2010年全国高教杯数学建模——关于油罐问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
承诺书
我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A
我们的参赛报名号为(如果赛区设置报名号的话):
所属学校(请填写完整的全名):云南大学滇池学院
参赛队员(打印并签名) :1. 文可鑫
2. 李翔
3. 何宝林
指导教师或指导教师组负责人(打印并签名):张懋洵
日期: 2010 年 9 月 12 日赛区评阅编号(由赛区组委会评阅前进行编号):
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):
储油罐的变位识别与罐容表标定
摘要
本文研究的是储油罐的变位识别与罐容表标定问题,针对问题一和问题二所提的不同要求,分别建立了可靠、有效的数学模型。
针对问题一中的椭圆柱体形的储油罐纵向变位对H V -的影响,建立了两个模型来进行求解:
模型一,针对题中给定的实验数据建立了数据拟合模型,比较直观的拟合了
面的高度可以分为两种特殊情况即max H H =和0=H ,和另外三种一般情况得出
H V -的关系
()()()
) 180 4.1 tan(l -h 2 tan ) 180 4.1 tan(l -h ) 180 4.1 (tan l)-(L 2 ) 180 4.1 tan(l)-(L H 0 2)( tan tan )( 0 2222 0 tan tan 0 222
2tan 0 2222
tan tan 0
⎪⎪⎪⎪⎩⎪⎪⎪
⎪⎨⎧**>--+⎪⎭
⎫ ⎝⎛-+**≤<**--**≤≤--=⎰⎰⎰⎰⎰⎰-+-+-++-+L h H l z l H L z l H H l z l H H dydz b y b a a h H l ab H dydz b y b a a dydz b y b a a H V αααααααπαππππ并用附录给定数据和matlab 验证了该数学积分容积模型的正确性。
针对问题二中的典型储油罐的横纵变位对罐容表的影响,建立了积分容积模型。我们对横向变位(α≠0,β=0)、纵向变位(α=0,β≠0)和横纵变位(α≠0,β≠0)三种情况分别进行研究,最终得到了三种情况α,β和罐容表之间的一般关系。根据所建模型求解出了三种情况下α,β值分别为:(1)α=3.878;(2)β=7.920;(3)α= 2.762,β=5.390。
对于所建的模型,都有严谨的数学推导,并通过模型检验证明所建模型具有可靠性和准确性。
关键词:变位 积分 修正高度 运动合成模型
一、问题重述
通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。
请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。
(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。
(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。
二、基本假设
1、假设温度变化对实验数据没有影响。
2、假设罐体壁厚度不考虑。
3、由地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化,假设
这个纵向倾斜和横向偏转角度都为小角度。
4、假设油浮子阻力可以忽略不计。
5、假设油浮子的体积大小忽略,将其认为为一个点。
三、符号说明
H油浮子的高度
V储油罐内的油量
α纵向变位的角度
β横向变位的角度
L油罐的长度
l 浮油子杆到油罐左端的距离 h 油罐的直径
R 球冠体所在球的半径 r 油罐圆柱体的半径 a 椭圆油罐的长半轴 b 椭圆油罐的短半轴
'H 油面修正高度
四、 问题分析与建模
4.1 数据预处理
对于附件中的实验数据,由于在实验中存在读数、测量方法、仪器及电磁干扰等等因素产生的粗大误差和由固定不变的或者规律变化因素造成的系统误差。对于存在的这两种误差,我们分采用了中位数检验法和马利科夫判据读数据作处理,筛选出真实有效的数据。
在附件一中,两组进油数据中都有底油,H 高度油罐中的油量为累加油量加上底油才是当前高度H 对应的油量V ,对两附件数据部分处理结果(见附录)。
4.2 问题一的分析与建模
在问题一中用)(1H V 表示无变位的高度H 和油量V ,)(2H V 表示无变位的高度H 和油量V ,问题一中为了要掌握罐体变位后对罐容表的影响,必须要得到罐体无变位和倾斜后油量V 和高度H 的函数V 关系,因此根据附件数据,建立了模型一:数据拟合模型。
我们采用了对于该数据比较适合的拟合算法麦夸特(Levenberg-Marquardt) 和通用全局优化法,用1stOpt 进行拟合得到函数模型:
油罐无变位时: 油罐无变位
(1)
2324.20003.00163.04695.03387.77590.625595.21402495.0)(2
732
5
22
31H H H H H H H H V *-*+*-*+*-*+*-=时:
(2)
109298.610600.2108963.3100158.3104300.100742.00872.0)(12
33
10
26
8
20
6
144822H H H H H H H V **-**+**-**+**-*+=-----
由于用拟合方式只有在统计上具有说服力,要得到油量V 和高度H 更加准确和更加有说服力对应函数)(H F V =,根据题中给出的罐体的各种参数和对于这种规则但罐体倾斜的体积,我们采用了积分方法建模,得到了我们的模型二:积分容积模型。
4.2.1 问题一无变位情况 在这种情况下,利用积分求体积的方式很快就能够建立出无变位的数学模型—--积分容积模型(各参变量如图1所示)。