高中数学抽象函数、复合函数综合练习

高中数学抽象函数、复合函数综合练习
高中数学抽象函数、复合函数综合练习

抽象函数专题训练

1 线性函数型抽象函数

【例题1】已知函数()f x 对任意实数x y 、,均有()()()f x y f x f y +=+,且当0x >时,()0,(1)2,f x f >-=-求()f x 在区间[-2,1]上的值域。

【例题2】已知函数()f x 对任意实数x y 、,均有()()=2+()f x f y f x y ++,且当0x >时,()2,(3)5,f x f >=求不等式2(23)3f a a --<的解。

2 指数函数型抽象函数

【例题3】已知函数()f x 定义域为R ,满足条件:存在12x x ≠,使得12()(),f x f x ≠对任何x 和y ,()()()f x y f x f y +=?成立。 求: (1)(0);f

(2) 对任意值x ,判断()f x 值的正负。

【例题4】是否存在函数()f x 满足下列三个条件: ①()0,.f x x N >∈②()()() ,.f a b f a f b a b N +=?∈,③(2)4f =同时成立? 若存在,求出()f x 的解析式,若不存在,说明理由。

3 对数函数型抽象函数

【例题5】设()f x 定义在+∞(0,)上的单调增函数,满足()()+()f xy f x f y =,(3)1f =。 求: (1)(1);f

(2) 若()+(8)2,f x f x -≤求x 的取值范围。

4 三角函数型抽象函数

【例题6】已知函数()f x 的定义域关于原点对称,且满足下列三个条件:①当12,x x 是其定义域中的数时,有121221()()1

();()()

f x f x f x x f x f x ?+-=

-②()1,f a =-(0a >,a 是定义域中的一个数)

③当02x a <<时,()0.f x <试问:

(1) ()f x 的奇偶性如何?说明理由。 (2) 在0,4a ()上,()f x 的单调性如何?说明理由。

5 幂函数型抽象函数

【例题7】已知函数()f x 对任意实数x y 、,均有()()()f xy f x f y =?,且(1)1,(27)9f f -==,当01x ≤<时,[)()0,1f x ∈.

(1) 判断()f x 的奇偶性; (2) 判断()f x 在+∞[0,)的单调性,并给出证明; (3) 若0a ≥

,且(1)f a +≤,求a 的取值范围。

练习:2010省市部分试题

1.(上海十四校联考)已知R x f 是定义在)(上的函数,且R x f ∈=对任意的,1)1(都有下

列两式成立:

)6(,1)()(.1)()1(;5)()5(g x x f x g x f x f x f x f 则若-+=+≤++≥+的值为

答案 1

2.已知)(x f 是定义在R 上的不恒为零的函数,且对于任意实数a 、R b ∈满足:

)()()(a bf b af b a f +=?,2)2(=f ,n f a n n )2(=

*)(N n ∈,n n n f b 2)

2(=(*N n ∈),考察下列结论,①)1()0(f f =;②)(x f 为偶函数;③数列}{n b 为等差数列;④数列}{n

a 为等比数列,其中正确的是_______(填序号) 答案 ①③④

3.(岳阳联考题)若()f x 是定义在R 上的函数,对任意的实数x ,都有 (4)()4f x f x +≤+

和,2)()2(+≥+x f x f 且21=)(f ,则)(2009f 的值是( )

A .2008

B .2009

C .2010

D .2011

答案 C

4.(成都市石室中学高三三诊模拟)定义在[0,1]上的函数)(x f 满足

)(2

1

)5(,1)1()(,0)0(x f x f x f x f f ==-+=,且当1021≤<≤x x 时,

)2010

1

().()(21f x f x f 则≤等于

( C ) A .21 B .161 C .321 D .

641

5.(安徽两地三校联考)定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1;

(2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;

(4)若f(x)·f(2x-x2)>1,求x 的取值范围。

解 (1)令a=b=0,则f(0)=[f(0)]2∵f(0)≠0 ∴f(0)=1

(2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴

)

(1

)(x f x f =

-

由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0

0)

(1

)(>-=

x f x f 又x=0时,f(0)=1>0

∴对任意x ∈R ,f(x)>0

(3)任取x2>x1,则f(x2)>0,f(x1)>0,x2-x1>0

∴1)()()()

()

(121212>-=-?=x x f x f x f x f x f

∴f(x2)>f(x1) ∴f(x)在R 上是增函数

(4)f(x)·f(2x-x2)=f[x+(2x-x2)]=f(-x2+3x)又1=f(0), f(x)在R 上递增

∴由f(3x-x2)>f(0)得:3x-x2>0 ∴ 0

6. (四川省成都外国语学校)已知定义在R 上的函数()f x 对任意实数x 、y 恒有

()()()f x f y f x y +=+,且当0x >时,()0f x <,又2

(1)3

f =-。

(1)求证:()f x 为奇函数;(2)求证:()f x 为R 上的减函数;

(3)解关于x 的不等式:

11

(2)()()()22f bx f x f bx f b ->-. (2)b >其中 答案 (1),(2)略 (3)22

b

x b -<-。

第一篇、复合函数问题

一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.

