微藻生物能源..共46页
第五章 微藻生物能源
论文数量
日韩168 中国大陆 213
南美洲 146
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
2001-2010年微藻能源学术论文统计
欧洲 1000 2001-2010年微藻能源的学术论文统计(按国家) 美国 406
2007-2009年NATURE、SCIENCE上发表5篇微藻能源的评论
2001-2010年微藻能源学术论文统计
现状:大多在实验室研究、少数开始进行初步的中试研究 (无实验数据报道),尚无规模化的微藻能源制备系统方面的报道
埃克森美孚启动微藻生物燃料
国内主要的研究单位
课题组
清华大学吴庆余课题组 国家海洋局第一研究所郑力课题组
研究领域
异养培养产油小球藻、油脂提取和生物柴油加 工研究。 从事能源微藻藻种筛选等。
为什么是微藻? 光合作用效率是指绿色植物通过光合作用制 造的有机物中所含有的能量与光合作用所吸收的 光能的比值。
植物:1%
光 合 作 用 效 率 高
藻:3.5%
微藻通过光合作用固定CO2的效率比陆生植物更高 • 1、反应物浓度更高 近3000倍
1L空气中含有约5.9×10-4 g CO2 1L水中含有约1.7gCO2
(
)
硅藻门
褐藻门 裸藻门 绿藻门 轮藻门 小球藻等
什么是微藻?
微藻(Microalgae)是一类在陆地、海洋分布广泛,营养 丰富且光合利用度高的微型自养植物。地球上微藻种类繁多 ,但目前被人类发现并利用的种类不多,特别是海洋微藻, 目前开发的更是微乎其微。
绿 藻
红 藻
硅 藻
物种
已发现数量
利用微藻生产生物质能源的研究
利用微藻生产生物质能源的研究随着全球能源需求的不断增长和化石能源日益枯竭,寻找替代能源已成为当今世界的热点问题。
生物质能源因其可再生、清洁、低碳的特点备受关注,而利用微藻生产生物质能源的研究成为当前研究的热点之一。
1. 微藻生产生物质能源的意义微藻具有光合作用效率高、生长周期短、生长速度快等优势,是生产生物质能源的理想生物资源之一。
利用微藻生产生物质能源可以有效减少对化石能源的依赖,降低温室气体排放,为人类社会可持续发展提供重要支撑。
2. 微藻生产生物质能源的技术路线微藻生产生物质能源的技术路线主要包括微藻培养、油脂提取和生物质能源生产三个环节。
在微藻培养方面,优化光照、温度、营养盐等环境条件对提高微藻生长速度和油脂含量至关重要;油脂提取则是将微藻中的油脂分离并提炼成生物燃料;生物质能源生产则通过将微藻油脂转化为生物柴油、生物乙醇等燃料形式。
3. 微藻生产生物质能源的挑战与机遇尽管微藻生产生物质能源前景广阔,但仍然面临着一些挑战。
例如,微藻培养过程中存在的污染、光照和温度变化对微藻生长的影响等问题亟待解决。
然而,随着科技的不断进步,为微藻生产生物质能源提供了更多的技术手段和方法,未来发展的机遇依然充满希望。
4. 微藻生产生物质能源的发展趋势随着环保意识不断增强,对可再生能源的需求也在逐渐增加,微藻生产生物质能源的发展前景可谓一片光明。
未来,随着技术的日益成熟和生产成本的降低,微藻生产生物质能源有望成为主流能源之一,为人类社会的可持续发展贡献力量。
5. 结语利用微藻生产生物质能源是一个具有巨大发展潜力的研究领域,需要科研人员们共同努力,不断探索创新,以推动微藻生产生物质能源技术的发展。
相信在不久的将来,微藻生产的生物质能源将会成为能源领域的新宠,为人类社会的绿色发展贡献更多力量。
微藻生物能源
生物乙醇和生物柴油的扩大应用
• 1 从生物来源和清洁燃料的角度,生物柴油和乙醇汽油 是很好的代用燃料。
Quads(BTU)
2000
能源消费
1500
1000
500
能源供给
2006年 0
1960 1980 2000 2020 2040 2060
1980年 1985年 1990年 1995年 2000年 2003年 2005年
0
5
10
(亿吨标准煤)
能源供给
15
能源消费
20
25
我国能源消费与供给趋势
化石能源不可持续性
马尔代夫总统纳希德在水下 内阁会议上签署环保倡议书
1.0
0.5
温
度
距 平
0
1998年
(℃)
-0.5
1000
1200
1400
北半球地表温度变化
1600
1800
2000 年
20世纪是过去1000年中最温暖的100年。
新能源-可再生能源-生物能源
新能源
太阳能、生物能源、风能…
燃料 酒精
生物 柴油
生物 生物 氢能 燃气
Hale Waihona Puke * 可再生能源. * 清洁能源,环境污染相对较少. * 易于储存和运输. * 分布广泛.
