11g 2)∈H .π ϕ(g −11g 2)=1⇒π ϕ(g 1)=π ϕ(g 2),Ֆ ϕ (π(g 1))=ϕ (π(g 2)),ϕ . ğR,R đK,K љ R,R đ ϕ R R đ ϕ(K )⊆K , ϕ ԛR/K R /K ϕ . ğM,M R đN,N љ M,M đ ϕ M M đ ϕ(N )⊆N , ϕ ԛM/N M /N ϕ .246. K đK n ×n K n Ӯ đ K n ×n .1.4 16 K n ×n đ K n ×n K n ×n {0}.7. R R [x ] x 2+1 Ӯ R [x ]/ x 2+1 C . ϕ:R [x ]−→C ,ϕ(f (x ))=f (√−1),∀f (x )∈R [x ].8. R đ Z ×R Ӱ(m,a )+(n,b )=(m +n,a +b ),(m,a )(n,b )=(mn,na +mb +ab ),m,n ∈Z ,a,b ∈RZ ×R đ ш R .Z ×R đ (1,0),(0,R ) ш R .9. R Abel .R Abel End R , L R R Ӱэ đ L R ⊆End R. ∵∀a R ,b R ∈L R ,∀x ∈R,(a R −b R )x =(a −b )R x,∴a R −b R ∈L R .∵(a R b R )x =(ab )R x,∴a r b R ∈L R .∴L R End R .Cayley R ∼=L R .10. R đ R . RZ p čp Ď đ Z .11. R e с Z p čp Ď Z.č ӫR p , ӫR 0.Ďğ R ∞, p čp Ď.ğ R ∞, .∃a ∈R,a m,ma =0, ∀b ∈R,0=(ma )b =a (mb ),∵R đ∴mb =0, đ b n,nb =0, m ≥n,na =0,∴n ≥m,∴m =nm ҂ đ m =m 1m 2,m 1m 2=1,0=mab =(m 1a )(m 2b ),∵R đ∴m 1a =0 m 2b =0. . m .ğЇ e {me |m ∈Z }=R 1, f :R 1−→Z ,f (me )=m. f . đ R 0 đ f đR 1∼=Z .R p đker f =p Z ,R 1∼=Z /p Z =Z p .2512. R H,K H +K ҂ R . Q ,Z [√−1] C đ Q +Z [√−1]҂ R .13. R ⚷ R ⚷ ğ···−→M i −1f i −1−→M i f i −→M i +1···.f i −1(M i −1)=ker f i ,∀i ∈Z đ ӫՎ .f M N R ⚷ đO і Ӯ R ⚷ . đO →M і O M R ⚷ đN →O N O R ⚷ đ ğ1)f O →M f −→N Ġ2)f M f −→N −→O Ġ3)f O −→M f −→N −→O . 1)f ⇔ker f ={0}=g (0)⇔0g −→M f−→N .2)f ⇔ker g =N =f (M )⇔M f −→N −→0 .3) 1đ2 3Ӯ .14. R ⚷ M đ ӫ ֆ č ҂Ď. M R ⚷ đ ğ1)M ֆ Ġ2) f :M →N đ O →M f −→N Ġ3) g :N →M đ N g −→M −→O . M ֆ ⇔ker f ={0}č∵f Ď⇔0−→M f −→N .∴1⇔2.M ֆ ⇔g (N )=M č∵g Ď⇔N g −→M −→0.∴1⇔3. Վ .1.81. G đG đ G Ĥ҂ . Klein .2. G đa ∈G, a G . ğax =xa,∀x ∈G .26a G đ a G .∀x ∈G,x −1ax =a e , ax =x , a =e,∴x −1ax =a ax =xa .3. 1.8.3 ҂Ӯ .ğ X ={1,2,3,4},A 4 đA 4={(1),(12)(34),(13)(24),(14)(23),(123),(124),(132),(134),(142),(143),(234),(243)},|A 4|=12,, A 4 6 .4. p,q đ p =q , Z pq Ӯ Ĥ pq (1−1p )(1−1q ).5. p đ r ≥1. Z p r Ӯ Ĥ p r (1−1p).6. G Abel đH,K , G đ љ r,s ğ1) (r,s )=1đ G rs Ġ2)G Ї [r,s ] .H = a ,K = b , ab k , (ab )k =a k b k ,∴s |k,t |k,∴[r,s ]|k.đ(ab )[r,s ]=a [r,s ]b [r,s ]=1,∴k =[r,s ].∴ ab G [r,s ] . 2 ԛ1Ӯ .7. G n đ ҂ ҂ . ğ1)G Ġ2)G ҂ ҂ Ġ3)G .1) H <G , ∀g ∈G,g −1Hg <G. |g −1Hg |=|H |,∴g −1Hg =H,∴H G .2)∵∀H <G,H G .∴H ҂ ҂ .G/H G Ї H .G ҂ ҂ đG/H ҂ ҂ .8. G . G с .G đ ∃g ∈G,g ∞, g Z ,Z . Ć∴G đՖ a ∈G,∃b ∈G,b ∈ a ,∃c ∈G,c ∈ a ,c ∈ b ,···, Վ đG đ∴G с .。

