高考文数真题训练08 平面解析几何(解答题)(原卷版)
高考数学(广东专用,文科)大一轮复习配套课时训练:第八篇 平面解析几何 第4节 双曲线(含答案)
第4节双曲线课时训练练题感提知能【选题明细表】A组一、选择题1.设P是双曲线-=1上一点,F1,F2分别是双曲线左右两个焦点,若|PF1|=9,则|PF2|等于( B )(A)1 (B)17(C)1或17 (D)以上答案均不对解析:由双曲线定义||PF1|-|PF2||=8,又|PF1|=9,∴|PF2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c-a=6-4=2>1,∴|PF2|=17.故选B.2.(2013年高考湖北卷)已知0<θ<,则双曲线C 1:-=1与C2:-=1的( D )(A)实轴长相等(B)虚轴长相等(C)离心率相等(D)焦距相等解析:双曲线Cc1==1,双曲线C2的半焦距=1,故选D.c2=3.(2012年高考湖南卷)已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为( A )(A)-=1 (B)-=1(C)-=1 (D)-=1解析:由焦距为10,知2c=10,c=5.将P(2,1)代入y=x得a=2b.a2+b2=c2,5b2=25,b2=5,a2=4b2=20,所以方程为-=1.故选A.4.已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2等于( C )(A)(B)(C)(D)解析:∵c2=2+2=4,∴c=2,2c=|F1F2|=4,由题可知|PF 1|-|PF2|=2a=2,|PF1|=2|PF2|,∴|PF 2|=2,|PF1|=4,由余弦定理可知cos∠F1PF2==.故选C.5.设椭圆C1的离心率为,焦点在x轴上且长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为( A )(A)-=1 (B)-=1(C)-=1 (D)-=1解析:在椭圆C1中,因为e=,2a=26,即a=13,所以椭圆的焦距2c=10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C2为双曲线,根据双曲线的定义可知,双曲线C2中的2a2=8,焦距与椭圆的焦距相同,即2c2=10,可知b2=3,所以双曲线的标准方程为-=1.故选A.二、填空题6.(2013年高考辽宁卷)已知F为双曲线C:-=1的左焦点,P,Q为C 上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF 的周长为.解析:由题知,双曲线中a=3,b=4,c=5,则|PQ|=16,又因为|PF|-|PA|=6,|QF|-|QA|=6,所以|PF|+|QF|-|PQ|=12,|PF|+|QF|=28,则△PQF的周长为44.答案:447.已知双曲线C:-=1(a>0,b>0)的离心率e=2,且它的一个顶点到较近焦点的距离为1,则双曲线C的方程为.解析:双曲线中,顶点与较近焦点距离为c-a=1,又e==2,两式联立得a=1,c=2,∴b2=c2-a2=4-1=3,∴方程为x2-=1.答案:x2-=18.(2013韶关模拟)设点P是双曲线-=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,其中F1,F2分别是双曲线的左、右焦点,若tan ∠PF2F1=3,则双曲线的离心率为.解析:依题意得PF1⊥PF2,tan ∠PF2F1==3,|PF1|=3|PF2|,设|PF1|=k,则|PF2|=3k,|PF1|2+|PF2|2=10k2=|F1F2|2=4c2,又∵2a=|PF1|-|PF2|=2|PF2|=2k,即a=k,∴e==,即双曲线的离心率为.答案:9.(2013年高考湖南卷)设F1,F2是双曲线C:-=1(a>0,b>0)的两个焦点.若在C上存在一点P,使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为.解析:设点P在双曲线右支上,由题意,在Rt△F1PF2中,|F1F2|=2c,∠PF1F2=30°,得|PF 2|=c,|PF1|=c,|PF 1|-|PF2|=2a,(-1)c=2a,e===+1.答案:+110.设F1、F2分别为双曲线-=1(a>0,b>0)的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为.解析:如图,由题意得|PF2|=|F1F2|=2c,|F2M|=2a.在△PF2M中,|PF2|2=|F2M|2+|PM|2,而|PM|=|PF1|,又∵|PF1|-|PF2|=2a,∴|PF1|=2a+2c,即|PM|=a+c.∴|PF2|2=(2c)2=(2a)2+(a+c)2.又c2=a2+b2,∴=,渐近线方程为y=±x,即4x±3y=0.答案:4x±3y=0三、解答题11.已知双曲线x2-=1,过点P(1,1)能否作一条直线l,与双曲线交于A、B两点,且点P是线段AB的中点?解:法一设点A(x1,y1),B(x2,y2)在双曲线上,且线段AB的中点为(x0,y0),若直线l的斜率不存在,显然不符合题意.设经过点P的直线l的方程为y-1=k(x-1),即y=kx+1-k.由得(2-k2)x2-2k(1-k)x-(1-k)2-2=0(2-k2≠0).①∴x0==.由题意,得=1,解得k=2.当k=2时,方程①成为2x2-4x+3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l与双曲线交于A,B两点,且点P(1,1)是线段AB 的中点.法二设A(x1,y1),B(x2,y2),若直线l的斜率不存在,即x1=x2不符合题意,所以由题得-=1,-=1,两式相减得(x1+x2)(x1-x2)-=0,即2-=0,即直线l斜率k=2,得直线l方程y-1=2(x-1),即y=2x-1,联立得2x2-4x+3=0,Δ=16-24=-8<0,即直线y=2x-1与双曲线无交点,即所求直线不合题意,所以过点P(1,1)的直线l不存在.12.(2013南京质检)中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F 1,F2,且|F1F2|=2,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P为这两曲线的一个交点,求cos∠F1PF2的值.解:(1)由已知c=,设椭圆长、短半轴长分别为a、b,双曲线实半轴、虚半轴长分别为m、n,则解得a=7,m=3.∴b=6,n=2.∴椭圆方程为+=1,双曲线方程为-=1.(2)不妨设F1、F2分别为左、右焦点,P是第一象限的一个交点,则|PF1|+|PF2|=14,|PF1|-|PF2|=6,∴|PF1|=10,|PF2|=4.|=2,又|F∴cos∠F1PF2===.13.已知双曲线-=1(b>a>0),O为坐标原点,离心率e=2,点M(,)在双曲线上.(1)求双曲线的方程;(2)若直线l与双曲线交于P,Q两点,且²=0.求+的值.解:(1)∵e=2,∴c=2a,b2=c2-a2=3a2,双曲线方程为-=1,即3x2-y2=3a2.∵点M(,)在双曲线上,∴15-3=3a2.∴a2=4.∴所求双曲线的方程为-=1.(2)设直线OP的方程为y=kx(k≠0),联立-=1,得∴|OP|2=x2+y2=.则OQ的方程为y=-x,有|OQ|2==,∴+===.B组14.已知点P在曲线C1:-=1上,点Q在曲线C2:(x-5)2+y2=1上,点R 在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是( C )(A)6 (B)8 (C)10 (D)12解析:依题意知P在曲线C1的左支上时|PQ|-|PR|取到最大值,|PQ|的最大值为|PC2|+1,|PR|的最小值为|PC3|-1,则|PQ|-|PR|的最大值是|PC2|+1-(|PC3|-1)=|PC2|-|PC3|+2=8+2=10.故选C.15.从双曲线-=1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于点P,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|与b-a的大小关系为( B )(A)|MO|-|MT|>b-a (B) |MO|-|MT|=b-a(C)|MO|-|MT|<b-a (D)不确定解析:如图所示,取双曲线的右焦点为F',∵M为PF的中点,∴|MF|=|PF|.Rt△OFT中,|OT|=a,|OF|=c,∴|FT|=b,连接OM,PF',则|OM|=|PF'|,∴|MO|-|MT|=|PF'|-(|MF|-|FT|)=|PF'|-|PF|+b=-a+b=b-a.故选B.16.设点P在双曲线-=1(a,b>0)的右支上,双曲线的左、右焦点分别为F1,F2,若|PF1|=4|PF2|,则双曲线离心率的取值范围是. 解析:由双曲线的定义得|PF1|-|PF2|=2a,又|PF1|=4|PF2|,所以4|PF2|-|PF2|=2a,所以|PF2|=a,|PF1|=a,所以整理得a≥c,所以≤,即e≤,又e>1,所以1<e≤. 答案:1<e≤。
(2008年-2020年)高考数学分类汇编全国1卷(理)--平面解析几何初步(含全部答案解析)
D.190 cm
12 (2020) 15.某中学开展劳动实习,学生加工制作零件,零件的界面如图所示. O 为圆孔
及轮廓圆弧 AB 所在圆的圆心, A 是圆弧 AB 与直线 AG 的切点,B 是圆弧 AB 与直线 BC 的 切点,四边形 DEFG 为矩形, BC DG ,垂足为 C , tan ∠ ODC 3 , BH / / DG , EF 12cm, DE 2cm, A 到直线 DE 和 EF 的距离均为
交于 A, B 两点, | AB | 4 3 ,则 C 的
实轴长为
(A) 2
(B) 2 2
(C)4
(D)8
x 1 0,
8(2015)(15)若
x,
y
满足约束条件
x
x
y y
0,值为
.
x 2y 1 9(2017)14.设 x,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值为
|
PA
|
|
PB
|
cos
2
=
x2 (1
2 sin2
)
=
x2 (x2 1) x2 1
=
B
x4 x2 x2 1
x y 0
x 2 y 2 ≤ 0,
10(2018)13.若
x
,
y
满足约束条件
x
y
1≥
0,
则 z 3x 2y 的最大值
y ≤ 0,
为
.
11(2019)4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足
底的长度之比是 5 1( 5 1 ≈0.618,称为黄金分割比例),著名的“断臂维
C 交于 A ,B 两点, AB 为 C 的实轴长的 2 倍,则 C 的离心率为( )
2008年全国各地高考数学试题及解答分类汇编大全(11解析几何初步)
A. k ( 2,2) B. k (∞, 2) ( 2,∞)
C. k ( 3,3)
D. k (∞, 3) ( 3,∞)
6.(2008 全国Ⅱ卷文)原点到直线 x 2 y 5 0 的距离为( D )
A.1
B. 3
C.2
D. 5
7.(2008 全国Ⅱ卷理) 等腰三角形两腰所在直线的方程分别为 x y 2 0 与 x 7 y 4 0 ,
y k(x 4) ,其中 k ≤ 1 . 2
圆 C 的圆心为 C(4, 2) ,半径 r 2 .
圆心 C 到直线 l 的距离
d 2 .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9 分 1 k2
所以所求直线的斜率为 k=1. 故所求直线的方程是 y-0=1(x+1),即 x-y+1=0.