我国能源储量及可利用能源资源
化石能源储量(亿吨标煤)
煤炭:9883 石油:46 天然气:9 铀矿:25
可再生能源(亿吨标煤/年)
太阳能:13543 生物质能:8 水能:4.1 风能:1.7 潮汐能:0.2
2005年我国能源消费的总量为22亿T标准煤
微藻生物质可再生能源的开发利用
2、技术进步对海洋能源开发利 用的推动
随着科技的不断进步,我国在海洋能源开发利用方面的技术水平也在逐步提 高。未来,技术的不断创新和进步将为我国海洋可再生能源的开发利用提供更强 的支撑。
3、市场需求和消费者偏好对海 洋能源开发利用的驱动
随着消费者对清洁能源的认知度不断提高,对于环境和气候变化的度也在提 升,这将进一步促进海洋可再生能源的开发利用。同时,市场对于绿色、环保、 节能产品的需求也将推动海洋可再生能源产业的发展。
五、微藻生物质可再生能源开发 利用案例分析
以美国“微藻生物质能源计划”为例,该计划通过研究不同环境下的微藻种 类,筛选出适合生产生物油的微藻品种。同时,采用封闭式培养和开放式培养相 结合的方式,实现微藻的大规模生产。在转化方面,计划采用热裂解技术将微藻 生物质转化为生物油,并进一步探索生物发酵和氢化等其他转化方法。
国外在海洋能源开发利用方面已经取得了很多成功的案例和经验。例如,欧 洲的挪威和英国在海洋能源开发利用方面处于全球领先地位,其成功经验包括: 制定长期发展规划、加强技术创新、注重生态环境保护等。
二、我国海洋可再生能源开发利 用的发展趋势预测Biblioteka 、国家政策对海洋能源开发利 用的促进
近年来,我国政府已经出台了多项支持海洋可再生能源开发的政策,例如提 高海洋能源开发利用的地位,制定长期发展规划,加大对海洋能技术研发的支持 力度等。这些政策的实施将对我国海洋可再生能源开发利用产生积极的推动作用。
二、波浪能
波浪能是一种取之不尽、用之不竭的能源,主要利用海浪的起伏来发电。相 较于潮汐能,波浪能具有更广阔的应用前景,因为海浪的分布范围更广,能量密 度更大。目前,许多国家和地区正在积极研发和试验波浪能发电技术,如英国的 海洋能源中心和我国的浙江舟山群岛等。
微藻生物能源(2)
Page 15
微藻油的提取是降低成本的关键
Page 16
微藻生物炼制技术— 降低微藻生物柴油商业化成本的出路
Page 17
“工程微藻”法生产生物柴油,为柴油生产开辟了一条新的技术途径。 美国国家可更新实验室(NREL)通过现代生物技术建成“工程微藻”, 即硅藻类的一种“工程小环藻”。在实验室条件下可使“工程微藻” 中脂质含量增加到60%以上,户外生产也可增加到40%以上,而一般 自然状态下微藻的脂质含量为5%-20%。“工程微藻”中脂质含量的 提高主要由于乙酰辅酶A羧化酶(ACC)基因在微藻细胞中的高效表达, 在控制脂质积累水平方面起到了重要作用。目前,正在研究选择合适 的分子载体,使ACC基因在细菌、酵母和植物中充分表达,还进一步 将修饰的ACC基因引入微藻中以获得更高效表达。利用“工程微藻” 生产柴油具有重要经济意义和生态意义,其优越性在于:微藻生产能 力高、用海水作为天然培养基可节约农业资源;比陆生植物单产油脂 高出几十倍;生产的生物柴油不含硫,燃烧时不排放有毒害气体,排 入环境中也可被微生物降解,不污染环境,发展富含油质的微藻或者 “工程微藻”是生产生物柴油的一大趋势。
