土壤水分特征曲线精选文档

合集下载

土壤水分特征曲线拟合retc

土壤水分特征曲线拟合retc

土壤水分特征曲线拟合(RETC)简介土壤水分特征曲线(Retc)是描述土壤中含水量与土壤势力之间关系的一种曲线,也被称为土壤水分保持曲线。

该曲线可以帮助我们理解和预测土壤中的水分变化情况,对农业、生态学和环境科学等领域具有重要意义。

本文将介绍土壤水分特征曲线的概念、拟合方法以及应用,并提供一些实际案例进行说明。

土壤水分特征曲线的概念土壤中的水分是指在其中存在的液态和固态水分。

液态水分主要存在于毛管孔隙中,而固态水分则通过吸附力与颗粒表面结合。

土壤中的含水量与势力之间存在着一定关系,而这种关系可以用土壤水分特征曲线来描述。

土壤水分特征曲线通常以土壤含水量(单位体积中所含的液态和固态水量)为横轴,以势力(单位重力下所需施加的负压)为纵轴。

在干燥状态下,土壤势力较大,而含水量较低;而在湿润状态下,土壤势力较小,含水量较高。

因此,土壤水分特征曲线呈现出一个递增的趋势。

土壤水分特征曲线的拟合方法为了得到土壤水分特征曲线,我们需要进行一系列实验,并利用拟合方法将实验数据转化为曲线方程。

实验步骤1.收集不同土壤样品,并将其分别放入不同容器中。

2.对每个容器中的土壤样品施加一系列不同的负压。

3.测量每个负压下的土壤含水量。

4.将实验数据整理并记录下来。

拟合方法常用的拟合方法有以下几种:1.简化拟合法:假设土壤含水量与势力之间存在着线性关系,通过最小二乘法拟合直线方程。

2.van Genuchten模型:该模型基于统计学原理,将土壤水分特征曲线表示为一个S形函数。

通过调整模型参数,可以使其与实际数据相匹配。

3.Brooks-Corey模型:该模型是van Genuchten模型的一个简化形式,适用于较干燥的土壤环境。

选择合适的拟合方法需要考虑实际情况和数据特点,以及所需的精度和可操作性。

土壤水分特征曲线的应用土壤水分特征曲线在农业、生态学和环境科学等领域具有广泛的应用价值。

农业领域在农业生产中,了解土壤水分特征曲线可以帮助我们优化灌溉管理,提高水资源利用效率。

土壤水分特征曲线出现滞后现象的原因可用

土壤水分特征曲线出现滞后现象的原因可用

土壤水分特征曲线出现滞后现象的原因可用土壤水分特征曲线是土壤物理学研究中的重要内容之一,它可以表征土壤的水分含量与土壤吸力之间的关系,并通过曲线的形态反映土壤的物理性质。

然而,许多研究发现,土壤水分特征曲线出现了滞后现象,即曲线的上升与下降方向不一致,这一现象被广泛关注和研究。

本文将从土壤物理学、土壤水文学等角度分析土壤水分特征曲线出现滞后现象的原因,并提出相应的解决措施,以便更好地利用土地资源,实现土地的可持续利用。

一、土壤水分特征曲线的定义及意义土壤水分特征曲线是指土壤中的水分含量与土壤吸力之间的关系曲线,也称为土壤水分保持曲线。

其中,土壤水分含量是指单位体积土壤中所含的水分质量,常用百分比表示;土壤吸力是指单位面积土壤所受的水势差,常用千帕表示。

土壤水分特征曲线通常由两条曲线组成,即吸力-水分含量曲线和吸力-土壤水力导数曲线。

土壤水分特征曲线的主要作用是描述土壤中的水分运移和分布情况,为土壤水分管理、地下水资源利用、灌溉和排水等工程提供基础数据。

同时,通过对土壤水分特征曲线进行分析,可以了解土壤的物理性质、水分传递特性和生态环境的改善等方面的信息,对于实现人类社会的可持续发展具有重要意义。

二、土壤水分特征曲线的滞后现象原因及分析土壤水分特征曲线的滞后现象是指曲线的上升和下降方向不一致,通常表现为上升曲线比下降曲线陡峭,有时还会出现曲线折线的情况。

目前,对于土壤水分特征曲线滞后现象的研究很多,主要总结为以下几个原因:1、土壤孔隙度的变化土壤孔隙度是土壤中空隙所占总体积的百分比,它是土壤储存水分的主要空间。

当土壤孔隙度发生变化时,土壤中的水分含量也会发生相应变化。

研究表明,土壤孔隙度与水分含量之间存在正比关系,但是土壤孔隙度的变化速度大于水分含量的变化速度,因此导致曲线出现滞后现象。

2、土壤结构的影响土壤结构是土壤物理性质的重要组成部分,它决定着土壤中水分的分布与移动。

当土壤结构发生变化时,例如土壤发生压实、冻融等现象,会影响土壤中的孔隙度和空隙的尺寸分布,导致水分含量的变化速度与土壤吸力的变化速度不一致,从而使土壤水分特征曲线出现滞后现象。

土壤水分特征曲线的van genuchten模型

土壤水分特征曲线的van genuchten模型

土壤水分特征曲线的van Genuchten模型1. 简介土壤水分特征曲线是描述土壤中存水特性的重要工具,它反映了土壤颗粒间的毛细管力和土壤孔隙结构对水分运移的影响。

van Genuchten模型是一种常用的描述土壤水分特征曲线的数学模型,可以用来确定土壤水分的液态持水量、毛细吸力以及相对渗透率等参数。

2. van Genuchten模型的基本原理van Genuchten模型基于土壤颗粒间的毛细管力和土壤孔隙结构对水分运移的影响,将土壤水分特征曲线表示为一个非线性的二次函数。

该模型通过以下公式描述:[ = _r + (_s - _r)(1 + |h|n){-m} ]其中,•() 是土壤的体积含水量(体积含水量定义为单位体积土壤中的水的体积与总孔隙容积之比);•(_r) 是残余含水量,表示毛细吸力较大时土壤中仍存留的水分;•(_s) 是饱和含水量,表示毛细吸力较小时土壤中的最大含水量;•() 是与水分运动能力有关的参数;•(h) 是土壤中的毛细吸力,表示水分运动的驱动力;•(n) 和 (m) 是拟合曲线形状的常数。

根据van Genuchten模型,当毛细吸力较小时,土壤中的饱和含水量几乎不变,而残余含水量随毛细吸力的增加而增加;当毛细吸力较大时,残余含水量接近于饱和含水量,表示土壤中几乎没有剩余水分可供植物吸收。

