地质雷达及其探测技术

合集下载

地质雷达及其探测技术

地质雷达及其探测技术

1 地质雷达及其探测技术应用领域:地质雷达在考古、市政建设、建筑、铁路、公路、水利、电力、采矿、航空等领域都有广泛应用。

地质雷达最早用于工程场地勘查:解决覆盖层厚度、松软层厚度及分布、基岩风化层界面及分布、基岩节理和断裂带、地下水分布、普查场地地下溶洞、空洞、塌陷区、地下人工洞室、地下排污巷道、地下排污管道及地下管线等,在回填等松软层上,探查深度可达20m以上,在致密或基岩上探查深度可达30m以上;工程质量检测及病害诊断:近年来,国内外铁路公路等地下隧道、公路及城市道路路面、机场跑道、高切坡挡墙等重要工程项目的工程质量检测及病害诊断中,广泛采用雷达技术。

主要检测衬砌厚度、破损、裂隙、脱空、空洞、渗漏带、回填欠密实区、围岩扰动等,路面及跑道各层厚度、破损情况,混凝土构件中的空洞、裂隙及钢筋分布等,检测精度可达毫米级;地下埋设物与考古探察:考古是地质雷达应用较早的领域,探测古建筑基础、地下洞室、金属物品等,在城市改造中用雷达可探测地下埋设物,如电力管网、输水管道、排污管道、输汽管网、通讯管网等;隧道超前跟踪探测及预报:地质雷达可预测前方50m范围内的断层、溶洞、裂隙带、含水带等地质构造;地质雷达在矿井中的探测应用:我国煤矿及金属矿山很多,煤矿及金属矿山地质构造相当复杂,地质雷达已开始用于矿山井下,在矿井可用在掘进头前方超前探测及预测、巷道顶底板及两邦探测,主要用来探测断层、陷落柱、溶洞,裂隙带、采空区、含水带、煤厚、顶底板、瓦斯突出危险带、金属富矿带等。

技术特点:煤炭科学研究总院重庆分院吸取国内外地质雷达优点,积多年探测经验,先后研制成F、KDL系列防爆地质雷达及其探测技术,同时还引进美国SIR—10H型工程雷达和加拿大EKKO-100型雷达。

F、KDL系列防爆地质雷达由防爆工业控制机、发射机、接收机、系列天线、采集和处理软件、高速通讯线缆等组成。

可超前探测50米范围内的断层,陷落柱,含水带等地质构造。

地质雷达技术应用要点

地质雷达技术应用要点
地质雷发展的最主要的推动力是社会需求,包括环境、考古、资源和工程等领域的需求,其中最主要的是工程需求。工程需求有两个方向,一个是工程勘察,另一个是工程检测,两者对地质雷达的技术要求是不同的。目前的地质雷达在工程检测中应用的效果比较好,而在工程勘察中的效果不理想,原因是雷达目前的技术指标更接近工程检测的要求,而距工程勘察要求有较大的距离。 工程勘察对地质雷达的技术要求最主要的是探测深度和分辨率,目前的探地雷达在北方第四系地层中探测深度可达到20-25m,在南方一般为15-20m。在基岩出露地区探测可能会略深些。可解释的地层的厚度即分辨率约0.5-1.0 m左右。而工程场地勘察关心的深度一般为30-50m,公路与铁路线路勘察关心的深度在20-30m左右,因而地质雷达不能满足大多数工程场地的勘察需要,可满足部分线路勘察的需要。 电磁波在岩土介质中传播时衰减是不可避免的,因而,要加大探深度,必须对雷达的软硬件有较大的改进。硬件的改进有两方面,一个是提高天线的发射功率,另一个是提高A/D转换的动态位数。目前GSSI公司的80MHZ、100MHz强力天线是市场上见到的发射功率最大的天线,双峰值1300V,平均功率分别为3000mw和2500mw。但应用结果表明其探测深度还显不足,应进一步提高。提高探测深度的另一有效措施是提高A/D转换的动态位数n。A/D转换位数n决定了仪器探测的动态大小,是同时记录最强和最弱信号的能力。所能探测的最强与最弱信号的比值应等于2n。加大探测深度时,深浅反射信号的幅值的差异增大,因而仪器的动态范围需要增加。此外,应该提高软件的处理功能,更有效地消除噪音和干扰,提高弱反射信号的识别能力,也就增加了探测深度,可弥补硬件能力的不足。 目前的地质雷达技术指标,基本上是受工程检测需要的引导在发展。工程检测的基本要求是高分辨率,分辨率要求达到厘米级,而对于探测深度要求较低,一般为1-2m以内。近年来,先后开发出各类高频天线,包括手持扫描雷达,天线频率达到2GHz。

地质雷达探测技术

地质雷达探测技术

• [地质雷达] Ground Penetrating Radar(GPR)是探测地下物体的地质 雷达的简称。

地质雷达利用超高频电磁波探测地下介质分布,它的基本原理是: 发射机通过发射天线发射中心频率为12.5M至1200M、脉冲宽度为 0.1 ns的脉冲电磁波讯号。当这一讯号在岩层中遇到探测目标时, 会产生一个反射讯号。直达讯号和反射讯号通过接收天线输入到接收 机,放大后由示波器显示出来。根据示波器有无反射汛号,可以判断 有无被测目标;根据反射讯号到达滞后时间及目标物体平均反射波速, 可以大致计算出探测目标的距离。
超声波检测车
超声波传感器数量: 31 个( 1 个为 环境纠正传感器) - 超声波传感器间距: 125mm - 检测精度: ±1.0mm - 最大检测宽度: 3.75m - 检测速度及采样频率: 5Km/h 采样 间距 0.3m , 10Km/h 采样间距 0.7m , 50Km/h 采样间距 3m , 80Km/h 采样间距 5.3m , 100Km/h 采样间距 6.6m
send
地质雷达的理论基础
麦克斯韦方程组
H J E Hale Waihona Puke H 0 E v / E t
J J 外 J自
H t
第三节 地质雷达仪器
• 利用有交流电通过的线圈,产生迅速变化的磁 场。这个磁场能在金属物体内部能感生涡电流。 涡电流又会产生磁场,倒过来影响原来的磁场, 引发探测器发出鸣声。金属探测器的精确性和可 靠性取决于电磁发射器频率的稳定性,一般使用 从80 to 800 kHz的工作频率。工作频率越低,对 铁的检测性能越好;工作频率越高,对高碳钢的 检测性能越好。检测器的灵敏度随着检测范围的 增大而降低,感应信号大小取决于金属粒子尺寸 和导电性能。