自考抽象代数重点题

自考抽象代数重点题

自考抽象代数重点题自考抽象代数重点题(熊全淹教材)§1.1 P55.假定M 是元数为n 的有穷集,L 是M 的所有子集组成的系,试证:L 的元数是2n。

证明:因为M 的含i 个元的子集有in C 个,于是M 的所有子集共有0112n n n n n n n C C C C -+++= 个,即L 的元数是2n。

§1.2 P111.假如(),(),a b n c d n ≡≡那么(),(),a c b d n a c b d n +≡+-≡-(),(),ma mb n ac bd n ≡≡证明:因为(),(),ab ncd n ≡≡所以,n a b n c d --。

于是有:()()n a c b d +-+,()()n a c b d ---,(),n m a b -()()n a b c b c d -+-。

即知(),(),a c b d n a c b d n +≡+-≡-(),(),ma mb n ac bd n ≡≡§1.3 P141.用归纳法证明:对任意自然数n ,1434n n +--必是9的倍数。

证明:当n=1时,1434n n +--=9时9的倍数;假定当n=k 时,1434n n +--是9的倍数;当n=k+1时,有(1)143(1)4k k ++-+-=14(434)99k k k +--++也是9的倍数。

所以对任意自然数n ,1434n n +--必是9的倍数。

§2.1 P235.试求2211,,,,,st st ts tst sts --,假如,abcde abcde s t beadc bcaed== ? ?????。

解:2()()abcde s ae bc ecbda ??== ,2()abcde t acb cabde ??== ,(),abcde st aedcb eabcd ??==(),abcde ts acbde cdbea ??== 1(),abcde tst abcd bcdae -??== 1()()abcde sts abe cd bedca -??== 。