3. van Genuchten模型的参数估计为了将van Genuchten模型应用于实际土壤水分特征曲线的估计,需要确定模型的参数。

常用的参数估计方法包括最小二乘法、非线性最小二乘法等。

最小二乘法是一种常见的参数估计方法,它通过最小化观测值与模型预测值之间的误差平方和来确定参数。

非线性最小二乘法是将最小二乘法应用到非线性模型的参数估计中,通过迭代计算参数值,使得误差平方和最小化。

确定van Genuchten模型的参数需要收集实际土壤样品的体积含水量和对应的毛细吸力数据。

然后,可以通过拟合方法来确定模型的参数值,使得模型预测的体积含水量与实际观测值最接近。

土壤水分特征曲线

土壤水分特征曲线

土壤水动力学学院:环境科学与工程学院专业:水土保持与沙漠化防治学号:姓名:土壤水分特征曲线的研究与运用摘要:土壤水的基质势随土壤含水量而变化,其关系曲线称为土壤水分特征曲线。

该曲线反映了土壤水分能量和数量之间的关系,是研究土壤水动力学性质必不可少的重要参数,在生产实践中具有重要意义。

本文总结并比较分析了前人在土壤水分特征曲线测定方法中的各种模型,其中对Van Genuchten模型的研究较为广泛。

但为之在DPS中求解Van Genuchten模型参数和在试验基础上建立的土壤水分特征曲线的单一参数模型结构较为简单,省时省力,可进一步的推广运用。

关键词:土壤水分特征曲线Van Genuchten模型运用1.土壤水分特征曲线的研究1.1土壤水分特征曲线的概念土壤水分特征曲线是描述土壤含水量与吸力(基质势)之间的关系曲线。

它反映了土壤水能量与土壤水含量的函数关系,因此它是表示土壤基本水力特性的重要指标,对研究土壤水滞留与运移有十分重要的作用[1]。

1.2土壤水分特征曲线的意义土壤水分特征曲线反映的是土壤基质势(或基质吸力)和土壤含水量之间的关系。

土壤水分对植物的有效程度最终决定于土水势的高低而不是自身的含水量。

如果测得土壤的含水量,可根据土壤水分特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度[2]。

1.3土壤水分特征曲线的测定方法1.3.1直接法通过实验方法直接测定土壤水分特征曲线的方法称为直接法。

直接法中有众多的实验室和田间方法,如力计法、压力膜法、离心机法、砂芯漏斗法、平汽压法等,而前3种应用最为普遍。

①力计法:是土壤通过土杯从力计中吸收水分造成一定的真空度或吸力,当土壤与外界达到平衡时,测出土壤基质势,再测出土杯周围的土壤含水量,不断变更土壤含水量并测相应的吸力,就可完成土壤水分特征曲线的测定。

力计法可用于脱水和吸水2个过程,可测定扰动土和原状土的特征曲线,是用于田间监测土壤水分动态变化重要的手段,在实际工作中得到广泛应用。

土壤水分特征曲线实验

土壤水分特征曲线实验

土壤水分特征曲线实验
土壤水分特征曲线实验是一种常用的研究土壤水分运动规律的方法。

该实验通过测量土壤含水量与土壤水势之间的关系,得出土壤水分特征曲线,从而了解土壤水分的分布和运移特性。

在实验中,首先需要采集待测土壤样品,并进行筛分、烘干等处理,以去除杂质和调整土壤质量。

然后,将土壤样品装入特制的容器中,并按照一定的加水量进行灌溉,使土壤达到不同的含水状态。

接着,使用仪器测量不同含水状态下的土壤水势和含水量,记录数据并进行统计分析。

最后,根据实验结果绘制出土壤水分特征曲线图。

通过分析土壤水分特征曲线,可以得出以下结论:
1. 土壤水分特征曲线呈现出一个“S”形曲线,即随着土壤含水量的增加,土壤水势先逐渐降低,然后迅速升高,最后趋于稳定。

这是因为土壤中的水分分子会形成不同的聚集体,如单粒团、微团粒等,这些聚集体会影响土壤水的运动和分布。

2. 土壤水分特征曲线可以分为两个阶段:第一阶段是快速下降期,此时土壤含水量较高,但土壤水势仍然较低;第二阶段是缓慢下降期,此时土壤含水量较低,但土壤水势已经趋于稳定。

这两个阶段的转折点称为“拐点”。

3. 土壤水分特征曲线的形状和位置受到多种因素的影响,如土壤类型、质地、温度、湿度等。

因此,在进行实验时需要严格控制这些因素的变化范围,以确保实验结果的准确性和可靠性。

土壤水分特征曲线受温度影响曲线

土壤水分特征曲线受温度影响曲线

一、土壤水分特征曲线的概念和意义土壤水分特征曲线是描述土壤中水分含量与毛管压力之间的关系的一条曲线,其反映了土壤对水分的保持能力和气泡点、毛管点等重要水分特性参数。

而土壤水分特征曲线受温度影响曲线则是对土壤水分特征曲线在不同温度条件下的变化规律进行研究的结果。

土壤水分特征曲线的研究对于农业生产、生态环境保护等领域具有重要意义。

通过了解土壤水分特征曲线,我们可以更好地进行灌溉调控和土壤水分管理,提高农作物产量和质量;同时也能够有效评估土壤水分的保持能力,指导土地利用和保护工作。

研究土壤水分特征曲线受温度影响曲线对于优化农业生产、保护生态环境都具有重要意义。

二、土壤水分特征曲线受温度影响的原理和影响因素1. 温度对土壤孔隙结构的影响:温度的变化会影响土壤孔隙结构的稳定性和大小分布,从而影响土壤水分的保持能力和运移性。

2. 温度对土壤颗粒间作用力的影响:温度变化会影响土壤中水分和孔隙空气的物理状态,从而改变土壤颗粒间的相互作用力,进而影响土壤水分特征曲线的形态和参数。

3. 温度对土壤水分的运移性和渗透性的影响:温度的升高会使土壤中水分的粘附力和毛细管吸力减小,同时会加快土壤中水分的蒸发和渗透过程,从而对土壤水分特征曲线产生影响。

