1.3半导体二极管的电路模型

合集下载

第二讲 半导体二极管及应用

第二讲 半导体二极管及应用

导通:u 导通 D=Uon+ID×rD 截止: 截止 iD=0
2、交流小信
Q
UD
ID
id
+
id
+ -
uD =UD +ud
uD
-
rd
ud
交流小信号模型
当在二极管的工作点上叠加有低频交流小信号电压ud时, 只要工作点选择合适, 足够小,可将Q点附近的伏安特性 只要工作点选择合适,且ud足够小,可将 点附近的伏安特性 线性化), 曲线看成直线(线性化 曲线看成直线 线性化 ,则交流电压与电流之间的关系可用一 来近似。 个线性电阻rd来近似。 rd ——工作点处的交流电阻。 rd = UT / ID 工作点处的交流电阻。 ★注意:小信号模型只能反映交流电压和电流之间的关系, 注意:小信号模型只能反映交流电压和电流之间的关系, 不能反映总的电压与电流的关系。 不能反映总的电压与电流的关系。
3、二极管的伏安特性曲线与材料和温度的关系: 二极管的伏安特性曲线与材料和温度的关系: iD 锗 硅 iD 80 20
0
uD
0
uD
材 料 硅 锗
导通 反向饱 开启 电压 压降 和电流 0.5V 0.6~0.8V <1A 0.1V 0.2~0.3V 几十 几十A
温度升高, 增大(1倍 ° 温度升高, IS增大 倍/10°C) 下降, 温度升高, 温度升高,Uon下降, 正向曲线左移2~2.5mV/ °C。 正向曲线左移 。
IZ
电击穿有两种: 电击穿有两种: 雪崩击穿 齐纳击穿
击穿 低掺杂的 高掺杂的 结 结 原因 PN结, PN结,价 价电子被 电子被场 碰撞电离 致激发 如果反向击穿时,电流过大, 如果反向击穿时,电流过大,使 >6V <4V 击穿 管子消耗的平均功率超过二极管 电压 容许值,会使管子过热而烧毁, 容许值,会使管子过热而烧毁, >0 <0 温度 为不可逆击穿。 称为热击穿,为不可逆击穿。 电击穿可利用,热击穿需避免。 *电击穿可利用,热击穿需避免。 系数

模拟电路0102 第一讲 半导体-二极管伏安特性

模拟电路0102 第一讲 半导体-二极管伏安特性

热平衡条件(质量作用定律):两种热平衡 载流子浓度的乘积恒等于本征载流子浓度的 平方:
n p ni2
电中性条件:假设在室温时杂质原子已全部 电离,则带负电的自由电子浓度恒等于带正 电的施主杂质离子和空穴浓度之和:
n p Nd Nd
通常满足 Nd p 时:
( p ni2 / Nd )
.. .. . . .
空间电荷区(耗尽层、阻挡层):在交界面附 近出现的带电离子集中的薄层。
。。。。。。。。. . 。。。。。。。。. . 。。。。。。。。. .
内电场:空间电荷区的左半部是带负电的杂质 离子,右半部是带正电的杂质离子,从而在空 间电荷区中就形成了一个由N区指向P区的内建 电场。
漂移运动:在内电场的作用下,空穴向P区漂 移,电子向N区漂移,载流子在电场作用下的 这种运动。
电子与空穴电荷量相等,极性相反。
自由电子和空穴的复合 : 在自由电子和空 穴的产生过程中,自由电子在热骚动过程中和空 穴相遇而释放能量,电子—空穴对消失。
动态平衡:
ni pi
它们与温度T 的关系:
3 Eg0
ni(T) pi(T) AT 2e 2kT
在常温下( T 300K), 硅
ni pi 1.431010 / cm3
1.2.3 PN结的电容特性
PN结的结电容:在外加电压发生变化时,PN结 耗尽层内的空间电荷量和耗尽层外的载流子数 目均发生变化,这种电荷量随外加电压变化的 电容效应。
1.势垒电容
势垒电容:阻挡层中电荷量随外加电压变化而
改变所呈现的电容效应,用 CB 表示:
CB
CB0
1
u U
n
利用PN结的势垒电容效应而制造的变容二极管 (压控可变电容器),在现代电子线路中得到广 泛应用。

半导体

半导体

半导体二极管及其基本应用电路1.1 PN结的基本知识1.1.1 N型半导体和P型半导体在物理学中已知,常用的四价元素硅和锗等纯净半导体(称本征半导体)中的载流子,为自由电子(带负电荷)和空穴(带正电荷),是在常温下激发出来的,(称为热激发或本征激发),其数量很少,故导电能力微弱,介于导体和绝缘体之间。

在本征半导体中,自由电子和空穴总是成对出现,因此两种载流子的浓度是相等的。

本征半导体中的载流子浓度除了与半导体材料的性质有关外,还与温度密切相关,而且随着温度的升高基本上按指数规律增加。

所以,本征载流子浓度对温度十分敏感。

在本征半导体桂或锗中渗入微量五价元素,如磷或砷,(称为杂质)等,可使自由电子的浓度大大增加,自由电子成为多数载流子,(简称多子),空穴成为少数载流子(简称少子)。

这种以电子为导电为主的半导体成为N型半导体。

由于离子不能移动,故不能参与导电,整体半导体仍然呈电中性。

在本征半导体硅或锗中渗入微量三价元素杂质,如硼或铟等,则空穴浓度大大增加,空穴成为多子,而电子成为少子。

这种以空穴为主的半导体成为P型半导体。

N型半导体和P型半导体统称为杂质半导体,掺杂后半导体的导电能力将显著增加,有理论计算可知,在本征半导体中掺入百分之一的杂质,可使载流子浓度增加近一万倍。

在杂质半导体中,多子的浓度主要取决于杂质的含量;少子的浓度主要与本征激发有关,如前所述,他对温度的变化非常敏感,因此,温度是影响半导体器件性能的一个重要因素。

1.1.2 PN结的形成若在一种类型杂质半导体的基片上,用特定的掺杂工艺加入另一种类型杂质元素,这样在所形成的P型半导体和N 型半导体的交界两侧,P区的空穴(多子)和N区的电子(多子)浓度远大于另一区的同类少子浓度,因而多子通过交界处扩散各自向对方运动,这种由于浓度差而引起的载流子运动成为扩散运动。

载流子扩散运动的结果是使电子和空穴复合载流子消失,在交界面N区一侧失去电子而留下正离子,P区一侧失去空穴而留下负离子。

模拟电子课件第一章_半导体材料及二极管

模拟电子课件第一章_半导体材料及二极管
–10 0 0.2 0.4
–20
I/uA
锗管的伏安特性
图 二极管的伏安特性
ID
UD
-
UD / V
34
1.正偏伏安特性
当正向电压比较小时,正向电流很小,几乎为零。,
相应的电压叫死区电压。
死区电压: 硅二极管为0.5V左右 锗二极管为0.1V左右
i/mA 30
当正向电压超过死区电压后,二极 管导通, 电流与电压关系近似指数关 系。
42
3.二极管的其它主要参数
➢最大平均整流电流 : I F 允许通过的最大正向平均电流 ➢最高反向工作电压 : 最V大R 瞬时值,否则二极管击穿
1
18
半导体中某处的扩散电流 主要取决于该处载流子的浓 度差(即浓度梯度),而与 该处的浓度值无关。即扩散 电流与载流子在扩散方向上 的浓度梯度成正比,浓度差 越大,扩散电流也越大。
图1.6 半导体中载流子的浓度分布
1
19
即:某处扩散电流正比于浓度分布曲线上该点处的斜率
和。
dn( x) dx
dp ( x) dx
在硅或锗的晶体中掺入少量的 5 价杂质元素,即构成 N 型半导体 (或称电子型半导体)。
常用的 5 价杂质元素有磷、锑、砷等。
1
10
原来晶格中的某些硅原子将 被杂质原子代替。 杂质原子与周围四个硅原子 组成共价键时多余一个电子。 这个电子只受自身原子核吸引, 在室温下可成为自由电子。
5价的杂质原子可以提供电子, 所以称为施主原子。
Problem: N型半导体是否呈电中性?
1
+4
+4
+5
+4
+4
+4

二极管及其基本电路

二极管及其基本电路

vD
nV T
指数 关系
D
当加反向电压时: v
vD<0,当|vD|>>|V T |时 e 则 iD IS
常数
nV T
1
4、PN结的反向击穿
二极管处于反向偏置时,在一定的电压范围内,流过 PN结的电流很小,但电压超过某一数值(反向击穿电压)时, 反向电流急剧增加,这种现象就称为PN结的反向击穿。
+4 +4 +4
+4
+3
+4
+4
+4
+4
自 由 电 子 空 穴 对
P型半导体的示意方法
空穴 受 主 离 子
- - -
- - -
- - -
- -

2.N型半导体
在硅(或锗)的晶体中掺入少量的五价元素杂质。(磷、锑)
硅原子
多余电子
+4
+4
+4
磷原子多余的电子易受 热激发而成为自由电子, 使磷原子成为不能移动的 正离子。 磷→施主杂质、N型杂质
正偏时,结电容较大,CJ≈CD 反偏时,结电容较小,CJ≈CB
§1.2 二极管
1.2.1 二极管的结构
PN 结加上管壳和引线,就成为半导体二极管。
(Anode)
1、二极管的电路符号:
2、分类
(Kathode)
按结构分:点接触型,面接触型,平面型。
按用途分:整流二极管,检波二极管,稳压二极管,„„。 按材料分:硅二极管,锗二极管。
(3)PN结的V--I 特性及表达式
i D I S (e
vD
nV T
1)
vD :PN结两端的外加电压

模拟电子技术基础目录

模拟电子技术基础目录

模拟电子技术基础目录模拟电子技术基础目录模拟电子技术基础目录前言教学建议第1章半导体二极管及其应用1.1 半导体物理基础知识1.1.1 本征半导体1.1.2 杂质半导体1.2 pn结1.2.1 pn结的形成1.2.2 pn结的单向导电性1.2.3 pn结的反向击穿特性1.2.4 pn结的电容特性1.3 半导体二极管及其基本电路1.3.1 半导体二极管的伏安特性曲线1.3.2 半导体二极管的主要参数1.3.3 半导体二极管的电路模型1.3.4 二极管基本应用电路1.4 特殊二极管1.4.1 稳压二极管.1.4.2 变容二极管1.4.3 光电二极管1.4.4 发光二极管思考题习题第2章双极型晶体管及其放大电路2.1 双极型晶体管的工作原理2.1.1 双极型晶体管的结构2.1.2 双极型晶体管的工作原理2.2 晶体管的特性曲线2.2.1 共射极输出特性曲线2.2.2 共射极输入特性曲线2.2.3 温度对晶体管特性的影响2.2.4 晶体管的主要参数2.3 晶体管放大电路的放大原理2.3.1 放大电路的组成2.3.2 静态工作点的作用2.3.3 晶体管放大电路的放大原理2.3.4 基本放大电路的组成原则2.3.5 直流通路和交流通路2.4 放大电路的静态分析和设计2.4.1 晶体管的直流模型及静态工作点的估算2.4.2 静态工作点的图解分析法2.4.3 晶体管工作状态的判断方法2.4.4 放大状态下的直流偏置电路2.5 共射放大电路的动态分析和设计2.5.1 交流图解分析法2.5.2 放大电路的动态范围和非线性失真2.5.3 晶体管的交流小信号模型2.5.4 等效电路法分析共射放大电路2.5.5 共射放大电路的设计实例2.6 共集放大电路(射极输出器)2.7 共基放大电路2.8 多级放大电路2.8.1 级间耦合方式2.8.2 多级放大电路的性能指标计算2.8.3 常见的组合放大电路思考题习题第3章场效应晶体管及其放大电路3.1 场效应晶体管3.1.1 结型场效应管3.1.2 绝缘栅场效应管3.1.3 场效应管的参数3.2 场效应管工作状态分析及其偏置电路3.2.1 场效应管工作状态分析3.2.2 场效应管的偏置电路3.3 场效应管放大电路3.3.1 场效应管的低频小信号模型3.3.2 共源放大电路3.3.3 共漏放大电路思考题习题第4章放大电路的频率响应和噪声4.1 放大电路的频率响应和频率失真4.1.1 放大电路的幅频响应和幅频失真4.1.2 放大电路的相频响应和相频失真4.1.3 波特图4.2 晶体管的高频小信号模型和高频参数4.2.1 晶体管的高频小信号模型4.2.2 晶体管的高频参数4.3 晶体管放大电路的频率响应4.3.1 共射放大电路的频率响应4.3.2 共基、共集放大器的频率响应4.4 场效应管放大电路的频率响应4.4.1 场效应管的高频小信号等效电路4.4.2 共源放大电路的频率响应4.5 多级放大器的频率响应4.5.1 多级放大电路的上限频率4.5.2 多级放大电路的下限频率4.6 放大电路的噪声4.6.1 电子元件的噪声4.6.2 噪声的度量思考题习题第5章集成运算放大电路5.1 集成运算放大电路的特点5.2 电流源电路5.3 以电流源为有源负载的放大电路5.4 