高等数学(本科)第十一章课后习题解答

高等数学(本科)第十一章课后习题解答

习题11.11.回答下列问题.(1)何谓级数∑∞=1n n u 的前n 项部分和?何谓级数∑∞=1n n u 的收敛和发散?何谓收敛级数的和?【答】(1)∑∞=1n n u 的前n 项部分和是指(),...2,11==∑=n u S nk k n ;(2)∑∞=1n n u 收敛是指s S n n =∞→lim 存在,这时并称s 为∑∞=1n n u 的和;∑∞=1n nu发散是指n n S ∞→lim 不存在.(2)当公比q 取何值时,等比级数∑∞=-11n n aq 收敛?当公比q 取何值时,等比级数∑∞=-11n n aq发散?写出收敛时的和数.【答】(1)当1<q 时,∑∞=-11n n aq 收敛,且其和数为qas -=1; (2)当1≥q 时,∑∞=-11n n aq 发散.(3) 级数∑∞=1n n u 收敛的必要条件是什么?它是否也是充分条件.请举例说明.【答】(1)∑∞=1n n u 收敛的必要条件是0lim =∞→n n u ;(2)0lim =∞→n n u 不是∑∞=1n n u 收敛的充分条件.比如,01lim =∞→n n ,但∑∞=11n n发散.2.若级数()()()......2211+++++++n n b a b a b a 收敛,去掉括号之后的级数级数......2211+++++++n n b a b a b a 是否还收敛?它说明了什么? 【答】未必,比如()()() (1111111)+-++-+=-∑∞=-n n .3.把下列级数写成级数”“∑的形式.(1) ...5ln 5ln 5ln 32+++ ;【解】∑∞==+++1325ln ...5ln 5ln 5ln n n ;(2) (8)141211-+-+- ; 【解】()11211...8141211-∞=∑-=-+-+-n n n ;(3) ...001.0001.0001.03+++ ;【解】()nn 113001.0...001.0001.0001.0∑∞==+++;(4)...751531311+⨯+⨯+⨯. 【解】()()∑∞=+-=+⨯+⨯+⨯112121...751531311n n n . 4.根据级数收敛与发散的定义,判别下列级数的敛、散性.(1) (8)1614121++++;【解】nn 1.21...816141211∑∞==++++发散.(2)∑∞=⎪⎭⎫⎝⎛-2211ln n n; 【解】记()()n n n n n n n n u n 1ln 1ln 11ln11ln 22++-=+-=⎪⎭⎫ ⎝⎛-=,...)2(=n 则 1432...+++++=n n u u u u S⎪⎭⎫ ⎝⎛++-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=n n n n 1ln 1ln ...45ln 43ln 34ln 32ln 23ln 21lnn n n n n n 1ln1ln 1ln ...43ln 34ln 32ln 23ln 21ln ++⎪⎭⎫ ⎝⎛-+-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++= ,...)2,1(11ln 21ln =⎪⎭⎫⎝⎛++=n n因为 21ln lim =∞→n n S ,所以∑∞=⎪⎭⎫⎝⎛-2211ln n n 收敛. (3) ∑∞=⎪⎪⎭⎫ ⎝⎛+14122ln n nn n ; 【解】因∑∞=122ln n n n ∑∞=⎪⎭⎫⎝⎛=122ln n n及∑∞=141n n nn ⎪⎭⎫ ⎝⎛=∑∞=141均收敛,故∑∞=⎪⎪⎭⎫ ⎝⎛+14122ln n n n n 收敛. (4) (1)31...2191131+++++++n n ;【解】因为 (3)1...9131++++n 收敛,但 (1)...211++++n 发散,故原级数发散.(5) (4)33221+++ ;【解】 级数的通项为 ,...)2,1(1=+=n n nu n ,因为01lim ≠=∞→n n u ,故...433221+++发散.(6) ...cos ...3cos 2cos cos +++++nππππ ;【解】级数的通项为 ,...)2,1(cos ==n nu n π,因为010cos lim ≠==∞→n n u ,故...cos ...3cos 2cos cos +++++nππππ发散.(7) nn n n ∑∞=⎪⎭⎫⎝⎛-12ln ;【解】级数的通项为 ,...)2,1(2ln =⎪⎭⎫⎝⎛-=n n n u nn ,因为02ln 21ln lim lim 222≠-==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=---∞→∞→en u n n n n ,故nn n n ∑∞=⎪⎭⎫⎝⎛-12ln 发散.(8) (9)898983322+-+-.【解】...9898983322+-+-nn ∑∞=⎪⎭⎫⎝⎛-=198是等比级数,且公比98-的绝对值小于1,故...9898983322+-+-收敛.5.已知级数∑∞=1n n u 的部分和3n S n =,当2≥n 时,求n u .【解】(),...)2(13312331=+-=--=-=-n n n n n S S u n n n .6.若级数∑∞=1n n u 收敛,记∑==ni i n u S 1,则(B )A. 0lim =∞→n n S ; B. n n S ∞→lim 存在;C. n n S ∞→lim 可能不存在; D. {}n S 是单调数列.7.若级数∑∞=1n n u 收敛,则下列级数中收敛的是(A )A. ∑∞=110n n u; B.()∑∞=+110n nu;C. ∑∞=110n nu ; D.()∑∞=-110n nu.8.设501=∑∞=n n u ,1001=∑∞=n n v ,则()∑∞=+132n n n v u (D )A. 发散;B. 收敛,和为100;C. 收敛,和为50;D. 收敛,和为400. . 9.下列条件中,使级数()∑∞=+1n n n v u 一定发散的是(A )A.∑∞=1n nu发散且∑∞=1n n v 收敛; B.∑∞=1n nu发散;C.∑∞=1n nv发散; D.∑∞=1n nu和∑∞=1n n v 都发散.10.设级数()∑∞=-11n n u 收敛,求n n u ∞→lim .【解】因为()∑∞=-11n n u 收敛,故根据级数收敛的必要条件知()01lim =-∞→n n u ,所以 =∞→n n u lim ()[]=--∞→n n u 11lim ()1011l i m1=-=--∞→n n u .11.将下列循环小数表示为分数 (1) ∙3.0 ;【解】...003.003.03.03.0+++=∙是公比为1.0=q 的等比级数,故311.013.03.0=-=∙. (2) ∙∙370.0.【解】...0000073.000073.0073.0370.0+++=∙∙是公比为01.0=q 的等比级数,故.9907301.01073.0370.0=-=∙∙12.设级数∑∞=1n n u 满足条件:(1)0lim =∞→n n u ;(2)()∑∞=-+1212n n n u u 收敛,证明级数∑∞=1n n u 收敛.【解】记∑∞=1n n u 的前n 次部分和数列为{}n S .又记()∑∞=-+1212n n n u u 的前n 次部分和数列为{}n σ.则有(),...2,12==n S n n σ.因为已知()∑∞=-+1212n n n u u ,故根据级数收敛的定义知 =∞→n n σl i ms S n n =∞→2lim ①存在;又已知0lim =∞→n n u ,故0lim 12=+∞→n n u ,从而=+∞→12lim n n S ()s s S u n n n =+=++∞→0lim 212②也存在.综合①、②式知s S n n =∞→lim 存在,所以级数∑∞=1n n u 收敛.13.小球从1米高处自由落下,每次弹起的高度均为前一次高度的一半,问小球会在自由下落约多少秒后停止运动? 【解】小球为自由落体运动,即212s gt =。

《抽象代数基础》习题解答

《抽象代数基础》习题解答

⎝ i=1 ⎠
k =1
k =1
aw 所以,对于任意的正整数 n 和 m ,等式成立. hd 考 察 A 中 任 意 n ( n ≥ 1 ) 个 元 素 a1, a2, ⋯, an : 当 n ≥ 3 时 , 要 使 记 号 k a1 ⋅ a2 ⋅ ⋯ ⋅ an 变成有意义的记号,必需在其中添加一些括号规定运算次序.现在我 . 们来阐明:在不改变元素顺序的前提下,无论怎样在其中添加括号,运算结果总是 w n w 等于∏ ai . w i=1
,
gf
⎛1
=
⎜⎜ ⎝
3
2 4
3 1
4 2
5⎞ 5⎟⎟⎠
,
f −1
⎛1 = ⎜⎜⎝3
2 1
3 2
4 5
5⎞ 4 ⎟⎟⎠
.
7.设 a = (i1 i2 ⋯ ik ) ,求 a−1 . 解 我们有 a = (ik ik−1 ⋯ i1) . 8.设 f 是任意一个置换,证明: f ⋅ (i1 i2 ⋯ ik ) ⋅ f −1 = ( f (i1) f (i2 ) ⋯ f (ik )) .
网 事实上,当 n = 1 或 n = 2 时,无需加括号,我们的结论自然成立.当 n = 3 时,由
于“ ⋅ ”适合结合律,我们的结论成立.假设当 n ≤ r ( r ≥ 1 )时我们的结论成立.考察
案 n = r +1 的 情 形 : 不 妨 设 最 后 一 次 运 算 是 a ⋅b , 其 中 a 为 a1, a2, ⋯, an 中 前
所以 Z 关于该乘法构成一个群.
4.写出 S3 的乘法表.
解 S3 = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}, S3 的乘法表如下:

抽象代数考核练习题答案

抽象代数考核练习题答案

抽象代数考核练习题答案抽象代数考核练习>> 在线答题结果单选一、单选1、设映射f:A→B和g:B→C,如果gf是双射,那么g是()。

(分数:2 分)A. A、单射B. B、满射C. C、双射D. D映射标准答案是:C。

您的答案是:C2、设M是数域F上的全体100阶方阵的集合,规定~如下:A~B 等价于A的秩=B的秩(A,B 属于M),那么M的所有不同的等价类为()。

(分数:2 分)A. A、100个B. B、101个C. C、102个D. D 103个标准答案是:B。

您的答案是:B3、下列子集对通常复数的乘法不构成群的是()。

(分数:2 分)A. A、{1,-1,i , -i}B. B、{1,-1}C. C、{1,-1,i}D. D{1}标准答案是:C。

您的答案是:C4、设G是一个100阶的交换群,H是 G的子群, H 的阶=10,则 G/H中10阶元的个数为()。

(分数:2 分)A. A、9B. B、4C. C、1D. D 5标准答案是:B。

您的答案是:B5、6阶非交换群的所有子群的个数是()。

(分数:2 分)A. A、2B. B、3C. C、6D. D 4标准答案是:C。

您的答案是:C6、在模100的剩余环中,零因子的个数是()(分数:2 分)A. A、58B. B、59C. C、60D. D 57标准答案是:D。

您的答案是:D7、在6次对称群S6中,=(16)(23)(456)的阶为()。

(分数:2 分)A. A、6B. B、12C. C、4D. D 8标准答案是:B。

您的答案是:B8、设N是G的不变子群,f:G--G/N,g--gN, 那么kerf=()。

(分数:2 分)A. A、G/NB. B、GC. C、ND. D 空集标准答案是:C。

您的答案是:C9、在模60的剩余类加群(Z60,+)中,<[12]>∩<[18]>=()。

(分数:2 分)A. A、<[6]>B. B、<[36]>C. C、<[-24]>D. D、<[6]>标准答案是:B。

必修一数学抽象函数习题精选含答案[1]

必修一数学抽象函数习题精选含答案[1]

必修一数学抽象函数习题精选含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(必修一数学抽象函数习题精选含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为必修一数学抽象函数习题精选含答案(word版可编辑修改)的全部内容。

抽象函数单调性和奇偶性1. 抽象函数的图像判断单调性例1.如果奇函数f x ()在区间[]37,上是增函数且有最小值为5,那么f x ()在区间[]--73,上是( )A. 增函数且最小值为-5 B 。

增函数且最大值为-5C. 减函数且最小值为-5 D 。

减函数且最大值为-5分析:画出满足题意的示意图,易知选B 。

2、抽象函数的图像求不等式的解集例2、已知定义在R 上的偶函数f (x)满足f (2)0=,并且f (x)在(,0)-∞上为增函数。

若(1)(a)0a f ->,则实数a 的取值范围 。

二、抽象函数的单调性和奇偶性 1。

证明单调性例3.已知函数f(x)= 1)(1)(+-x g x g ,且f(x),g(x )定义域都是R,且g(x )〉0, g(1)=2,g(x) 是增函数。

(m)(n)(m n)(m,n )g g g R =+∈ . 求证: f (x)是R 上的增函数.解:设x 1〉x 2因为,g(x )是R 上的增函数, 且g (x)>0。

故g(x 1) > g(x 2) 〉0。

g (x 1)+1 > g(x 2)+1 〉0,⇒1)(22+x g 〉1)(21+x g 〉0⇒1)(22+x g —1)(21+x g 〉0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Math 5286H: Fundamental Structures of Algebra II
HW 1 Solutions, (February 3rd, 2012)
Problems from Chapter 11 of Artin’s Algebra:
√ 1.1 To show that α = 7 + 3 2 is an algebraic number, we use the Binomial Theorem and note that
S
is
also
closed
under multiplication.
1.8 (a) The units in Z/12Z are {1, 5, 7, 11}. We note that 1−1 = 1, 5−1 = 5 (25 ≡ 1 mod 12), 7−1 = 7 (49 ≡ 1 mod 12), and 11−1 = 11 (121 ≡ 1 mod 12). The other eight elements are not units since they are a factor of (or share a common factor with) zero, i.e. 12. These are called zero divisors.
1
The kernel of ϕ : Z[x] → R where ϕ(x) → γ is a principal ideal, namely (x4 − 10x2 + 1) using methods similar to Problem 1.1 and Example 11.3.23. Hence Z[γ] ∼= Z[x]/(x4 − 10x2 + 1), which means that Z[γ]
closed
under
additive
inverses,
i.e.
subtraction.
S
contains
the
fraction
1 1
,
the
multiplicative
identity.
Finally
a b
·
c d
=
ac bd
,
which
again
is
reduced
if
possible,
and
so




√√
Furthermore, γ3 = 2 2 + 3(2 3) + 3(3 √2) + 3 √3 = 11 2 + 9 3 ∈ Q[γ]. Thus by taking appropriate
Q-linear combinations of γ and γ3 yields 2 and 3 by themselves:
Using the same logic as Example 11.3.23 (i.e. using Lemma 11.3.24), we see that this is also the kernel of
the map from Z[x] → R.
d) By the sam√e log√ic as (c)√, the k√ernel is √the p√rincipal i√deal g√enerated by x4 − 10x2 + 1 which equals the product (x − 2 − 3)(x − 2 +√ 3)(x√+ 2 − 3)(x + 2 + 3), i.e. the lowest degree monic polynomial with integer coefficients having 2 + 3 as a root.
1.9 Let a, b ∈ R, we wish to show commutativity of addition. Since R is a ring, it contains a multiplicative identity element 1, and let −1 denote its additive inverse (note that it is possible, e.g. in characteristic 2, that −1 = 1 in R). Then by distributivity, (−1)(b + a) = −b − a and by associativity of addition we have
For instance 8 · 3 ≡ 0 mod 12.
(b) Similarly, the units in Z/8Z are {1, 3, 5, 7}. See part (c) for the proof.
(c) In general, in Z/nZ, the units are the subset of {1, 2, . . . , n − 1} of numbers that are relatively prime to n. Firstly, if a ∈ {1, 2, . . . , n − 1} is not relatively prime to n, i.e. gcd(a, n) = d > 1, then all integral multiples ka mod n will still be divisible by d. Hence, no such integral multiple ka can be 1. On the other hand, if gcd(a, n) = 1, then there exists r, s ∈ Z such that ra + sn = 1, i.e. there exists integer r such that ra ≡ 1 mod n. This is the definition of a unit.
also in the basis {1, γ, γ2, γ3} with integer coefficients, and hence we would again get a integer linear
combination of {1, γ, γ2, γ3} equal to α, a contradiction.) Hence, Z[γ] ⊇ Z[α, β] and so Z[γ] = Z[α, β].
1.6
(a)
Let
S
=
{
a b
:
a, b

Z
and b is not divisible by 3}. To show that S is a subring of Q, we note the
following:
Firstly,
a b
+
c d
=
ad+bc bd
(where
we
then
reduce
into
1 2
γ
3

9 2
γ
=
Байду номын сангаас
√ 2
and
−1 2
γ
3
+
11 2
γ
=
√ 3.
Hence we have the other inclusion and we conclude that Q[α, β] = Q[γ]. However, these inclusions required rational (not int√egral) coefficients. We wish to show that there is not a Z-lin√ear combination of powers of γ equal to α = 2, i.e. an integer polynomial g(x) ∈ Z[x] such that g(γ) = 2.
has Z-basis {1, γ, γ2, γ3}. So if α ∈ Z[γ, then α = a + bγ + cγ2 + dγ3 for some integers a, b, c, d. However,
Q[x]/(x4 − 10x2 + 1)
similarly
has
Q-basis
{1, γ, γ2, γ3},
having 2 + i as a root. This ideal is principal since R[x] is a P.I.D.


c) The kernel of the map Q[x] → R is the principal ideal generated by x2−2x−1 = (x−1− 2)(x−1+ 2).





(7 + 3 2)3 = 343 + 3 · 49 3 2 + 3 · 7 3 4 + 2 = 345 + 147 3 2 + 21 3 4,

√√
and (7 + 3 2)2 = 49 + 14 3 2 + 3 4.
√ Consequently, α3 − 21α2 = −684 − 147 3 2, hence
and
we
already
know
that
α=
1 2
γ
3

9 2
γ
.
Thus
there cannot be an expression for α involving integer linear combinations of powers of γ. (Note: if there
相关文档
最新文档