二、复合函数定义域问题: (一)例题剖析:

(1)、已知f x ()的定义域,求[]f g x ()的定义域

思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。

例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。 解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<

例2. 若函数f x x ()=

+1

1

,则函数[]f f x ()的定义域为______________。 解析:先求f 的作用范围,由f x x ()=+1

1

,知x ≠-1

即f 的作用范围为{}x R x ∈≠-|1,又f 对f(x)作用

所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足x f x ≠-≠-???1

1()

即x x ≠-+≠-?????1

11

1,解得x x ≠-≠-12且

故函数[]f f x ()的定义域为{}

x R x x ∈≠-≠-|12且 (2)、已知[]f g x ()的定义域,求f x ()的定义域

思路:设[]f g x ()的定义域为D ,即x D ∈,由此得g x E ()∈,所以f 的作用范围为E ,又f 对x 作用,作用范围不变,所以x E E ∈,为f x ()的定义域。

例3. 已知f x ()32-的定义域为[]

x ∈-12,,则函数f x ()的定义域为_________。 解析:f x ()32-的定义域为[]

-12,,即[]x ∈-12,,由此得[]

3215-∈-x , 所以f 的作用范围为[]

-15,,又f 对x 作用,作用范围不变,所以[]

x ∈-15, 即函数f x ()的定义域为[]

-15,

例4. 已知f x x x ()lg 2

2

248

-=-,则函数f x ()的定义域为______________。

解析:先求f 的作用范围,由f x x x ()lg 2

2

248

-=-,知x x 22

80-> 解得x 2

44->,f 的作用范围为()4,+∞,又f 对x 作用,作用范围不变,所以

x ∈+∞()4,,即f x ()的定义域为()4,+∞

(3)、已知[]f g x ()的定义域,求[]f h x ()的定义域

思路:设[]f g x ()的定义域为D ,即x D ∈,由此得g x E ()∈,f 的作用范围为E ,又f 对h x ()作用,作用范围不变,所以h x E ()∈,解得x F ∈,F 为[]f h x ()的定义域。

例5. 若函数f x

()2的定义域为[]

-11,,则f x (log )2的定义域为____________。

解析:f x ()2的定义域为[]-11,,即[]

x ∈-11,,由此得21

22x

∈????

?

?,

f 的作用范围为122,????

?

?

又f 对log 2x 作用,所以log 21

22x ∈??

???

?,,解得[

]

x ∈

24,

即f x (log )2的定义域为

[

]

24,

评注:函数定义域是自变量x 的取值范围(用集合或区间表示)f 对谁作用,则谁的范围是f 的作用范围,f 的作用对象可以变,但f 的作用范围不会变。利用这种理念求此类定义域问题会有“得来全不费功夫”的感觉,值得大家探讨。

(二)同步练习:

1、 已知函数)x (f 的定义域为]1,0[,求函数

)x (f 2的定义域。 答案:]1,1[-

2、 已知函数)x 23(f -的定义域为]3,3[-,求)x (f 的定义域。 答案:]9,3[-

3、 已知函数)2x (f y +=的定义域为)0,1(-,求|)1x 2(|f -的定义域。

答案:)

23

,1()0,2

1(?- 4、设()x x x f -+=22lg

,则??

?

??+??? ??x f x f 22的定义域为( )

A. ()()4,00,4Y -

B. ()()4,11,4Y --

C. ()()2,11,2Y --

D. ()()4,22,4Y --

解:选C.由

202x x +>-得,()f x 的定义域为{}|22x x -<<。故22,2

22 2.x

x

?

-<

??-<

?

??+??? ??x f x f 22的定义域为()()4,11,4--U

5、已知函数)(x f 的定义域为)23

,21(-∈x ,求)0)(()()(>+=a a

x f ax f x g 的定义域。

[解析]由已知,有???????<<-<<-????????<<-<<-.232

,2321

,2321,2321a x a a x a a x ax (1)当1=a 时,定义域为}2

3

21|{<<-

x x ; (2)当a a 23

23>,即10<

21a a ->-,

定义域为}2

3

2|{a x a x <<-;

(3)当a a 2

3

23<,即1>a 时,有221a a -<-

, 定义域为}23

21|{a

x a x <<-.

故当1≥a 时,定义域为}23

21|{a x a x <<-;

当10<

3

2|{a x a x <<-

[点评]对于含有参数的函数,求其定义域,必须对字母进行讨论,要注意思考讨论字母的方法。

三、复合函数单调性问题

(1)引理证明

已知函数))((x g f y =.若)(x g u =在区间b a ,( )上是减函数,其值域为(c ,d),又函数)(u f y =在区间(c,d)上是减函数,那么,原复合函数))((x g f y =在区间b a ,( )上是增函数.

证明:在区间b a ,()内任取两个数21,x x ,使b x x a <<<21

因为)(x g u =在区间b a ,()上是减函数,所以)()(21x g x g >,记)(11x g u =,

)(22x g u =即),(,21,21d c u u u u ∈>且

因为函数)(u f y =在区间(c,d)上是减函数,所以)()(21u f u f <,即

))(())((21x g f x g f <,

故函数))((x g f y =在区间b a ,()上是增函数. (2).复合函数单调性的判断

复合函数的单调性是由两个函数共同决定。为了记忆方便,我们把它们总结成一个图表:

以上规律还可总结为:“同向得增,异向得减”或“同增异减”. (3)、复合函数))((x g f y =的单调性判断步骤: ⅰ 确定函数的定义域;

ⅱ 将复合函数分解成两个简单函数:)(u f y =与)(x g u =。 ⅲ 分别确定分解成的两个函数的单调性;

ⅳ 若两个函数在对应的区间上的单调性相同(即都是增函数,或都是减函数),则复合后的函数))((x g f y =为增函数; 若两个函数在对应的区间上的单调性相异(即一个是增函数,而另一个是减函数),则复合后的函数))((x g f y =为减函数。

(4)例题演练

例1、 求函数)32(log 2

2

1--=x x y 的单调区间,并用单调定义给予证明

解:定义域 130322

-<>?>--x x x x 或

单调减区间是),3(+∞ 设2121),3(,x x x x <+∞∈且 则

)32(log 1212

11--=x x y )32(log 22

22

12--=x x y

---)32(12

1x x )32(22

2--x x =)2)((1212-+-x x x x

∵312>>x x ∴012>-x x 0212>-+x x ∴)32(121--x x >)32(22

2--x x 又底数12

1

0<< ∴012<-y y 即 12y y < ∴y 在),3(+∞上是减函数

同理可证:y 在)1,(--∞上是增函数

[例]2、讨论函数)123(log )(2--=x x x f a 的单调性. [解]由01232>--x x 得函数的定义域为

}.3

1

,1|{-<>x x x 或

则当1>a 时,若1>x ,∵1232--=x x u 为增函数,∴)123(log )(2--=x x x f a 为增

函数.