在闭合的人造水渠中进行,含有藻 类的液体在其中循环,循环过程中 将藻类进行新陈代谢所需的二氧化 碳和养分引入到水渠的液体中
用一些透明管道装满工厂排出的废 水和废气,管道内的藻类吸收废气 中所含的二氧化碳,用于光合作用。 同时,藻类排出氧气,生成用于提 炼燃料的物质。
Page 14
光合反应器法利弊:简便易行、成本较低的特点,但存在易污染、占 地面积大、难以对水体和温度进行调节从而生产不稳定等缺点,发展 受到很大限制
封闭环路系统法利弊:操作简单,培养条件、参数易控制,条件稳 定,成品质量高,可实现全年无菌纯种培养,能较大幅度地提高微藻 细胞密度,其生长速率和生物量大幅度提高, 近些年已应用于微藻 的商业性、高密度大规模培养生产。但封闭式光生物反应器在规模培 养过程中的生产成本相对较高,成本为开放式池塘培养法的10 倍
微藻生物质可再生能源的开发利用
微藻生物质可再生能源的开发利用随着环境污染和能源需求问题的日益严重,开发清洁、可再生的能源已成为全球的热门话题。
微藻生物质可再生能源作为新型能源的一种,受到了广泛。
本文将介绍微藻生物质可再生能源的概念、特点、研究现状、开发利用优势、技术介绍、案例分析以及前景展望。
微藻生物质可再生能源是指利用微藻在光合作用过程中产生的能量,将其转化为生物油或生物燃气等形式的能源。
微藻是一种单细胞生物,具有生长速度快、适应能力强、可产生大量的生物质等特点,是理想的可再生能源生产原料。
目前,世界各国都在积极开展微藻生物质可再生能源的研究和开发。
美国、欧洲、日本等国家和地区在此领域处于领先地位,建立了一批微藻生物质能源研究中心和示范项目。
其中,最具代表性的是美国国家可再生能源实验室(NREL)的“微藻生物质能源计划”,该计划旨在研究利用微藻生产生物油的技术。
可再生性强:微藻繁殖速度快,周期短,能够持续产生生物质,有利于能源的可持续发展。
含油量高:某些微藻种类具有很高的含油量,可用于生产生物油。
降低二氧化碳排放:微藻能够吸收二氧化碳进行光合作用,有助于减少温室气体排放。
适应性强:微藻可在各种环境中生长,如海水、淡水、沙漠等,有利于扩大能源生产的地理范围。
培养技术:微藻的培养是生产生物质的基础。
目前,主要采用封闭式培养和开放式培养两种方式。
封闭式培养有利于控制微藻生长环境,提高产量;开放式培养则具有成本低、易于管理等优势。
转化技术:将微藻生物质转化为能源是整个开发利用过程的核心。
目前,主要采用热裂解、生物发酵和氢化等方法。
热裂解法可将微藻生物质转化为生物油,生物发酵法可生产生物燃气,氢化法可制备生物氢气。
以美国“微藻生物质能源计划”为例,该计划通过研究不同环境下的微藻种类,筛选出适合生产生物油的微藻品种。
同时,采用封闭式培养和开放式培养相结合的方式,实现微藻的大规模生产。
在转化方面,计划采用热裂解技术将微藻生物质转化为生物油,并进一步探索生物发酵和氢化等其他转化方法。
微藻生物能源
* 可再生能源. * 清洁能源,环境污染相对较少. * 易于储存和运输. * 分布广泛.