4. 温度对土壤有机质分解的影响:温度的升高会促进土壤中有机质的分解,从而影响土壤结构和水分保持能力。

土壤水分特征曲线受温度影响曲线受到了多种因素的影响,包括土壤孔隙结构、颗粒间作用力、水分运移性和有机质分解等,这些因素相互作用最终导致了土壤水分特征曲线的变化。

三、个人观点和理解个人认为,研究土壤水分特征曲线受温度影响曲线对于有效利用土壤水分资源、提高农作物产量和质量具有重要意义。

通过对土壤水分特征曲线受温度影响的研究,可以更好地指导土地利用和保护工作,促进生态环境的可持续发展。

四、总结与回顾通过本文的介绍,我们了解了土壤水分特征曲线以及它受温度影响的基本原理和重要影响因素。

个人也共享了自己对于这个主题的观点和理解。

土壤 水分特征曲线

土壤 水分特征曲线

土壤水分特征曲线土壤水分特征曲线,即土壤水的基质势(或土壤水吸力)随土壤含水量而变化,是描述土壤水状态的重要工具。

在农业科学、环境科学、土壤物理学以及水利工程等多个领域,它都发挥着至关重要的作用。

本文将深入探讨土壤水分特征曲线的内涵、测定方法、影响因素以及实际应用。

一、土壤水分特征曲线的基本概念土壤水分特征曲线反映了土壤水的能量状态和数量之间的关系。

通常,土壤水的基质势随土壤含水量的增加而降低,二者呈负相关。

当土壤含水量很高时,土壤颗粒表面的水膜较厚,土壤水吸力较低,基质势较高;而随着土壤水分的蒸发和植物吸收,土壤含水量逐渐降低,土壤颗粒表面对水分的吸附力增强,土壤水吸力增大,基质势降低。

二、土壤水分特征曲线的测定方法实验室内测定土壤水分特征曲线的方法主要有压力膜法、离心机法、砂性漏斗法、张力计法等。

其中,压力膜法和离心机法是最常用的两种方法。

1. 压力膜法:通过在封闭的压力室内对土壤样品施加一系列递增的压力,迫使土壤水分在不同的基质势下排出,从而得到土壤水分特征曲线。

2. 离心机法:将土壤样品置于特制的离心管中,通过离心作用产生的离心力使土壤水分排出。

通过改变离心机的转速,可以得到不同基质势下的土壤含水量。

三、影响土壤水分特征曲线的因素土壤水分特征曲线受多种因素影响,主要包括土壤类型、土壤结构、土壤有机质含量、土壤盐分等。

1. 土壤类型:不同土壤类型的土壤颗粒组成、孔径分布等物理性质不同,导致土壤水分特征曲线存在显著差异。

例如,砂土的土壤颗粒较粗,孔径较大,对水分的吸附力较弱,其土壤水分特征曲线较陡;而黏土的土壤颗粒较细,孔径较小,对水分的吸附力较强,其土壤水分特征曲线较平缓。

2. 土壤结构:土壤结构是指土壤颗粒的排列方式和孔隙状况。

良好的土壤结构有利于水分在土壤中的运动和储存。

土壤团聚体的形成和稳定性对土壤水分特征曲线有重要影响。

团聚体含量高的土壤通常具有较好的持水能力和水分传导性能。

3. 土壤有机质含量:有机质是土壤中的重要组成部分,对土壤水分特征曲线具有显著影响。

土壤水分特征曲线的定义

土壤水分特征曲线的定义

土壤水分特征曲线的定义引言土壤水分特征曲线是研究土壤水分状况的重要工具。

它描述了土壤中各种水势与相对水分之间的关系,对于农业生产和环境保护有着重要的意义。

本文将介绍土壤水分特征曲线的定义及其在农业生产中的应用。

定义土壤水分特征曲线,又称土壤水力特征曲线,是描述土壤中各种水势与相对水分之间关系的曲线。

所谓水势,指的是土壤中的水分在重力和毛细力作用下所处的平衡状态。

相对水分则是指土壤中的水分含量与其容重之比。

土壤水分特征曲线通常用一条曲线来表示,曲线上的每一点都代表着土壤中一种特定的水势与相对水分的组合。

特征曲线的生成土壤水分特征曲线的生成需要通过实验室测试或野外观测获得。

一般来说,以下步骤可以生成土壤水分特征曲线:1.收集土壤样品:根据研究需要,在不同地点采集土壤样品,并将其送到实验室进行后续测试。

2.土壤样品处理:将获得的土壤样品经过表面碎块去除和过筛处理,以获得均匀的土壤颗粒。

3.水势测定:采用常用的水势测定方法,如压力板法、细管浸润法等,测定土壤样品在不同水势下的水分含量。

4.相对水分计算:根据土壤样品的容重和水势测定结果,计算出相对水分。

5.绘制曲线:将实验得到的水势与相对水分数据绘制在坐标系中,连接各个数据点,即可获得土壤水分特征曲线。

曲线解读土壤水分特征曲线的形态可以反映土壤的含水性能和保水能力。

在特征曲线中,通常会存在三个重要的点:1.枯水点:曲线上的最低点,表示土壤中仅有大气作用力时,作物无法吸收土壤中的水分,该水分状态下的土壤称为枯水土壤。

2.田间持水量点:曲线上吸力较大的范围内,表示土壤中能为作物供应水分的有效储水量。

3.田间持水量点以上的部分:表示土壤中过多水分被排水或滞留的范围。

应用土壤水分特征曲线在农业生产中有着重要的应用价值:1.灌溉管理:通过测定土壤水分特征曲线,可以合理确定灌溉时机和灌溉量,提高灌溉水的利用效率。

2.土壤改良:根据土壤水分特征曲线的形态,可以指导土壤改良措施的选择,提高土壤的保水能力和供水能力。

土壤水分特征曲线测定

土壤水分特征曲线测定

土壤水分特征曲线测定实验一、实验原理土壤水分特征曲线(又称持水曲线,见图1)是土壤含水量与土壤水吸力的关系曲线,该曲线能够间接反映土壤孔隙大小的分布,分析不同质地土壤的持水性和土壤水分的有效性等,在水文学、土壤学等学科的研究与实践中都具有重要作用。