2.(2008 湖南文) 将圆 x 2 y 2 1 沿 x 轴正向平移 1 个单位后所得到圆 C,则圆 C 的方程是
(x 1)2 y2 1_,若过点(3,0)的直线 l 和圆 C 相切,则直线 l 的斜率为___
6.(2008 天津文)已知圆 C 的圆心与点 P(2,1) 关于直线 y x 1对称.直线 3x 4 y 11 0 与圆 C 相
交于 A,B 两点,且 AB 6 ,则圆 C 的方程为
x2 ( y 1)2 18
.
7.(2008 浙江理)已知 a >0,若平面内三点 A(1,- a ),B(2, a 2 ), C(3, a3 )共线,则 a =1 2 。
高考卷,08,普通高等学校招生全国统一考试数学(广东卷·文科)(附答案,完全word版)
高考卷,08,普通高等学校招生全国统一考试数学(广东卷·文科)(附答案,完全word版)2008年普通高等学校招生全国统一考试(广东卷)(文科)全解析广东佛山南海区南海中学钱耀周一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员}。
集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是A.ABB.BCC.A∩B=CD.B∪C=A 【解析】送分题呀!答案为 D. 2.已知0<a<2,复数(i是虚数单位),则|z|的取值范围是 A.(1,) B. (1,) C.(1,3) D.(1,5) 【解析】,而,即,,选B. 3.已知平面向量,,且//,则=()A、 B、 C、 D、【解析】排除法:横坐标为,选B. 4.记等差数列的前项和为,若,则该数列的公差()A、2B、3C、6D、7 【解析】,选B. 5.已知函数,则是()A、最小正周期为的奇函数B、最小正周期为的奇函数C、最小正周期为的偶函数 D、最小正周期为的偶函数【解析】,选D. 6.经过圆的圆心C,且与直线垂直的直线方程是()A、 B、 C、 D、【解析】易知点C为,而直线与垂直,我们设待求的直线的方程为,将点C的坐标代入马上就能求出参数的值为,故待求的直线的方程为,选C.(或由图形快速排除得正确答案.) 7.将正三棱柱截去三个角(如图1所示A、B、C分别是三边的中点)得到的几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为【解析】解题时在图2的右边放扇墙(心中有墙),可得答案A. 8. 命题“若函数在其定义域内是减函数,则”的逆否命题是()A、若,则函数在其定义域内不是减函数B、若,则函数在其定义域内不是减函数C、若,则函数在其定义域内是减函数D、若,则函数在其定义域内是减函数【解析】考查逆否命题,易得答案A. 9、设,若函数,,有大于零的极值点,则()A、 B、 C、 D、【解析】题意即有大于0的实根,数形结合令,则两曲线交点在第一象限,结合图像易得,选A. 10、设,若,则下列不等式中正确的是()A、 B、 C、 D、【解析】利用赋值法:令排除A,B,C,选D. 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11-13题)11.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为,,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在的人数是. 【解析】,故答案为13. 12.若变量x,y满足则z=3x+2y的最大值是________。
第08练-平面解析几何(解析版)
第08练-平面解析几何一、单选题1.已知点F 为椭圆2221(1)x y a a+=>的一个焦点,过点F 作圆221x y +=的两条切线,若这两条切线互相垂直,则a =( )A .2B .1C .2D .3【答案】D【解析】【分析】根据切线垂直,推导出F 点至坐标原点的距离,即可求得交点坐标和a .【详解】由题可设(),0F c ,根据题意,作图如下:因为过F 点的两条切线垂直,故可得45OFH ∠=︒,则1OH HF ==,故可得2OF =,即点F 坐标为)2,0. 则2,1c b ==,故2223a b c =+=,解得3a =故选:D.【点睛】 本题考查椭圆方程的求解,涉及直线与圆相切时的几何性质,属基础题.2.已知圆C :(x ﹣a )2+(y ﹣2)2=4(a >0)及直线l :x ﹣y+3=0,当直线l 被圆C 截得的弦长为23时,a 的值等于( )A B .2-C 1 D 1【答案】C【解析】【分析】由题意,结合垂径定理算出圆心到直线l :x ﹣y+3=0的距离d =1,利用点到直线的距离公式建立关于a 的方程,求解即可.【详解】∵圆C :(x ﹣a )2+(y ﹣2)2=4的圆心为C (a ,2),半径r =2∴圆心到直线l :x ﹣y+3=0的距离d=∵l 被圆C 截得的弦长为∴2d +2=22,解得d =1,因此,d=1,得1a =或1a =(舍) 故选C .【点睛】本题考查了圆的方程、点到直线的距离公式和直线与圆的位置等知识,属于基础题.3.已知两点()1,0A -,()10B ,以及圆C :222(3)(4)(0)x y r r -+-=>,若圆C 上存在点P ,满足0AP PB ⋅=u u u v u u u v ,则r 的取值范围是( )A .[]3,6B .[]3,5C .[]4,5D .[]4,6【答案】D【解析】【分析】由题意可知:以AB 为直径的圆与圆()()22234(0)x y r r -+-=>有公共点,从而得出两圆圆心距与半径的关系,列出不等式得出r 的范围.【详解】 Q 0AP PB ⋅=u u u v u u u v,∴点P 在以()1,0A -,()1,0B 两点为直径的圆上,该圆方程为:221x y +=,又点P 在圆C 上,∴两圆有公共点.两圆的圆心距5d ==∴151r r -≤≤+解得:46r ≤≤故选D【点睛】本题考查了圆与圆的位置关系,还考查了向量垂直的数量积表示,属于中档题.4.已知椭圆22221(0)x y a b a b+=>>的离心率为35,直线2100x y ++=过椭圆的左顶点,则椭圆方程为( )A .22154x y += B .221259x y += C .221169x y += D .2212516x y += 【答案】D【解析】【分析】直线2100x y ++=过椭圆的左顶点,则椭圆的左顶点为(5,0)-,所以椭圆中5a =,由离心率为35,则3c =,可求出椭圆的b ,从而可得椭圆的方程.【详解】直线2100x y ++=与x 轴的交点为(5,0)-,直线2100x y ++=过椭圆的左顶点,即椭圆的左顶点为(5,0)-.所以椭圆中5a =,由椭圆的离心率为35,则3c =. 则4b =,所以椭圆的方程为:2212516x y +=. 故答案为:D【点睛】本题考椭圆的简单几何性质,根据离心率求,,a b c ,属于基础题.5.已知双曲线的标准方程为2222x y a b-=1(a >0,b >0),若渐近线方程为y =,则双曲线的离心率为( )A .3B .2CD .4【答案】B【解析】【分析】由双曲线22221(0,0)x y a b a b -=>>的渐近线方程是y =,可得b a=c e a == 【详解】Q 双曲线22221(0,0)x y a b a b-=>>的渐近线方程是y =,∴b a=∴双曲线的离心率2c e a ===. 故选:B .【点睛】本题考查双曲线的简单性质,考查学生的计算能力,确定b a= 6.已知点F 是抛物线24x y =的焦点,点P 为抛物线上的任意一点,(1,2)M 为平面上点,则PM PF +的最小值为( )A .3B .2C .4D .【答案】A【解析】【分析】作PN 垂直准线于点N ,根据抛物线的定义,得到+=+PM PF PM PN ,当,,P M N 三点共线时,PM PF +的值最小,进而可得出结果.【详解】如图,作PN 垂直准线于点N ,由题意可得+=+≥PM PF PM PN MN ,显然,当,,P M N 三点共线时,PM PF +的值最小;因为(1,2)M ,(0,1)F ,准线1y =-,所以当,,P M N 三点共线时,(1,1)-N ,所以3MN =.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.7.已知椭圆22221x y a b +=(a >b >0)与双曲线222212x y a b -=(a >0,b >0)的焦点相同,则双曲线渐近线方程为( )A .3y x =±B .3y x =C .2y x =D .2y x = 【答案】A【解析】【分析】由题意可得222222a b a b -=+,即223a b =,代入双曲线的渐近线方程可得答案.【详解】依题意椭圆22221(a b 0)x y a b +=>>与双曲线22221(a 0,b 0)2x y a b -=>>即22221(a 0,b 022)x y a b -=>>的焦点相同,可得:22221122a b a b -=+, 即223a b =,∴3b a =3=双曲线的渐近线方程为:3x y x =±=, 故选:A .【点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.8.已知双曲线221169x y C -=:的右焦点为F ,过原点O 的直线与双曲线C 交于,A B 两点,且60AFB ∠=︒,则BOF V 的面积为( )A.2 B.2 C .32 D .92【答案】A【解析】【分析】根据题意画出图像,设双曲线的左焦点为1F ,连接11,AF BF ,即可得四边形1AFBF 为平行四边形,从而求出1F BF ∠,利用余弦定理和双曲线的定义联立方程可求出1|BF ||BF|的值,利用面积公式可求出1F BF V 的面积,根据1F BF V 和BOF V 的关系即可得到答案.【详解】如图,设双曲线的左焦点为1F ,连接11,AF BF ,依题可知四边形1AFBF 的对角线互相平分,则四边形1AFBF 为平行四边形,由60AFB ∠=︒可得1120F BF ∠=︒, 依题可知12||2216910F F c ==+=, 由余弦定理可得:2221111|BF |+|BF|-2|BF ||BF|cos |||F BF F F ∠=即2211|BF |+|BF|+|BF ||BF|100=;又因为点B 在椭圆上,则1||BF |-|BF||28a ==,所以2211|BF |+|BF|-2|BF ||BF|64=.两式相减得13|BF ||BF|36=,即1|BF ||BF|12=,所以1F BF V 的面积为:111113||||sin 123322F BF S BF BF F BF =∠=⨯=V 因为O 为1F F 的中点,所以11332OBF F BF S S ==V V 故选:A【点睛】本题主要考查双曲线的几何性质,涉及到了双曲线的定义,余弦定理和面积公式,考查学生转化和化归的能力,属中档题.9.已知椭圆2221(02)4x y b b+=<<的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于A ,B 两点,若22BF AF +的最大值为5,则b 的值为()A .1BCD .3【答案】C【解析】【分析】由题意可知椭圆是焦点在x 轴上的椭圆,利用椭圆定义得到228||BF AF AB +=-,再由过椭圆焦点的弦中通径的长最短,可知当AB 垂直于x 轴时||AB 最小,把||AB 的最小值2b 代入228||BF AF AB +=-,由22BF AF +的最大值等于5可求b 的值.【详解】由02b <<可知,焦点在x 轴上,∴2a =,∵过1F 的直线交椭圆于A ,B 两点,∴22112248BF AF BF AF a a a +++=+== ∴228||BF AF AB +=-.当AB 垂直x 轴时||AB 最小,22BF AF +值最大,此时222||b AB b a==,∴258b =-,解得b =C . 【点睛】 本题主要考查椭圆的定义,解题的关键是得出22114BF AF BF AF a +++=,属于一般题.10.过双曲线2213y x -=的右支上一点P 分别向圆1C :22(2)4x y ++=和圆2C :22(2)1x y -+=作切线,切点分别为,M N ,则22||||PM PN -的最小值为( )A .5B .4C .3D .2【答案】A【解析】【分析】 求得两圆的圆心和半径,设双曲线2213y x -=的左右焦点为1(2,0)F -,2(2,0)F ,连接1PF , 2PF ,1F M ,2F N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.