若3

1-

当10<x ,则)123(log )(2--=x x x f a 为减函数,若3

1

-

例3、.已知y=a log (2-x

a )在[0,1]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1

当a >1时,函数t=2-x

a >0是减函数

由y=a log (2-x

a )在[0,1]上x 的减函数,知y=a log t 是增函数, ∴a >1

由x ∈[0,1]时,2-x

a ≥2-a >0,得a <2, ∴1<a <2

当0

a >0是增函数

由y=a log (2-x

a )在[0,1]上x 的减函数,知y=a log t 是减函数, ∴0

由x ∈[0,1]时,2-x

a ≥2-1>0, ∴0

例4、已知函数2)3()2(2-+--=-a x a ax x f (a 为负整数)的图象经过点

R m m ∈-),0,2(,设)()()()],([)(x f x pg x F x f f x g +==.问是否存在实数)0(

[解析]由已知0)2(=-m f ,得02)3(2=-+--a m a am , 其中.0,≠∈a R m ∴0≥?即09232≤--a a , 解得

.3

7

213721+≤≤-a ∵a 为负整数,∴.1-=a

∴1)2(34)2(2+--=-+-=-2x x x x f ,

即.1)(2+-=x x f 2

4

2

2

21)1()]([)(x x x x f f x g +-=++-==, ∴.1)12()()()(24+-+-=+=x p px x f x pg x F

假设存在实数)0(

∴].12)()[()()(22

21222121-++--=-p x x p x x x F x F ∵3)2(-=f ,当)3,(,21--∞∈x x 时,)(x F 为减函数,

∴0)()(21>-x F x F ,∴.012)(,022212221>-++->-p x x p x x ∵3,321-<-+x x , ∴11612)(22

21-->-++-p p x x p , ∴.0116≥--p ①

当)0,3(,21-∈x x 时,)(x F 增函数,∴.0)()(21<-x F x F

∵02221>-x x ,∴11612)(22

21--<-++-p p x x p , ∴0116≤--p . ②

由①、②可知161-

=p ,故存在.16

1-=p (5)同步练习:

1.函数y =2

1log (x 2-3x +2)的单调递减区间是( )

A .(-∞,1)

B .(2,+∞)

C .(-∞,

23)

D .(

2

3

,+∞) 解析:先求函数定义域为(-o ,1)∪(2,+∞),令t (x )=x 2+3x +2,函数t (x )在(-∞,1)上单调递减,在(2,+∞)上单调递增,根据复合函数同增异减的原则,函数y =2

1log (x 2-3x +2)在(2,+∞)上单调递减.

答案:B

2找出下列函数的单调区间. (1))1(2

32>=++-a a y x x ; (2).2

3

22++-=x x y

答案:(1)在]23,(-∞上是增函数,在),2

3[+∞上是减函数。 (2)单调增区间是]1,1[-,减区间是]3,1[。

3、讨论)0,0(),1(log ≠>-=a a a y x

a 且的单调性。

答案:,1>a 时),0(+∞为增函数,01>>a 时,)0,(-∞为增函数。 4.求函数y =3

1log (x 2-5x +4)的定义域、值域和单调区间.

解:由μ(x )=x 2-5x +4>0,解得x >4或x <1,所以x ∈(-∞,1)∪(4,+∞),当x ∈(-∞,1)∪(4,+∞),{μ|μ=x 2-5x +4}=R +

,所以函数的值域是R +

.因

为函数y =3

1log (x 2-5x +4)是由y =3

1

log μ(x )与μ(x )=x 2-5x +4复合而成,函

数y =3

1

log μ(x )在其定义域上是单调递减的,函数μ(x )=x 2-5x +4在(-∞,2

5)

上为减函数,在[

25,+∞]上为增函数.考虑到函数的定义域及复合函数单调性,y =3

1log (x 2-5x +4)的增区间是定义域内使y =3

1

log μ(x )为减函数、μ(x )=x 2-5x +4也

为减函数的区间,即(-∞,1);y =3

1log (x 2-5x +4)的减区间是定义域内使y =3

1

log μ

(x )为减函数、μ(x )=x 2-5x +4为增函数的区间,即(4,+∞).

变式练习 一、选择题

1.函数f (x )=)1(log 2

1-x 的定义域是( )

A .(1,+∞)

B .(2,+∞)

C .(-∞,2)

D .]21(,

解析:要保证真数大于0,还要保证偶次根式下的式子大于等于0,

所以???

??≥0)1(log 0

12

1

->-x x 解得1<x ≤2.

答案:D

2.函数y =2

1log (x 2-3x +2)的单调递减区间是( )

A .(-∞,1)

B .(2,+∞)

C .(-∞,

23

D .(

2

3

,+∞) 解析:先求函数定义域为(-o ,1)∪(2,+∞),令t (x )=x 2+3x +2,函数t (x )在(-∞,1)上单调递减,在(2,+∞)上单调递增,根据复合函数同增异减的原则,函数y =2

1log (x 2-3x +2)在(2,+∞)上单调递减.

答案:B

3.若2lg (x -2y )=lg x +lg y ,则x

y

的值为( ) A .4

B .1或41

C .1或4

D .4

1

错解:由2lg (x -2y )=lg x +lg y ,得(x -2y )2=xy ,解得x =4y 或x =y ,则有

x

y =

4

1

或y x =1. 答案:选B

正解:上述解法忽略了真数大于0这个条件,即x -2y >0,所以x >2y .所以x =y 舍掉.只有x =4y . 答案:D

4.若定义在区间(-1,0)内的函数f (x )=a 2log (x +1)满足f (x )>0,则a 的取值范围为( ) A .(0,2

1

) B .(0,

2

1

C .(

2

1

,+∞)

D .(0,+∞)

解析:因为x ∈(-1,0),所以x +1∈(0,1).当f (x )>0时,根据图象只有0<2a <l ,解得0<a <2

1

(根据本节思维过程中第四条提到的性质). 答案:A 5.函数y =lg (x

-12

-1)的图象关于( ) A .y 轴对称 B .x 轴对称

C .原点对称

D .直线y =x 对称

解析:y =lg (

x -12-1)=x x -+11lg ,所以为奇函数.形如y =x x -+11lg 或y =x

x -+11lg 的函数都为奇函数. 答案:C 二、填空题

已知y =a log (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是__________. 解析:a >0且a ≠1?μ(x )=2-ax 是减函数,要使y =a log (2-ax )是减函数,

则a >1,又2-ax >0?a <3

2

(0<x <1)?a <2,所以a ∈(1,2). 答案:a ∈(1,2)

7.函数f (x )的图象与g (x )=(3

1)x

的图象关于直线y =x 对称,则f (2x -x 2)的单调递减区间为______.

解析:因为f (x )与g (x )互为反函数,所以f (x )=3

1log x

则f (2x -x 2)=3

1log (2x -x 2),令μ(x )=2x -x 2>0,解得0<x <2.

μ(x )=2x -x 2在(0,1)上单调递增,则f [μ(x )

]在(0,1)上单调递减;

μ(x )=2x -x 2在(1,2)上单调递减,则f [μ(x )

]在[1,2)上单调递增. 所以f (2x -x 2)的单调递减区间为(0,1). 答案:(0,1)

8.已知定义域为R 的偶函数f (x )在[0,+∞]上是增函数,且f (2

1

)=0, 则不等式f (l og 4x )的解集是______.

解析:因为f (x )是偶函数,所以f (-21)=f (2

1

)=0.又f (x )在[0,+∞]上是增函数,所以f (x )在(-∞,0)上是减函数.所以f (l og 4x )>0?l og 4x >2

1

或l og 4x

<-2

1.

解得x >2或0<x <21

答案:x >2或0<x <2

1

三、解答题

9.求函数y =3

1log (x 2-5x +4)的定义域、值域和单调区间.

解:由μ(x )=x 2-5x +4>0,解得x >4或x <1,所以x ∈(-∞,1)∪(4,+∞),当x ∈(-∞,1)∪(4,+∞),{μ|μ=x 2-5x +4}=R +

,所以函数的值域是R

.因为函数y =3

1log (x 2-5x +4)是由y =3

1

log μ(x )与μ(x )=x 2-5x +4复合而成,

函数y =3

1

log μ(x )在其定义域上是单调递减的,函数μ(x )=x 2-5x +4在(-∞,2

5

上为减函数,在[

25

,+∞]上为增函数.考虑到函数的定义域及复合函数单调性,y =3

1log (x 2-5x +4)的增区间是定义域内使y =3

1

log μ(x )为减函数、μ(x )=x 2-5x +4也

为减函数的区间,即(-∞,1);y =3

1log (x 2-5x +4)的减区间是定义域内使y =3

1

log μ

(x )为减函数、μ(x )=x 2-5x +4为增函数的区间,即(4,+∞). 10.设函数f (x )=

532+x +x

x

2323lg +-, (1)求函数f (x )的定义域;

(2)判断函数f (x )的单调性,并给出证明;

(3)已知函数f (x )的反函数f -

1(x ),问函数y =f -

1(x )的图象与x 轴有交点吗?

若有,求出交点坐标;若无交点,说明理由. 解:(1)由3x +5≠0且x

x 2323+->0,解得x ≠-35且-23<x <23.取交集得-23

<x

2

3

. (2)令μ(x )=3x +5,随着x 增大,函数值减小,所以在定义域内是减函数;

x x 2323+-=-1+x

236

+随着x 增大,函数值减小,所以在定义域内是减函数. 又y =lg x 在定义域内是增函数,根据复合单调性可知,y =x

x

2323lg +-是减函数,所以f

(x )=532+x +x

x

2323lg +-是减函数.

(3)因为直接求f (x )的反函数非常复杂且不易求出,于是利用函数与其反函数之间定义域与值域的关系求解.

设函数f (x )的反函数f -

1(x )与工轴的交点为(x 0,0).根据函数与反函数之间定义

域与值域的关系可知,f (x )与y 轴的交点是(0,x 0),将(0,x 0)代入f (x ),解得x 0=

52.所以函数y =f -

1(x )的图象与x 轴有交点,交点为(5

2,0)。

一.指数函数与对数函数

.同底的指数函数x

y a =与对数函数log a y x =互为反函数;

(二)主要方法:

1.解决与对数函数有关的问题,要特别重视定义域;

2.指数函数、对数函数的单调性决定于底数大于1还是小于1,要注意对底数的讨论; 3.比较几个数的大小的常用方法有:①以0和1为桥梁;②利用函数的单调性;③作差.

(三)例题分析:

例1.(1)若21a b a >>>,则log b

b

a

,log b a ,log a b 从小到大依次为 ; (2)若235x y z ==,且x ,y ,

z 都是正数,则2x ,3y ,5z 从小到大依次为 ; (3)设0x >,且1x x a b <<(0a >,0b >),则a 与b 的大小关系是 ( ) (A )1b a << (B )1a b << (C )1b a << (D )1a b <<

解:(1)由21a b a >>>得b a a <,故log b b

a

(2)令235x y z t ===,则1t >,lg lg 2t x =,lg lg 3t y =,lg lg 5

t

z =,

∴2lg 3lg lg (lg9lg8)

230lg 2lg3lg 2lg3

t t t x y ?--=

-=>?,∴23x y >; 同理可得:250x z -<,∴25x z <,∴325y x z <<.(3)取1x =,知选(B ).

例2.已知函数2

()1

x x f x a x -=++(1)a >,

求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根. 证明:(1)设121x x -<<,

则1212121222()()11

x

x x x f x f x a a x x ---=+--++ 121212*********()

11(1)(1)

x x x x x x x x a a a a x x x x ---=-+-=-+++++,

∵121x x -<<,∴110x +>,210x +>,120x x -<,

12123()

0(1)(1)

x x x x -<++; ∵121x x -<<,且1a >,∴12x x a a <,∴120x x

a a -<,

∴12()()0f x f x -<,即12()()f x f x <,∴函数()f x 在(1,)-+∞上为增函数; (2)假设0x 是方程()0f x =的负数根,且01x ≠-,则0002

01

x

x a x -+=+, 即0

0000023(1)3

1111

x x x a

x x x --+=

==-+++, ① 当010x -<<时,0011x <+<,∴0331x >+,∴03

121

x ->+,而由1a >知01x a <, ∴①式不成立;

当01x <-时,010x +<,∴

0301x <+,∴03111

x -<-+,而00x a >, ∴①式不成立.

综上所述,方程()0f x =没有负数根.

例3.已知函数()log (1)x

a f x a =-(0a >且1a ≠).(《高考A 计划》考点15,例4).

求证:(1)函数()f x 的图象在y 轴的一侧;

(2)函数()f x 图象上任意两点连线的斜率都大于0.

证明:(1)由10x

a ->得:1x

a >,

∴当1a >时,0x >,即函数()f x 的定义域为(0,)+∞,此时函数()f x 的图象在y 轴的右

侧;

当01a <<时,0x <,即函数()f x 的定义域为(,0)-∞,此时函数()f x 的图象在y 轴的左侧.

∴函数()f x 的图象在y 轴的一侧;

(2)设11(,)A x y 、22(,)B x y 是函数()f x 图象上任意两点,且12x x <,

则直线AB 的斜率1212y y k x x -=-,112

2

121log (1)log (1)log 1

x x x a a a x a y y a a a --=---=-,

当1a >时,由(1)知120x x <<,∴121x x a a <<,∴12011x x

a a <-<-,

∴121

011

x x

a a -<<-,∴120y y -<,又120x x -<,∴0k >; 当01a <<时,由(1)知120x x <<,∴121x x a a >>,∴12110x x

a a ->->, ∴12

1

11

x x

a a ->-,∴120y y -<,又120x x -<,∴0k >. ∴函数()f x 图象上任意两点连线的斜率都大于0.

高中数学复合函数练习题

第一篇、复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (一)例题剖析: (1)、已知f x ()的定义域,求[]f g x ()的定义域 思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。 解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<

解析:由f x x ()= +1 1 ,知x ≠-1即f 的作用范围为{}x R x ∈≠-|1,又f 对f(x)作用所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足 x f x ≠-≠-?? ? 1 1(){}x R x x ∈≠-≠-|12且 (2)、已知[]f g x ()的定义域,求f x ()的定义域 思路:设[]f g x ()的定义域为D ,即x D ∈,由此得g x E ()∈,所以f 的作用范围为E ,又f 对x 作用,作用范围不变,所以x E E ∈,为f x ()的定义域。 例3. 已知f x ()32-的定义域为[]x ∈-12,,则函数f x ()的定义域为_________。 解析:f x ()32-的定义域为[]-12,,即[]x ∈-12,,由此得 []3215-∈-x , 即函数f x ()的定义域为[]-15, 例 4. 已知f x x x ()lg 2 2 2 48 -=-,则函数f x ()的定义域为 ______________。 解析:先求f 的作用范围,由f x x x ()lg 2 2248-=-,知x x 2 2 8 0->f x ()的定义域为()4,+∞ (3)、已知[]f g x ()的定义域,求[]f h x ()的定义域

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

2009届高考数学快速提升成绩题型训练——抽象函数

2009届高考数学快速提升成绩题型训练——抽象函数 D

7. 已知定义在R 上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间? 8. 设f (x )是定义在R 上的奇函数,且对任意a ,b ,当a+b ≠0,都有b a b f a f ++)()(>0 (1).若a >b ,试比较f (a )与f (b )的大小; (2).若f (k )293()3--+?x x x f <0对x ∈[-1,1]恒成立,求实数k 的取值范围。 9.已知函数()f x 是定义在(-∞,3]上的减函数,已知 22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,求实数a 的取值范围。 10.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+. (1)求证: ()f x 是奇函数; (2)若(3),(24)f a a f -=试用表示. 11.已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,,a b R ∈都满足:

()()()f a b af b bf a ?=+. (1)求(0),(1)f f 的值; (2)判断()f x 的奇偶性,并证明你的结论; (3)若(2)2f =,*(2) ()n n f u n N n -=∈,求数列{n u }的前n 项和n s . 12.已知定义域为R 的函数()f x 满足22(()))()f f x x x f x x x -+=-+. (1)若(2)3,(1);(0),();f f f a f a ==求又求 (2)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式. 13.已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2)求和(1)(2)(3)...()f f f f n ++++*()n N ∈; (3)判断函数()f x 的单调性,并证明. 14.函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任

(完整版)高一数学函数试题及答案

(数学1必修)函数及其表示 一、选择题 1.判断下列各组中的两个函数是同一函数的为( ) ⑴3 ) 5)(3(1+-+= x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 3.已知集合{}{} 421,2,3,,4,7,,3A k B a a a ==+,且* ,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5 4.已知2 2(1)()(12)2(2)x x f x x x x x +≤-??=-<

2021年高中数学选修本(理科)复合函数的导数(1)

2021年高中数学选修本(理科)复合函数的导数(1) 教学目的: 1.理解掌握复合函数的求导法则. 2.能够结合已学过的法则、公式,进行一些复合函数的求导 3.培养学生善于观察事物,善于发现规律,认识规律,掌握规律,利用规律. 教学重点:复合函数的求导法则的概念与应用 教学难点:复合函数的求导法则的导入与理解 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 复合函数的导数是导数的重点,也是导数的难点. 要弄清每一步的求导是哪个变量对哪个变量的求导.求导时对哪个变量求导要写明,可以通过具体的例子,让学生对求导法则有一个直观的了解 教学过程: 一、复习引入: 1. 常见函数的导数公式: ;;; 2.法则1 )()()]()(['''x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, 法则3 ' 2''(0)u u v uv v v v -??=≠ ??? 二、讲解新课: 1.复合函数: 由几个函数复合而成的函数,叫复合函数.由函数与复合而成的函数一般形式是,其中u 称为中间变量. 2.求函数的导数的两种方法与思路: 方法一:22[(32)](9124)1812x y x x x x '''=-=-+=-; 方法二:将函数看作是函数和函数复合函数,并分别求对应变量的导数如下: , 两个导数相乘,得 232(32)31812u x y u u x x ''==-=-, 从而有 对于一般的复合函数,结论也成立,以后我们求y ′x 时,就可以转化为求y u ′和u ′x 的

高一数学之抽象函数专题集锦-含详细解析

高一数学之抽象函数专题集锦 一、选择题(本大题共14小题,共70.0分) 1. 设f(x)为定义在R 上的偶函数,且f(x)在[0,+∞)上为增函数,则f(?2),f(?π),f(3)的大小顺序是( ) A. B. C. D. 2. 函数f(x)在(0,+∞)上单调递增,且f(x +2)关于x =?2对称,若f(?2)=1,则f(x ?2)≤1的x 的取值范围 是( ) A. [?2,2] B. (?∞,?2]∪[2,+∞) C. (?∞,0]∪[4,+∞) D. [0,4] 3. 已知函数y =f(x)定义域是[?2,3],则y =f(2x ?1)的定义域是( ) A. [0,5 2] B. [?1,4] C. [?1 2,2] D. [?5,5] 4. 函数f(x)在(?∞,+∞)上单调递减,且为奇函数.若f(1)=?1,则满足?1≤f(x ?2)≤1的x 的取值范围是 ( ) A. B. C. [0,4] D. [1,3] 5. 若定义在R 上的奇函数f(x)在(?∞,0)单调递减,且f(2)=0,则满足xf(x ?1)?0的x 的取值范围是( ) A. [?1,1]∪[3,+∞) B. [?3,?1]∪[0,1] C. [?1,0]∪[1,+∞) D. [?1,0]∪[1,3] 6. 已知f(x)={ x 2+4x x ≥0 , 4x ?x 2 , x <0 若f(2?a 2)>f(a),则实数a 的取值范围是( ) A. (?2 , 1) B. (?1 , 2) C. (?∞ , ?1)?(2 , +∞) D. (?∞ , ?2)?(1 , +∞) 7. 已知定义在R 上的函数f(x)满足f(2?x)=f(x),且在[1,+∞)上为增函数,则下列关系式正确的是 A. f(?1)0,则f (x 1)+ f (x 2)的值( ) A. 恒为负值 B. 恒等于零 C. 恒为正值 D. 无法确定正负

【精品】高中数学函数专题(理科)

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映. 这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。 因此,掌握函数的图像是学好函数性质的关键,这也正是“数形结合思想”的体现。复习函数图像要注意以下方面。 1.掌握描绘函数图象的两种基本方法——描点法和图象变换法. 2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题. 3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题. 4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力. 以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本节的重点.运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点.用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换.这也是个难点. 例1设a>0,求函数 ) ln( ) (a x x x f+ - =(x∈(0,+∞))的单调区间. 分析:欲求函数的单调区间,则须解不等式 ()0 f x '≥ (递增)及 ()0 f x '< (递减)。

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

高中数学总结归纳 抽象函数的对称性

抽象函数的对称性 关于抽象函数图象的对称问题,下面给出四种常见类型及其证明。 一、设y f x =()是定义在R 上的函数,若f a x f b x ()()+=-,则函数y f x =()的图象关于直线x a b =+2 对称。 证明:设点A (m ,n )是y f x =()图象上任一点,即f m n ()=,点A 关于直线x a b = +2的对称点为()A a b m n '+-,。 []∵f a b m f b b m f m n ()()()+-=--== ∴点A'也在y f x =()的图象上,故y f x =()的图象关于直线x a b =+2 对称。 二、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于直线x b a =-2 的对称点为()A b a m n '--,。 ∵f b b a m f a m n [()]()---=+= ∴点A'在y f b x =-()的图象上 反过来,同样可以证明,函数y f b x =-()图象上任一点关于直线x b a =-2 的对称点也在函数y f a x =+()的图象上,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 说明:可以从图象变换的角度去理解此命题。

易知,函数y f x a b =++? ? ???2与y f x a b =-++?? ?? ?2的图象关于直线x =0对称,由y f x a b =++?? ???2的图象平移得到y f x b a a b f a x =--?? ???++?? ????=+22()的图象,由y f x a b =-++?? ???2的图象平移得到y f x b a a b f b x =---?? ???++????? ?=-22()的图象,它们的平移方向和长度是相同的,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 三、设y f x =()是定义在R 上的函数,若f a x c f b x ()()+=--2,则函数y f x =()的图象关于点a b c +?? ?? ?2,对称。 证明:设点() A m n ,是y f x =()图象上任一点,则f m n ()=,点A 关于点a b c +?? ?? ?2,的对称点为()A a b m c n '+--,2。 []∵f a b m c f b b m c f m c n ()()()+-=---=-=-222 ∴点A'也在y f x =()的图象上,故y f x =()的图象关于点a b c +?? ?? ?2,对称 说明:(1)当a b c ===0时,奇函数图象关于点(0,0)对称。(2)易知此命题的逆命题也成立。 四、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y c f b x =--2()的图象关于点b a c -?? ?? ?2,对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于点b a c -?? ?? ?2,的对称点为()A b a m c n '---,2

高考数学函数专题习题及详细答案

函数专题练习 1.函数1()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11 [,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠ , 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()l g f x x = 设 63(),(),52a f b f ==5 (),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1 (,)3 -+∞ B . 1 (,1)3 - C . 11 (,)33 - D . 1 (,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ 7、函数()y f x =的反函数1 ()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

高一数学复合函数讲解

1、复合函数的概念 如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g(x)]叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。 例如:函数是由复合而成立。 函数是由复合而成立。 a是中间变量。 2、复合函数单调性 由引例对任意a,都有意义(a>0且a≠1)且。 对任意, 当a>1时,单调递增,当0<a<1时,单调递减。 ∵当a>1时, ∵y=f(u)是上的递减函数∴ ∴ ∴是单调递减函数 类似地,当0<a<1时, 是单调递增函数 一般地,定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。 有以下四种情况: (1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;

(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数; (3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数; (4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。 注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。 例1、讨论函数的单调性 (1)(2) 又是减函数 ∴函数的增区间是(-∞,2],减区间是[2,+∞)。 ②x∈(-1,3) 令 ∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。 ∵是增函数 ∴函数在(-1,1]上单调递增,在(1,3)上单调递减。 注意:要求定义域

高中数学抽象函数专题含答案-教师版

抽象函数周期性的探究(教师版) 抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题. 利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期. (2)函数y=f(x)满足f(x+a)= 1 () f x ,则f(x)是周期函数,且2a是它的一个周期. (3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期. : 命题2:若a、b(a b )是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期. (2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期. 命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期. (2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期. 【 我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似. 设条件A: 定义在R上的函数f(x)是一个偶函数. 条件B: f(x)关于x=a对称 条件C: f(x)是周期函数,且2a是其一个周期. 结论: 已知其中的任两个条件可推出剩余一个. 证明: ①已知A、B→ C (2001年全国高考第22题第二问) ∵f(x)是R上的偶函数∴f(-x)=f(x) 又∵f(x)关于x=a对称∴f(-x)=f(x+2a) ) ∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期

抽象函数、图像、函数零点

函数基本知识 抽象函数: 1. 已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立. 证明:(1)函数()y f x =是R 上的减函数;(2)函数()y f x =是奇函数. 2. 已知)(x f 在(-1,1)上有定义,且满足),1( )()()1,1(,xy y x f y f x f y x --=--∈有 证明:)(x f 在(-1,1)上为奇函数; 3. 设)(x f 是R 上的函数,且满足1)0(=f ,并且对于任意的实数x ,y 都有 )12()()(+--=-y x y x f y x f 成立,则=)(x f _____________. 4. 已知定义在R + 上的函数()f x 同时满足下列三个条件:① (3)1f =-; ② 对任意x y R +∈、 都有()()()f xy f x f y =+;③0)(,1<>x f x 时. (1)求)9(f 、)3(f 的值; (2)证明:函数()f x 在R + 上为减函数; (3)解关于x 的不等式2)1()6(--

(新)高一数学函数专题训练(一)

函数专题训练(一) 一、选择题 1.(文)若函数f(x)的定义域是[0,4],则函数g(x)=f (2x )x 的定义域是( ) A .[0,2] B .(0,2) C .(0,2] D .[0,2) (理)(2013·湖北荆门期末)函数f(x)=1x ln(x 2-3x +2+-x 2-3x +4)的定义域为( ) A .(-∞,-4]∪(2,+∞) B .(-4,0)∪(0,1) C .[-4,0)∪(0,1] D .[-4,0)∪(0,1) 2.(文)(2012·江西文,3)设函数f(x)=????? x 2+1,x ≤1,2x ,x>1.则f(f(3))=( ) A.15 B .3 C.23 D.139 (理)已知函数f(x)=??? 2x +1,x ≤0,f (x -3),x>0, 则f(2014)等于( ) A .-1 B .1 C .-3 D .3 3.已知函数f(x)=??? 2x +1,x<1,x 2+ax ,x ≥1, 若f[f(0)]=4a ,则实数a 等于( ) A.12 B.45 C .2 D .9 4.(2013·银川模拟)设函数f(x)=??? x 2-4x +6,x ≥0,x +6,x<0, 则不等式f(x)>f(1)的解集是( A .(-3,1)∪(3,+∞) B .(-3,1)∪(2,+∞) C .(-1,1)∪(3,+∞) D .(-∞,-3)∪(1,3) 5.(文)函数f(x)=22x -2 的值域是( ) A .(-∞,-1) B .(-1,0)∪(0,+∞)C .(-1,+∞) D .(-∞,-1)∪(0,+∞) (理)若函数y =f(x)的值域是[12,3],则函数F(x)=f(x)+1f (x ) 的值域是( ) A .[12,3] B .[2,103] C .[52,103] D .[3,103] 6.a 、b 为实数,集合M ={b a ,1},N ={a,0},f 是M 到N 的映射,f(x)=x ,则a +b

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

高中数学典型例题分析与解答:复合函数的导数

复合函数的导数 求分段函数的导数 例 求函数?????=≠=0 ,00,1sin )(2x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当0≠x 时,)(x f 的关系式是初等函数x x 1sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1sin lim )0()(lim )0(0200===-='→?→?→?x x x x x x f x f f x x x 当0≠x 时,x x x x x x x x x x x x x x x f 1cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为)(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,32 2+-===x x v v u y u ;

2017高中数学抽象函数专题

三、值域问题 例4.设函数f(x)定义于实数集上,对于任意实数x 、y ,f(x+y)=f(x)f(y)总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数f(x)的值域。 解:令x=y=0,有f(0)=0或f(0)=1。若 f(0)=0,则 f(x)=f(0+x)=f(x)f(0)=0恒成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故 f(0)≠0,必有 f(0)=1。由于f(x+y)=f(x)f(y)对任意实数x 、y 均成立,因此,0 )2()(2 ≥? ? ? ? ? =x f x f , 又因为若f(x)=0,则f(0)=f(x-x)=f(x)f(-x)=0与f(0)≠0矛盾,所以f(x)>0. 四、求解析式问题(换元法,解方程组,待定系数法,递推法,区间转移法, 例6、设对满足x ≠0,x ≠1的所有实数x ,函数f(x)满足,()x x x f x f +=?? ? ??-+11 ,求f(x)的解析式。 解:(1)1),x 0(x x 1)x 1x (f )x (f ≠≠+=-+且Θ---- ,1 2)11()1(:x 1-x x x x f x x f x -=-+-得代换用 (2) :)1(x -11 得中的代换再以x .12)()x -11f(x x x f --=+---(3)1)x 0(x x 2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 例8.是否存在这样的函数f(x),使下列三个条件: ①f(n)>0,n ∈N;②f(n 1+n 2)=f(n 1)f(n 2),n 1,n 2∈N*;③f(2)=4同时成立? 若存在,求出函数f(x)的解析式;若不存在,说明理由. 解:假设存在这样的函数f(x),满足条件,得f(2)=f(1+1)=4,解得f(1)=2.又f(2)=4=22,f(3)=23,…,由此猜想:f(x)=2x (x ∈N*) 小结:对于定义在正整数集N*上的抽象函数,用数列中的递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解. 练习:1、.23 2|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:0 2)x (x f 3 x ,x 1)x (f 2)x 1(f ,x x 12 =++=-与已知得得代换用,. 23 2 |)x (f |,024)x (9f 02 ≥ ∴≥?-≥?得由 3、函数f (x )对一切实数x ,y 均有f (x +y)-f (y)=(x +2y+1)x 成立,且f (1)=0, (1)求(0)f 的值; (2)对任意的11 (0,)2 x ∈,21(0,)2 x ∈,都有f (x 1)+2

高中数学函数专题经典.doc

高中数学函数专题 1.已知在实数域R 上可导的函数)(x f y =对任意实数21,x x 都有 ),()()(2121x f x f x x f ?=+若存在实数b a ,,使0)(0)(>'≠b f a f 且, 求证:(1)0)(>x f ;(2)),()(+∞-∞=在x f y 上是单调函数 证明:(1)2 )]2 ([)2()2()22()(x f x f x f x x f x f =?=+= 又()[()]()()0,()022222x x x x x f a f a f f a f =+-=?-≠∴≠,0)(0)]2 ([2 >>∴x f x f 即 (2)x x f b f x b f x f b f x b f x b f b f x x x ?-?=?-?=?-?+='→?→?→?1 )(lim )()()()(lim )()(lim )(000 即)() ()(]1)()[(lim )()()(1)(lim 00b f b f x f x x f x f x f b f b f x x f x x '?=?-?='∴'=?-?→?→? 0)(0)(,0)(,0)(>'∴>>'>∴x f b f b f x f )(x f ∴在R 上是单调递增函数. 2.已知抛物线C 的方程为F x y ,42 =为焦点,直线()00:1>=+-k k y kx l 与C 交于A 、 B 两点,P 为AB 的中点,直线2l 过P 、F 点。 (1)求直线2l 的斜率关于k 的解析式)(k f ,并指出定义域; (2)求函数)(k f 的反函数)(1 k f -;(3)求1l 与2l 的夹角θ的取值范围。 (4)解不等式()()1,0121log 1 ≠>>????? ?+-a a x xf a 。 解:(1)()???+==142x k y x y ???>>-=??=+-?0 0161604422 k k k y ky 10<-+= -k k k k f (3)?? ? ??∈∴<<∴<<=+-=4,0,10,10,)(1)(3πθθθtg k k k kf k k f tg Θ (4)4124121)(221 +=+=+-x x x xf ,∴原不等式为 ()0241log 2>>??? ? ? +x x a 当1>a 时,41,41222->∴->a x a x ;当10<

相关文档
最新文档