目前,负压计法是测量土壤水吸力最简单、最直观的方法,而时域反射仪(TDR)是测量土壤体积含水率的最常用、最便捷的方法之一。

图1 土壤水分特征曲线(一)负压计负压计由陶土头、腔体、集气管和真空(负压)表等部件组成(见图2)。

陶土头是仪器的感应部件,具有许多微小而均匀的孔隙,被水浸润后会在孔隙中形成一层水膜。

当陶土头中的孔隙全部充水后,孔隙中水就具有张力,这种张力能保证水在一定压力下通过陶土头,但阻止空气通过。

将充满水且密封的负压计插入不饱和土样时,水膜就与土壤水连接起来,产生水力上的联系。

土壤系统的水势不相等时,水便由水势高处通过陶土头向水势低处流动,直至两个的系统的水势平衡为止。

总土水势包括基质势、压力势、溶质势和重力势。

由于陶土头为多孔透水材料,溶质也能通过,因此内外溶质势相等,陶土头内外重力势也相等。

非饱和土壤水的压力势为零,仪器中无基质,基质势为零。

因此,土壤水的基质势便可由仪器所示的压力(差)来量度。

非饱和土壤水的基质势抵于仪器里的压力势,土壤就透过陶土头向仪器吸水,直到平衡为止。

因为仪器是密封的,仪器中就产生真空,这样仪器内负压表的读数这就是土壤的吸力。

土壤水吸力与土壤水基质势在数值上是相等的,只是符号相反,在非饱和土壤中,基质势为负值,吸力为正值。

图2 负压计结构图(二)TDR土壤水分对土壤介电特性的影响很大。

自然水的介电常数为80.36,空气介电常数为1,干燥土壤为3~7之间。

这种巨大差异表明,可以通过测量土壤介电性质来推测土壤含水量。

时域反射仪以一对平行棒(也叫探针)作为导体,土壤作为电介质,输出的高频电磁波信号从探针的始端传播到终端,由于终端处于开路状态,脉冲信号被反射回来。

土壤水分特征曲线测定实验

土壤水分特征曲线测定实验

土壤水分特征曲线测定实验实验原理张力计插入土样后,张力计中的纯自由水经过陶土壁与土壤水建立了水力联系。

在非饱和土壤中,仪器中的自由水的势值总是高于土壤水的势值,因此,仪器中的自由水就会透过陶土管进入土壤,但因陶土材料孔隙细小,孔隙中形成的水膜不能使空气通过,而只能让水或溶质液通过(但如果压力过高水膜破裂,空气就会透过,这时的压力称为透气值),因而在仪器内形成一定的真空度,由仪器上的负压表读出。

最后当仪器内外的势值趋于平衡时,仪器中水的总水势Φwd与土壤中土水势Φws应该相等,即:Φwd=Φws土水势的完整表述为:Φ=Φm+Φp+Φs+Φg+ΦT因为陶土管为多孔透水材料,并非半透膜,故溶质也能通过,最后达到内外溶液浓度相等,相等。

坐标0点选在陶土头中心,则陶内外溶质势Φs相等。

仪器内外温度相等,温度势ΦT土头中心的内外重力势Φg相等。

这样仪器中和土壤中的总势平衡可表述为:Φmd+Φpd=Φms+Φps式中,Φps为土壤水的压力势,Φms为土壤水的基质势,Φpd为仪器内自由水的压力势,Φmd为仪器内自由水的基质势。

在非饱和土壤中,土壤水所受的压力为大气压(基准状态),故Φps应为零,又仪器中自由水无基质势存在,故Φmd亦为零,所以:Φms=Φpd=ΔP D+z为负压表显示的负压值(小于0),z为埋藏在土中的陶土管中心与土面以上负式中,ΔPD压表之间的静水压力即水柱高,(向上为正,大于0)。

即可得到土壤水的基质势。

按定义土壤水吸力为基质势的负值,因而即可测得吸力值。

-zS=-Φms=-ΔPD),则S=P-z如果负压表读数记为P(大于0,即P=-ΔPD另外,在计算土样中水分的变化时,还应考虑集气管中水分的变化量。

实验内容与设计1. 土样:粘土、砂壤土2. 容重:1.3g/cm3 、1.4g/cm33. 方式:脱湿:配置饱和土样,在室内自然蒸发,测定整个过程中土壤含水率与吸力关系曲线。

单点:用16个土样,分别配置指定含水率,测定该含水率下的吸力值,连成特征曲线。

土壤水特征曲线

土壤水特征曲线

研究生课程论文封面课程名称土壤水动力学教师姓名研究生姓名研究生学号研究生专业所在院系类别:日期: 2012 年1月7 日评语对课程论文的评语:平时成绩:课程论文成绩:总成绩:评阅人签名:注:1、无评阅人签名成绩无效;2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效;3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。

水分特征曲线测定实验报告1 实验的目的要求理解水分特征曲线的含义,掌握水分特征曲线的测定方法,以及比较不同土壤水分特征曲线的特点。

2 实验的原理土壤水的基质势(或土壤吸力)与土壤含水量之间的关系曲线称为土壤水分特征曲线或土壤持水曲线(soil water retention function )。

土壤水分特征曲线表示土壤水的能量和数量之间的关系,是研究土壤水分的保持和运动所用到的反映土壤水分基本特性的曲线。

各种土壤的水分特征曲线均需由实验测定。

水分特征曲线仪主要由陶土头、集气管、压力传导管、水银测压计(由玻璃管和水银槽组成)、观测板以及样品容器组成,其结构如图1所示。

图1 水分特征曲线仪结构图1.样品容器;2.陶土头;3.集气管;4.压力传导管;5.水银测压计;6.观测板;7.水银槽陶土头是仪器的传感部件,由具有均匀微细孔隙的陶土材料制成,当仪器内充满水使陶土头被水饱和时,陶土头管壁就形成张力相当大的一层水膜,陶土头与土壤充分接触后,土壤水与其内部的水体通过陶土头建立了水力联系,在一定的压差范围内,水分和溶质可以通过陶土头管壁,而气体则不能通过,即所谓透水不透气。

因此,如果陶土头内外之间存在压力差,水分就会发生运动,直至内外压力达到平衡为止。

这时,通过水银压力表测定的负压值就是陶土头所在位置土壤水的基质势。

陶土头所在位置的压力水头(基质势或负压)的计算公式为:w m w m m h h h h h h --=-+-=6.12)(6.13式中h 为压力水头,h m 为压力表中水银柱高度(以水银槽水银液面为基准面),h m 是水银槽液面到陶土头中心位置的垂直距离。

不同施肥条件下土壤水分特征曲线变异及影响因子-农艺学论文-农学论文

不同施肥条件下土壤水分特征曲线变异及影响因子-农艺学论文-农学论文

不同施肥条件下土壤水分特征曲线变异及影响因子-农艺学论文-农学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——引言水分是促进植物生长和调节体内外生理生态变化的关键因素,尤其是在黄土高原半干旱区,土壤水分是土壤微生物、植物最主要的水源,是土壤肥力重要的因素之一。

土壤水分特征曲线表述了土壤含水率与吸力之间的关系,不仅反映了土壤的持水力,也间接地反映出土壤中孔隙的分布,是模拟土壤水分运动和溶质运移的重要参数,对研究土壤水分的有效性,土壤水分运动溶质运移等有重要的作用。

土壤水分特征曲线的影响因素较多、关系复杂。

目前尚不能从理论上推求土壤水势与含水率的关系,常采用实验方法测出数据后拟合成经验模型,其中,Van Genuchten 模型因与实测数据拟合程度好而得到广泛应用。

因此,通过对土壤水分特征曲线和Van Genuchten 模型参数空间变异性的研究,可为评估土壤持水能力和释水能力、合理的获取土壤水分运动参数等提供依据。

黄土高原生态环境脆弱,降水量低且不均匀,土壤水分严重缺乏,成为影响作物产量的主要限制因素之一。

该区域以旱作物为主的雨养农业区,作物供水主要依赖于大气降水,而大气降水对作物的水分供应又需要依赖于土壤调节。

因此,探索简单易行且具有良好生态、经济和社会效应的农业管理措施显得尤为迫切和重要。

有关黄土高原土壤水分的研究大都集中在土壤水分空间分布、土壤贮水力、农田耗水、水分利用效率等方面,且土壤水分特征曲线方面的研究多集中在林地土壤,而对黄土旱塬区长期施肥条件下土壤水分特征曲线的空间变异性鲜有报道。

本文以该地区长期定位实验为对象,深入分析不同施肥条件下土壤水分特征曲线变异及其影响因子,探讨土壤持水、保水和土壤水分的有效性,以期为黄土高原旱区找到可以提高和稳定土地生产力、保证粮食生产的农业管理模式。

1、材料与方法1. 1 实验设计黄土旱原区长期肥料定位实验开始于1984 年。

实验开始前,实验地一直用于种植作物(小麦) 。

土壤水分特征曲线 数据

土壤水分特征曲线 数据

543.7 541.1 549.04 544.92 0 0 0 0 43.81 38.03 41.31 40.78 28.72 24.54 25.84 26.19 1.53 1.55 1.60 1.56 43.81 38.03 41.31 40.78 0 0
543.69 541.09 549.04 544.92 0.01 0.01 0 0 43.8 38.02 41.31 40.78 28.71 24.53 25.84 26.19 1.53 1.55 1.60 1.56 43.80 38.02 41.31 40.78 0 0
539.28 534.66 543.9 538.78 3.38 3.53 4.18 3.73 39.39 31.59 36.17 34.64 25.82 20.38 22.63 22.25 1.58 1.72 1.68 1.71 40.83 35.02 37.97 38.07 0.18 0.5
536.22 530.39 540.33 534.82 3.06 4.27 3.57 3.96 36.33 27.32 32.6 30.68 23.82 17.63 20.39 19.70 1.63 1.78 1.73 1.77 38.89 31.37 35.22 34.93 0.336 0.658
脱水容 器编号 1 2 3 4 设计转速(n) 离心时间(min) 实际吸力(bar) 土水势 CK NPK OM NPK+S
滤纸 0.18 0.18 0.18 0.18 0 0 0
脱水容器 (g) 271.34 271.88 271.79 272.48 460 30
环刀 (g) 75.82 76.03 75.91 75.77 650 30
天然干 容重 离心干容 (g/cm3 重 ) 1.53 1.67 1.55 1.81 1.60 1.77 1.56 1.81

土水特征曲线

土水特征曲线

土水特征曲线
土壤水分特征曲线,一般也叫做土壤特征曲线或土壤pF 曲线,它表述了土壤水势(土壤水吸力)和土壤水分含量之间的关系。

通常土壤含水量Q以体积百分数表示,土壤吸力S以大气压表示。

由于在土壤吸水和释水过程中土壤空气的作用和固、液而接触角不同的影响,实测土壤水分特征曲线不是一个单值函数曲线。

曲线特点:
滞后现象:相同吸力下的土壤水分含量,释水状态要比吸水状态大,即为水分特征曲线的滞后现象。

土壤水分特征曲线的拐点只有级配较好的沙性土比较明显,说明土壤水分状态的变化不存在严格界限和明确标志,用土壤水分特征曲线确定其特征值,带有一定主观性。

土壤水分特征曲线可反映不同土壤的持水和释水特性,也可从中了解给定土类的一些土壤水分常数和特征指标。

曲线的斜率倒数称为比水容量,是用扩散理论求解水分运动时的重要参数。

曲线的拐点可反映相应含水量下的土壤水分状态,如当吸力趋于0时,土壤接近饱和,水分状态以毛管重力水为主;吸力稍有增加,含水量急剧减少时,用负压水头表示的吸力值约相当于支持毛管水的上升高度;吸力增加而含水量减少微弱时,以土壤中的毛管悬着水为主,含水量接近于田间持水量;饱和含水量和田间持水量间的差值,可反
映土壤给水度等。

故土壤水分特征曲线是研究土壤水分运动、调节利用土壤水、进行土壤改良等方面的最重要和最基本的工具。

室内试验测定土壤水分特征曲线

室内试验测定土壤水分特征曲线
计 算土壤 水 分特征 曲线 , 是 由于 ( ) 但 1 式所 含参 数 较 多 , 方 程 不 能直 接 线 性 化 , 际运 用 中, 存 且 实 也 在 着各种 条 件 的 限制 。因此 , 计 算 土 壤 水 分 特 在 征 曲线时 , 根据 数学 分析 进行 了一 些简 化处 理 , 在
NO 4 . Vo .1 1 ( Ol 2 0)
内江 职 业 技 术 学 院 学 报 NE J AN HI JS I I GZ YE I HUXUEY UANX UEB ) A(
・ 4 ・ 1
室 内试 验 测 定 土 壤 水 分 特 征 曲线
谷 新 保
( 内江 职 业技 术 学 院 , 四 川 内 江 6 1 0 4 1 0)
关 键 词 : 内试 验 ; 壤 水 分 ; 征 曲 线 室 土 特
通 过估 计表 达式 中 的参数 来确定 土 壤水分 特 征 曲线 , 这种 方 法 称 为 参 数 估计 法 。 目前 比较 常
用 的 经 验 公 式 有 B o k — C ry 1 6 ) 型 1 、 ro s oe ( 9 4 模 ] ]

1 ”与 一 1 / / —2 和 I 一 1三 种 情 况 下 的 拟 合 T l
效果 n的 拟 合效 果 最 好 。另外 , 了 推 导 水 力 传 导 系 数 , 定 > 1 为 假 。
模 型 和 Gad e — Ru s ( 9 8 模 型 。其 中 rn r so 1 8 ) 根 据 大 量 研 究 证 明 , n G n c tn模 型 因 采 Va — e u he 用 五个参 数 ( 、 、 a , 能 最 大 地拟 合 各种 、 、 ) 故 土壤 测得 的数 据 , 尤其 对砂壤 土 的拟合 效果 最好 , 有最 大 的误 差 和最 高 的确定 系数 。本文 以 Va — n

张力计法测定土壤水分特征曲线

张力计法测定土壤水分特征曲线

力计法测定土壤水分特征曲线一、实验LI 的及耍求L I:壤水分特征曲线:表示在半衡条件下,上壤水的能量和数量 Z 间的关系.它是山实测I:壊水堆模势 £相应的 得 到的土壤水在脱水(「燥)和吸水(湿润)过程中的水分特征曲线■因为 土壤水的滞后現象.得到的两条曲线并不完全相同,分别是脱水曲线 和吸水曲线。

实践屮必须;i 总 血区别应用。

木实验II 的在于确定高基模势(低吸力范围(0〜・0・08MPa ))的 脱水曲线和吸水曲线・2・要求:通过木次实验•耍求学生学会利用张力计法测定土壤水分特征 曲线,初步『解I:壤含水量和匕壤基质势Z 间的内在关系。

壤屮.要E«紧缺g 触°从那力彳观点來分 il 与土填肩件 个累统.这木索统中张力“山的水通过 称膜)9I 填孔隙屮的水相联通「在平術过程门有少址郎 上爪或从上瑰盜进內头内 ■ ”达到忡:时,上壤水的花学势(“刊)勺张力计内水的(几)相家即:如=如 _ 0在不伽温度彫响时•得=从+ %+必+必九厂疋♦叫式中:・住标准状态F 纯自由水的化学如几屮八 土壤水压力孙:0. • 土壤堆松如屮R > I :壤水溶质孙:帜•怅力计中水的溶质势: 化•水的密度(在匕・峙范围内假定不发生变化)。

P ,张力计内水承受的压力. 实验原理在平衛过卅门行少朮忍歆二、实验原理p. =1个人气压在此悄形下:T是张力计表头I:的读数•称之为上壤水张力是上壤基模势相反的数,上壤水张力&1EVLI•壊水与张力il 内水中溶质通过水的交换达到平衡而内外溶质势相等即:=进而得到:…严打取P- = lg/cm3,则皿方卅变为:所以张力计4系统达到平衡艸测级的圧hmt模如张加11妙承或购压力在物泌上壤基模毎时加低F二入夬气压,必俄有空气通过陶头和压力讣水银或水往压力汁不断地扩散到张力讣中去, 这赴因为气体在不同压力F在溶液中的溶解度不同和分压不同图1・I堆水分特術曲线图2•上壤水分特征囱线测定装賈张力计系统平衡时.在有捷模势心在时土壤水压力外S五、注意事项.按图 2 安装水分特征曲线测定装置,加入300克水银。

张力计法测定土壤水分特征曲线

张力计法测定土壤水分特征曲线
张力计法测定土壤水分特征曲线
一、实验目的及要求
1.土壤水分特征曲线: 表示在平衡条件下,土壤水的能量和数量 之间的关系,它是由实测土壤水基模势或吸力与相应的土壤含水量得 到的土壤水在脱水(干燥)和吸水(湿润)过程中的水分特征曲线。因为 土壤水的滞后现象,得到的两条曲线并不完全相同,分别是脱水曲线 和吸水曲线。 实践中必须注意土壤干-湿的历史过程而区别应用。 本实验目的在于确定高基模势〔低吸力范围(0~-0.08MPa))的 脱水曲线和吸水曲线。 2.要求: 通过本次实验,要求学生学会利用张力计法测定土壤水分特征 曲线,初步了解土壤含水量和土壤基质势之间的内在关系。
二、实验原理


张力计工作原理:内部充满无气水的张力计(陶土头先饱和),安设于土 壤中,要使陶土头与土壤紧密接触。从热力学观点来分析,可以把张力 计与土壤看作一个系统,这个系统中张力计内的水通过陶头多孔壁(或 称膜)与土壤孔隙中的水相联通。在平衡过程中有少量的水从陶头流入 土壤或从土壤流进陶头内。 当达到平衡时,土壤水的化学势( w 0 )与张力计内水的( wt )相等。 即:
Pt P0
进而得到:
m
1
w
( Pt P0 )
取 w=1g/cm3 ,
则上面方程变为: m ( Pt P0 ) 所以张力计在系统达到平衡时测得的是土壤基模势。张力计内水承 受的压力在测定土壤基模势时都低于一个大气压,必然有空气 通过陶头和压力计水银或水往压力计不断地扩散到张力计中去, 这是因为气体在不同压力下在溶液中的溶解度不同和分压不同 所致。
五、注意事项

1.按图2安装水分特征曲线测定装置,加入300克水银。 2.使用之前给张力计注满无气水,用干吸纸(或干细土)包 张力计瓷头,使水银上升到650mm汞柱以上。 如试验过中水银上升不到650mm汞柱,更换瓷头。然后重新 检测,再使用。

[土壤,水分,曲线]土壤水分特征曲线的测定及经验模型对比

[土壤,水分,曲线]土壤水分特征曲线的测定及经验模型对比

土壤水分特征曲线的测定及经验模型对比【摘要】土壤水的基质势或土壤水吸力是土壤含水率的函数,它们之间的关系曲线称为土壤水分特征曲线。

该曲线反映了土壤水的能量与数量关系,是反映土壤水分运动基本特征的曲线[1]。

它是表示土壤基本水力特征的重要指标,对研究土壤水滞留与运移有十分重要的作用。

【关键词】土壤水分特征曲线压力膜仪经验模型参数拟合1研究意义土壤水分运动是陆地水循环的重要组成部分,是地表水与地下水相互作用的纽带。

是降雨―产流计算、农田灌溉与排水设计、地下水补给计算、土壤植物水分定量关系预测的基础[2]。

土壤水分运动3个参数中以预测非饱和导水率最为困难,土壤水分特征曲线则最容易得到,准确性也最好,方法较多,且通过水分特征曲线模型可以推求其他2个参数,因此,水分特征曲线的获取对预测土壤水分运动参数至关重要。

2水分特征曲线测试方法(1)直接方法。

分实验室法和田间方法两种方式。

实验室内测定主要有张力计法、砂性漏斗法、压力膜法、离心机法和热电偶温度计测定等。

田间原位测定大都用张力计法。

(2)经验公式法。

经验公式法中比较常用的有:Brooks-Corey(1964)模型,van-Genuechten(1980)模型、Gardner-Russo(1988)模型等。

(3)间接推求法。

可以分为3类:土壤转换函数方法、物理―经验方法、分形几何方法。

土壤转换函数就是利用已有的土壤基本性质(如粒径分布、容重、有机质含量等)通过某种算法构建起来的预测吸力与水分含量之间关系的函数[3]。

3水分特征曲线的影响因素(1)土壤质地和结构:相同的含水量下,质地越细,水吸力就愈大,曲线愈陡;反之质地越粗,吸力就越小,曲线愈平缓。

(2)温度:在同一吸力条件下,温度升高,土壤持水量减少,温度低时,其持水能力增强;或者,在同一含水量条件下,温度高时,吸力较低,而温度降低时,则吸力升高。

(3)滞后现象:土壤水分特征曲线的滞后作用对任何质地的土壤均存在,吸水和脱水过程,负压与含水率曲线是不同的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土壤水分特征曲线精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-土壤水动力学学院:环境科学与工程学院专业:水土保持与沙漠化防治学号:姓名:土壤水分特征曲线的研究与运用摘要:土壤水的基质势随土壤含水量而变化,其关系曲线称为土壤水分特征曲线。

该曲线反映了土壤水分能量和数量之间的关系,是研究土壤水动力学性质必不可少的重要参数,在生产实践中具有重要意义。

本文总结并比较分析了前人在土壤水分特征曲线测定方法中的各种模型,其中对Van Genuchten模型的研究较为广泛。

但为之在DPS中求解Van Genuchten模型参数和在试验基础上建立的土壤水分特征曲线的单一参数模型结构较为简单,省时省力,可进一步的推广运用。

关键词:土壤水分特征曲线 Van Genuchten模型运用1.土壤水分特征曲线的研究土壤水分特征曲线的概念土壤水分特征曲线是描述土壤含水量与吸力(基质势)之间的关系曲线。

它反映了土壤水能量与土壤水含量的函数关系,因此它是表示土壤基本水力特性的重要指标,对研究土壤水滞留与运移有十分重要的作用[1]。

土壤水分特征曲线的意义土壤水分特征曲线反映的是土壤基质势(或基质吸力)和土壤含水量之间的关系。

土壤水分对植物的有效程度最终决定于土水势的高低而不是自身的含水量。

如果测得土壤的含水量,可根据土壤水分特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度[2]。

土壤水分特征曲线的测定方法1.3.1直接法通过实验方法直接测定土壤水分特征曲线的方法称为直接法。

直接法中有众多的实验室和田间方法,如张力计法、压力膜法、离心机法、砂芯漏斗法、平衡水汽压法等,而前3种应用最为普遍。

①张力计法:是土壤通过陶土杯从张力计中吸收水分造成一定的真空度或吸力,当土壤与外界达到平衡时,测出土壤基质势,再测出陶土杯周围的土壤含水量,不断变更土壤含水量并测相应的吸力,就可完成土壤水分特征曲线的测定。

张力计法可用于脱水和吸水2个过程,可测定扰动土和原状土的特征曲线,是用于田间监测土壤水分动态变化重要的手段,在实际工作中得到广泛应用。

但张力计仅能测定低吸力范围0~0.08Mpa的特征曲线。

②压力膜法:是加压使土壤水分流出,导致土壤基质势降低直到基质势与所加压力平衡为止,测定此时的土壤含水量.通过改变压力逐步获取不同压力下的含水量即可得到水分特征曲线。

压力膜法可应用于扰动土和原状土,测定特征曲线的形状与土壤固有的特征曲线相符,可应用于土壤水分动态模拟,但测定周期长,存在着土壤容重变化的问题。

③离心机法:测定某吸力下所对应的含水量,原理和实验过程同压力膜法相似,但其压力来源于离心机高速旋转产生的离心力。

离心机法可应用于扰动土和原状土,测定周期短。

特征曲线的相对形状与土壤固有的特征曲线相符,可用于土壤水分动态模拟。

但是离心机仅可测定脱水过程,且在测定过程中土壤容重变化很大,若能对容重的影响进行校正,可望有较高的测定准确度。

邵明安(1985)从土壤蒸发试验的预测与实测的含水量的偏离程度初步研究了以上3种方法测定土壤基质势的差别及准确性,结果表明考虑容重变化的离心机法有较高的准确度。

④砂芯漏斗法:就是用一个砂芯漏斗和连接悬挂水柱的陶土板形成对土样的吸力。

它适用于扰动土和原状土,可测定吸水和脱水2个过程,但是只适合在室内使用。

⑤平衡水汽压法:是根据在一个平衡体系中各相的自由能相等的原理。

让土壤水自然蒸发,使其与容器中的水汽达到平衡。

只要测出密封容器中的相对湿度和温度,就可计算出19分子土壤水的势值。

它要精确测定密封容器中的相对湿度,对恒温、密封条件要求比较高,但是其测定的土水势范围较宽[3]。

以上方法在概念上相对清晰,是测定土壤水分特征曲线的常用方法,但费时、费力、费资金,在测定范围上也有较大的限制,不能获取整个含水量范围内的土壤水分特征曲线,在田间测定水分特征曲线时还存在较大的不确定性。

1.间接法由干直接法在实际应用中存在诸多问题,特别是在区域尺度上进行实际问题研究时,这类方法多数是不可行的,甚至是不可能的,因此许多土壤物理学家尝试着用数学表达(经验公式)来描述水分特征曲线,通过估计表达式中的参数来确定土壤水分特征曲线。

这种方法称为参数估计法(或间接推求法)。

目前比较常用的经验公式有Brooks-Corey(1964)模型、Gardner(1970)模型、Van Genuchten(1980)模型和Gardner-Russo(1988)模型。

徐绍辉等对此4个模型的话应性进行了分析,认为Van Genuchten模型无论是对粗质地土壤,还是较粘质地的土壤,其拟合效果均较好;夏卫生等[4]通过对国内外土壤水动力学参数研究结果进行分析也得出,该样型不仅拟合效果较好,并能和土壤的机械组成和容重等联系起来,从土壤本身特性上找到其含义。

因此,在所有描述土壤水分特征曲线的众多样型中,Van Genuchten模型以其线型与实测数据曲线拟合程度好而得到广泛应用[5]。

王小王等[5]人结合了Matlab软件对传统耕作和免耕耕作两种方式下土壤水分特征曲线进行分析,建立相应的Van Genuchten模型,并对模型进行检验和应用,其他们的结果表明Van Genuchten模型适应性好,可以应用于不同耕作条件下的土壤水分分析。

1.3.3 Van Genuchten模型的研究及其进展1.3.3.1 Van Genuchten模型土壤水分特征曲线Van Genuchten模型的具体表达形式- θr)/〔1+(α·h)n〕mθ= θr+(θS式中:θ是土壤体积含水量(cm3/cm3);h是压力水头(-cm);θr和θS分别代表土壤的剩余体积含水量和饱和体积含水量(cm3/cm3);α(cm-1)和n是经验拟合参数(或曲线性状参数),而m=1-1/n。

为适于目前土壤水分测定方法的习惯,本文以土壤水吸力值(+)代替压力水头(-),以重量含水量(g/g)代替体积含水量(cm3/cm3)来研究此模型的参数求解。

由于本文的目的在于研究Van Genuchten 模型求参的方法,因此不受所选单位的影响[5]。

1.3.3.2土壤水分特征曲线Van Genuchten模型研究进展由于Van Genuchten模型得到了广泛的应用,许多科学工作者都对其进行了进一步的研究并发展了一些用以确定Van Genuchten模型的方法。

邵明安,王全九等[6-7]基于一维土壤水分运动的Richards方程提出了推求土壤Van Genuchten模型和Brooks模型参数的简单入渗法;王金生等[8]将最小二乘法和非线性单纯形法相结合拟合了Van Genuchten模型参数;徐绍辉等[9]也借助最小二乖法并结合Picard迭代法拟合了砂质粘壤土的Van Genuchten模型参数;李春友等[10]也利用单纯形调优法拟合Van Genuchten模型的参数;魏义长等[11]运用Matlab编程软件对辽西琳溶褐土Van Genuchten模型的参数进行了推导估算。

尽管这些方法均得到了较好的拟合结果,但这些方法要么借助干土柱入渗试验,要么算法需要编程,或者借助于Matlab软件。

特别是对于Matlab软件来说,它的功能虽然强大,但其工作界面对我国科学工作者来说较难适应,而且要求非常专业的数学知识和较高的外语水平,算法需要编程,这在一定程度上限制了在国内土壤物理领域的应用范围,存在着耗时、费力和利用效率低等问题。

刘贤赵等[12]运用DPS数据处理系统求解Van Genuchten模型中的4个参数,不需要复杂的运算符号和繁琐的数学推导,具有操作简单、求解快速、可读性强的忧点,真正使复杂数学问题实现了“所想即所见,所见即所得”。

DPS 数据处理系统提供的麦夸特(Marquardt)算法,以绝对平方和为最小目标,获取待估参数,成功地对Van Genuchten模型的参数进行了求算,与Matlab软件计算的参数值相同具有很高的精度。

从实用效果上讲,其工效和通用性有明显的提高。

从而为土壤学工作者提供了一条运用数值计算方法的新途径。

除此之外,宋孝玉等[13]对于Van Genuchten模型参数较多的情况下,在试验的基础上建立了土壤水分特征曲线的单一参数模型,该模型预测的土壤水分特征曲线与实测土壤水分特征曲线比较接近,且该模型参数少,结构简单,省时省力,可进一步推广应用。

2.土壤水分特征曲线的运用可进行基质势和含水量的相互换算根据土壤水分特征曲线可将土壤湿度换算为土壤基质势,依据基质势可判断土壤水分对作物的有效程度。

也可以将基质势换算为含水量,根据土壤水分特征曲线可查得田间持水量、凋萎湿度和相应的有效水范围[2]。

表示比水容量土壤水分特征曲线的斜率(纵坐标为含水量,横坐标为基质势)或其倒数(纵坐标为基质势,横坐标为含水量),即单位基质势变化所引起含水量的变化,称之为比水容量或水容量。

比水容量是衡量土壤水分对植物的有效性和反映土壤持水性能的一个重要指标。

如果作物以相同的能量吸水,在不同基质势下从各种土壤中所吸收的水量因比水容量不同而形成很大的差别,比水容量愈高,作物吸水量愈大,一般比水容重在高基质势段高于低基质势段。

在高基质势段轻质地土壤的比水容量高于重质地的土壤,而在低基质势段却低于重质地的土壤[2]。

可间接反映土壤空隙的分布土壤空隙分布主要由颗粒组成和土壤土壤结构决定,土壤水分特征曲线受颗粒组成的影响。

若土壤中空隙设想为各种孔径的圆形毛管,那么水吸力S和毛孔直径d关系可简单表示为S=4σ/d式中σ为水的表面粘力系数,室温条件下一般为75×10-5N/cm,若吸力的单位为Pa,空隙直径为mm,则空隙直径d和吸力S的关系可表示为d=300/S,由此公式计算出的孔径称为当量孔径或有效孔径。

由此可分析土壤通气和透水、土壤水分的吸持、移动以及作物吸收的难易程度。

可判断土壤质地状况和土壤水分在吸力段的分布状况只要作出土壤水分特征曲线的图,就可以直观的判断有效水的吸力程度。

参考文献[1]来剑斌,王全九.土壤水分特征曲线模型比较分析[J].水土保持学报,2003,17(1):137-140[2] 李开元,李玉山.土壤水分特征曲线的意义及应用[J].陕西农业科学,1991,(4):47-48[3] 周丽明,王亮,王琳琳,刘广烈. 土壤水分运动参数研究[J].现代农业科技,2009,(4):136—138[4]夏卫生,雷廷武,刘贤赵,刘纪根,潘英华.土壤水分特征曲线的推算[J].土壤学报,2003,40(2):311-315[5] 王小华,贾克力,刘景辉.Van Genuchten模型在土壤水分特征曲线拟合分析中的应用[J],干旱地区农业研究,2009,27(2):179-183[6] 邵明安,王全九.推求土壤水分运动参数的简单入渗法Ι.理论分析[J].土壤学报 ,2000,37(1):9-16[7] 邵明安,王全九.推求土壤水分运动参数的简单入渗法Ⅱ.理论分析[J].土壤学报 ,2000,37(2):1-8[8] 王金生,杨志峰.陈家军.包气带土壤水分滞留特征研究[J].水利学报,2000,1(2):1-6[9] 徐绍辉,张家宝.求土壤水力特征的一种迭代法[J].土壤学报,2000,37(3):271-274[10] 李春友,任理,李保国.利用优化法算Van Genuchten方程参数[J].水利学进展,2001,12(4):473-478[11] 魏义长,刘作新,康玲玲.土壤持水曲线Van Genuchten模型求参的Matlab实现[J].土壤学报,2004,41(3):380-386[12] 刘贤赵,李嘉竹,张振华.土壤持水曲线Van Genuchten模型求参的一种新方法[J].土壤学报,2007,41(6):135-138[13] 宋孝玉,李亚娟,李怀有.土壤水分特征曲线单一参数模型的建立及应用[J].农业工程学报,2008,24(12):12-15。

相关文档
最新文档