【详解】圆221:(2)4C x y ++=的圆心为(2,0)-,半径为12r =;圆222:(2)1C x y -+=的圆心为(2,0),半径为21r =, 设双曲线2213y x -=的左右焦点为1(2,0)F -,2(2,0)F , 连接1PF ,2PF ,1F M ,2F N ,可得2222221122||||(||)(||)PM PN PF r PF r -=---2212(||4)(||1)PF PF =---22121212||||3(||||)(||||)3PF PF PF PF PF PF =--=-+-12122(||||32(||||)32232435a PF PF PF PF c =+-=+--=-=g g )….当且仅当P 为右顶点时,取得等号,即最小值5.故选A .【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力,属于中档题.二、多选题11.已知点A 是直线:20l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .()0,2B .()1,21-C .()2,0D .()21,1- 【答案】AC【解析】【分析】 设点A 的坐标为(),2t t -,可得知当AP 、AQ 均为圆221x y +=的切线时,PAQ ∠取得最大值90o ,可得出四边形APOQ 为正方形,可得出2OA =,进而可求出点A 的坐标.【详解】如下图所示:原点到直线l 的距离为222111d ==+,则直线l 与圆221x y +=相切, 由图可知,当AP 、AQ 均为圆221x y +=的切线时,PAQ ∠取得最大值,连接OP 、OQ ,由于PAQ ∠的最大值为90o ,且90APO AQO ∠=∠=o ,1OP OQ ==,则四边形APOQ 为正方形,所以22OA == 由两点间的距离公式得()2222OA t t =+-=整理得22220t t -=,解得0t =2,因此,点A 的坐标为(2或)2,0. 故选:AC.【点睛】 本题考查直线与圆的位置关系的综合问题,考查利用角的最值来求点的坐标,解题时要找出直线与圆相切这一临界位置来进行分析,考查数形结合思想的应用,属于中等题.12.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点,A B 的距离之比为定值()1λλ≠的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系xOy 中,()()2,0,4,0,A B -点12PA P PB=满足.设点P 的轨迹为C ,下列结论正确的是( ) A .C 的方程为()2249x y ++=B .在x 轴上存在异于,A B 的两定点,D E ,使得12PD PE=C .当,,A B P 三点不共线时,射线PO 是APB ∠的平分线D .在C 上存在点M ,使得2||MO MA = 【答案】BC 【解析】 【分析】通过设出点P 坐标,利用12PA PB=即可得到轨迹方程,找出两点,D E 即可判断B 的正误,设出M 点坐标,利用2||MO MA =与圆的方程表达式解出就存在,解不出就不存在. 【详解】设点(),P x y ,则12PA PB=,化简整理得2280x y x ++=,即()22416x y ++=,故A错误;当()()1,0,2,0,D B -时,12PDPE =,故B 正确;对于C 选项,222cos =2AP PO AO APO AP PO+-∠⋅,222cos =2BP PO BO BPO BP PO+-∠⋅,要证PO 为角平分线,只需证明cos =cos APO BPO ∠∠,即证22222222AP PO AO BP PO BO AP PO BP PO+-+-=⋅⋅,化简整理即证2228PO AP =-,设(),P x y ,则222PO x y =+, ()()222222222282828AP x x y x x y x y x y -=++=++++=+,则证cos =cos APO BPO ∠∠,故C 正确;对于D 选项,设()00,M x y ,由2||MO MA =可得()22220000=2x y x y +++,整理得220003316+160x y x ++=,而点M 在圆上,故满足2280x y x ++=,联立解得0=2x ,0y 无实数解,于是D 错误.故答案为BC. 【点睛】本题主要考查阿氏圆的相关应用,轨迹方程的求解,意在考查学生的转化能力,计算能力,难度较大.三、填空题 13.直线与圆交于两点,则________.【答案】【解析】 【分析】首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长. 【详解】根据题意,圆的方程可化为,所以圆的圆心为,且半径是,根据点到直线的距离公式可以求得,结合圆中的特殊三角形,可知,故答案为.【点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.14.已知抛物线()220y px p =>的焦点为F(4,0),过F 作直线l 交抛物线于M ,N 两点,则p=_______,49NF MF-的最小值为______. 【答案】8p =13【解析】 【分析】利用抛物线的定义可得8p =,设直线l 的方程为4x my =+,联立直线与抛物线方程消元,根据韦达定理和抛物线的的定义可得1114MF NF +=,代入到49NF MF-,再根据基本不等式求最值. 【详解】解:∵ 抛物线()220y px p =>的焦点为F(4,0),∴ 8p =,∴ 抛物线的方程为216y x =,设直线l 的方程为4x my =+,设()11,M x y ,()22,N x y ,由2164y x x my ⎧=⎨=+⎩得216640y my --=, ∴1216y y m +=,1264y y =-, 由抛物线的定义得11MF NF +121144x x =+++()()21124444x x x x +++=++()()211244888my my my my ++++=++()()122121216864m y y m y y m y y ++=+++22216166412864m m m +=-++()()22161641m m +=+14=, ∴49NF MF -11494NF NF ⎛⎫=-- ⎪ ⎪⎝⎭419NF NF =+-4?19NF NF ≥13=, 当且仅当49NF NF=即6NF =时,等号成立,故答案为:13. 【点睛】本题主要考查直线与抛物线的位置关系,考查抛物线定义的应用,属于中档题.四、解答题15.已知抛物线21:2(0)C y px p =>与椭圆222:143x y C +=有一个相同的焦点,过点(2,0)A 且与x 轴不垂直的直线l 与抛物线1C 交于P ,Q 两点,P 关于x 轴的对称点为M . (1)求抛物线1C 的方程;(2)试问直线MQ 是否过定点?若是,求出该定点的坐标;若不是,请说明理由. 【答案】(1)24y x =;(2)(2,0)-【解析】 【分析】(1)求出椭圆的焦点,容易求得抛物线的方程.(2)解法一:设直线PQ 的方程为()2y k x =-与抛物线联立,得到,P Q 横坐标关系,设直线MQ 的方程为y mx n =+与抛物线联立,得到,M Q 横坐标关系,从而得到,m n 的关系,找出定点.解法二:直线PQ 的方程为2x ty =+,与抛物线联立,得到,P Q 纵坐标关系,设直线MQ 的方程为x my n =+,与抛物线联立,得到,M Q 纵坐标关系,从而可以解出n ,得到定点.【详解】(1)由题意可知抛物线的焦点为椭圆的右焦点,坐标为()1,0,所以2p =,所以抛物线的方程为24y x =;(2)【解法一】因为点P 与点M 关于x 轴对称 所以设()11,P x y ,()22,Q x y ,()11,M x y -, 设直线PQ 的方程为()2y k x =-,代入24y x =得:()22224140k x k x k -++=,所以124x x =,设直线MQ 的方程为y mx n =+,代入24y x =得:()222240m x mn x n +-+=,所以21224n x x m==,因为10x >,20x >,所以2nm=,即2n m =, 所以直线MQ 的方程为()2y m x =+,必过定点()2,0-. 【解法二】设()11,P x y ,()22,Q x y ,()33,M x y , 因为点P 与点M 关于x 轴对称,所以31y y =-, 设直线PQ 的方程为2x ty =+,代入24y x =得:2480y ty --=,所以128y y =-,设直线MQ 的方程为x my n =+,代入24y x =得:2440y my n --=,所以234y y n =-,因为31y y =-,所以()211248y y y y n -=-=-=,即2n =-, 所以直线MQ 的方程为2x my =-,必过定点()2,0-. 【点睛】本题主要考查直线与抛物线的关系,直线过定点问题,比较综合,对计算能力要求较高,属于难题.16.如图,已知椭圆Γ:()222210x y a b a b +=>>经过点()2,0A ,离心率3e =.(Ⅰ)求椭圆Γ的方程;(Ⅱ)设点B 为椭圆与y 轴正半轴的交点,点C 为线段AB 的中点,点P 是椭圆Γ上的动点(异于椭圆顶点)且直线PA ,PB 分别交直线OC 于M ,N 两点,问OM ON ⋅是否为定值?若是,求出定值;若不是,请说明理由.【答案】(Ⅰ)2214x y +=;(Ⅱ)是定值,52【解析】 【分析】(Ⅰ)根据已知条件列方程组2222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩,求解椭圆方程;(Ⅱ)由(Ⅰ)求得点C 的坐标,并求直线OC 的方程20x y -=,设()00,P x y ,()112,M y y ,()222,N y y ,根据三点共线求1y 和2y,并表示2125OM ON y y y y ==.【详解】(Ⅰ)由题意可知:22222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩,解得21a b =⎧⎨=⎩,所以椭圆Γ的方程:2214x y +=;(Ⅱ)由已知,点C 的坐标为11,2⎛⎫⎪⎝⎭,得直线OC 的方程为20x y -=, 设()00,P x y ,()112,M y y ,()222,N y y ,因P ,A ,M 三点共线,故0110222y y y x =--,整理得0100222y y x y -=--,因P ,B ,N 三点共线,故0220112y y y x --=,整理得020022x y x y =-+, 因点P 在椭圆Γ上,故220044x y +=,从而()000012200000022222224y x x y y y x y x y x y --=⋅=---+--00220000214442x y x y x y -==+--,所以1212552OM ON y y ===为定值.【点睛】本题考查椭圆方程以及椭圆直线与椭圆位置关系的综合问题,本题所涉及直线比较多,分析问题时抓住关键求点,M N 的纵坐标并用点P 的纵坐标表示,并将OM ON 2125y y y ,这样问题迎刃而解.。
2008高考解答题专题训练五 解析几何参考答案(文)
(Ⅰ)解:设抛物线S 的方程为22.y px = 显然0,0.k b ≠≠-----------------1分 由24200,2,x y y px +-=⎧⎨=⎩ 可得22200.y py p +-= 由0∆>,有0p >,或160.p <- 设1122(,),(,),B x y C x y 则12,2p y y +=-121212(5)(5)1010.4448y y y y px x +∴+=-+-=-=+设33(,)A x y ,由ABC ∆的重心为(,0),2p F 则123123,0323x x x y y y p ++++==,331110,.82p p x y ∴=-=∵点A 在抛物线S 上,∴2112(10),28p p p ⎛⎫=- ⎪⎝⎭∴8.p =∴抛物线S 的方程为216.y x = (Ⅱ)解:当动直线PQ 的斜率存在时,设动直线PQ 方程为y kx b =+,显然0,0.k b ≠≠ ------------------------------------------------9分设(,)(,)P P Q Q P x y Q x y ,∵PO OQ ⊥,∴ 1.OP OQk k ⋅=-∴1,QP P Qy y x x ⋅=-∴0.P Q P Q x x y y += 将y kx b =+代入抛物线方程,得216160,ky y b -+=∴16.P Q by y k=从而22222,16P Q P Q y y b x x k ⋅== ∴22160.b b k k += ∵0,0k b ≠≠,∴16,b k =- ∴动直线方程为16(16)y kx k k x =-=-, 此时动直线PQ 过定点(16,0). 当直线PQ 的斜率不存在时,显然PQ x ⊥轴, 又PO OQ ⊥,∴POQ 为等腰直角三角形.由216,,y x y x ⎧=⎨=⎩ 216,,y x y x ⎧=⎨=-⎩ 得到(16,16),(16,16)P Q -, 此时直线PQ 亦过点(16,0).综上所述,动直线PQ 过定点(16,0)M .(Ⅰ)解:过点P 作PN 垂直直线32y =-于点.N 依题意得||||PF PN =,所以动点P 的轨迹为是以30,2F ⎛⎫ ⎪⎝⎭为焦点,直线32y =-为准线的抛物线, 即曲线W 的方程是26.x y = (Ⅱ)解:依题意,直线12,l l 的斜率存在且不为0,设直线1l 的方程为3y kx =+, 由12l l ⊥ 得2l 的方程为132y x k =-+.将32y kx =+代入26x y =, 化简得2690x kx --=. 设1122() () A x y B x y ,,,, 则12126 9.x x k x x +==-,2||6(AB k ∴==同理可得21||61.CD k ⎛⎫=+ ⎪⎝⎭∴四边形ACBD 的面积2222111||||18(1)1182722S AB CD k k k k ⎛⎫⎛⎫=⋅=++=++≥ ⎪ ⎪⎝⎭⎝⎭,当且仅当 221k k=, 即1k =±时,min 72.S = 故四边形ACBD 面积的最小值是72. 3.(Ⅰ)解:)2,0(p F ,∴设直线l 的方程为2p kx y +=.由⎪⎩⎪⎨⎧=+=,2,22py x p kx y 可得0222=--p pkx x .……2分设),(),(2211y x B y x A 、,则,221pk x x =+221p x x -=.,444)(2)2()2(2222222212122121pp p k p k p x x kp x x k p kx p kx y y =++-=+++=+⋅+=⋅ ∴2212143p y y x x -=+=⋅.(Ⅱ)解:由py x 22=,可得px y 22=,∴p x y ='.∴抛物线在B A 、两点处的切线的斜率分别为px p x 21,. ∴在点A 处的切线方程为)(111x x p x y y -=-,即pxx p x y 2211-=.……7分同理在点处B 的切线方程为p xx p x y 2222-=.解方程组⎪⎪⎩⎪⎪⎨⎧-=-=,2,2222211px x p x y p x x p x y 可得⎪⎩⎪⎨⎧-==.2,p y pk x即点Q 的纵坐标为2p-.………………9分 (Ⅲ)证明:由(Ⅱ)可知, )2,(ppk Q -,2222)1()22()0(p k p p pk +=++-=, 又),21()(222212121k p p x x k pkx p kx y y +=++=+++=+.)1(4)21(244)(2)2)(2(222222212121p k p p k p p p y y p y y p y p y +=++⋅+=+++=++=∴=. ……13分4.(Ⅰ)解:由题知,曲线W 是以(1,0)F 为焦点,以直线1x =-准线的抛物线, 所以曲线W 的方程为24y x =.………… 2分(Ⅱ)解:因为直线l 与曲线W 交于A 、B 两点,所以 l 的斜率k 存在,且0k ¹设直线l 的方程为(1)y k x =+,由2(1),4y k x y x=+⎧⎨=⎩得2222(24)0k x k x k +-+=. 因为直线l 与曲线W 交于A 、B 两点, 所以0k ≠,2244(2)40k k ∆=-->, 即||1k <且0k ≠.设点A ,B 的坐标分别为11(,)x y ,22(,)x y ,则212242k x x k-+=,121x x =,点C 的坐标为11(,)x y -, 11(1)y k x =+,22(1)y k x =+. 所以11(1,)FC x y =--,22(1,)FB x y =- ------------------------8分又因为1221(1)(1)()x y x y ----1221(1)(1)(1)(1)x k x x k x =-++-+12(22)k x x =- 0=, 所以FC FB λ=.(Ⅲ)由题意121||||2S PF y y =⋅+12|(2)|k x x =++2242|(2)|k k k -=+4||k = 因为||1k <且0k ≠,所以S 的取值范围是(4,)+∞. 5.(Ⅰ)解:设椭圆方程为22221y x a b+=(a >b>0).依题意,12c e a ==, c=1,2a ∴=,2223b a c =-=,………………………………2分 ∴所求椭圆方程为 22143y x +=.………4分 (Ⅱ)解:若直线l 的斜率k 不存在,则不满足2AF FB =.当直线l 的斜率k 存在时,设直线l 的方程为1y kx =+.因为直线l 过椭圆的焦点F (0,1),所以k 取任何实数, 直线l 与椭圆均有两个交点A 、B .设A 1,122(),(,),x y B x y联立方程 221,1.43y kx y x =+⎧⎪⎨+=⎪⎩ 消去y ,得22(34)690k x kx ++-=.…………6分122634k x x k -∴+=+, ① 122934x x k -⋅=+, ② 由F (0,1),A 1,122(),(,)x y B x y ,则1122(,1),(,1)AF x y FB x y =--=-,2AF FB =,∴1122(,1)2(,1)x y x y --=-,得212x x -=.……………………8分将212x x -=代入①、②,得22634k x k =+, ③ 222968x k =+, ④……………10分 由③、④ 得,226()34k k =+2968k +, 化简得223634k k =+92,解得245k =,5k =±.∴直线l的方程为:15y x =±+.…………13分 6.(Ⅰ)解:设椭圆方程为:22221(0).x y a b a b+=>>由22b =得 1b =. 又FE OF =,∴2221,.a c a c c c ⎧-=⎪⎨=-⎪⎩解得1a c ==. ∴椭圆方程为:2212x y +=.离心率2c e a ==.(Ⅱ)解:由(Ⅰ)知点F 坐标为(1,0),又直线AB 的斜率存在,设AB 的斜率为k ,则AB 的方程为(1)y k x =-.由2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(12)4220k x k x k +-+-= (*)设1122(,),(,)A x y B x y ,则12,x x 是(*)方程两根,且12x x <,∴12x x == ∵////AD BC x 轴,且1||||3BC AD =, ∴22211()3a a x x c c-=-即12(23=,解得1k =±. ∴直线AB 的方程为10x y --=或10x y +-=. (Ⅲ)∵点(1,0),(2,0)F E ,∴EF 中点N 的坐标为3(,0)2. (1)当AB x ⊥轴时,111(1,),(1,),(2,)A y B y C y --,那么此时AC 的中点为3(,0)2,即AC 经过线段EF 的中点N . --------------------------9分 (2)当AB 不垂直x 轴时,则直线AB 斜率存在,设直线AB 的方程为(1)y k x =-,由(*)式得22121222422,1212k k x x x x k k -+==++. 又∵2211222,x y =-<得130,2x -≠ 故直线,AN CN 的斜率分别为:112122112(1),2(1),3323222y k x yk k k x x x -====----121121(1)(1)(23)223x x x k k k x ----∴-=⋅-.又1211212(1)(1)(23)3()24x x x x x x x ----=+--,22221[124(1)4(12)]012k k k k=---+=+. ∴120,k k -=即12k k =.且,AN CN 有公共点N ,∴ ,,A C N 三点共线. ∴直线AC 经过线段EF 的中点N . 综上所述,直线AC 经过线段EF 的中点. 7.(Ⅰ)解:由点M 是BN 中点,又0=⋅,可知PM 垂直平分BN .所以|PN |=|PB |,又|PA |+|PN |=|AN |,所以|PA |+|PB |=4.由椭圆定义知,点P 的轨迹是以A ,B 为焦点的椭圆. 设椭圆方程为12222=+b y a x ,由2a =4,2c =2,可得a 2=4,b 2=3.可知动点P 的轨迹方程为.13422=+y x ……6分 (Ⅱ)解:设点PB y x P ),,(00的中点为Q ,则)2,21(0y x Q +, 0020200202020212424143312)1(||x x x x x x y x PB -=+-=-++-=+-= 即以PB 为直径的圆的圆心为)2,21(00y x Q +,半径为01411x r -=, 又圆422=+y x 的圆心为O (0,0),半径r 2=2,又121161)433(41412141)2()21(||020*********++=-+++=-+=x x x x x y x OQ =0411x +, 故|OQ |=r 2-r 1,即两圆内切.…………13分 8.(Ⅰ)解:依题意,直线AB 的斜率存在,设直线AB 的方程为(1)y k x =+,将(1)y k x =+代入5322=+y x , 消去y 整理得 2222(31)6350.k x k x k +++-=设1122() () A x y B x y ,,,,则4222122364(31)(35)0 (1)6. (2)31k k k k x x k ⎧∆=-+->⎪⎨+=-⎪+⎩, 由线段AB 中点的横坐标是12-,得2122312312x x k k +=-=-+,解得3k =±,适合(1)式, 所以直线AB 的方程为10x +=,或10x ++=. (Ⅱ)解:① 当直线AB 与x 轴不垂直时,由(Ⅰ)知22121222635. (3)3131k k x x x x k k -+=-=++,所以2121212127777(1)(1)3333MA MB x x y y x x k x x ⎛⎫⎛⎫⎛⎫⎛⎫⋅=+++=+++++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭将(3)代入,整理得 2222227(1)(35)(6)493319k k k k MA MB k k ⎛⎫+-++- ⎪⎝⎭⋅=+++4.9= ② 当直线AB 与x 轴垂直时,此时点A B ,的坐标分别为11⎛⎛-- ⎝⎝、,,此时亦有4.9MA MB ⋅= 综上,4.9MA MB ⋅= 9.(Ⅰ)解:连结OP ,因为Q 为切点,PQ ⊥OQ ,又勾股定理有,222OQ OP PQ -=又由已知22,PA PQ PA PQ ==故,即()()()222221b 2a 1b a -+-=-+…化简得03b 2a =-+-----------------------------------4分 (Ⅱ)解:由03b 2a =-+,得32a b +-=()5456a 5132a a 1b a PQ 22222+⎪⎭⎫ ⎝⎛-=-+-+=-+=故当56a =时,线段PQ 长取最小值552-------------------------------------8分(Ⅲ)解:设圆P 的半径为R ,圆P 与圆O 有公共点,由于圆O 的半径为1,所以有101+≤≤-R P R 即R 1-≥OP 且R 1+≤OP而()5956a 532a a b a OP 22222+⎪⎭⎫ ⎝⎛-=+-+=+=故当56a =时,553min =OP ,此时b=1553,53min -=R 故半径取最小值时,圆P 的方程是222)1553()53()56(-=-+-y x ------------------------------------------14分10.(Ⅰ)解: 设直线l的方程为y kx =+22(12x kx ++=.整理,得221()102k x +++=. ① 因为直线l 与椭圆有两个不同的交点P 和Q 等价于222184()4202k k k ∆=-+=->,解得k <k >.∴ 满足条件的k 的取值范围为2,(,)22k ∈-∞-+∞( ……… 6分(Ⅱ)解:设P (x 1,y 1),Q (x 2,y 2),则OP OQ +=(x1+x 2,y 1+y 2),由①得12212x x k+=-+.② 又1212()y yk x x +=++.③因为 0)A ,(0, 1)B , 所以( 1)AB=.所以OP OQ +与AB 共线等价于 1212)x x y y ++. 将②③代入上式,解得2k =. 所以不存在常数k ,使得向量OP OQ +与AB 共线. 11.(Ⅰ)解:由题意, 直线l 的斜率一定存在,可设直线l 的方程为4(2)y k x -=-,则由⎪⎩⎪⎨⎧-=-=-).2(4,18422x k y y x 得2222(2)(48)416240k x k k x k k -+--+-=. 设A 11(,)x y ,B 22(,)x y ,由2OA OB OP +=,知P 为AB 中点, 所以12124,8x x y y +=+=.…………3分由21224842k kx x k -+==-,得1k =.所以直线l 的方程为2y x =+.……5分 (Ⅱ)解:由1282++=x x y ,得82+='x y .设(0x ,0y )为曲线1282++=x x y 上一点,过(0x ,0y )的切线方程为))(82(000x x x y y -+=-,即128))(82(02000+++-+=x x x x x y .与l 方程联立得⎩⎨⎧+=+++-+=,2,128))(82(02000x y x x x x x y 解得7210020+-=x x x . …………9分 又由⎪⎩⎪⎨⎧+==-.2,18422x y y x 解得A )0,2(-、B )8,6(. ∴ ]6,2[7210020-∈+-=x x x .故 222622260+≤≤-x .(Ⅲ)解:ABD ACD ∠=∠一定成立.由点P )4,2(和直线l 得1l :6=+y x .联立方程组⎪⎩⎪⎨⎧+-==-,6,18422x y y x 得 C (546+-,5412-),D (546--,5412+).所以0=⋅,即⊥.由对称性可知,⊥. 所以A 、B 、C 、D 四点共圆,所以ABD ACD ∠=∠. 12.(Ⅰ)解:设双曲线方程为).0,0(12222>>=-b a by a x 由已知得.1,,2,32222==+==b c b a c a 得故双曲线C 的方程为1322=-y x . …………6分 (Ⅱ)解:联立⎪⎩⎪⎨⎧=-+=.13,22y x m kx y .0336)31(222=----m kmx x k 整理得 直线与双曲线有两个不同的交点,⎪⎩⎪⎨⎧>-+=∆≠-∴.0)31(12,031222k m k ------------------------------------------8分可得.1322->k m ① ).0,0(1313131,,.31,3132,316).,(),,(),,(222002210221002211≠≠-=-+-=∴⊥-=+=-=+=-=+m k kk km k m k MN AB k m m kx y k km x x x k km x x y x B MN y x N y x M AB 由题意则的中点为设 整理得3k 2=4m +1. ②…………………10分将②代入①,得m 2-4m >0,∴m <0或m >4.又3k 2=4m +1>0(k ≠0),即m >-41.……12分 ∴m 的取值范围是(-41,0)∪(4,+∞)…13分13.(Ⅰ)证明:设双曲线的实轴长为2a ,虚轴长为2b ,焦距为2c ,由222c aa b c ⎧=⎪⎨⎪+=⎩,得a ,a=b , ∴双曲线的渐近线方程为y=±x 。
专题08 平面解析几何(原卷版)
专题08 平面解析几何1.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知ABC ∆的顶点()4,0-A ,()0,4B ,其欧拉线方程为20x y -+=,则顶点C 的坐标可以是( )A .()2,0B .()0,2C .()2,0-D .()0,2- 2.在平面直角坐标系中,曲线C 上任意点P 与两个定点()2,0A -和点()2,0B 连线的斜率之和等于2,则关于曲线C 的结论正确的有( )A .曲线C 是轴对称图形B .曲线C 上所有的点都在圆222x y +=外 C .曲线C 是中心对称图形D .曲线C 上所有点的横坐标x 满足2x > 3.若双曲线C 的一个焦点(5,0)F ,且渐近线方程为43y x =±,则下列结论正确的是( ) A .C 的方程为221916x y -= B .C 的离心率为54 C .焦点到渐近线的距离为3 D .两准线间的距离为1854.我们通常称离心率为51-的椭圆为“黄金椭圆”.如图,已知椭圆2222:1(0)x y C a b a b +=>>,1212,,,A A B B 为顶点,12,F F 为焦点,P 为椭圆上一点,满足下列条件能使椭圆C 为“黄金椭圆”的有( )A .111222||,||,||A F F F F A 为等比数列B .11290F B A ∠=︒C .1PF x ⊥ 轴,且21//PO A BD .四边形1221A B A B 的内切圆过焦点12,F F5.已知抛物线2:4C y x =的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点()11,P x y ,()22,Q x y ,点P 在l 上的射影为1P ,则 ( )A .若126x x +=,则8PQ =B .以PQ 为直径的圆与准线l 相切C .设()0,1M ,则1PM PP +D .过点()0,1M 与抛物线C 有且仅有一个公共点的直线至多有2条6.过抛物线24y x =的焦点F 作直线交抛物线于A ,B 两点,M 为线段AB 的中点,则( ) A .以线段AB 为直径的圆与直线32x =-相离 B .以线段BM 为直径的圆与y 轴相切 C .当2AF FB =时,92AB = D .AB 的最小值为47.已知抛物线2:2C y px =()0p >的焦点为F ,且经过点F ,直线l 与抛物线C交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( )A .4p =B .DF FA =C .2BD BF = D .4BF =8.已知点A 是直线:0l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90,则点A 的坐标可以是( )A .(B .()1C .)D .)1,1 9.已知点F 是抛物线()220y px p =>的焦点,AB ,CD 是经过点F 的弦且AB ⊥CD ,AB 的斜率为k ,且k >0,C ,A 两点在x 轴上方.则下列结论中一定成立的是( )A .234⋅=-OC OD pB .四边形ACBD 面积最小值为216pC .1112AB CD p+= D .若24AF BF p ⋅=,则直线CD 的斜率为 10.已知三个数1,,9a 成等比数列,则圆锥曲线2212x y a +=的离心率为( )A B .3 C .2 D11.已知双曲线2222:1(0,0)x y C a b a b -=>>A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点,则有( )A .渐近线方程为y =B .渐近线方程为y x =C .60MAN ∠=︒D .120MAN ∠=︒ 12.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A ,B 的距离之比为定值()1λλ≠的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系xOy 中,()2,0A -,()4,0B ,点P 满足12PA PB =.设点P 的轨迹为C ,下列结论正确的是( )A .C 的方程为()22416x y ++=B .在C 上存在点M ,使得2MO MA =C .当A ,B ,P 三点不共线时,射线PO 是APB ∠的平分线D .在三棱锥中P ABC -,PA ⊥面ABC ,且3PA =,6BC =,2AC AB =,该三棱锥体积最大值为1213.下列选项正确的为( )A .已知直线1l :()()2110a x a y ++--=,2l :()()12320a x a y -+++=,则12l l ⊥的充分不必要条件是1a =B .命题“若数列{}2n a 为等比数列,则数列{}n a 为等比数列”是假命题C .棱长为a 正方体1111ABCD A B C D -中,平面11AC D 与平面1ACB 距离为3a D .已知P 为抛物线22y px =上任意一点且(),0M m ,若PM OM ≥恒成立,则(],m p ∈-∞ 14.已知12,F F 分别是双曲线22:1C x y -=的左右焦点,点P 是双曲线上异于双曲线顶点的一点,且向量120PF PF ⋅=,则下列结论正确的是( ) A .双曲线C 的渐近线方程为y x =± B .以12F F 为直径的圆的方程为221x y += C .1F 到双曲线的一条渐近线的距离为1 D .12PF F ∆的面积为115.椭圆22:14x C y +=的左右焦点分别为12,F F ,O 为坐标原点,以下说法正确的是( ) A .过点2F 的直线与椭圆C 交于A ,B 两点,则1ABF ∆的周长为8. B .椭圆C 上存在点P ,使得120PF PF ⋅=. C .椭圆C 的离心率为12D .P 为椭圆2214x y +=一点,Q 为圆221x y +=上一点,则点P ,Q 的最大距离为3.。
高考数学(浙江专用)精练八 平面解析几何 Word版含解析
高三单元滚动检测卷·数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分. 4.请在密封线内作答,保持试卷清洁完整.单元检测八 平面解析几何第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积最大时,直线y =(k -1)x +2的倾斜角α的值为( ) A.3π4 B.π4 C.3π2D.5π42.已知点P (x ,y )在以原点为圆心的单位圆上运动,则点Q (x ′,y ′)=(x +y ,xy )的轨迹是( ) A .圆 B .抛物线 C .椭圆D .双曲线3.(2015·西安质检)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( ) A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 23=1 D.x 24+y 2=1 4.已知双曲线x 24-y 212=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则p 的值为( )A .2B .1 C.14D.1165.若AB 是过椭圆x 225+y 216=1中心的弦,F 1为椭圆的焦点,则△F 1AB 面积的最大值为( )A .6B .12C .24D .486.(2015·武汉调研)已知O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( ) A .2 B .2 2 C .2 3D .47.(2015·北京海淀区期末练习)双曲线C 的左,右焦点分别为F 1,F 2,且F 2恰好为抛物线y 2=4x 的焦点,设双曲线C 与该抛物线的一个交点为A ,若△AF 1F 2是以AF 1为底边的等腰三角形,则双曲线C 的离心率为( ) A. 2 B .1+ 2 C .1+ 3D .2+ 38.已知P (x ,y )是圆x 2+(y -1)2=1上任意一点,欲使不等式x +y +c ≥0恒成立,则实数c 的取值范围是( ) A .[-1-2,2-1] B .[2-1,+∞) C .(-1-2,2-1)D .(-∞,-2-1) 第Ⅱ卷二、填空题(本大题共7小题,共36分.把答案填在题中横线上)9.点M (a ,b )是圆x 2+y 2=r 2内异于圆心的一点,则直线ax +by -r 2=0与圆的交点的个数是________.10.(2015·福州质检)已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,若双曲线左支上存在一点P 与点F 2关于直线y =bxa 对称,则该双曲线的离心率为________.11.已知三个数2,m,8构成一个等比数列,则圆锥曲线x 2m +y 22=1的离心率为________.12.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的倾斜角为2π3,离心率为e ,则a 2+e 22b 的最小值为______,此时a =________.13.过抛物线y 2=4x 的焦点,作倾斜角为α的直线交抛物线于A ,B 两点,且|AB |=163,则α=________.14.(2014·辽宁)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.15.(2015·浙江名校模拟)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为________________. 三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤) 16.(14分)已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12.(1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2M B →,求直线l 的方程.17.(15分)(2015·浙江重点中学协作体第二次适应性测试)已知椭圆x 2a 2+y 2b 2=1 (a >b >0)的离心率为12,且经过点P ⎝⎛⎭⎫1,32.过它的两个焦点F 1,F 2分别作直线l 1与l 2,l 1交椭圆于A ,B 两点,l 2交椭圆于C ,D 两点,且l 1⊥l 2.(1)求椭圆的标准方程;(2)求四边形ACBD 的面积S 的取值范围.18.(15分)设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,M ∈C ,以M 为圆心的圆M 与l 相切于点Q ,Q 的纵坐标为3p ,E (5,0)是圆M 与x 轴除F 外的另一个交点. (1)求抛物线C 与圆M 的方程;(2)已知直线n :y =k (x -1)(k >0),n 与C 交于A ,B 两点,n 与l 交于点D ,且|F A |=|FD |,求△ABQ 的面积.19.(15分)(2015·江西百所重点中学诊断)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,点P 在椭圆上,△PF 1F 2的周长为16,直线2x +y =4经过椭圆的上顶点. (1)求椭圆C 的方程;(2)直线l 与椭圆交于A ,B 两点,若以AB 为直径的圆同时被直线l 1:10x -5y -21=0与l 2:10x -15y -33=0平分,求直线l 的方程.20.(15分)(2015·青岛质检)已知椭圆C 1的中心为原点O ,离心率e =22,其一个焦点在抛物线C 2:y 2=2px 的准线上,若抛物线C 2与直线l :x -y +2=0相切. (1)求该椭圆的标准方程;(2)当点Q (u ,v )在椭圆C 1上运动时,设动点P (2v -u ,u +v )的运动轨迹为C 3.若点T 满足:O T →=M N →+2OM →+O N →,其中M ,N 是C 3上的点,直线OM 与ON 的斜率之积为-12,试说明:是否存在两个定点F 1,F 2,使得|TF 1|+|TF 2|为定值?若存在,求F 1,F 2的坐标;若不存在,请说明理由.答案解析1.A [若方程x 2+y 2+kx +2y +k 2=0表示圆, 则有k 2+4-4k 2>0, 解得0≤k 2<43,而此时圆的半径r =12k 2+4-4k 2=12-3k 2+4,要使圆的面积最大,只需r 最大,即当k =0时,r 取得最大值1,此时直线方程为y =-x +2, 由倾斜角与斜率的关系知,k =tan α=-1, 又因为α∈[0,π),所以α=3π4.] 2.B [设P 在以原点为圆心,1为半径的圆上,则P (x 0,y 0),有x 20+y 20=1,∵Q (x ′,y ′)=(x +y ,xy ),∴⎩⎪⎨⎪⎧x ′=x 0+y 0,y ′=x 0·y 0. ∴x ′2=x 20+y 20+2x 0y 0=1+2y ′,即Q 点的轨迹方程为y ′=12x ′2-12,∴Q 点的轨迹是抛物线.]3.C [依题意,所求椭圆的焦点在x 轴上,且c =1,e =ca ⇒a =2,b 2=a 2-c 2=3,因此其方程是x 24+y 23=1,故选C.]4.D [依题意得双曲线中a =2,b =23, ∴c =a 2+b 2=4,∴e =c a =2,抛物线方程为y 2=12p x ,故18p =2,得p =116.] 5.B [如图,设A 的坐标为(x ,y ), 则根据对称性得B (-x ,-y ),则△F 1AB 面积S =12|OF 1|×|2y |=c |y |.∴当|y |最大时,△F 1AB 面积最大,由图知,当A 点在椭圆的顶点时,其△F 1AB 面积最大,则△F 1AB 面积的最大值为cb =25-16×4=12,故选B.]6.C [因为抛物线C :y 2=42x 的准线方程是x =-2, 所以由|PF |=42得x p =32, 代入抛物线方程得y p =±26,所以△POF 的面积为12|OF ||y p |=12×2×26=23,故选C.]7.B [依题意可知,点A (1,±2),F 1(-1,0),F 2(1,0), |AF 1|=22+22=22,|AF 2|=|F 1F 2|=2,双曲线C 的离心率为e =|F 1F 2||AF 1|-|AF 2|=222-2=2+1,故选B.]8.B [欲使不等式x +y +c ≥0恒成立,则c ≥(-x -y )max .令t =-x -y ,由题意知,当直线y =-x -t 与圆相切时,t 可取到最大值. 由数形结合可知,圆心到直线的距离为d =|1+t |2=1,解得t =±2-1,所以t =2-1时,取得最大值. 即c ≥2-1.] 9.0解析 因为点M (a ,b )是圆x 2+y 2=r 2内异于圆心的一点,所以0<a 2+b 2<r 2,所以0<a 2+b 2<r ,则圆心(0,0)到直线ax +by -r 2=0的距离d =r 2a 2+b2>r ,所以直线ax +by -r 2=0与圆x 2+y 2=r 2无交点. 10. 5解析 记线段PF 2与直线y =bax 的交点为M ,依题意,直线y =ba x 是题中的双曲线的一条渐近线,M 是PF 2的中点,且|PF 2|=2|MF 2|=2b ;又点O 是F 1F 2的中点,因此有|PF 1|=2|OM |=2a ;由点P 在双曲线的左支上得|PF 2|=|PF 1|+2a =4a =2b ,b =2a ,该双曲线的离心率是e =1+(ba )2= 5.11.22或 3 解析 ∵2,m,8成等比数列,∴m 2=16,m =±4,当m =4时,e =c a =22;当m =-4时,e =62= 3. 12.2332解析 由题意,ba=3,∴b =3a ,∴c =2a ,e =2,a 2+e 22b =a 2+423a =a 23+23a ≥233(当且仅当a =2时取等号),则a 2+e 22b 的最小值为233.13.60°或120°解析 当α=90°时,|AB |=4不成立;当α≠90°时,设直线方程为y =tan α(x -1),与抛物线方程联立得:(tan α)2x 2-[2(tan α)2+4]x +(tan α)2=0, ∴由根与系数的关系得:x 1+x 2=2(tan α)2+4(tan α)2,∴|AB |=x 1+x 2+p =2(tan α)2+4(tan α)2+2=163, ∴tan α=±3,∴α=60°或120°. 14.12解析 取MN 的中点G ,G 在椭圆上,因为点M 关于C 的焦点F 1,F 2的对称点分别为A ,B , 故有|GF 1|=12|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF 1|+|GF 2|)=4a =12. 15.x ±2y =0解析 a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,C 1的离心率为a 2-b 2a ,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 2的离心率为a 2+b 2a ,∵C 1与C 2的离心率之积为32, ∴a 2-b 2a ·a 2+b 2a =32,∴⎝⎛⎭⎫b a 2=12,即b a =22,C 2的渐近线方程为y =±22x ,即x ±2y =0.16.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),因为c =1,c a =12,所以a =2,b =3,所以椭圆方程为x 24+y 23=1.(2)由题意得直线l 的斜率存在, 设直线l 的方程为y =kx +1, 则由⎩⎪⎨⎪⎧y =kx +1,x 24+y 23=1得(3+4k 2)x 2+8kx -8=0,且Δ>0. 设A (x 1,y 1),B (x 2,y 2), 则由AM →=2M B →得x 1=-2x 2. 又⎩⎪⎨⎪⎧x 1+x 2=-8k 3+4k 2,x 1·x 2=-83+4k2, 所以⎩⎪⎨⎪⎧-x 2=-8k3+4k2,-2x 22=-83+4k2,消去x 2,得(8k 3+4k 2)2=43+4k 2, 解得k 2=14,k =±12,所以直线l 的方程为y =±12x +1,即x -2y +2=0或x +2y -2=0. 17.解 (1)由c a =12得a =2c ,所以a 2=4c 2,b 2=3c 2,将点P 的坐标代入椭圆方程得c 2=1, 故所求椭圆方程为x 24+y 23=1.(2)当l 1与l 2中有一条直线的斜率不存在时,则另一条直线的斜率为0,此时四边形的面积为S =6.若l 1与l 2的斜率都存在,设l 1的斜率为k ,则l 2的斜率为-1k .∴直线l 1的方程为y =k (x +1). 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =k (x +1),x 24+y 23=1,消去y 整理得(4k 2+3)x 2+8k 2x +4k 2-12=0.① ∴x 1+x 2=-8k 24k 2+3,x 1x 2=4k 2-124k 2+3,∴|x 1-x 2|=12k 2+14k 2+3,∴|AB |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3.②注意到方程①的结构特征,或图形的对称性,可以用-1k 代替②中的k ,得|CD |=12(k 2+1)3k 2+4,∴S =12|AB |·|CD |=72(1+k 2)2(4k 2+3)·(3k 2+4),令k 2=t ∈(0,+∞),∴S =72(1+t )2(4t +3)·(3t +4)=6(12t 2+25t +12)-6t 12t 2+25t +12=6-612t +12t +25≥6-649=28849,∴S ∈⎣⎡⎭⎫28849,6.综上可知,四边形ACBD 的面积S 的取值范围为⎣⎡⎦⎤28849,6.18.解 (1)由抛物线的定义知,圆M 经过焦点F (p 2,0),Q (-p2,3p ),点M 的纵坐标为3p ,又M ∈C ,则M (3p2,3p ),|MF |=2p .由题意,M 是线段EF 的垂直平分线上的点, 故3p 2=p 2+52,解得p =2. 故抛物线C :y 2=4x , 圆M :(x -3)2+(y -23)2=16.(2)由⎩⎪⎨⎪⎧y =k (x -1)x =-1得y =-2k ,则D (-1,-2k ),由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1)得ky 2-4y -4k =0(k >0),即y =2+21+k 2k 或y =2-21+k 2k .∵|F A |=|FD |,则A 的纵坐标为2+21+k 2k ,且2+21+k 2k =2k ,解得k = 3.∴A (3,23),B (13,-233),直线n :y =3(x -1),Q (-1,23), 则|AB |=163,点Q 到直线n 的距离d =23, △ABQ 的面积S =12|AB |·d =1633.19.解 (1)设椭圆的半焦距为c , 则由题设得⎩⎪⎨⎪⎧b =4,2a +2c =16,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =5,c =3,故椭圆C 的方程为x 225+y 216=1.(2)设AB 的中点为M (x ,y ),则⎩⎪⎨⎪⎧10x -5y -21=0,10x -15y -33=0,解得M (32,-65).设A (x 1,y 1),B (x 2,y 2),易知x 1≠x 2,依题意有⎩⎨⎧x 2125+y 2116=1,x 2225+y2216=1,两式相减得x 21-x 2225+y 21-y 2216=0,∴(x 1+x 2)(x 1-x 2)25+(y 1+y 2)(y 1-y 2)16=0,又AB 的中点为M (32,-65),∴x 1+x 2=3,y 1+y 2=-125,∴325(x 1-x 2)=320(y 1-y 2),y 1-y 2x 1-x 2=45,即直线l 的斜率为45,故直线l 的方程为y +65=45(x -32),即4x -5y -12=0.20.解 (1)由⎩⎨⎧ y 2=2px ,x -y +2=0⇒y 2-2py +22p =0, ∵抛物线C 2:y 2=2px 与直线l :x -y +2=0相切, ∴Δ=4p 2-82p =0⇒p =2 2.∴抛物线C 2的方程为y 2=42x ,其准线方程为x =-2,∴c = 2.∵离心率e =c a =22,∴a =2,b 2=a 2-c 2=2,故椭圆的标准方程为x 24+y 22=1.(2)设M (x 1,y 1),N (x 2,y 2),P (x ′,y ′),T (x ,y ),则⎩⎪⎨⎪⎧ x ′=2v -u ,y ′=u +v ⇒⎩⎨⎧ u =13(2y ′-x ′),v =13(x ′+y ′).∵点Q (u ,v )在椭圆C 1上,∴u 24+v 22=1⇒[13(2y ′-x ′)]2+2[13(x ′+y ′)]2=4 ⇒x ′2+2y ′2=12,∴点P 的轨迹方程为x 2+2y 2=12.由O T →=M N →+2OM →+O N →得(x ,y )=(x 2-x 1,y 2-y 1)+2(x 1,y 1)+(x 2,y 2)=(x 1+2x 2,y 1+2y 2),x =x 1+2x 2,y =y 1+2y 2.设k OM ,k ON 分别为直线OM ,ON 的斜率,由题设条件知k OM ·k ON =y1y 2x 1x 2=-12, 因此x 1x 2+2y 1y 2=0.∵点M ,N 在椭圆x 2+2y 2=12上,∴x 21+2y 21=12,x 22+2y 22=12,故x 2+2y 2=(x 21+4x 22+4x 1x 2)+2(y 21+4y 22+4y 1y 2)=(x21+2y21)+4(x22+2y22)+4(x1x2+2y1y2) =60+4(x1x2+2y1y2).∴x2+2y2=60,从而可知点T是椭圆x260+y230=1上的点.∴存在两个定点F1,F2,且为椭圆x260+y230=1的两个焦点,使得|TF1|+|TF2|为定值,其坐标为F1(-30,0),F2(30,0).。
2019大一轮高考总复习文数北师大版阶段复习检测8平面
阶段复习检测(八) 平面解析几何教师用书独具时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2018·潍坊模拟)以(a,1)为圆心,且与两条直线2x -y +4=0与2x -y -6=0同时相切的圆的标准方程为( )A .(x -1)2+(y -1)2=5B .(x +1)2+(y +1)2=5C .(x -1)2+y 2=5D .x 2+(y -1)2=5解析:选A 由题意,圆心在直线2x -y -1=0上,(a,1)代入可得a =1,即圆心为(1,1),半径为r =|2-1+4|5=5,∴圆的标准方程为(x -1)2+(y -1)2=5,故选A .2.(2018·聊城模拟)圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于1的点的个数为( )A .1B .2C .3D .4解析:选C 因为圆心到直线的距离为|9+12-11|5=2,又因为圆的半径为3,所以直线与圆相交,由数形结合知,圆上到直线的距离为1的点有3个.3.(2018·兰州一中模拟)在平面直角坐标系xOy 中,已知过点M (1,1)的直线l 与圆(x +1)2+(y -2)2=5相切,且与直线ax +y -1=0垂直,则实数a =( )A .12B .2C .13D .3解析:选A 由题意,点M (1,1)满足圆(x +1)2+(y -2)2=5的方程,所以,点在圆上,圆的圆心(-1,2),过点M (1,1)的直线l 与圆(x +1)2+(y -2)2=5相切,且与直线ax +y -1=0垂直,所以直线ax +y -1=0的斜率-a =2-1-1-1=-12,∴a =12.故选A .4.(2018·汉中模拟)M 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)右支上一点,A 、F 分别为双曲线的左顶点和右焦点,且△MAF 为等边三角形,则双曲线C 的离心率为( )A .5-1B .2C .4D .6解析:选C 由题意,A (-a,0),F (c,0),M ⎝⎛⎭⎪⎫c -a 2,3(c +a )2,由双曲线的定义可得c +a c -a 2-a 2c=c a ,∴c 2-3ac -4a 2=0,∴e 2-3e -4=0,∴e =4.故选C . 5.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点与虚轴的一个端点构成一个角为120°的三角形,则双曲线C 的离心率为( )A .52B .62C . 3D . 5解析:选B 双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),可得虚轴的一个端点M (0,b ),F 1(-c,0),F 2(-c,0),设∠F 1MF 2=120°,得c =3b ,平方得c 2=3b 2=3(c 2-a 2),可得3a 2=2c 2,即c =62a ,得离心率e =c a =62.故选B . 6.已知双曲线x 22m +y 2m -4=1的一条渐近线斜率大于1,则实数m 的取值范围( )A .(0,4)B .⎝⎛⎭⎫0,43C .(0,2)D .⎝⎛⎭⎫43,4解析:选C 双曲线x 22m +y 2m -4=1,可得m ∈(0,4).双曲线x 22m +y 2m -4=1的一条渐近线斜率大于1,4-m 2m>1,即0<m <43.综上:m ∈⎝⎛⎭⎫0,43.故选B . 7.已知双曲线C :x 2a 2-y 2b 2=1(a ,b >0)的焦点到渐近线的距离为12a ,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x解析:选C 双曲线C :x 2a 2-y 2b 2=1(a ,b >0)的焦点(c,0)到渐近线bx +ay =0的距离为12a ,可得bc a 2+b 2=12a ,可得b a =12,则C 的渐近线方程为:y =±12x .故选C .8.双曲线W: x 2a 2-y 2b 2=1(a >0,b >0)一个焦点为F (2,0),若点F 到W 的渐近线的距离是1,则W 的离心率为( )A .43B .233C .2D .12解析:选B 双曲线W :x 2a 2-y 2b 2=1(a >0,b >0)一个焦点为F (2,0),c =2,双曲线的一条渐近线方程bx +ay =0,点F 到W 的渐近线的距离是1,可得|2b |a 2+b 2=1,即2bc =1,解得b =1,则a =3,所以双曲线的离心率为23=233.故选B .9.(2018·惠州模拟)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A .13B .12C .23D .32解析:选D 由双曲线C :x 2-y 23=1的右焦点F (2,0),PF 与x 轴垂直,设P (2,y ),y>0,则y =3,则P (2,3),∴AP ⊥PF ,则|AP |=1,|PF |=3,∴△APF 的面积S =12×|AP |×|PF |=32,同理当y <0时,则△APF 的面积S =32,故选D .10.(2018·广东模拟)若双曲线的顶点为椭圆x 2+y 22=1长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是( )A .x 2-y 2=1B .y 2-x 2=1C .x 2-y 2=2D .y 2-x 2=2解析:选D 由题意设双曲线方程为y 2a 2 -x 2b 2 =1,离心率为e .椭圆x 2+y 22=1长轴的端点是(0,2),所以a = 2.∵椭圆x 2+y 22=1的离心率为12,∴双曲线的离心率e =2,⇒c=2,∴b =2,则双曲线的方程是y 2-x 2=2.故选D .11.(2018·邯郸模拟)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若|BC |=3|BF |,且|AF |=4,则p 为( )A .43B .2C .83D .163解析:选C 设A ,B 在准线上的射影分别为M ,N ,则由于|BC |=3|BF |=3|BN |,则直线l 的斜率为22,∵|AF |=4,∴AM =4,故|AC |=3|AM |=12,从而|CF |=8,|CB |=6.故p|AM |=CF |AC |, 即p =83,故选C .12.(2018·大同模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是( )A .12B .22C .32D .55解析:选C 设直线x -y +5=0与椭圆相交于A (x 1,y 1),B (x 2,y 2),由x 1+x 2=-8,y 1+y 2=2,直线AB 的斜率k =y 1-y 2x 1-x 2=1,由⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y 22b2=1,两式相减得:(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2×x 1+x 2y 1+y 2=1,∴b 2a 2=14,由椭圆的离心率e =ca =1-b 2a2=32,故选C .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.(2018·南阳模拟)若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为________.解析:圆(x -1)2+y 2=5的圆心C (1,0),半径r =5,圆心C (1,0)到直线x -y +m =0的距离:d =|1-0+m |2=|1+m |2,∵直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,∴5-⎝⎛⎭⎪⎫|1+m |22=⎝⎛⎭⎫2322,解得m =1或m =-3. 答案:1或-314.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与圆(x -2)2+y 2=1相切,则此双曲线的离心率为________.解析:由题意可知双曲线的渐近线方程之一为:bx +ay =0,圆(x -2)2+y 2=1的圆心(2,0),半径为1,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与圆(x -2)2+y 2=1相切,可得:2bb 2+a 2=1,可得a 2=b 2,c =2a ,∴e =2.答案: 215.已知等腰梯形ABCD 的顶点都在抛物线y 2=2px (p >0)上,且AB ∥CD ,CD =2AB =4,∠ADC =60°,则点A 到抛物线的焦点的距离是________.解析:由题意,设A (a,1),D (a +3,2),代入抛物线的方程可得 ⎩⎨⎧2pa =1,2p (a +3)=4,∴a =33,p =32. ∴|AF |=a +p 2=33+34=7312.答案:731216.F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,过F 作某一渐近线的垂线,分别与两条渐近线相交于A ,B 两点,若|AF ||BF |=12,则双曲线的离心率为________.解析:当b >a >0时,由|AF ||BF |=12,可知A 为BF 的中点,由条件可得|OA ||OB |=12,则Rt △OAB 中,∠AOB =π3,渐近线OB 的斜率k =3,即离心率e =ca =1+3=2.同理当a >b >0时,可得e =233.答案:233或2三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(10分)(2018·唐山模拟)已知抛物线C :x 2=2py (p >0),圆O :x 2+y 2=1. (1)若抛物线C 的焦点F 在圆上,且A 为C 和圆O 的一个交点,求|AF |;(2)若直线l 与抛物线C 和圆O 分别相切于点M ,N ,求|MN |的最小值及相应p 的值. 解:(1)由题意得F (0,1),∴C :x 2=4y .解方程组⎩⎪⎨⎪⎧x 2=4y ,x 2+y 2=1,得y A =5-2,∴|AF |=5-1.(2)设M (x 0,y 0),则切线l :y =x 0p (x -x 0)+y 0,整理得x 0x -py -py 0=0.由|ON |=1得|py 0|=x 20+p 2=2py 0+p 2,∴p =2y 0y 20-1且y 20-1>0. ∴|MN |2=|OM |2-1=x 20+y 20-1=2py 0+y 20-1=4y 20y 20-1+y 20-1=4+4y 20-1+(y 20-1)≥8,当且仅当y 0=3时等号成立.∴|MN |的最小值为22,此时p =3.18.(12分)已知抛物线x 2=4y ,直线l 的方程y =-2,动点P 在直线l 上,过P 点作抛物线的切线,切点分别为A ,B ,线段A ,B 的中点为Q .(1)求证:直线AB 恒过定点; (2)求Q 点轨迹方程.(1)证明:设P (t ,-2),A (x 1,y 1),B (x 2,y 2). ∵y =14x 2,∴y ′=12x .∴在点A 处的切线方程为y -y 1=12 x 1(x -x 1),化为y =12x 1x -y 1.同理在点B 处的切线方程为y =12x 2x -y 2.∵点P (t ,-2)在两条切线上. ∴点A ,B 都满足方程-2=12tx -y ,∴直线AB 恒过定点(0,2).(2)解:设Q (x ,y ),则x 1+x 2=2x ,y 1+y 2=2y , 把A (x 1,y 1),B (x 2,y 2)代入x 2=4y ,得⎩⎪⎨⎪⎧x 21=4y 1,x 22=4y 2,两式相减, 得(x 1-x 2)(x 1+x 2)=4(y 1-y 2), ∴k =y 1-y 2x 1-x 2=2x 4=12x ,∵直线AB 过Q (x ,y ),(0,2),∴k =y -2x ,∴12x =y -2x ,整理,得:x 2-2y +4=0, 当直线AB 的斜率不存在时,上式也成立, ∴Q 点轨迹方程为x 2-2y +4=0.19.(12分)(2018·贵港模拟)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为223,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+42.(1)求椭圆M 的方程;(2)设直线l :x =ky +m 与椭圆M 交手A ,B 两点,若以AB 为直径的圆经过椭圆的右顶点C ,求m 的值.解:(1)由题意,可得2a +2c =6+42,即a +c =3+22, 又椭圆的离心率为223,即c a =223,所以a =3,c =22, 所以b 2=a 2-c 2=1,所以椭圆M 的方程为x 29+y 2=1.(2)由⎩⎪⎨⎪⎧x =ky +m ,x 29+y 2=1消去x 得 (k 2+9)y 2+2kmy +m 2-9=0. 设A (x 1,y 1),B (x 2,y 2),有y 1+y 2=-2kmk 2+9,y 1y 2=m 2-9k 2+9.①因为以AB 为直径的圆过椭圆右顶点C (3,0), 所以CA →·CB →=0.由CA →=(x 1-3,y 1),CB →=(x 2-3,y 2), 得 (x 1-3)(x 2-3)+y 1y 2=0.将x 1=ky 1+m ,x 2=ky 2+m 代入上式, 得(k 2+1)y 1y 2+k (m -3)(y 1+y 2)+(m -3)2=0,将 ①代入上式得(k 2+1)×m 2-9k 2+9+k (m -3)×⎝⎛⎭⎫-2km k 2+9+(m -3)2=0,解得m =125,或m =3.20.(12分)(2018·肇庆模拟)已知圆F 1:(x +1)2+y 2=16,定点F 2(1,0),A 是圆F 1上的一动点,线段F 2A 的垂直平分线交半径F 1A 于P 点.(1)求P 点的轨迹C 的方程;(2)四边形EFGH 的四个顶点都在曲线C 上,且对角线EG ,FH 过原点O ,若k EG ·k FH=-34,求证:四边形EFGH 的面积为定值,并求出此定值.(1)解:因为P 在线段F 2A 的中垂线上, 所以|PF 2|=|P A |.所以|PF 2|+|PF 1|=|P A |+|PF 1|=|AF 1|=4>|F 1F 2|,所以轨迹C 是以F 1,F 2为焦点的椭圆,且c =1,a =2,所以b =3, 故轨迹C 的方程为x 24+y 23=1.(2)证明:不妨设点E 、H 位于x 轴的上方, 则直线EH 的斜率存在,设EH 的方程为y =kx +m ,E (x 1,y 1),H (x 2,y 2). 联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8kmx +4m 2-12=0,则x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2.①由k EG ·k FH =y 1y 2x 1x 2=-34,得(kx 1+m )(kx 2+m )x 1x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=-34.②由①、②,得2m 2-4k 2-3=0.③设原点到直线EH 的距离为d =|m |1+k 2, |EH |=1+k 2|x 1-x 2|=1+k216(12k 2-3m 2+9)3+4k 2,S 四边形EFGH =4S △EOH =2|EH |·d =8|m |12k 2-3m 2+93+4k 2④由③、④,得S 四边形EFGH =43,故四边形EFGH 的面积为定值,且定值为43. 21.(12分)(2018·安庆模拟)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,左右焦点分别为F 1,F 2,以椭圆短轴为直径的圆与直线x -y +6=0相切.(1)求椭圆E 的方程;(2)过点F 1、斜率为k 1的直线l 1与椭圆E 交于A ,B 两点,过点F 2、斜率为k 2的直线l 2与椭圆E 交于C ,D 两点,且直线l 1,l 2相交于点P ,若直线OA ,OB ,OC ,OD 的斜率k OA ,k OB ,k OC ,k OD 满足k OA +k OB =k OC +k OD ,求证:动点P 在定椭圆上,并求出此椭圆方程.解:(1)由以椭圆短轴为直径的圆与直线x -y +6=0相切,则圆心O 到直线的距离d =b ,∴b =d =|0-0+6|1+1=3,由e =c a =12,则a =2c ,a 2=c 2+b 2=c 2+3,解得:a =2,c =1,∴椭圆E 的方程x 24+y 23=1.(2)当直线l 1或l 2斜率不存在时,P 点坐标为(-1,0)或(1,0).当直线l 1、l 2斜率存在时,l 1的方程为y =k 1(x +1),l 2的方程为y =k 2(x -1), 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 联立⎩⎪⎨⎪⎧y =k 1(x +1),x 24+y 23=1,得到(3+4k 21)x 2+8k 21x +4k 21-12=0,∴x 1+x 2=-8k 213+4k 21,x 1x 2=4k 21-123+4k 21. 同理x 3+x 4=8k 223+4k 22,x 3x 4=4k 22-123+4k 22.(*) ∵k OA =y 1x 1,k OB =y 2x 2,k OA +k OB =y 1x 1+y 2x 2=2k 1x 1x 2+k 1(x 1+x 2)x 1x 2=12k 14k 21-12,同理可得:k OC +k OD =-12k 24k 22-12.由k OA +k OB =k OC +k OD ,则12k 14k 21-12=-12k 24k 22-12.整理得k 1k 2=-3.设点P (x ,y ),则y x +1·yx -1=-3,(x ≠±1)整理得y 23+x 2=1,(x ≠±1)由当直线l 1或l 2斜率不存在时,P 点坐标为(-1,0)或(1,0)也满足, ∴椭圆的标准方程y 23+x 2=1.22.(12分)已知椭圆E: x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,A 为椭圆E的右顶点,B ,C 分别为椭圆E 的上、下顶点.线段CF 2的延长线与线段AB 交于点M ,与椭圆E 交于点P .(1)若椭圆的离心率为22,△PF 1C 的面积为12,求椭圆E 的方程; (2)设S △CMF 1=λ·S △CPF 1,求实数λ的最小值. 解:(1)由椭圆的离心率e =c a =22,则a =2c, b 2=a 2-c 2=c 2, ∴△F 1CF 2是等腰直角三角形, |PF 1|+|PF 2|=2a ,则|PF 2|=2a -|PF 1|,由勾股定理知,|PF 1|2=|CF 1|2+|CP |2,|PF 1|2=a 2+(a +|PF 2|)2, 则|PF 1|2=a 2+(3a -|PF 1|)2, 解得:|PF 1|=5a 3,|PF 2|=a 3,|PC |=4a 3, ∴△PF 1C 的面积为S =12×a ×4a3=12,即a 2=18,b 2=9.∴椭圆E 的方程为x 218+y 29=1.(2)设P (x ,y ),因为直线AB 的方程为y =-ba x +b ,直线PC 的方程为y =bc x -b ,所以联立方程解得M ⎝⎛⎭⎪⎫2ac a +c ,ab -bc a +c .因为S △CMF 1=λ·S △CPF 1,所以|CM |=λ|CP |,所以CM →=λCP →,∴⎝⎛⎭⎫2ac a +c ,2ab a +c =λ(x ,y +b ), 则x =2ac λ(a +c ),y =2ab -λb (a +c )λ(a +c ), 代入椭圆E 的方程,得4c 2λ2(a +c )2+[2a -λ(a +c )]2λ2(a +c )2=1, 即4c 2+[2a -λ(a +c )]2=λ2(a +c )2,∴λ=a 2+c 2a (a +c )=1+e 21+e =1+e +21+e-2≥ 2(1+e )×21+e-2=22-2, 因为0<e <1,1<e +1<2,∴当且仅当e +1=2,即e =2-1时, ∴取到最小值22-2.。
三年高考(2019-2021)数学(理)试题分项汇编——专题08 平面解析几何(解答题)(教师版)
专题08 平面解析几何(解答题)1.【2021·北京高考真题】已知椭圆2222:1(0)x y E a b a b+=>>过点(0,2)A -,以四个顶点围成的四边形面积为45. (1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M 、N ,直线AC 交y =-3于点N ,若|PM |+|PN |≤15,求k 的取值范围.【答案】(1)22154x y +=;(2)[3,1)(1,3]--⋃. 【分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,a b ,从而可求椭圆的标准方程.(2)设()()1122,,,B x y C x y ,求出直线,AB AC 的方程后可得,M N 的横坐标,从而可得PM PN +,联立直线BC 的方程和椭圆的方程,结合韦达定理化简PM PN +,从而可求k 的范围,注意判别式的要求.【详解】(1)因为椭圆过()0,2A -,故2b =, 因为四个顶点围成的四边形的面积为45,故122452a b ