图像边缘检测
图像处理中的边缘检测算法分析与优化
图像处理中的边缘检测算法分析与优化随着数字图像处理技术的不断发展,边缘检测在计算机视觉、模式识别和图像分割等领域中扮演着重要的角色。
边缘是图像中灰度变化较大的区域,通过检测边缘,我们可以提取图像的形状和结构信息,从而实现图像分析和理解。
本文将对常用的图像处理边缘检测算法进行分析,并探讨优化策略。
一、边缘检测算法概述1.1 Sobel算法Sobel算法是一种基于梯度的边缘检测算法,它通过计算图像梯度的大小和方向来确定边缘位置。
Sobel算法具有计算简单、鲁棒性较高的优点,但对噪声比较敏感,在图像边缘不够明显或存在噪声时容易引入误检。
1.2 Canny算法Canny算法是一种经典的边缘检测算法,它通过多个步骤来实现高效的边缘检测。
首先,通过高斯滤波器对图像进行平滑处理,以减少噪声的影响。
然后,计算图像的梯度幅值和方向,并进行非极大值抑制,以精确地定位边缘。
最后,通过滞后阈值法来进行边缘的连接和细化。
Canny算法具有良好的边缘定位能力和抗噪能力,在实际应用中被广泛使用。
1.3 Laplacian算子Laplacian算子是一种基于二阶导数的边缘检测算子,它通过计算图像的二阶导数来检测图像中的边缘。
Laplacian算子具有对灰度变化较大的边缘敏感的优点,但对噪声比较敏感,容易产生边缘断裂和误检。
为了提高Laplacian算子的效果,常常与高斯滤波器结合使用,以减少噪声的干扰。
二、边缘检测算法优化2.1 参数选择在边缘检测算法中,参数的选择对于最终的结果具有重要的影响。
例如,对于Canny算法来说,高斯滤波器的大小和标准差的选择直接影响到边缘的平滑程度和定位精度。
因此,在优化边缘检测算法时,需要根据具体的应用场景和图像特点选择合适的参数。
2.2 非极大值抑制非极大值抑制是Canny算法中的一种重要步骤,用于精确地定位边缘位置。
然而,在进行非极大值抑制时,会产生边缘断裂和不连续的问题。
为了解决这个问题,可以考虑使用像素邻域信息进行插值,从而减少边缘的断裂,并得到更连续的边缘。
图像边缘检测的方法
图像边缘检测的方法图像边缘检测是在计算机视觉领域中一项重要的任务,它可以用来提取图像中物体的轮廓或边界信息。
常用的图像边缘检测方法包括基于梯度的方法、基于边缘模型的方法和基于机器学习的方法。
1. 基于梯度的方法基于梯度的方法通过计算图像中灰度的梯度来检测图像的边缘。
常用的基于梯度的方法包括Sobel算子、Prewitt算子和Canny算子。
(1)Sobel算子:Sobel算子是一种常用的边缘检测算子,它通过在图像中滑动一个3x3的卷积核来计算图像灰度的梯度。
它分别计算水平和垂直方向上的梯度,并将两个方向上的梯度相加得到最终的边缘强度。
(2)Prewitt算子:Prewitt算子与Sobel算子类似,也是通过计算图像灰度的水平和垂直方向上的梯度来检测边缘。
不同之处在于Prewitt算子使用了不同的卷积核,其效果也有所差异。
(3)Canny算子:Canny算子是一种边缘检测算法,它通过多个步骤来获得较为准确的边缘结果。
首先,它使用高斯滤波器对图像进行平滑处理,然后计算图像灰度梯度的幅值和方向。
接着,通过非极大值抑制来细化边缘。
最后,使用双阈值处理来检测和连接真正的边缘。
2. 基于边缘模型的方法基于边缘模型的方法是利用边缘在图像中的几何特征来进行检测。
常用的基于边缘模型的方法包括Hough变换和边缘跟踪算法。
(1)Hough变换:Hough变换是一种广泛应用于边缘检测的方法,它可以将图像中的边缘表示为参数空间中的曲线或直线。
通过在参数空间中寻找曲线或直线的交点,可以得到图像中的边缘。
(2)边缘跟踪算法:边缘跟踪算法是一种基于像素领域关系的边缘检测方法。
它首先选择一个起始点作为边缘点,然后根据一定的规则选择下一个与当前点相邻的点作为新的边缘点,并将其加入到边缘集合中。
通过不断跟踪边缘点,可以得到完整的边缘。
3. 基于机器学习的方法基于机器学习的方法是近年来较为流行的一种图像边缘检测方法。
它利用大量的已标注的训练数据来训练模型,然后使用训练好的模型对新的图像进行边缘检测。
图像边缘检测原理及方法
一、图像边缘检测原理
边缘是图像上灰度变化最明显的地方,传统边缘检测利用此特点,对图像 各像素点进行求微分或二阶微分来定位边缘像素点。由灰度变化特点,可将边 缘类型分为阶梯状、脉冲状和屋顶状三种[1]。对于阶梯状,图像边缘点对应一阶 微分图像的峰值和二阶微分图像的零交叉处;对于脉冲状和屋顶状边缘,边缘 点对应一阶导数的零交叉和二阶导数的峰值。如图 1-1 所示[2]。
0 0 0 -1 1 0 0 0 0
垂直边缘
0 -1 0 0 1 0 0 0 0
水平边缘
-1 0 0 0 1 0 0 0 0
对角线边缘
图 2-1 差分算法检测边缘的方向模板 差分边缘是基本且原始的方法,根据阶跃边缘情况原理,利用导数算子检测 边缘。这种算子要求方向性,计算繁琐,因此很少采用。 2、Roberts 算子 Roberts 边缘检测算子[6]利用局部差分算子寻找边缘的算子,采用对角线方 向相邻像素之差近似梯度幅值检测边缘, 原理是根据任意一对互相垂直方向上的 差分可计算梯度。
s x { f ( x 1, y 1) 2 f ( x 1, y ) f ( x 1, y 1)} { f ( x 1, y 1) 2 f ( x 1, y ) f ( x 1, y 1)} s y { f ( x 1, y 1) 2 f ( x, y 1) f ( x 1, y 1)} { f ( x 1, y 1) 2 f ( x, y 1) f ( x 1, y 1)}
xf f (i, j ) f (i 1, j 1) xf f (i, j 1) f (i 1, j ) R (i, j ) 2x f 2y f 或 R (i, j ) x f y f
图像处理中的边缘检测和特征提取方法
图像处理中的边缘检测和特征提取方法图像处理是计算机视觉领域中的关键技术之一,而边缘检测和特征提取是图像处理中重要的基础操作。
边缘检测可以帮助我们分析图像中的轮廓和结构,而特征提取则有助于识别和分类图像。
本文将介绍边缘检测和特征提取的常见方法。