差动放大电路5.4.1 零点漂移现象5.4.2 差动放大电路的工作原理及性能分析5.4.3 具有电流源的差动放大电路5.4.4 差动放大电路的大信号分析5.4.5 差动放大电路的失调和温漂5.5 复合管及其放大电路5.6 集成运算放大电路的输出级电路5.7 集成运算放大电路举例5.7.1 双极型集成运算放大电路f0075.7.2 cmos集成运算放大电路mc145735.8 集成运算放大电路的外部特性及其理想化5.8.1 集成运放的模型5.8.2 集成运放的主要性能指标5.8.3 理想集成运算放大电路思考题习题第6章反馈6.1 反馈的基本概念及类型6.1.1 反馈的概念6.1.2 反馈放大电路的基本框图6.1.3 负反馈放大电路的基本方程6.1.4 负反馈放大电路的组态和四种基本类型6.2 负反馈对放大电路性能的影响6.2.1 稳定放大倍数6.2.2 展宽通频带6.2.3 减小非线性失真6.2.4 减少反馈环内的干扰和噪声6.2.5 改变输入电阻和输出电阻6.3 深度负反馈放大电路的近似计算6.3.1 深负反馈放大电路近似计算的一般方法6.3.2 深负反馈放大电路的近似计算6.4 负反馈放大电路的稳定性6.4.1 负反馈放大电路的自激振荡6.4.2 负反馈放大电路稳定性的判断6.4.3 负反馈放大电路自激振荡的消除方法思考题习题第7章集成运算放大器的应用7.1 基本运算电路7.1.1 比例运算电路7.1.2 求和运算电路7.1.3 积分和微分运算电路7.1.4 对数和反对数运算电路7.2 电压比较器7.2.1 电压比较器概述7.2.2 单门限比较器7.2.3 迟滞比较器7.2.4 窗口比较器7.3 弛张振荡器7.4 精密二极管电路7.4.1 精密整流电路7.4.2 峰值检波电路7.5 有源滤波器7.5.1 滤波电路的作用与分类7.5.2 一阶有源滤波器7.5.3 二阶有源滤波器7.5.4 开关电容滤波器思考题习题第8章功率放大电路8.1 功率放大电路的特点与分类8.2 甲类功率放大电路8.3 互补推挽乙类功率放大电路8.3.1 双电源互补推挽乙类功率放大电路8.3.2 单电源互补推挽乙类功率放大电路8.3.3 采用复合管的准互补推挽功率放大电路8.4 集成功率放大器8.5 功率器件8.5.1 双极型大功率晶体管8.5.2 功率mos器件8.5.3 绝缘栅双极型功率管及功率模块8.5.4 功率管的保护思考题习题第9章直流稳压电源9.1 直流电源的组成9.2 整流电路9.2.1 单相半波整流电路9.2.2 单相全波整流电路9.2.3 单相桥式整流电路9.2.4 倍压整流电路9.3 滤波电路9.3.1 电容滤波电路9.3.2 电感滤波电路9.3.3 复合型滤波电路9.4 稳压电路9.4.1 稳压电路的主要指标9.4.2 线性串联型直流稳压电路9.4.3 开关型直流稳压电路思考题习题第10章可编程模拟器件与电子电路仿真软件10.1 在系统可编程模拟电路原理与应用10.1.1 isppac10的结构和原理10.1.2 其他isppac器件的结构和原理10.1.3 isppac的典型应用10.2 multisim软件及其应用10.2.1 multisim 8的基本界面10.2.2 元件库10.2.3 仿真仪器10.2.4 仿真分析方法10.2.5 在模拟电路设计中的应用思考题习题第11章集成逻辑门电路11.1 双极型晶体管的开关特性11.2 mos管的开关特性11.3 ttl门电路11.3.1 ttl标准系列与非门11.3.2 其他类型的ttl标准系列门电路11.3.3 ttl其他系列门电路11.4 ecl门电路简介11.5 cmos门11.5.1 cmos反相器11.5.2 其他类型的cmos电路11.5.3 使用cmos集成电路的注意事项11.5.4 cmos其他系列门电路11.6 cmos电路与ttl电路的连接思考题习题参考文献延伸阅读:模拟电子技术基础50问1、空穴是一种载流子吗?空穴导电时电子运动吗?答:不是,但是在它的运动中可以将其等效为载流子。

(二极管及其应用)

(二极管及其应用)

t t
u2负半周时: D2、D4 导通, D1 、D3截止
+
220V u1
+
D4
u2 3
+ D3
2
4
D1
1
D2
+
+
RL u L
-
+
u2
t
uL
t
(3)主要参数:
输出电压平均值:Uo=0.9u2 输出电流平均值:Io= Uo/Ro=0.9 u2 / RL
(4) 最高工作频率
是二极管工作fM的上限频率。它主要由PN结的结电
f
容大小决定。信号频率超过此值时,二极管的单向导电 M性将变差。应该指出,由于制造工艺的限制,即使是同
一型号的器件,其参数的离散性也很大,因此,手册上
常常给出参数的范围。另一方面,器件手册上给出的参
数是在一定测试条件下测得的,若条件改变,相应的参 数值也会变化。
内电场 E
EW
R
(2) 加反向电压——电源正极接N区,负极接P区
外电场的方向与内电场方向相同。 外电场加强内电场 →耗尽层变宽 →漂移运动>扩散运动
→少子漂移形成反向电流I R
P
空间电 荷区
N
在一定的温度- 下- - -
++ ++
,由本征激发产-生的- - -
++ ++
少子浓度是一定的, 故IR基本上与外-加反- - -
本征激发
+4 空穴 +4
+4
+4
+4 +4
+4
+4
自由电子

二极管的原理与作用的详解

二极管的原理与作用的详解

二极管的原理与作用的详解一、二极管的原理1.1 二极管的结构和材料二极管是由P型半导体和N型半导体通过P-N结焊接而成的。

P型半导体中的空穴是载流子,N型半导体中的自由电子是载流子。

在P-N结区域,由于P型半导体与N型半导体之间的电子互相扩散,产生了内建电场。

当二极管处于正向偏置时,外加电场与内建电场相反,减弱内建电场,使电子和空穴互相推动,形成电流。

当二极管处于反向偏置时,外加电场与内建电场相同,增强内建电场,阻止电子和空穴互相推动,电流几乎为零。

1.2 二极管的I-V特性在二极管的工作过程中,通过正向偏置和反向偏置测试电压和电流的关系,得到了二极管的I-V特性曲线。

对于正向偏置,当初始时电压较小时,电流增加较快,此时二极管呈现出导通状态。

当电压较大时,电流增加的速度迅速放缓,呈现出近似于垂直的I-V特性曲线。

对于反向偏置,随着电压增加,电流一直保持在很小的数量级上,此时二极管处于截止状态。

从I-V特性曲线可以看出,二极管在正向偏置下具有导通特性,在反向偏置下具有截止特性。

1.3 二极管的载流子运动和电压分布在正向偏置下,P-N结区域的载流子受到外加电场的作用,不断地向结区域移动,形成电流。

P型半导体中的空穴向N型半导体区域移动,N型半导体中的自由电子向P型半导体区域移动,二者在P-N结区域重组,产生光子辐射。

在反向偏置下,P-N结区域的载流子受到内建电场的作用,难以移动,形成电流非常小的状态。

此时,二极管的内部电压分布非常重要,它会影响二极管的导通和截止状态。

1.4 二极管的能带图和禁带宽度能带图是根据半导体的能带结构绘制的图像,它反映了半导体的导电性和光电性。

对于二极管而言,能带图反映了P-N结区域的特性。

在P型半导体中,价带较高,导带较低,禁带宽度较小;在N型半导体中,价带较高,导带较低,禁带宽度较小。

在P-N结区域,由于电子的扩散和重组,形成了内建电场,使得P-N结处的禁带宽度增加。

禁带宽度的变化影响了二极管的导通和截止状态。

第五章半导体二极管(1)

第五章半导体二极管(1)

P
耗尽层
N
I 内电场方向
外电场方向
V
R
PN 结外加正向电压
(三)PN结 2、PN结的特性
(2)PN结外加反向电压
fla sh 3
PN结反偏 外电场与内电场方向相同 飘移>扩散 PN结变厚 有利于漂移进行 外部电源不断提供电荷 产生较小的反向电流I反 PN结反向截止
P
耗尽层
N
IS
内电场方向
外电场方向
若忽略管压降,二极管可看作短路,UAB = 0 V
流过
D2
的电流为
ID2
12 3
4mA
D2 起钳位作用, D1起隔离作用。
例4: 当VA = 3V,VB = 0V时,分析输出端的电位VY。
+6V
∵ UDB > UDA
DA
VA
R
∴ DB 优先导通, DA截止。 理想二极管:VY = VB = 0V
VY 锗二极管:VY = VB + UD = 0.3V
绝缘体--有的物质几乎不导电,称为绝缘体,如橡皮、 陶瓷、塑料和石英
半导体--另有一类物质的导电特性处于导体和绝缘体之 间,称为半导体,如锗、硅、砷化镓和一些硫化物、氧化物 等。
本征半导体是纯净的晶体结构的半导体。
无杂质 稳定的结构
1、本征半导体的结构
现代电子学中,用的最多的半导体是硅和锗,它们的最外层 电子(价电子)都是四个。
反向截止时相当于开路。
否则,正向管压降
硅0.6~0.7V 锗0.2~0.3V
例1: 分析输出电压和二极管上电压的波形。
假设二极管为理想二极管。
Tr a D io
u2
2U
++

模拟电子技术电子教案第一章半导体二极管及其电路分析教案

模拟电子技术电子教案第一章半导体二极管及其电路分析教案

1.半导体二极管及其电路分析【重点】半导体特性、杂质半导体、PN结及其单向导电特性。

【难点】PN结形成及其单向导电特性。

1.1 半导体的基本知识1.1.1 半导体的基本知识(1)导电能力对温度的反应非常灵敏。

(2)导电能力受光照非常敏感。

(3)在纯净的半导体中掺入微量的杂质(指其他元素),它的导电能力会大大增强。

1.1.2 本征半导体纯净的半导体称为本征半导体,常用的本征半导体是硅和锗二晶体。

半导体有两种载流子,自由电子和空穴,如果从本征半导体引出两个电极并接上电源,此时带负电的自由电子指向电源正极作定向运动,形成电子电流,带正电的空穴将向电源负极作定向运动,形成空穴电流,而在外电路中的电流为电子电流和空穴电流之和。

1.1.3 杂质半导体1.N型半导体在硅晶体中掺入微量5价元素,如磷(或者砷、锑等),如图所示。

这种半导体导电主要靠电子,所以称为电子型半导体,简称N型半导本。

在N型半导体中,自由电子是多数载流子,而空穴2.P型半导体如果在硅晶体中,掺入少量的3价元素硼(铟、钾等),如图1-5所示。

这种半导体的导电主要靠空穴,因此称为空穴型半导体,有称P型半导体。

P型半导体的空穴是多数载流子,电子是少数载流子。

结论:N型半导体、P型半导体中的多子都是掺入杂质而造成的,尽管杂质含量很微,但它们对半导体的导电能力却有很大影响。

而它们的少数载流子是热运动产生的,尽管数量很少,但对温度非常敏感,对半导体的性能有很大影响。

1.1.4 PN结及其单向导电特性1.PN结的形成结论:在无外电场或其它因素激发时,PN结处于平衡状态,没有电流通过,空间电荷区是恒定的。

另外,在这个区域内,多子已扩散到对方并复合掉了,好像耗尽了一样,因此,空间电荷区又叫做耗尽层。

2.PN结单向导电性(1)正向特性当PN结外加正向电压(简称正偏),电源正极接P,负极接N,PN结处于导通状态,导电时电阻很小。

(2)反向特性当外加反向电压(简称反偏),电源正极接N,负极接P,PN结处于截止状态结论:PN结正偏时电路中有较大电流流过,呈现低电阻,PN结导通;PN结反偏时电路中电流很小,呈现高电阻,PN结截止,可见PN结具有单向导电性。

21三极管结构电流分配课件

21三极管结构电流分配课件

理想二极管——即忽略正向导通压降和反向漏电流,将其视为一理想开关模型。
+
-
A
K
-
+
A
K
2
四、二极管电路的基本分析方法
1.3 半导体二极管
2.基本分析思路 已知电路图→ 判断二极管V的工作状态 →画出等效电路→求参数,或画波形。
【例题】:判断二极管V的工作状态,求输出电压UAO。设二极管为理想。
3
1.3 半导体二极管
——有源放大
4)放大的前提——输出信号失真要小;
放大电路的核心:半导体三极管 放大的实质:三极管的能量控制作用。
18
一、三极管的结构和符号 外形:
2.1 半导体三极管
制造材料——硅管、锗管
分类:
工作频率——高频管、低频管
功率——小功率管、中功率管、大功率管
用途——放大管、开关管
内部结构——NPN型、PNP型
25
二、三极管的工作原理
2.1 半导体三极管
1.放大条件 外加电源电压的极性必须满足: 发射结正向偏置,集电结反向偏置
c
N
b
P
N
e NPN:Vc>Vb>Ve
c
Rc
b
Rb
Ec
e
Eb
共发射极接法 思考:PNP管放大电路怎样连接?
26
2.1 半导体三极管
二、三极管的工作原理
2.电流分配关系 仿真实验电路
本章小结
16
第2章 三极管及其放大电路 为什么扩音机能放大声音?
第2章 三极管及其放大电路
直流电源
信 话筒号

放大电路 扩音机
扬负载声器
扩音机的工作过程

模拟电子技术教案-第1章 半导体二极管及其基本应用

模拟电子技术教案-第1章 半导体二极管及其基本应用

模拟电子技术主编第1章半导体二极管及其基本应用1.1.1 半导体的基础知识本证半导体1.定义:纯净的单晶半导体称为本征半导体。

2.本征半导体的原子结构及共价键:共价键内的两个电子由相邻的原子各用一个价电子组成,称为束缚电子。

3.本征激发和两种载流子:——自由电子和空穴受温度的影响,束缚电子脱离共价键成为自由电子,在原来的位置留有一个空位,称此空位为空穴。

在本征半导体中,自由电子和空穴成对出现,数目相同。

复合现象:空穴出现以后,邻近的束缚电子可能获取足够的能量来填补这个空穴,而在这个束缚电子的位置又出现一个新的空位,另一个束缚电子又会填补这个新的空位,这样就形成束缚电子填补空穴的运动。

为了区别自由电子的运动,称此束缚电子填补空穴的运动为空穴运动。

4. 结论(1)半导体中存在两种载流子,一种是带负电的自由电子,另一种是带正电的空穴,它们都可以运载电荷形成电流。

(2)本征半导体中,自由电子和空穴相伴产生,数目相同。

(3)一定温度下,本征半导体中电子空穴对的产生与复合相对平衡,电子空穴对的数目相对稳定。

(4)温度升高,激发的电子空穴对数目增加,半导体的导电能力增强。

这是半导体和导体在导电机制的本质差异。

另一方面,空穴的出现是半导体导电区别导体导电的一个主要特征。

杂质半导体1.定义:为了提高半导体的导电能力可在本征半导体中掺入微量杂质元素,该半导体称为杂质半导体。

2.半导体分类在本征半导体中有意识加入微量的三价元素或五价元素等杂质原子,可使其导电性能显著改变。

根据掺入杂质的性质不同,杂质半导体分为两类:电子型(N 型)半导体和空穴型(P 型)半导体。

(1)N 型半导体在硅(或锗)半导体晶体中,掺入微量的五价元素,如磷(P)、砷(As)等,则构成N 型半导体。

五价的元素具有五个价电子,它们进入由硅(或锗)组成的半导体晶体中,五价的原子取代四价的硅(或锗)原子,在与相邻的硅(或锗)原子组成共价键时,因为多一个价电子不受共价键的束缚,很容易成为自由电子,于是半导体中自由电子的数目大量增加。

二极管PPT精选文档

二极管PPT精选文档


相当于断路
电 等效电路
UD
路 模
+
{ uD
- 导通
iD
UD
截止

I(mA)
O UD
U(V)
34
1.4 3.折线模型
二 极 伏安关系

U > Uon,二极管导通,

管压降随电流变化
等 U < Uon,二极管截止,电流为0

相当于断路

路 模
rD
UD Uon ID

I(mA)
O Uon
U(V)
35
1.4 3.折线模型

Uab = ui
ui
{ 的 ui > 0时, D导通,uo=ui
-
基 ui < 0时, D截止,uo=0

ui

o
ωt

uO

o

ωt
ab
D
+
R uO
-
1.3 三、限幅电路


D为硅管 ui=5sinωtV,E=2V
管 的
Uab = ui-E

(1) Uab = ui-E≥0.7时, ui/V
本 即ui≥2.7V,D导通,

nA量级 (硅)

μA量级(锗)
管 二极管伏安特性方程

IISa(teU/UT 1)


U T= kT q
k为玻耳兹曼常数,T为绝对温度,q为电子电量
本 特 在室温(27℃或300K)时UT≈26mV

23
1.2

3.反向击穿特性

二极管模型

二极管模型

CT=TT(dIfwd/dVA)=TT*Gd
新增一个模型参数. TT称为渡越时间(Transit time)
二极管模型和模型参数
二、
(5) 大注入效应的表征 大电流下,由于大注入效应,使结电流随结电压的增加变慢,从 exp(qVA/NkT)关系逐步变为exp(qVA/2NkT)。为此,只需将电流表达式作 下述修正,等效电路无需变化:
ID=IS[exp(qVA/NkT)-1]
极大注入下,IKF远小于ISexp(qVA/NkT-1),则
ID=IS[exp(qVA/2NkT)-1]
二极管模型和模型参数
二、
(6) 小电流效应的表征 小电流下,流过二极管的电流中应增加空间电荷区的产生-复合电流项:
二极管模型
ID(复合)= ISR[exp(qVA/NRkT)-1]
IDBV=IBV[exp(-q(VA+BV)/NBVkt)-1]
又增加两项模型参数。 一 项 是 描 述 反 向 击 穿 的 “ 膝 点 电 压 ” BV (Reverse breakdown “ knee”voltage); 另 一 项 是 描 述 反 向 击 穿 的 “ 膝 点 电 流 ” IBV (Reverse breakdown “ knee”current)。
新增2个模型参数: ISR(复合电流:Recombination current parameter); NR(复合电流发射系数:Emission coefficient for ISR)。
二极管模型和模型参数
二、 二极管模型
(7) 考虑击穿特性的反向电流 当反向电压达到击穿电压时,流过二极管的反向电流除了由基本电流 方程决定的反向电流外,还要增加由击穿机理决定的电流项:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.7 V (Si) UF
0.2 V (Ge)
UF
[例 1.3.2] 分别用二极管理想模型和恒压降模型计算回路中 电流 ID 和输出电压 UO 。设二极管为硅管。
a b
解:假设二极管断开 Ua = –12 V Ub = –16 V Ua > Ub
US1
12 V
ID
R 2 kW UR UO US2 16V
1.3 半导体二极管 的电路模型
一、理想模型
特性 ID UD
ID
电路符号
S
S
[例 1.3.1] 在图中所示电路中,已知输入电压 us 为正弦波。 利用二极管理想模型,定性地绘出输出电压 uO 的波形。
D us
us
R uO
0

2 3
4
t
uO
0

234Fra bibliotekt二、恒压降模型
ID
ID
UD
UD = UF
iD / mA
作点
id
us
VDD
1kW
IQ uD
O O
uD /V UDQ VDD O uD /V
Q
t
当 us = 0 时
UDQ= 0.7V (硅),0.2V (锗) t
ui
iD = IDQ
VDD U DQ R
当u i 幅度较小时, 1 diD 二极管伏安特性在 Q rd duD Q点附近近似为直线
解: 已判定二极 管正偏导通
2. 用恒压降模型 UF = 0.7 V
U S1 U S2 - U F UR ID R R 12 16 0.7 1.65 mA 2 UO = IDR – US2= – 12.7 V
三、小信号模型
R
iD
D
iD / mA 斜率1/rd V / R DD 静态工
设 ui = sin t
iD IS (e uD / UT 1)
IS 1 e rd U T
uD UT
i D I D Q id
uD U DQ ud
I DQ UT
rd = UT / IDQ= 26 mV / IDQ
二极管正偏导通
[例 1.3.2] 分别用二极管理想模型和恒压降模型计算回路中 电流 ID 和输出电压 UO 。设二极管为硅管。
a US1 12 V b R 2 kW UR UO US2 16V
ID
1. 用理想模型 U S1 U S2 UR ID R R 12 16 2 mA 2 UO = – US1= – 12 V
相关文档
最新文档