使用地下雷达进行地质勘探和矿山测量

使用地下雷达进行地质勘探和矿山测量

使用地下雷达进行地质勘探和矿山测量地下雷达是一种用于地质勘探和矿山测量的先进技术。

它通过发送电磁波并测量其返回时间和强度来探测地下的物质和结构。

地下雷达的应用范围广泛,包括地质调查、矿产勘探、环境监测等。

地下雷达的原理基于电磁波在不同介质中传播速度的差异。

当电磁波遇到地下的物质界面时,部分波束会被反射回来,通过测量返回的电磁信号的时间和强度,地下雷达可以揭示地下的物质变化和结构特征。

地质勘探是地下雷达广泛应用的领域之一。

地下雷达可以用于寻找地下水资源、地下洞穴、岩层变化等。

对于地质调查人员来说,掌握地下地质情况是非常重要的。

地下雷达可以提供高分辨率的地下资料,帮助地质勘探人员确定勘探目标和调整进一步的工作策略。

另一个应用领域是矿山测量。

矿山是地下雷达应用的另一个重要领域。

地下雷达可以帮助矿山工程师确定矿藏位置和分布情况。

地下雷达可以提供准确的地下资料,包括矿床的深度、厚度、结构等。

这对于确定开采的方式和规模非常关键。

地下雷达在地质勘探和矿山测量中的应用优势主要体现在以下几个方面:首先,地下雷达是一种非侵入性的测量技术。

它可以通过地表测量获取地下信息,无需对地表进行开挖或钻探,不会对环境造成破坏。

这对于环境保护和地质调查有着重要意义。

其次,地下雷达具有高分辨率的优点。

通过优化探测参数和信号处理算法,地下雷达可以提供高质量的地下资料。

这对于确定地质结构和物质边界非常重要。

此外,地下雷达具有快速、高效的特点。

相对于传统的地质勘探和矿山测量方法,地下雷达可以在较短的时间内获得大量的地下信息。

这对于提高勘探效率和降低成本具有重要意义。

当然,地下雷达也存在一些局限性。

首先,地下雷达的探测深度有一定限制。

随着深度的增加,电磁波的传播受到更多的衰减,信号强度逐渐减弱,因此探测深度有一定限制。

另外,地下雷达对地下介质的散射和吸收也会对成像效果产生影响。

在实际应用中,地下雷达通常与其他勘探技术相结合,以提高勘探效果。

地质雷达检测

地质雷达检测

地质雷达检测
地质雷达技术是一种高科技的地质勘探手段,它可以对地下深处的地质成分、地形特征和地下水进行详细的研究。

地质雷达技术利用电磁波将地球上深层的地质信息探测后传输回控制中心,用于地质结构的识别与勘探。

地质雷达技术的操作主要分为前期准备工作、施工设计等,工作流程如下:
1、对地层设施及设备进行分析和评估。

在前期准备工作中,确定勘探地点地层设施及其参数,如岩性、岩溶类型、岩溶形态以及孔洞类型、大小和深度等等,以确定雷达探测的参数和施工条件。

2、地层勘探。

利用雷达装置进行地层探测,以掌握地层的现状,确定其地质结构及剖面,以便进行分析和预测。

3、深度探测。

根据地层勘探结果,把雷达装置放置在一定深度,进行深度探测,以确定地层结构特征。

4、探测资料处理。

将探测所得数据及图像进行处理,得到准确的地质结构及剖面,对其形态和结构特征进行评价与分析。

地质雷达技术在采矿、勘探、地质测量等领域有着广泛的应用,可以深入快速地精确检测出地层的结构、构造、岩性特征及地下水的位置和状况等,为开发者提供了有价值的参考信息,对建设设施、发掘旅游资源提供了重要的支持。

土木工程中的地质雷达探测技术应用

土木工程中的地质雷达探测技术应用

土木工程中的地质雷达探测技术应用在土木工程领域,为了确保工程的质量、安全和顺利进行,各种先进的探测技术不断涌现。

其中,地质雷达探测技术以其高效、准确、无损等优点,成为了土木工程中不可或缺的重要工具。

地质雷达探测技术的原理其实并不复杂。

它就像是给大地做“CT 扫描”,通过向地下发射高频电磁波,然后接收反射回来的电磁波信号,根据信号的传播时间、振幅、频率等特征,来推断地下介质的分布情况和性质。

这项技术在土木工程中的应用范围十分广泛。

在道路工程中,它可以帮助检测道路基层和面层的厚度,发现潜在的空洞、裂缝等病害,为道路的维护和修复提供科学依据。

比如,在一些年久失修的道路上,表面看起来可能只是有些轻微的裂缝,但实际上基层可能已经出现了较大的空洞,如果不及时发现和处理,很容易引发道路塌陷等严重事故。

而地质雷达就能够在不破坏道路的情况下,快速准确地探测到这些隐藏的问题。

在桥梁工程中,地质雷达可以用于检测桥墩基础的稳定性,查明桩身的完整性,以及检测桥梁结构内部是否存在钢筋锈蚀、混凝土疏松等缺陷。

桥梁作为交通枢纽的重要组成部分,其安全性至关重要。

通过地质雷达的探测,能够及时发现桥梁结构中的隐患,采取相应的加固措施,保障桥梁的正常使用和行车安全。

在隧道工程中,地质雷达更是发挥着重要作用。

它可以在隧道施工前,对前方的地质情况进行超前预报,帮助施工人员了解是否存在断层、溶洞、含水带等不良地质体,提前做好应对措施,避免施工过程中发生坍塌、涌水等事故。

同时,在隧道建成后,还可以用于检测隧道衬砌的质量,及时发现衬砌背后的空洞、不密实等问题,确保隧道的长期稳定。

在岩土工程中,地质雷达可以用于勘察岩土体的分布和性质,为地基处理、边坡支护等设计提供可靠的地质资料。

比如在高层建筑的地基勘察中,地质雷达能够帮助确定地下是否存在软弱土层、古河道等不良地质条件,从而优化地基设计方案,保证建筑物的稳定性。

地质雷达探测技术之所以在土木工程中得到广泛应用,主要得益于它的诸多优点。

地质勘探中的地质雷达技术

地质勘探中的地质雷达技术

地质勘探中的地质雷达技术地质雷达技术是地球科学领域中一种非常重要的勘探技术,它能够通过无损检测方式获得地下结构的信息。

本文将介绍地质雷达技术的原理、应用领域以及未来的发展趋势。

一、地质雷达技术的原理地质雷达技术利用微波信号与地下物质相互作用的特性,通过检测回波信号来确定地下结构。

其原理可以简单概括为发射、接收和处理三个步骤:1. 发射:地质雷达系统通过天线发射微波信号,这些信号会在地下不同介质的界面上发生反射、折射、散射等现象。

2. 接收:接收系统会收集回波信号,并将其转化为电信号发送到处理系统进行分析。

3. 处理:处理系统对接收到的信号进行时频分析,通过波形和幅度的变化来获得地下结构的信息。

二、地质雷达技术的应用领域地质雷达技术在地球科学领域有着广泛的应用,可以用于以下几个方面:1. 地质勘探:地质雷达技术可以用于地质勘探,例如矿产资源勘探、岩溶地貌勘察、地下水资源调查等。