1. 边缘检测方法边缘检测是指在图像中找到不同区域之间的边缘或过渡的技术。
常用的边缘检测方法包括Sobel算子、Prewitt算子和Canny算子。
Sobel算子是一种基于梯度的边缘检测算法,通过对图像进行卷积操作,可以获取图像在水平和垂直方向上的梯度值,并计算获得边缘的强度和方向。
Prewitt算子也是一种基于梯度的边缘检测算法,类似于Sobel算子,但其卷积核的权重设置略有不同。
Prewitt算子同样可以提取图像的边缘信息。
Canny算子是一种常用且经典的边缘检测算法。
它结合了梯度信息和非极大值抑制算法,可以有效地检测到图像中的边缘,并且在边缘检测的同时还能削弱图像中的噪声信号。
这些边缘检测算法在实际应用中常常结合使用,选择合适的算法取决于具体的任务需求和图像特点。
2. 特征提取方法特征提取是指从原始图像中提取出具有代表性的特征,以便进行后续的图像分析、识别或分类等任务。
常用的特征提取方法包括纹理特征、形状特征和颜色特征。
纹理特征描述了图像中的纹理信息,常用的纹理特征包括灰度共生矩阵(GLCM)、局部二值模式(LBP)和方向梯度直方图(HOG)。
GLCM通过统计图像中像素之间的灰度变化分布来描述纹理特征,LBP通过比较像素与其邻域像素的灰度值来提取纹理特征,HOG则是通过计算图像中梯度的方向和强度来提取纹理特征。
这些纹理特征可以用于图像分类、目标检测等任务。
形状特征描述了图像中物体的形状信息,常用的形状特征包括边界描述子(BDS)、尺度不变特征变换(SIFT)和速度不变特征变换(SURF)。
BDS通过提取物体边界的特征点来描述形状特征,SIFT和SURF则是通过提取图像中的关键点和描述子来描述形状特征。
医学图像处理中的边缘检测与分割算法
医学图像处理中的边缘检测与分割算法边缘检测与分割是医学图像处理中的重要部分,被广泛应用于疾病诊断、医学影像分析和手术辅助等领域。
边缘检测算法用于提取图像中的边缘信息,而分割算法则可以将图像划分为不同的区域,有助于医生对图像进行进一步分析和诊断。
一、边缘检测算法在医学图像处理中,常用的边缘检测算法包括基于梯度的方法、基于模型的方法和基于机器学习的方法。
1. 基于梯度的方法基于梯度的边缘检测算法通过计算图像中像素点的梯度值来确定边缘位置。
常用的算法包括Sobel算子、Prewitt算子和Canny算子。
Sobel算子是一种常用的离散微分算子,通过在图像中对每个像素点应用Sobel算子矩阵,可以得到图像的x方向和y方向的梯度图像。
通过计算梯度幅值和方向,可以得到边缘的位置和方向。
Prewitt算子与Sobel算子类似,也是一种基于梯度的边缘检测算子。
它通过将图像中的每个像素点与Prewitt算子矩阵进行卷积运算,得到图像的x方向和y方向的梯度图像。
进一步计算梯度幅值和方向,可以确定边缘的位置和方向。
Canny算子是一种经典的边缘检测算法,它采用多步骤的方法来检测边缘。
首先,对图像进行高斯滤波来减少噪声。
然后,计算图像的梯度幅值和方向,进一步剔除非最大值的梯度。
最后,通过设置双阈值来确定真正的边缘。
2. 基于模型的方法基于模型的边缘检测算法借助数学模型来描述边缘的形状和特征。
常用的算法包括基于边缘模型的Snake算法和基于边缘模型的Active Contour算法。
Snake算法(也称为活动轮廓模型)是一种基于曲线的边缘检测算法。
它通过将一条初始曲线沿着图像中的边缘移动,使得曲线更好地贴合真实边缘。
Snake算法考虑了边缘的连续性、平滑性和能量最小化,可以获得较为准确的边缘。
Active Contour算法是Snake算法的进一步发展,引入了图像能量函数。
通过最小化能量函数,可以得到最佳的边缘位置。
Active Contour算法可以自动调整曲线的形状和位置,适应复杂的图像边缘。
边缘检测的原理
边缘检测的原理边缘检测是数字图像处理中的常见任务,它能够识别并提取出图像中物体的边缘信息。
在计算机视觉和模式识别领域,边缘特征对于物体识别、分割以及图像理解非常重要。
本文将介绍边缘检测的原理及其常用的方法。
一、边缘的定义边缘是图像中亮度变化剧烈处的集合。
在图像中,边缘通常表示物体之间的分界线或物体自身的边界轮廓。
边缘通常由亮度或颜色的不连续性引起,可以用于图像分析、特征提取和图像增强等应用中。
二、边缘检测的原理边缘检测的目标是找到图像中的所有边缘,并将其提取出来。
边缘检测的原理基于图像亮度的一阶或二阶变化来进行。
常用的边缘检测原理包括:1. 一阶导数方法一阶导数方法利用图像亮度的一阶导数来检测边缘。
最常见的方法是使用Sobel算子、Prewitt算子或Roberts算子计算图像的梯度,然后通过设置合适的阈值将梯度较大的像素点判定为边缘。
2. 二阶导数方法二阶导数方法通过对图像亮度进行二阶导数运算来检测边缘。
其中,Laplacian算子是最常用的二阶导数算子,它可以通过计算图像的二阶梯度来获取边缘信息。
类似于一阶导数方法,二阶导数方法也需要设定适当的阈值来提取边缘。
3. Canny算子Canny算子是一种广泛使用的边缘检测算法,它综合了一阶和二阶导数方法的优点。
Canny算子首先使用高斯滤波平滑图像,然后计算图像的梯度和梯度方向,并根据梯度方向进行非极大值抑制。
最后,通过双阈值算法检测出真正的边缘。
三、边缘检测的应用边缘检测在计算机视觉和图像处理中具有广泛的应用。
以下是一些常见的应用:1. 物体检测与分割边缘检测可以帮助识别图像中的物体并进行分割。
通过提取物体的边缘,可以实现对图像内容的理解和分析。
2. 图像增强边缘检测可以用于图像增强,通过突出图像中的边缘信息,使图像更加清晰和饱满。
3. 特征提取边缘是图像中最重要的特征之一,可以用于物体识别、图像匹配和目标跟踪等应用中。
通过提取边缘特征,可以实现对图像的自动识别和分析。
图像处理中的边缘检测方法与性能评估
图像处理中的边缘检测方法与性能评估边缘检测是图像处理和计算机视觉领域中的一项重要任务。
它主要用于提取图像中物体和背景之间的边界信息,便于后续的图像分割、目标识别和物体测量等应用。
在图像处理领域,边缘被定义为亮度、颜色或纹理等属性上的不连续性。
为了实现准确且可靠的边缘检测,许多不同的方法和算法被提出并广泛应用。