我国能源储量及可利用能源资源
化石能源储量(亿吨标煤)
煤炭:9883 石油:46 天然气:9 铀矿:25
可再生能源(亿吨标煤/年)
太阳能:13543 生物质能:8 水能:4.1 风能:1.7 潮汐能:0.2
2005年我国能源消费的总量为22亿T标准煤
高(除非原油价位高时),有些国家对城市公交客车使 用给予补贴。
生物乙醇和生物柴油的扩大应用
• 1 从生物来源和清洁燃料的角度,生物柴油和乙醇汽油 是很好的代用燃料。
• 2 原料的来源与各国国情密切相关,要具体分析。 • 3 乙醇的生产原料可扩大到多种含纤维素物料,比较容易
得到。FAME 原料仅限于油料作物,数量有限。 • 4 专家估计在欧盟替代 5% 汽油,需占用 5% 耕地,替代
• 美国可再生能源实验室于1998年向DOE提交了一份长达328页的工作总结报告 “A Look Back at the U.S. Department of Energy’s Aquatic Species Program--Biodiesel from Algae”(被誉为“藻类圣经”)。
• 1990~2000年,日本国际贸易和工业部曾资助了一项名为“地球研究更新技 术计划”的项目。该项目利用微藻来固定CO2, 并着力开发密闭式光生物反应 器技术,通过微藻吸收火力发电厂烟气中的CO2来生产生物能源。10年间共投 资约25亿美元,筛选出多株耐受高CO2浓度、生长速度快、能形成高细胞密度 的藻种,建立了光生物反应器的技术平台。
二、微藻生物柴油研究进展
(研究的背景、独特优势、与CO2减排的耦合)
微藻生物能源的发展历史
生物能源开发中的微藻技术研究
生物能源开发中的微藻技术研究近年来,环境污染和气候变化正在威胁着地球的健康和稳定。
因此,人类需要寻找一种可再生、清洁和可持续的能源,以替代传统的化石燃料。
在这种情况下,生物能源已经成为了一种备受关注的替代能源,而微藻技术则是生物能源领域中的一个重要研究方向。
一、微藻介绍微藻是指直径小于100微米,具有单一细胞结构的藻类。
它们生活在各种水域中,包括淡水、海水和咸水,可以通过光合作用从水和CO₂中吸收能量,产生有机物和氧气。
由于它们具有高光合效率,可以通过其代谢产生多种有用的化合物,如脂肪酸、类胡萝卜素、蛋白质和多糖等,因此,微藻被视为一种有潜力的能源来源。
二、微藻在生物能源领域的应用1.生产油脂由于微藻能够积累大量的脂肪酸,因此它们被广泛用于生产生物燃料和化学品。
事实上,微藻比其他来源更适合作为生物燃料的原料,因为微藻的生长速度非常快,同时脂肪酸的产量也非常高。
此外,微藻的生长和收获和传统作物不同,它们可以在陆地上生长,也可以在污染水体中生长。
2.生产蛋白质和营养品随着人们对健康食品需求的不断增加,微藻蛋白质的需求也在逐渐增加。
微藻蛋白质是一种高品质、高营养和易于吸收的蛋白质,它们含有比传统的植物蛋白质更多的氨基酸,是一种非常优质的营养品。
3.光电转换器利用微藻的光电反应机制,可以制造出高效能的太阳能电池。
微藻的光电转换效率比传统的硅材料更高,具有更小的成本和更高的能量效益。
此外,微藻还可以被用作能量储存器,可以在不同的环境下储存太阳能,并在需要时释放。
三、微藻技术面临的挑战虽然微藻技术有许多优点,但它也面临着一些挑战。
首先,微藻生产成本较高,需要大量的能源和水资源,这增加了微藻技术的生产成本,降低了它的经济性和可行性。
其次,微藻的生长周期是不稳定的,受环境因素的影响较大,而且生长后期养分供给问题加重也限制了其生产质量和产量。
四、微藻技术面临的未来机遇尽管面临挑战,但微藻技术的未来潜力仍然非常巨大。