通过地质雷达扫描,可以获取地下结构的信息,帮助勘探人员确定勘探区域的地质构造和岩石性质。

2. 土壤研究:地质雷达技术对于土壤研究也有很大的帮助。

通过对土壤中微波信号的分析,可以获取土壤的含水量、密度、孔隙率等信息,有助于土壤质地评价和土壤污染监测。

3. 工程勘察:地质雷达技术在工程勘察中起到了重要的作用。

它可以用于检测地下管线、洞穴、地下隧道等工程建设中的隐患,帮助工程师减少钻探次数、提高工作效率,并确保施工的安全性。

4. 灾害监测:地质雷达技术在灾害监测方面也有广泛应用。

例如,它可以用于监测地质滑坡、地下水位变化、地震活动等,为灾害预警和防治提供重要的数据支持。

三、地质雷达技术的发展趋势随着科技的不断进步,地质雷达技术也在不断发展。

未来,地质雷达技术可能朝着以下几个方向发展:1. 分辨率提升:随着雷达系统技术的改进,地质雷达的分辨率将进一步提升,可以获取更精细的地下结构信息。

2. 多频段应用:地质雷达技术可以利用多种频段的微波信号,通过对多频段信号的处理来获取更丰富的地下信息。

声波探测技术和地质雷达检测

声波探测技术和地质雷达检测

2、声波的传播规律
二、声波的反射、透射和折射
斯奈尔定律: sin1sin2sirn 1sirn2
VP1 VP2 Vs1 Vs2
P0
γ1
θ
θ1
S1 P1
γ2 θ2 P2
S2
2、声波的传播规律
二、声波的反射、透射和折射
入射角和折射角的关系
sin VP1 sin 2 VP2
临界角
sin VP0 VP2
发射天线
接收天线
直达波
目标体 反射波
4.方法原理
• 超高频电磁波(10MHz-5000MHz) • 由于地下介质往往具有不同的物理特性,如介质的介电
性、导电性及导磁性差异,因而对电磁波具有不同的波 阻抗,进入地下的电磁波在穿过地下各地层或管线等目 标体时,由于界面两侧的波阻抗不同,电磁波在介质的 界面上会发生反射和折射,反射回地面的电磁波脉冲其 传播路径、电磁波场强度与波形将随所通过介质的电性 质及几何形态而变化,因此,从接收到的雷达反射回波 走时、幅度及波形资料,可以推断地下介质或管线的埋 深与类型。
3 结构工程: 3)混凝土裂缝检x1 cos d 2 a2 x22 2ax2 cos
5、声波探测技术应用的应用
3 结构工程: 3)混凝土裂缝检测 贯穿裂隙的探测
5、声波探测技术应用的应用 3 结构工程: 4)深孔法混凝土裂缝检测
37
地质雷达检测
1.什么是雷达
RAdio Detection And Ranging
(无线电探向和测距)
利用电磁波探测目标的电子设备。发射电磁波 对目标进行照射并接收其回波,由此获得目标至电 磁波发射点的距离、距离变化率(径向速度)、方 位、高度等信息。
雷达最初是用于军事目的, 探测空中目标体

地质雷达报告

地质雷达报告

地质雷达报告地质雷达 (Ground-Penetrating Radar,简称GPR) 是一种非侵入性的地质勘探工具,通过向地下发射电磁波并接收反射信号,用于探测地下结构和特征。

本报告旨在探讨地质雷达在地质工程和考古领域的应用,以及其优点和局限性。

一、地质雷达原理及技术特点地质雷达使用高频脉冲电磁波,一般在数兆赫到数千兆赫的频率范围内操作。

当电磁波遇到不同介质边界时,会发生反射、折射和散射。

地质雷达通过接收这些反射信号并进行处理分析,可以生成地下结构的剖面图像。

地质雷达具有以下技术特点:1. 非侵入性:地质雷达无需物理上接触地下,因此对目标地区没有破坏性。

2. 快速获取数据:地质雷达可以在短时间内收集大量数据,有效提高勘探效率。

3. 高分辨率:地质雷达可以提供较高的空间分辨率,可以检测到较小的地下结构特征。

4. 多功能应用:地质雷达不仅用于地质工程,还可以应用于考古学、环境监测等领域。

二、地质雷达在地质工程中的应用1. 地下管线检测:地质雷达可以准确检测地下管道的位置,帮助规划和维护地下设施。

2. 岩土勘探:地质雷达可以测定岩体的不同物理参数,如土壤含水量和密度等,为工程规划和设计提供依据。

3. 地下洞穴检测:地质雷达可以探测地下洞穴的位置和规模,帮助判断地下洞穴的稳定性和安全性。

4. 地质灾害预警:地质雷达可以监测地下水位变化、滑坡等地质灾害的迹象,提前预警风险。

三、地质雷达在考古学中的应用1. 遗址探测:地质雷达可以探测地下隐藏的古代建筑和遗址,帮助考古学家进行发掘和保护。

2. 文物勘探:地质雷达可以探测地下文物的位置和规模,为文物保护提供支持和指导。

3. 土壤分析:地质雷达可以分析土壤中的有机物和矿物质,为考古学家提供土壤成分和古代环境的信息。

四、地质雷达的优点和局限性地质雷达具有以下优点:1. 高效:地质雷达可以快速获取数据,提高勘探效率。

2. 高分辨率:地质雷达可以探测到较小的地下结构特征。

地质雷达年度总结

地质雷达年度总结

一、前言地质雷达作为一种探测地下工程、地质构造、地质灾害等问题的有效手段,在我国工程建设、资源勘探、地质环境监测等领域得到了广泛应用。

本年度,我国地质雷达技术取得了显著成果,现对本年度地质雷达工作进行总结,以期为今后地质雷达技术的发展提供借鉴。

二、工作回顾1. 技术研发与成果(1)地质雷达探测技术本年度,我国地质雷达探测技术在以下几个方面取得了突破:①探测深度和精度:通过优化雷达天线设计、信号处理算法和数据处理方法,地质雷达探测深度和精度得到了显著提高。