在本文中,我们将介绍几种常见的边缘检测方法,并对它们的性能进行评估。
1. Roberts 算子Roberts 算子是一种基于差分的边缘检测算法,它通过对图像进行水平和垂直方向的差分运算来检测边缘。
这种算法简单且易于实现,但对噪声比较敏感。
2. Sobel 算子Sobel 算子是一种常用的基于梯度的边缘检测算法。
它通过在图像上进行卷积运算,计算像素点的梯度幅值和方向,从而检测边缘。
Sobel 算子可以有效地消除噪声,并在边缘方向上提供更好的响应。
3. Canny 边缘检测Canny 边缘检测是一种经典的边缘检测算法。
它包括多个步骤,包括高斯滤波、计算梯度幅值和方向、非极大值抑制和双阈值处理。
Canny 边缘检测算法具有较高的准确性和鲁棒性,广泛应用于实际图像处理中。
除了以上提到的方法外,还存在许多其他的边缘检测算法,如拉普拉斯算子、积分图像算法等。
这些算法各有优缺点,选择合适的算法需要根据具体应用情况和要求来确定。
对于边缘检测方法的性能评估,通常使用以下几个指标来衡量:1. 精确度精确度是评估边缘检测算法结果与真实边缘之间的差异的指标。
可以通过计算检测结果与真实边缘的重叠率或者平均绝对误差来评估。
2. 召回率召回率是评估边缘检测算法是否能够正确检测到真实边缘的指标。
可以通过计算检测结果中的边缘与真实边缘的重叠率或者正确检测到的边缘像素数量与真实边缘像素数量的比值来评估。
3. 噪声鲁棒性噪声鲁棒性是评估边缘检测算法对图像噪声的抗干扰能力的指标。
可以通过在含有不同噪声水平的图像上进行测试,并比较检测到的边缘结果与真实边缘的差异来评估。
图像处理中的边缘检测方法
图像处理中的边缘检测方法边缘检测是图像处理中一项重要任务,它可以通过识别图像中的边缘来揭示物体的轮廓和边界。
在计算机视觉、模式识别和图像分析等领域,边缘检测被广泛应用于目标检测、图像分割、特征提取等方面。
本文将介绍几种常见的图像处理中的边缘检测方法,包括Sobel算子、Canny算子和Laplacian算子。
1. Sobel算子Sobel算子是一种基于差分运算的边缘检测算法,它通过计算图像中像素值的梯度来确定边缘。
Sobel算子采用了一种基于离散卷积的方法,通过在水平和垂直方向上应用两个3×3的卷积核,分别计算出水平和垂直方向的梯度值,最后将两个梯度值进行合并,得到最终的梯度幅值。
Sobel算子在图像边缘检测中表现出色,但它对噪声敏感,需要进行预处理或者使用其他滤波方法。
2. Canny算子Canny算子是一种经典的边缘检测算法,它综合了图像平滑、梯度计算、非极大值抑制和双阈值处理等步骤。
首先,Canny算子使用高斯滤波器对图像进行平滑处理,以减少噪声的影响。
然后,它计算图像中每个像素的梯度幅值和方向,并进行非极大值抑制,保留局部最大值点。
最后,通过设置低阈值和高阈值,将梯度幅值分为强边缘和弱边缘两部分,并通过迭代连接强边缘像素点来得到最终的边缘图像。
3. Laplacian算子Laplacian算子是一种基于二阶微分的边缘检测算法,它通过计算图像中像素值的二阶导数来确定边缘。
Laplacian算子可以通过二阶离散卷积来实现,它对图像中的边缘部分具有一定的抑制作用,并提供了更加精细的边缘信息。
在应用Laplacian算子之前,通常需要对图像进行灰度化处理,以减少计算量和提高边缘检测效果。
与Sobel和Canny 算子相比,Laplacian算子对噪声的影响较小,但容易产生边缘断裂和边缘响应不稳定的问题,因此在实际应用中需要进行适当的后处理。
综上所述,Sobel算子、Canny算子和Laplacian算子是图像处理中常用的边缘检测方法。
图像处理中的边缘检测和图像分割
图像处理中的边缘检测和图像分割在计算机视觉领域中,图像处理是一项非常重要的技术。
其中,边缘检测和图像分割是两个关键环节。
本文将从边缘检测和图像分割的基本概念入手,详细介绍它们的原理和应用。
一、边缘检测1、基本概念边缘是指图像中亮度、颜色等性质发生突然变化的地方。
边缘检测就是在图像中寻找这些突然变化的地方,并将它们标记出来。
在实际应用中,边缘检测可以用于目标跟踪、物体检测等方面。
2、常见方法常见的边缘检测算法有Canny、Sobel、Laplacian等。
其中,Canny算法是一种广泛使用的边缘检测算法,其基本原理是通过计算图像中每个像素点的梯度值和方向,来判断该点是否为边缘。
Sobel算法则是利用了图像卷积的思想,先对图像进行卷积操作,再计算得到每个像素点的梯度值。
Laplacian算法则是通过计算图像中每个像素点的二阶导数,来寻找亮度突变的地方。
3、应用场景边缘检测常用于在图像中寻找物体的轮廓线,或者分离图像中的前景和背景等方面。
例如在计算机视觉中的人脸识别中,边缘检测可以用于提取人脸的轮廓线,以便于后续的特征提取和匹配。
二、图像分割1、基本概念图像分割是把图像中的像素点分成不同的区域,以便于更好地理解和处理图像。
分割的结果通常是一个二值图像,其中每个像素点被标记为前景或者背景。
在实际应用中,图像分割可以用于目标检测、图像识别等方面。
2、常见方法常见的图像分割算法有阈值分割、聚类分割、边缘分割等。
其中,阈值分割是一种较为简单且常用的分割算法,其原理是为图像中每个像素点设置一个阈值,大于阈值的像素点被标记为前景,小于阈值的则为背景。
聚类分割算法则是通过对图像中像素点进行聚类操作,来划分不同的区域。
边缘分割则是利用边缘检测的结果,将图像分成前景和背景两个部分。
3、应用场景图像分割可以应用于诸如目标检测、图像识别、医学图像分析等方面。
例如在医学图像分析中,图像分割可以用于将CT或MRI图像中的组织分割成肝、肿瘤等不同的部分,以便于医生更好地进行预测和治疗决策。
边缘检测的原理
边缘检测的原理
边缘检测是一种图像处理技术,它的原理是通过分析和识别图像中颜色、灰度或纹理的突变部分,提取出图像中物体轮廓的技术。
边缘检测的基本原理是基于图像的梯度变化。
在一幅图像中,物体的边缘往往表现为像素灰度值的变化。
利用这种像素灰度值的变化可以找到图像中的边缘。
常用的边缘检测算法包括Sobel算子、Prewitt算子和Canny算子。
Sobel算子是一种基于图像灰度梯度的边缘检测算法。