②多参数联合探测:结合地质雷达、地震、重力等多种探测手段,实现了对地下工程、地质构造、地质灾害等多参数联合探测。

③实时探测技术:通过开发实时数据处理软件,实现了地质雷达探测的实时性,为现场施工、应急救援等提供了有力支持。

(2)地质雷达数据处理与分析本年度,我国地质雷达数据处理与分析技术取得以下成果:①数据处理软件:开发了具有自主知识产权的地质雷达数据处理软件,提高了数据处理效率和精度。

②反演算法:针对不同地质条件,研究了多种地质雷达反演算法,提高了反演结果的可靠性。

③可视化技术:开发了地质雷达数据可视化软件,实现了地质雷达数据的直观展示。

2. 应用推广(1)工程建设领域本年度,地质雷达技术在地下工程、隧道、桥梁等工程建设领域得到了广泛应用,为工程安全、质量提供了有力保障。

(2)资源勘探领域地质雷达技术在矿产资源勘探、水文地质调查等方面取得了显著成果,提高了勘探效率和精度。

(3)地质环境监测领域地质雷达技术在地质灾害监测、地下空间探测等方面发挥了重要作用,为地质灾害防治提供了有力支持。

3. 人才培养与交流(1)人才培养:本年度,我国地质雷达领域培养了大批专业人才,为地质雷达技术发展提供了人才保障。

(2)学术交流:通过举办学术会议、研讨会等形式,加强了国内外地质雷达领域的交流与合作。

三、存在问题与挑战1. 地质雷达探测技术仍需进一步提高,如探测深度、精度、抗干扰能力等。

使用地下雷达进行地质探测与勘探的方法与技巧

使用地下雷达进行地质探测与勘探的方法与技巧

使用地下雷达进行地质探测与勘探的方法与技巧地球是一个复杂的行星,其内部结构和地质构造对人类来说一直是一个谜。

为了解决这个谜题,科学家们利用各种技术手段进行地质探测和勘探。

其中,地下雷达技术被广泛应用于地质勘探中,它为我们提供了地下结构的非侵入性图像,帮助我们理解地球的内部构成和演化过程。

地下雷达技术是一种电磁波辐射和接收技术。

它利用电磁波在地下的传播方式与地下不同材质的界面反射和散射的特点,来推断地下结构的变化。

根据雷达波的频率不同,地下雷达技术可以分为低频地下雷达和高频地下雷达两种。

低频地下雷达较适用于大尺度地质构造的勘探。

低频地下雷达具有较大的穿透深度和较强的地下反射能力,可以探测到几百米乃至千米范围内的地质信息。

在使用低频地下雷达时,我们通常会选择适当的传感器距离和扫描模式,以获得更全面的地质图像。

此外,由于低频地下雷达所探测到的回波信号较强,所以我们也需要合理设置接收器的灵敏度,避免数据误解和地质结构混淆。

高频地下雷达则适用于小尺度地质构造的勘探。

高频地下雷达具有较高的分辨率和较好的垂直探测性能,可以探测到数十米以内的地下结构。

此外,高频地下雷达还可以用于检测地下管线和隧道等工程设施,为工程建设提供重要参考。

在使用高频地下雷达时,我们需要注意地下土壤和水分对信号传播的影响,选取合适的频率和探测参数,以保证勘探结果的准确性。

除了频率的选择,地下雷达勘探中还需要考虑一些其他因素。

首先是天气条件。

雷达波在传播中会受到大气中杂散回波的影响,所以我们需要选择气象条件较好的时间进行勘探。

其次是地下介质的特性。

不同的地质介质对电磁波的传播和反射会产生不同的效果,所以我们需要对地下介质的性质有一定的了解,以便正确解读雷达图像。

在勘探过程中,数据采集和处理也是非常重要的环节。

在数据采集方面,我们通常会选择合适的数据收集仪器,并根据具体需求设置采样点的密度和测量路径。

数据处理方面,则包括数据清洗、滤波、成像和解译等步骤。

《地质雷达探测技术》

《地质雷达探测技术》

常见的隐身技术
缩小雷达反射截面 降低红外线信号特征 降低视觉信号特征 降低听觉信号特征 等离子体技术
第二部分 地质雷达工作原理
在隧道开挖、煤矿生产及地面工程建设中经常遇到 复杂的地质异常,给施工带来困难,尤其是穿过老窑 、软弱破碎带、岩溶区,或者煤与瓦斯突出的危险区 域,若事先未能探查清楚往往造成塌方、涌水或煤与 瓦斯突出等事故,影响安全生产。在地面工程地质勘 探中,要求实施大面积、高密度精查勘探,这就对地 质探测手段提出了高的要求。实践证明,应用矿井地 质雷达进行探测,简便快捷,机动灵活,能较好而准 确地提供资料,取得较好效果。
tn2

4hn2 vn2

x2 vn2
图1 地质雷达探测原理示意图
t 4z2 x2 v
当地下介质中的波速v为已知时,可根据精确测得的走 时t,由上式求得目标体的深度z。式中x值即收发距,在剖 面测量中是固定的;v值可用宽角法直接测量,也可以根据 近似计算公式:
v c
r
c为光速;
r 为地下介质的相对介电常数。
国内
发展状况是:首先通过引进国外的雷达仪器,进行研究和应 用,然后开发拥有自主知识产权的自己的雷达产品。目前,国 内使用最多的雷达大多是美国GSSI公司生产的。国内有电子部 22所,航天部爱迪尔公司、骄鹏公司和中国矿大(北京)四家 单位相继推出了自己的雷达产品。
3.1 瑞典探地雷达(RAMAC/GPR)
非屏蔽天线可应用于土木建筑、地质学及水文地质学等。
3.2 SIR雷达介绍
该型号探地雷达仪器的特点是:系统高度集成化、数字化, 操作简单化,天线屏蔽干扰小,探测范围广,分辨率高,具 有实时数据处理和信号增强,现场实时显示二维彩色图像。 其配置的探测天线系列化,可应用与各类地下目的体及目的 层的检测与探测。

地质雷达,雷达,检测,无损检测,

地质雷达,雷达,检测,无损检测,
4
工程与环境物探专题----地质雷达
一、基本原理
高频电磁波以宽频带短脉冲形式,通过发射天线被定 向送入地下,经存在电性差异的地下地层或目标体反射后 返回地面,由接收天线所接收。高频电磁波在介质中传播 时,其传播路径、电磁场强度与波形将随通过介质的电性 特征与几何形态而变化。因此,通过对时域波形的采集、 处理和分析,可确定地下分界面或地质体的空间位置及结 构。
检测用天线 (900M、500M、 300M可用)
LTD-2000车载公路检测仪
(车载系统探测速度可达到60km/h,各项指标已达到或超过国外 同类产品,可用于公路面基层厚度和基层下存在缺陷检测)
23
北京爱迪尔公司的CBS-9000型 地质雷达及天线
24
工程与环境物探专题----地质雷达
三、野外数据采集
2
这表明电磁波进入良导体的深度是其波长的1/2π 倍,高频电磁波 3 透入良导体的深度很小。当频率是100MHz时, 0.67 10 cm 。可 见,高频电磁波的电磁场,集中在良导体表面的薄层内,相应的高频 电流也集中在该薄层内流动。
27
28
1.3 分辨率(分辨最小异常体的能力)
探地雷达虽然与探空雷达一样利用高频电磁波束的反射 来探侧目标体,但是探地雷达探测的是在地下有耗介质 中的目的体,因此形成了其独特的发射波形与天线设计 特点。
据已发表的资料.探地雷达使用的发射波形有调幅脉冲波、调频 脉冲波、连续波等;使用的天线有对称振子天线、非对称振子天 线、螺旋天线、喇叭天线等。脉冲时域探地雷达输出功率大,能 实时监测测量结果,设备可做成便携式等优点,在商用地面探地 雷达中,已得到广泛应用。
与、f有关,但与无关。可见在高导介质 或使用高频时, 将增大

地质雷达在矿产勘查中的应用研究

地质雷达在矿产勘查中的应用研究

地质雷达在矿产勘查中的应用研究地质雷达是一种利用电磁波进行地下探测的仪器,它可以通过测量电磁波在地下的传播和反射情况,来获取地下的物质分布和结构信息。

在矿产勘查中,地质雷达被广泛应用于寻找矿体、判断矿体性质和评估矿产资源。

一、地质雷达原理与技术地质雷达的工作原理是利用电磁波在地下的传播和反射特性。

当电磁波遇到地下的物质界面时,会发生反射、折射和散射等现象,通过测量这些现象可以获得地下物质的信息。

地质雷达通常由发射器、接收器和数据处理系统组成。

发射器发出电磁波,接收器接收反射的电磁波,并将其转化为电信号传输给数据处理系统进行分析和处理。

二、地质雷达在矿产勘查中的应用1. 矿体探测:地质雷达可以探测地下矿体的位置、形状和大小。

通过测量电磁波的传播时间和强度,可以确定矿体的深度和分布情况。

这对于矿产勘查人员来说非常重要,可以帮助他们准确定位矿体,并制定合理的开采方案。

2. 矿体性质判断:地质雷达可以通过测量电磁波在地下的传播速度和衰减情况,来判断地下矿体的性质。

不同类型的矿体对电磁波的传播和反射有不同的特点,通过分析这些特点可以判断矿体的类型和成分,为矿产勘查提供重要依据。

3. 矿产资源评估:地质雷达可以通过测量电磁波的反射强度和频率,来估计地下矿产资源的丰度和分布情况。

通过对大面积区域进行扫描和测量,可以得到矿产资源的整体情况,为矿产勘查人员提供决策参考。

三、地质雷达在实际应用中的案例1. 铁矿勘探:某地区的矿产勘查人员使用地质雷达进行铁矿勘探。

通过地质雷达的测量,他们确定了铁矿的位置和分布情况,并制定了合理的开采方案。

这大大提高了勘探效率和开采水平,为当地经济发展做出了贡献。

2. 煤矿安全:在煤矿开采过程中,地质雷达可以用于检测地下矿层的裂隙和变形情况,及时发现潜在的安全隐患。

通过对矿井进行地质雷达扫描,可以帮助矿产勘查人员制定安全措施,保障矿工的生命安全。

3. 油气勘探:地质雷达在油气勘探领域也有广泛应用。

地质雷达探测对巷道围岩松动圈的应用探讨

地质雷达探测对巷道围岩松动圈的应用探讨

地质雷达探测对巷道围岩松动圈的应用探讨地质雷达探测技术是一种无损检测地下构造和特征的技术,该技术可以帮助我们确定隧道围岩中的松动圈情况,进而为隧道设计、建设提供有力的技术支持。

本文将探讨地质雷达探测技术在隧道围岩松动圈方面的应用效果,并分析其优点和不足之处,为隧道工程建设提供一些借鉴和参考。

一、地质雷达探测技术简介地质雷达探测技术是一种利用电磁波探测地下结构及其物理与化学特征的技术。

具体地说,地质雷达探测系统会发射电磁波,在信号到达隧道顶部后,通过测量反射波和散射波来确定隧道围岩松动圈和岩层分界线。

具体的探测过程如下:1.电磁波的发射与接收:地质雷达探测系统通过天线发射电磁波,电磁波穿越隧道顶部后会遇到各种物质,部分电磁波会被反射或者散射回来,通过接收天线进行接收。

2.数据传输:接收到的电磁波信号会进行数字化处理,通过雷达系统传输到计算机上。

3. 数据分析:在计算机上,根据电磁波所需时间和波长的关系计算出物质所在的深度。

然后,通过数据可视化处理,展现出来的是隧道平面图。

二、地质雷达探测技术在隧道围岩松动圈中的应用效果在隧道工程建设中,对于围岩松动圈的探测至关重要。

由于地质雷达探测技术可以无损探测隧道围岩的物质构成和变化规律,因此在隧道工程建设中广泛应用。

首先,地质雷达探测技术可以传统低效的极限条件下探查隧道岩体围堰松动圈情况。

探查的结果分别表明,隧道内存在不同程度的岩体松动圈,且岩体松动圈深度较浅。

通过探测,对隧道内围岩松动圈情况进行准确、快速分析,可以为隧道工程建设提供有用的参考信息,对后续钻、掘进及支护工程具有重要意义。

其次,地质雷达探测技术也可以用于探测隧道开挖后围岩松动圈的变化。

由于地质雷达探测技术可以实时传输数据,因此可以将探测后的数据与隧道建设过程相结合,得出隧道建设后存在的岩体松动圈情况。

比如,在隧道开挖施工过程中,可以将地质雷达探测数据和实时观测数据等相结合,通过不断地分析和修正,及时发现隧道施工出现的问题,及时进行修复和加固。

地质勘探中的地质雷达应用

地质勘探中的地质雷达应用

地质勘探中的地质雷达应用地质雷达是一种广泛应用于地质勘探领域的无损探测技术。

它通过发射高频电磁波并接收反射波,以获取地下的物质分布和结构情况。

地质雷达具有非常高的分辨率和探测深度,能够提供关键的地质信息,被广泛应用于地质勘探的各个方面。

一、地质构造调查地质雷达可用于对地质构造的调查和研究。

通过分析地下不同介质的反射特征,地质雷达可以揭示地表以下的地质构造,如断层、褶皱等。

这对于了解地下地质构造演化过程、预测地震、寻找矿产资源等具有重要意义。

二、地下水资源调查地质雷达在地下水资源调查中起到了至关重要的作用。

通过测量地下水位、水层厚度和水层边界等参数,地质雷达可以提供地下水资源的分布情况和水文地质条件。

这对于科学合理地开发利用地下水资源、保护生态环境至关重要。

三、岩土工程勘察地质雷达在岩土工程勘察中的应用也非常广泛。

它可以用于检测土层的厚度、密实度、含水层位置等参数,为岩土工程设计提供准确的地质数据。

此外,地质雷达还可以识别隐患,例如隐蔽洞穴、土层不均匀等,为工程的安全施工提供可靠的依据。

四、古地理研究地质雷达在古地理研究中的应用可以帮助重建古地貌和构造演化历史。

通过对地下介质的扫描和分析,地质雷达可以揭示出古地貌的形态与演化过程,为研究地球历史变迁提供重要线索。

同时,地质雷达还可以检测古河道和古湖泊等地下水体的存在,为古气候和沉积环境的重建提供依据。

五、矿产资源勘探地质雷达在矿产资源勘探中也发挥着重要作用。

它可以识别地下的矿体边界、寻找矿脉赋存区域,并提供有关矿石类型、储量和品位等信息。

地质雷达的高分辨率和探测深度,提高了勘探效率,减少了勘探成本,对矿产资源的勘探与开发具有重要的经济价值和社会意义。

综上所述,地质雷达在地质勘探中具有广泛应用的潜力和重要价值。

其高精度的地下探测能力,为地质构造调查、地下水资源调查、岩土工程勘察、古地理研究和矿产资源勘探等提供了有效的手段和工具。

随着技术的不断发展和创新,地质雷达的应用将会更加广泛和深入,为地质勘探事业做出更大的贡献。

地质雷达无损探测技术在隧道检测中的应用

地质雷达无损探测技术在隧道检测中的应用

地质雷达无损探测技术在隧道检测中的应用摘要:在隧道施工应用中,工程质量检测环节是不可忽视的,地质雷达就是一种简单方便而且对施工损伤最小的方法,在隧道检测中发挥着重要的作用。

本文主要对地质雷达检测技术的基本原理进行论述,并在此基础上对地质雷达无损探测技术在隧道检测中的应用进行阐述,希望对提高地质雷达检测探测技术的发展有所帮助。

关键词:地质雷达;无损探测技术;隧道检测;应用一、地质雷达无损探测技术概述1.地质雷达检测的基本原理地质雷达利用无线电波对被检测的隧道衬砌、岩土、钢筋等介质进行扫描,用高频电磁波以宽频带短脉冲形式,在隧道衬砌面通过发射天线传播到隧道衬砌内,经空气、混凝土、钢筋和岩层等不同的介质层反射后返回,并被接收天线所接收。

通过计算机对雷达接收到的信号进行分析、处理,从而判断隧道衬砌的施工质量。

地质雷达主要是由控制主机和天线两部分组成,主机主要的任务是提供控制的信号,天线则负责高频电磁波的发射与接收。

当天线发出电磁波后,在隧道内壁的衬砌和围岩内进行传播,当遇到衬砌边界、内部空洞等这些界面时会发生反射,天线再负责将这些反射的信号接收回来,记录全程的信号波段,主机通过记录这些反射回来波段的数据,判断隧道内壁是否存在安全隐患。

2.地质雷达检测方法的概述及物理条件在地质雷达无损探测的过程中,天线发出的信号在隧道的时间越长,接受反射回来的信号也就需要很长的时间,当信号在隧道里没有遇到隧道内壁出现的裂纹、空洞等边界时,反射回来的信号就比较强,通过这些反射回来信号强弱等一些数据,工作人员可以对隧道内壁的情况进行判断,了解隧道衬砌中是否存在安全隐患,根据隧道内部相应的结构状态来判断出现缺陷的大体位置,从而实现了检测无损的目的。

有实验证明雷达发出的电磁波在不同的介质中传播的速度也会发生改变,介质常数不仅与本身的属性有关,重要的是含水量的大小对介质常数影响非常大,运用地质雷达无损探测的技术能够有效的改善物质检测的灵敏度,解决了传统检测方式收集信号不明显的问题,有效的提高了物质检测的灵敏度,能够清晰的将不同的物质分辨开来,避免受到介质影响的干扰。

地质调查行业中的地质雷达勘探技术使用技巧

地质调查行业中的地质雷达勘探技术使用技巧

地质调查行业中的地质雷达勘探技术使用技巧地质雷达勘探技术是一种非侵入性的高效地质调查技术,其在地质调查行业中得到广泛应用。

本文将介绍地质雷达勘探技术的基本原理,以及在实际应用中的使用技巧。

一、地质雷达勘探技术的基本原理地质雷达勘探技术是利用电磁波与地下介质之间的相互作用来获取地下信息的一种方法。

其基本原理是:通过向地下发送高频电磁波,然后接收地下反射回来的电磁波信号,通过分析信号的强度、时间和频率等特征来确定地下物质的性质和分布。

二、选择适当的频率和天线在使用地质雷达勘探技术之前,我们需要根据具体的勘探目的和地质背景选择适当的频率和天线。

不同的频率和天线对地下介质的穿透能力和分辨率有不同的影响。

对于需要较高的分辨率和浅层勘探的情况,通常选择高频率的地质雷达和短距离的天线;对于需要较好的穿透能力和深部勘探的情况,通常选择低频率的地质雷达和长距离的天线。

三、数据采集和处理技巧在进行地质雷达勘探时,数据的采集和处理是非常重要的环节。

以下是一些使用技巧:1. 采集时保持稳定:在采集数据时应尽量保持雷达的稳定,避免晃动以及不必要的震动,以确保数据的准确性和可靠性。

2. 采集时密集布点:为了获取较为真实、完整的地下信息,应将采集点尽量密集布置,特别是在需要较高分辨率的勘探情况下。

3. 合理选择采集方向:根据具体勘探的目标和需求,合理选择雷达数据的采集方向,以获取最优质的数据。

4. 数据处理:在数据采集完成后,需要对采集到的数据进行处理。

数据处理包括数据去噪、纠偏、反褶积等,以提高数据的质量和可解释性。

四、应用技巧地质雷达勘探技术在地质调查行业中有广泛的应用,以下是一些应用技巧:1. 地下管线勘探:地质雷达勘探技术可用于地下管线勘探,可以帮助准确定位地下管线的位置、深度和走向,提高勘探效率和安全性。

2. 地下水资源勘探:地质雷达勘探技术可以用于地下水资源的勘探,通过分析地下水对电磁波的响应,可以识别地下水的含量、分布和运动方向。

地质雷达无损探测技术在隧道检测中的应用分析

地质雷达无损探测技术在隧道检测中的应用分析

地质雷达无损探测技术在隧道检测中的应用分析摘要:工程质量问题在隧道施工中非常重要,常用的检测方法为地质雷达,这一方法凭借着方便快捷的优势得到了广泛的应用,本文就地质雷达无损检测技术的应用进行了深入的分析探究。

关键词:地质雷达;无损探测技术;隧道检测;应用引言:隧道检测中经常会出现一些棘手的问题,如初期支护与二次衬砌厚度不够以及利用杂物充填了围岩与初期支护的间隙等,严重影响到了整个隧道的工程质量。

而随着地质雷达无损探测技术的全面应用,可以有效避免很多隧道支护结构中的质量问题,意义重大。

1地质雷达无损探测技术概述近些年国内交通运输行业的发展势头强劲,铁路以及公路等交通设施建设速度也明显加快,而质量问题也越来越突出。

直接爆破方法是传统隧道开发的主要模式,不利于隧道后期的高质量建设,会导致衬砌层内出现严重的空洞,无法达到要求的内侧厚度,隧道在后续使用中可能存在一些严重的安全隐患。

1.1地质雷达检测原理地质雷达无损探测技术设备主要由控制器与天线组成,控制器的作用是接收信号,而天线则负责接收以及发射信号。

控制器需要将可控的信号传送到天线装置上,天线在接收信号之后将其再次发射出去,同时检测过程中传递出的高频电磁波也需要由天线来接收。

在进行检测时,由天线装置发射电磁波,电磁波会借助隧道衬砌与其他介质进行传递,而如果隧道中存在空洞、裂缝,电磁波就会出现一定的折射,天线装置需要重新接收经过折射的电磁波,并将其向控制装置传导,控制器需要仔细分析并处理接收到的电磁波信号,在经过数字化处理后在显示屏上展现相应的图像,在此过程中产生的数据会被全部记录被储存。

一般情况下,信号传递时间与反射所需时间是成正比的,而如果隧道内反射界面不存在明显的缺陷,最终反射回来的信号强度也会更大。

也就是说,只需要根据反射信号的耗时和强度就可对隧道衬砌中的缺陷情况进行判断,并且可通过数据分析,清楚的了解隧道内缺陷所处位置、缺陷状态、属性以及衬砌厚度等,检测结果较为准确可靠[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用领域:地质雷达在考古、市政建设、建筑、铁路、公路、水利、电力、采矿、航空等领域都有广泛应用。

地质雷达最早用于工程场地勘查:解决覆盖层厚度、松软层厚度及分布、基岩风化层界面及分布、基岩节理和断裂带、地下水分布、普查场地地下溶洞、空洞、塌陷区、地下人工洞室、地下排污巷道、地下排污管道及地下管线等,在回填等松软层上,探查深度可达20m 以上,在致密或基岩上探查深度可达30m以上;工程质量检测及病害诊断:近年来,国内外铁路公路等地下隧道、公路及城市道路路面、机场跑道、高切坡挡墙等重要工程项目的工程质量检测及病害诊断中,广泛采用雷达技术。

主要检测衬砌厚度、破损、裂隙、脱空、空洞、渗漏带、回填欠密实区、围岩扰动等,路面及跑道各层厚度、破损情况,混凝土构件中的空洞、裂隙及钢筋分布等,检测精度可达毫米级;地下埋设物与考古探察:考古是地质雷达应用较早的领域,探测古建筑基础、地下洞室、金属物品等,在城市改造中用雷达可探测地下埋设物,如电力管网、输水管道、排污管道、输汽管网、通讯管网等;隧道超前跟踪探测及预报:地质雷达可预测前方50m范围内的断层、溶洞、裂隙带、含水带等地质构造;地质雷达在矿井中的探测应用:我国煤矿及金属矿山很多,煤矿及金属矿山地质构造相当复杂,地质雷达已开始用于矿山井下,在矿井可用在掘进头前方超前探测及预测、巷道顶底板及两邦探测,主要用来探测断层、陷落柱、溶洞,裂隙带、采空区、含水带、煤厚、顶底板、瓦斯突出危险带、金属富矿带等。

技术特点:煤炭科学研究总院重庆分院吸取国内外地质雷达优点,积多年探测经验,先后研制成F、KDL系列防爆地质雷达及其探测技术,同时还引进美国SIR—10H型工程雷达和加拿大EKKO-100型雷达。

F、KDL系列防爆地质雷达由防爆工业控制机、发射机、接收机、系列天线、采集和处理软件、高速通讯线缆等组成。

可超前探测50米范围内的断层,陷落柱,含水带等地质构造。

工作方法多样灵活,可全方位探测。

仪器轻巧、操作方便,实时显示测量剖面。

资料处理软件操作简单,测量结果直观,易于解释。

完善的售前售后服务和及时的技术支持培训。

应用实例:京九和漳龙线103座铁路隧道质量无损检测及评估、山西引黄工程南干6#隧洞溶洞区地质雷达探测溶洞、伊朗霍梅尼国际机场跑道下隐伏坎儿井的地质雷达探测、重庆市轻轨2号线临江门车站超前预报及监测、海南东线高速公路大茅隧道左线地质雷达超前跟踪探测及灾害预报、重庆奎星楼C组团高切坡雷达探测以及J2K2挡墙锚杆检测、金开大道K0+340~k6+610
路段地质雷达检测水稳层路基厚度及沥青砼路面厚度、沙滨路高家花园引水涵洞位置雷达探测、水溪煤矿探测岩溶通道岩溶水及断层界面、开滦矿务局范各庄煤矿探测岩溶水、汾西矿业集团曙光煤业有限责任公司探测6#煤层可采边界等。

获奖:荣获国家、省部科技进步二、三等奖和北京市金桥工程一等奖。

2 无线电波透视及其探测技术
应用领域:电磁波透视技术从70年代开始研究并先后应用到金属矿山、煤矿和工程领域。

目前主要用于煤矿,它主要用来探测两巷道之间、两钻孔之间、钻孔与巷道之间、坝体两基脚之间的断层、陷落柱、褶曲、褶皱、冲刷、松软破碎带、含水带、空洞、突水构造、煤层厚变化带、煤与瓦斯突出危险区、查找金属矿中的盲矿体和富矿带等。

技术特点:煤层中断裂构造的界面,构造引起的煤层破碎带、煤层破坏软分层带以及富含水低电阻率带等都能对电磁波产生折射、反射和吸收,造成电磁波能量的损耗。

如果发射源发射的电磁波穿越煤层途径中,存在断层、陷落柱、富含水带、顶板垮塌和富集水的采空区、冲刷、煤层产状变化带、煤层厚度变化和煤层破坏软分层带等地质异常体时,接收到的电磁波能量就会明显减弱,这就会形成透视阴影(•异常区)。

矿井电磁波透视技术,就是根据电磁波在煤层中的传播特性而研制的一种收、发电磁波的仪器和资料处理系统。

它由智能无线电波透视仪,分析软件、计算机和彩色喷墨打印机等组成。

仪器轻巧、操作方便,资料处理软件操作简单,结果直观,易于解释。

应用实例:湖南洞庭湖大堤病害(蚁巢、空洞及渗漏)探测,清江水布垭引水洞间地质情况探测,山西、河北、山东等省市的100多个煤矿井下地质构造、煤厚、瓦斯灾害区、采空区及水害等探测。

获奖:煤炭部科技进步二等、三等奖和四川省科技进步二等奖。

3 超声波、基桩动测及其检测技术
应用领域:工程质量检测,如预埋超声检测管的桥基基桩超声透射法检测桩身结构完整性、预埋超声检测管的房屋等建筑基桩超声透射法检测桩身结构完整性、各种钢筋混凝土强度检测、钢筋混凝土裂纹和裂缝检测、桥梁等钢管内浇灌混凝土密实度及缺陷检测、各种建筑的基桩反射波法检测桩身结构完整性等。

技术特点:超声波法是由超声脉冲发射源向混凝土内发射高频弹性脉冲波,当混凝土内存在不连续或破损界面时,缺陷面形成波阻抗界面,产生波的透射和反射,使接收到的透射波能量明显降低;当混凝土内存在松散、蜂窝、孔洞等严重缺陷时,将产生波的散射和绕射;根据波的初至到达时间和波的能量衰减特性、频率变化及波形畸变程度等特征,可以获得测区范围内混凝土的密实度参数。

测试记录不同侧面、不同高度上的超声波动特征,经过处理分析就能判别测区内混凝土存在缺陷的性质、大小及空间位置和参考强度。

基桩动测即反射波法的是在桩身顶部进行竖向激振,弹性波沿着桩身向下传播,当桩身存在明显波阻抗差异的介面(如桩底、断裂和严重离析等部位)或桩身截面积变化(如扩径或缩径)部位,将产生反射波。

经接收放大、滤波和数据处理,可识别来自不同部位的反射信息,据此计
算桩身速度,以判断桩身完整性及估计混凝土强度等级。

还可根据波速和桩底反射波到达时间对桩的实际长度加以核对。

超声波、基桩动测仪器轻便、现场操作方便,资料处理软件操作简单,结果直观。

应用实例:广渝高速公路广安互通式立交桥桥基基桩检测、沙区新桥1号康居工程A B E F 栋桩基检测、武隆苏家河大桥桥基基桩检测、重庆丰收坝水厂基桩检测、奎星楼A B组楼中层连接天桥A12-B11大梁混泥土裂缝检测、李家沱长江大桥裂缝超声波检测、江津市体育馆混凝土梁超声波缺陷检测、合阳嘉陵江大桥钢管内混凝土浇灌质量超声波检测、巫山长江大桥钢管内混凝土浇灌质量超声波检测。

4 高密度直流电法测量技术
应用领域:可广泛应用于能源勘探与城市物探、道路与桥梁勘探、金属与非金属矿产资源勘探等方面;亦用于工程地质勘查(地基基岩界面、岩溶、基岩断裂构造、覆盖层厚度、滑坡体滑移面等探测);水文工程,如找水、探测场地地下水分布等;堤坝隐患和渗漏水探测;洞体探测、考古工作;矿井、隧道含水构造及小煤窑积水探测。

技术特点:高密度电阻率测量系统是在参照国外先进电法仪器的基础上,结合我国国情研制的新一代直流电法仪测量系统,该系统具有存储量大、测量准确快速、操作方便等特点。

高密度直流电阻率法实际上纯属直流电阻率法,基本原理与传统普通直流电阻率法相同,不同的是它的装置是一种组合式剖面装置。

它们都是以地下介质(岩层)的导电性差异为基础的一种物探方法:地下各种介质在施加电场作用下,由于介质的电性差异导致地下传导的电流分布也存在差异,用视电阻率来反应出这种电性差异性分布。

在一定的供电和测量电极排列方式下,通过供电电极供电,测量电极测量出测量电极之间的电位差,再通过数学公式计算出视电阻率,然后通过对视电阻率的分布规律进行分析来寻找地质目标体。

应用实例:武隆梓桐庙滑坡体滑移面探测、松藻矿务局逢春煤矿探测滑坡面、华宇集团金沙港湾建筑工地探测排水管道位置、逢春煤矿地表小煤窑分布及积水情况探测、安徽皖北任楼煤矿陷落柱、断层及巷道地板水探测。

相关文档
最新文档