它将图像中每个像素的灰度值与其周围像素的灰度值进行卷积运算,得到图像的梯度值。
通过设置阈值来提取出图像中的边缘。
Prewitt算子是一种类似于Sobel算子的边缘检测算法。
它也是通过对图像中的每个像素进行卷积运算来计算梯度值,然后通过设定阈值来提取边缘。
Canny算子是一种比较高级的边缘检测算法,它结合了图像梯度和非极大值抑制技术。
对图像中每个像素进行梯度计算,并在梯度最大值处绘制边缘。
然后利用阈值来筛选出符合条件的边缘。
边缘检测在计算机视觉、图像处理等领域都有广泛的应用。
通
过边缘检测,可以提取图像中的特征信息,例如物体的轮廓、边界等,从而实现目标检测、图像分割、图像修复等任务。
图像处理中边缘检测的使用教程
图像处理中边缘检测的使用教程边缘检测在图像处理中扮演着重要的角色,它能够帮助我们识别出图像中的边界,从而进一步处理或分析图像。
本文将为您讲解边缘检测的基本原理、常用算法以及实际应用。
一、边缘检测的基本原理图像的边缘指的是图像中灰度值发生突变的地方,通常是颜色、亮度或纹理的变化。
在图像处理中,边缘检测是通过计算图像中像素点的梯度来实现的。
常用的边缘检测算法有Sobel算子、Prewitt算子和Canny算子。
1. Sobel算子Sobel算子是一种计算图像梯度的算法,它通过计算图像中每个像素点的水平和垂直梯度来实现边缘检测。
Sobel算子对图像噪声有较好的抑制效果,同时能够检测到图像中的边界。
2. Prewitt算子Prewitt算子也是一种常用的边缘检测算法,它与Sobel算子原理相似,同样通过计算图像中每个像素点的水平和垂直梯度来实现边缘检测。
Prewitt算子在计算上比Sobel算子更简单,但噪声抑制能力略低于Sobel算子。
3. Canny算子Canny算子是一种经典的边缘检测算法,它通过多阶段的处理来实现边缘检测。
首先,Canny算子使用高斯滤波器平滑图像,然后计算图像中每个像素点的梯度和方向,接着使用非极大值抑制方法提取边缘,最后应用双阈值处理来确定最终的边缘。
二、边缘检测的常用算法除了上述提到的Sobel算子、Prewitt算子和Canny算子,还有其他一些常用于边缘检测的算法,如拉普拉斯算子、Robert算子和Scharr算子。
1. 拉普拉斯算子拉普拉斯算子是一种二阶微分算子,它能够检测出图像中的局部极值点,从而实现边缘检测。
拉普拉斯算子对图像中的噪声比较敏感,因此常常需要进行噪声抑制处理。
2. Robert算子Robert算子是一种计算图像边缘的简单算法,它通过计算图像中相邻像素点的差异来实现边缘检测。
相比于其他算子,Robert算子计算量较小,但对于噪声比较敏感。
3. Scharr算子Scharr算子是一种类似于Sobel算子的边缘检测算法,它通过计算图像中每个像素点的水平和垂直梯度来实现边缘检测。
图像增强与边缘检测
数字图像处理作业----第三次1、 什么是图像增强?常见算法有哪些?典型算法的程序实现,其优缺点?结果对比。
1.1图像增强的定义为了改善视觉效果或者便于人和机器对图像的理解和分析,根据图像的特点或存在的问题采取的简单改善方法或者加强特征的措施称为图像增强。
一般情况下,图像增强是按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法,也是提高图像质量的过程。
图像增强的目的是使图像的某些特性方面更加鲜明、突出,使处理后的图像更适合人眼视觉特性或机器分析,以便于实现对图像的更高级的处理和分析。
图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。
但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的。
传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。
这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。
1.2 图像增强的分类及方法图像增强可分成两大类:频率域法和空间域法。
前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。
采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。
具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。
图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。
在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。
图像处理中的边缘检测与图像增强技术
图像处理中的边缘检测与图像增强技术边缘检测是图像处理领域中的重要技术,它主要用于提取图像中的边缘信息,帮助我们分析和理解图像。
图像增强则是通过改变图像的亮度、对比度等参数,使得图像更加明亮和清晰。
本文将介绍边缘检测和图像增强的原理、常用算法和应用领域。
一、边缘检测技术边缘是图像中灰度变化比较大的区域,通常表示物体边界或者纹理的边界。
边缘检测的目标是在图像中找到这些边缘,并将其提取出来。
常见的边缘检测算法有Sobel算子、Prewitt算子、Roberts算子和Canny算子。
1. Sobel算子Sobel算子是一种最简单和最常用的边缘检测算法之一。
它通过在图像中进行卷积运算,通过计算像素点与其邻域像素点之间的差异来作为边缘的强度。
Sobel算子有水平和垂直两个方向的算子,通过计算两个方向上的差异来得到最终的边缘值。
2. Prewitt算子Prewitt算子也是一种常用的边缘检测算法,它与Sobel算子类似,也是通过计算像素点与其邻域像素点之间的差异来作为边缘的强度。
不同之处在于Prewitt算子使用了不同的卷积核,其结果可能会略有差异。
3. Roberts算子Roberts算子是一种简单的边缘检测算法,它使用了一个2x2的卷积核。
通过计算相邻像素点之间的差异,Roberts算子可以提取图像中的边缘信息。
然而,Roberts算子相对于其他算法来说,其结果可能会较为粗糙。
4. Canny算子Canny算子是一种边缘检测的经典算法,由于其较好的性能和效果,被广泛应用于边缘检测领域。
Canny算子主要包括以下几步:首先,对图像进行高斯滤波,以平滑图像;其次,计算图像的梯度和边缘方向;然后,通过非极大值抑制去除不是边缘的像素;最后,通过双阈值算法将边缘连接为一条连续的线。
二、图像增强技术图像增强是指通过改变图像的亮度、对比度等参数,使得图像更加明亮和清晰。
图像增强可以提高图像的质量,使得图像更适合用于后续的分析和处理。
《图像边缘检测》课件
一种基于图像的梯度计算方法,可用于检测图像中的边缘。
2 Prewitt算子
另一种基于图像梯度的边缘检测算法,与Sbel算子类似。3 Canny算子
一种更复杂的边缘检测算法,能够检测到更细微的边缘。
边缘检测的应用
物体识别
边缘检测可以帮助识别图像中的物体,从而实现自动目标识别和分类。
图像增强
通过突出边缘,可以增强图像的清晰度和对比度,使图像更加生动。
计算机视觉
边缘检测是计算机视觉中基础且关键的技术,用于解决人机交互、图像分析等问题。
图像处理中的挑战
在图像处理中,边缘检测面临一些挑战,如噪声干扰、光照变化和边缘连接性等问题。需要采用合适的算法和 技术来克服这些挑战。
结论和要点
《图像边缘检测》PPT课 件
图像边缘检测是一种通过识别图像中物体边缘的技术。本课件将介绍边缘检 测的定义、常用的边缘检测算法以及边缘检测的应用。
图像边缘检测的定义
图像边缘检测是一种分析图像中不同区域之间的边界或过渡区域的技术。它对于物体检测、图像分割和目标识 别等任务非常重要。
常用的边缘检测算法
通过本课件的学习,你应该对图像边缘检测有了更深入的了解。边缘检测是图像处理中的重要步骤,它可以帮 助我们更好地理解和分析图像。
图像处理中的边缘检测与图像增强技术
图像处理中的边缘检测与图像增强技术图像处理是指对数字图像进行处理和分析的技术。
在图像处理中,边缘检测和图像增强是两种常用的技术,它们用于提取图像中的边缘信息和增强图像的细节。
本文将介绍边缘检测和图像增强的原理和方法,并且讨论它们在图像处理中的应用。
1.边缘检测边缘是图像中灰度变化较大的地方,边缘检测是一种用于检测图像中边缘的技术。
边缘检测通常包括以下几个步骤:1)灰度变化的计算:计算图像中每个像素点的灰度变化程度,通常使用差分算子或者梯度算子来计算。
2)阈值处理:将计算出的灰度变化值与设定的阈值进行比较,得到图像中的边缘点。
3)边缘连接:将检测到的边缘点之间进行连接,得到完整的边缘。
常用的边缘检测算法包括Sobel算子、Prewitt算子、Canny算子等。
这些算法都是基于微分或者梯度的计算来检测图像中的边缘。
2.图像增强图像增强是指对图像进行处理,使图像的细节更加清晰或者颜色更加鲜艳。
图像增强通常包括以下几个步骤:1)灰度变换:对图像的灰度进行变换,使得图像的对比度更加明显。
2)空间滤波:通过滤波技术进行图像的空间域处理,以增强图像的细节。
3)频域处理:通过傅里叶变换等频域处理技术对图像进行增强。
图像增强的目的是使得图像更加清晰、更加饱满,常用的图像增强算法包括直方图均衡化、对比度增强等。
3.边缘检测与图像增强的应用边缘检测和图像增强技术在图像处理中有着广泛的应用,例如医学影像的分析、工业检测等。
在医学影像中,边缘检测可以用于分割出肿瘤等病变部位,对医生进行诊断。
图像增强可以使得医学影像更加清晰,帮助医生更好地诊断病情。
在工业检测中,边缘检测可以用于检测产品的缺陷和裂纹,提高产品的质量。
图像增强可以使得检测出的缺陷更加清晰,帮助工人更准确地进行质量控制。
此外,边缘检测和图像增强技术还在计算机视觉、遥感图像处理等领域有着重要的应用,帮助机器对图像进行理解和分析。
4.应用案例分析以医学影像为例,边缘检测和图像增强技术在医学影像中有着广泛的应用。
实验9图像边缘检测
实验9图像边缘检测实验9 图像边缘检测⼀、实验⽬的通过本实验使学⽣掌握图像边缘检测的基本⽅法,加深对图像分割的理解。
⼆、实验原理本实验师基于数字图像处理课程中的图像分割理论来设计的。
三、实验内容(⼀)图像锐化读取lena_gray.bmp图像,(1)使⽤prewitt算⼦对图像进⾏锐化,同屏显⽰原图像和锐化后的图像,并解释结果。
(2)使⽤sobel算⼦对图像进⾏锐化,同屏显⽰原图像和锐化后的图像,并解释结果。
(3)使⽤LoG算⼦对图像进⾏锐化,同屏显⽰原图像和锐化后的图像,并解释结果。
(4)对⽐上述锐化结果,说明三个算⼦的优缺点。
程序:close allclearclc%程序如下所⽰:?J=imread('F:\lena_gray.bmp');subplot(2,3,1);imshow(J);title('(a)原始图像');subplot(2,3,2);imshow(J);title('(b)灰度图');K=imadjust(J,[40/255 1]);%调整灰度值?subplot(2,3,3)imshow(K);title('(c)调整灰度后的图');I1=edge(K,'sobel');subplot(2,3,4);imshow(I1);title('(d)Sobel算⼦');I2=edge(K,'prewitt');subplot(2,3,5);imshow(I2);title('(e)Prewitt算⼦');I4=edge(K,'log');subplot(2,3,6);imshow(I4);title('(g)Laplace算⼦');(a)原始图像(b)灰度图(c)调整灰度后的图(d)Sobel算⼦(e)Prewitt算⼦(g)Laplace算⼦实验结果分析:由实验结果可知,prewitt和sobel算⼦能提取对⽐度强的边缘,⽽LOG算⼦能提取对⽐度较弱的边缘,边缘定位精度⾼。
图像的边缘检测
图像的边缘检测图像边缘检测是计算机视觉中一项重要的技术,它可以识别图像中物体的轮廓和边缘特征。
具体来说,边缘是图像中亮度或颜色发生突变的地方,通常表示物体间的边界或纹理变化。
边缘检测的背景和意义在于提供一种快速和准确分析图像的方法,进而对图像进行理解、识别和处理。
在计算机视觉和图像处理中,边缘检测常被用于很多应用领域,如目标检测、图像分割、形状识别等。
通过提取图像的边缘信息,我们可以定位和识别图像中的物体,实现自动化识别和分析。
边缘检测还可以用于图像增强和图像压缩等方面,以改善图像的质量和减少存储空间的需求。
因此,了解和掌握图像边缘检测的方法和技术对于计算机视觉和图像处理领域的研究和应用具有重要意义。
本文将深入介绍图像边缘检测的原理、常用算法和应用场景,帮助读者全面理解并应用图像边缘检测技术。
常用的图像边缘检测算法有许多种,下面主要介绍两种常见的算法:Sobel算子Sobel算子是一种基于梯度的边缘检测算法。
它通过计算图像中每个像素点的灰度值梯度,来检测图像中的边缘。
Sobel算子主要使用两个3x3的卷积核,分别对图像进行水平和垂直方向的梯度计算。
通过将两个方向上的梯度进行合并,可以得到图像的整体边缘信息。
___算子Canny算子是一种经典的边缘检测算法。
它在边缘检测中有着较好的性能,在计算机视觉和图像处理领域广泛应用。
Canny算子首先对图像进行高斯滤波,以平滑图像并减少噪声。
然后计算图像中每个像素点的梯度强度和方向,选取局部极大值作为边缘点。
最后,通过滞后阈值处理,将边缘连接成连续的曲线。
以上是常见的图像边缘检测算法,它们在计算机视觉、图像处理和模式识别等领域中起着重要的作用。
应用领域本文旨在探讨图像边缘检测在计算机视觉、图像处理等领域的应用。
图像边缘检测是计算机视觉和图像处理中一项重要的任务,它主要用于捕捉图像中物体或场景的边缘信息。
边缘是图像中色彩变化剧烈的区域,可以表示物体的边界或对象之间的分界线。
图像处理中的边缘检测和特征提取算法
图像处理中的边缘检测和特征提取算法图像处理作为一种新兴的交叉学科,近年来得到了广泛的关注和应用。
图像处理的核心技术之一就是边缘检测和特征提取。
这两个技术的重要性不言而喻,无论是在计算机视觉、机器人、医学诊断等领域,都有着广泛的应用。
本文将针对这两个技术进行深入讨论。
一、图像中的边缘图像的边缘指的是图像灰度值发生剧烈变化的地方,通常表示了图像中物体的轮廓和形状信息。
对于图像处理来说,边缘的提取是非常重要的,因为它能提供很多有用的信息,如轮廓、缺陷、纹理等。
边缘检测旨在提取图像中的所有边缘,从而在分析或处理图像时,能快速得到更精准和更有效的结果。
常见的边缘检测算法主要有:1. 基于Sobel算子的边缘检测Sobel算子是一个非常常见的边缘检测算子,其原理是利用一个3x3的卷积核对原始图像进行卷积,以获得每个像素点的灰度梯度。
具体方法是将Sobel算子分别应用于x和y方向,然后将两个方向的结果相加,即可得到最终的边缘检测结果。
Sobel算子的优点是简单易用,计算量小,同时能够有效地抑制噪声干扰。
2. 基于Canny算子的边缘检测Canny算子是一种著名的边缘检测算子,其主要优点是具有很高的准确率和很低的误检率。
Canny算子的主要思想是在高斯滤波后,利用梯度的幅值和方向来检测边界,然后再用非极大值抑制和双阈值处理来细化边界。
Canny算子的缺点是计算量较大,比较耗费时间。
二、特征提取特征提取是图像处理中非常重要的一个环节,它主要是从原始图像中提取出具有代表性的特征,以便于对图像进行分类、目标跟踪、匹配等任务。
特征提取可以大大简化后续处理过程,提高处理效率和准确率。
常见的特征提取算法主要有:1. HOG特征HOG(Histogram of Oriented Gradients)特征是一种非常流行的特征提取算法,它主要通过对图像梯度方向直方图的统计来反映局部图像结构,进而得到具有代表性的特征向量。
HOG特征适用于图像的局部特征提取,如目标检测、行人识别等。
图像处理中的边缘检测算法使用教程
图像处理中的边缘检测算法使用教程边缘检测是图像处理中的一项基本任务,用于检测图像中物体或者物体的边界。
边缘检测在很多领域都有广泛的应用,包括计算机视觉、医学图像分析等。
本篇文章将为你介绍图像处理中常用的边缘检测算法,并给出相应的使用教程。
一、Sobel算子Sobel算子是一种经典的边缘检测算法,通过对图像进行卷积操作来检测图像中的边缘。
在实际使用中,可以通过以下步骤来进行Sobel边缘检测:1. 将彩色图像转换为灰度图像。
可以通过取红、绿、蓝三个通道的平均值来实现。
2. 对灰度图像进行高斯平滑处理。
这一步骤可以降低图像中的噪声。
3. 使用Sobel算子对平滑后的图像进行卷积操作。
Sobel算子分为水平和垂直两个方向,可以分别对图像进行卷积操作。
卷积操作可以使用矩阵乘法来实现。
4. 对卷积结果进行阈值化处理,以确定边缘的位置。
可以选择一个适当的阈值来满足不同应用的需求。
二、Canny算子Canny算子是一种常用且效果良好的边缘检测算法,相比于Sobel算子,Canny算子可以更好地检测边缘的连续性和准确性。
以下是Canny算子的使用教程:1. 将彩色图像转换为灰度图像,同样可以通过对RGB通道求平均值的方式来实现。
2. 对灰度图像进行高斯平滑处理,以降低噪声对边缘检测的影响。
3. 计算图像中每个像素点的梯度幅值和方向。
可以使用Sobel算子来计算梯度。
4. 对梯度图像进行非最大抑制,以保留梯度幅值变化最大的像素。
这一步骤可以帮助提取边缘的细节。
5. 使用双阈值进行边缘链接。
通常将梯度幅值较大的像素点作为强边缘点,将梯度幅值较小但周围相邻的像素点作为弱边缘点。
通过设置适当的高低阈值,可以保留合适的边缘。
6. 最后,可以使用边缘链接算法来连接弱边缘点和强边缘点,形成完整的边缘。
常用的边缘链接算法有基于连通区域的算法和霍夫变换等。
三、Laplacian算子Laplacian算子是一种常用的边缘检测算法,它通过计算图像中二阶导数来检测边缘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V ol.15, No.1©2004 Journal of Software 软 件 学 报 1000-9825/2004/15(01)0000 图像边缘检测Edge Detection of ImageLi Jie(Department of Computer Science and Technology,Nanjing University, Nanjing, China)Email:lijie1108@摘 要: 边缘检测是在图像的局部区域上针对像素点的一种运算,在计算机视觉、图像理解等应用中扮演着重要的角色,同时也是图象分析与模式识别的重要环节。
因为图像的边缘包含了模式识别的有用信息,所以边缘检测是图像分析和模式识别中特征提取的主要手段,也使得边缘检测在计算机视觉的一些预处理算法中有着重要的地位。
另外,随着科技日新月异的发展,边缘检测技术也逐渐运用到生产和生活中。
因此,对边缘检测的研究也有很重要的实际应用价值。
本文介绍了边缘检测的一般步骤,对灰度图像的几种边缘检测算法,作简单的介绍。
关键词: 边缘检测; 经验模型分解;Sobel 算子;神经网络中图法分类号: TP-301 文献标识码: A1 引言边缘检测是图像处理领域中最基本的问题,也是经典的技术难题之一,它的解决对于进行高层次的特征提取、特征描述、目标识别和图像理解等有着重大的影响。
因此,边缘检测在图像分割、模式识别、计算机视觉等众多方面都有着非常重要的地位。
然而由于成像过程中的投影、混合、畸变和噪声等导致图像的模糊和变形,边缘往往难于检测,这使得人们一直致力于构造具有良好性质的边缘检测算子。
边缘检测的研究有着久远的历史,其原因一方面是由于课题本身的重要性,另一方面也反映了这个课题的深度和难度。
所以,边缘检测方面的研究具有非常重要的理论意义。
由于边缘为图像中灰度发生急剧变化的区域边界,传统的图像边缘检测方法大多可归结为图像高频分量的增强过程,微分运算自然就成了边缘检测与提取的主要手段。
人们最早提出了一阶微分边缘算子,用图像灰度分布的梯度来反映图像灰度的变化,最早如1965年提出的Robert 算子[1],在Robert 算子基础上改进得到的sobel[1]算子、Prewitt[1]算子和Kirsh 算子等。
但是,这些算子由于梯度或一阶微分算子通常在图像边缘附近的区域内产生较宽的响应,故上述算子检测到的边缘图像常需作细化处理,这就影响了边缘定位的精度。
因而又产生了与边缘方向无关的二阶微分边缘检测算子,即LaPlacian 算子[2l 。
利用二阶导数零交叉所提取的边缘宽度为一个像素,所得的边缘结果无需细化,有利于边缘更准确的定位。
近年来,随着科学技术的发展,利用各种新的理论工具对图像进行边缘检测的方法得到了广泛的研究和应用。
例如基于形态学的边缘检测算子,借助统计学方法的检测技术[7]、利用神经网络的检测技术[8]、利用模糊理论的检测技术[9]、利用信息论的检测技术[10]、利用遗传算法的检测技术、基于分形特征的边缘检测技术[24]等的研究也相继出现,表现相当活跃。
由于实际图像都含有噪声,并且噪声的分布、方差等信息也都是未知的,而噪声和边缘都是高频信号。
外加物理和光照等原因,实际图像中的边缘常常发生在不同的尺度范围上,并且每一边缘像元的尺度信息是未知的。
因此,传统的边缘检测算法检测效果并不理想。
2 Journal of Software 软件学报 2004,15(1) 2 边缘检测的步骤和常用算法2.1 边缘检测的基本步骤1.滤波[16]:边缘和噪声同属图像中强度变化剧烈的部位因此边缘检测算子对边缘和噪声都很敏感,因此必须使用滤波器来改善与噪声有关的边缘检测算子的性能。
2.增强:增强边缘的基础是确定图像各点邻域强度的变化值。
增强算法可以将邻域(或局部)强度之有显著变化的点突显出来。
3.检测:在图像中有许多点的梯度幅值比较大,而这些点在特定的应用领域中并不都是边缘,所以应该用某种方法来确定哪些点是边缘点。
最简单的边缘检测判据是利用梯度幅值的阈值作为判据。
4.定位:边缘定位即确定边缘点的具体位置,除此之外还应包括边缘细化、连接。
图2.1边缘检测的流程2.2 常用边缘检测算法 经典的边缘检测算法主要有微分法和最优算子法,微分法是通过利用经典的微分算子[3]检测图像的边缘,主要包括Roberts 算子、Sobel 算子、Prewitt 算子、Kirsch 算子和Laplacian 算子等,最优算子法则是微分算子发展和优化,主要有LOG 算子和Canny 算子等。
微分法的基本工具是微分算子,它是最原始、最基本的边缘检测算法,检测原理基于灰度图像边缘处的一阶导数有极值,二阶导数存在过零点。
在对边缘求导时,需要对每个位置的像素进行计算,在实际检测中常常用模板卷积的方法来近似计算。
最优算子法是在微分算子法的基础上发展起来的边缘检测算子,根据信噪比求得边缘的最优滤波器,常见有LOG 算子和Canny 算子(本文不作介绍)。
3 灰度图像微分算法3.1 一阶微分方法一阶微分方法通过梯度算子或一阶导数算子估计图像灰度变化的方向,增强图像中的灰度变化区域,然后对增强区域进一步判断。
对于连续函数),(y x I ,它在点)(y x ,处的x 方向,y 方向和θ方向的一阶方向导数为:()x y x I y x I x ∂∂=),(, (3.1)y y x I y x I y ∂∂=),(),( (3.2) θθθsin ),(cos ),(),(y y x I x y x I y x I ∂∂+∂∂= (3.3)它在点),(y x 处的梯度为一个矢量,定义为:作者名 等:题目 3[]⎥⎦⎤⎢⎣⎡∂∂∂∂=∇y I x I G G y x I y x ,,),(τ= (3.4)梯度数值为:22)()(||y x grad ∂∂+∂∂= (3.5)梯度方向与水平方向的夹角为:x Iy I∂∂∂∂=arctan ϕ (3.6)许多经典算子都是基于上述理论提出来的,如Sobel 算子、Roberts 算子、Prewitt 算子等。
但在具体应用时,由于数字图像的离散性,所以在数字图像中常常以图像的一阶差分运算代替图像的一阶微分运算。
3.2 Sobel 算子下面简单介绍下Sobel 算子[3]。
Sobel 算子是一个离散微分算子,它计算一个图像强度的梯度近似值。
在图像的每一个点,Sobel 算子的结果是一个梯度向量或者是个向量范数。
它是计算以该点为中心的3⨯3点阵的),(y x f 的偏导数。
为了抑制噪声,给它的中心点加一个权重,则它的数字梯度近似等于下式:)}1,1(),1(2)1,1({)}1,1(),1(2)1,1({--+-+---+++++-+=y x f y x f y x f y x f y x f y x f G x (3.7))}1,1()1,(2)1,1({)}1,1()1,(2)1,1({-++-+---++++++-=y x f y x f y x f y x f y x f y x f G y (3.8)梯度大小为:22),(y x G G y x g += (3.9)它的卷积模板算子如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101202101x T ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=121000121y T (3.10) 如果使用Sobel 检测图像M 的边缘,我们可以使用水平模板x T 和垂直模板y T 来旋转图像,不考虑边缘条件,可以得到2个同样大小的梯度矩阵M1和M2作为原始图像,然后总的梯度值可以通过两个梯度矩阵相加得到,再通过阈值法得到图像的边缘。
3.3 经验模型分解算法经验模型分解(EMD )[19]是一种高适应性的分解。
它可以把任意复杂的信号分解成内部函数模型集(IMF )。
第一个IMF 图像[13]包含了边缘的很多重要特征。
从第一个IMF 图像中提取了边缘像素后,通过一4 Journal of Software软件学报2004,15(1)个合适的阈值,我们可以得到一个清晰的边缘图像。
具体算法步骤如下:1.通过柱状图相似来处理原始图像,来提高图像的对比度。
2.应用BEMD[4][20]来得到一个IMF图像。
3.大多数的背景像素都在0.5左右,根据尖锥装的柱状图,我们可以得到阈值,这个阈值在0.1到0.2之间。
利用这个阈值移除不重要的像素点维持重要的边缘像素点。
方法:用每个像素的灰度值减去0.5,如果绝对值小于阈值,则将它的灰度值设为0,否则设为1。
4.抽取了边缘像素点后,图像有一个很清晰的边缘,这时候有些粗边缘需要削细。
5.最后移除一些独立的像素点,就得到了最后的边缘图像。
图3.1 经验分解算法流程图3.4 神经网络边缘检测算法为了检测有256灰度值的灰度图像的边缘,可以考虑一个类似BP神经网络[5][18]的模型,该模型由8个子BP神经网络组成,每一个子网络可以检测2值图像的边缘。
每一个子BP神经网络对应灰度图像的一个位平面。
每个神经网络的输出会根据每个位平面的权重做调整。
8个位平面的权重依次为1/256、2/256、4/256、8/256、16/256、32/256、64/256、128/256。
通过类似的模型,可以很精确的检测出灰度图像的边缘。
结构如图3.2所示:作者名等:题目 5图3.2神经网络边缘检测算法的模型结构图4 总结边缘检测是图像处理领域中最基本的问题,也是图像处理其他工作的前提。
然而,在研究图像边缘的时候,不可避免的会受到噪声等的干扰。
前人提出的很多经典算法,比如微分算子法,BP神经网络算法,基于关联规则的检测算法[14]等,边缘检测效果都不是特别理想。
这就需要我们寻找更好的算法。
致谢在此,向对本文的工作给予支持和建议的同学,特别是对教授我们计算机视觉课程的张琰老师表示感谢!References:[1] 冈萨雷斯,数值图像处理[M].北京:电子工业出版社,2003,471-474[2] 孙即祥,数字图像处理,河北出版社,1993.[3] Wenshuo Gao, Lei Yang, Xiaoguang Zhang, Huizhong Liu, An Improved Sobel Edge Detection. ©2010 IEEE978-1-4244-5540-9/10/[4] LingFei Liang , ZiLiang Ping. An Edge Detection Algorithm of Image Based On Empirical Mode Decomposition. © 2008 IEEEDOI 10.1109/IITA.2008.324[5] Weiqing Li, Chengbiao Wang, Qun Wang, Guangshe Chen,An Edge Detection Method Based on Optimized BP Neural Network. ©2008 IEEE DOI 10.1109/ISISE.2008.310[6] S. Beucher, Geodesic reconstruction, saddle zones and hierarchical segmentation, Image Anal .Stereol. 20(2001) pp.137-141[7] S.Konishi, A.Yuille and J.Coughlan. A statistical approach to multi-scale edge detection. Image and VisionComputing ,2003,(21):37-485.[8] S.C.Douglas, T.H.Meng. Design of Edge Detection Templates Using a Neural Network. Proc. International Joint Conference onNeural Networks.1990,2:331-334.[9] D.S.Kim, W.H.Lee and I.S.Kweon.Automatic edge detection using 3*3 ideal binary pixel patterns and fuzzy-based edgethresholding. Pattern Recognition Letters,2004,(25):101-106.[10] Q.Tian,X.Li and N.M.Bilgutay.Multiple Target Detection Using Split Spectrum Processing and Group Delay Moving Entropy.IEEETrans. On UFFC.1995,42(6):1075-1886.[11] 薛东辉,朱耀庭,朱光喜,等,基于尺度分维的图像边缘检测方法研究。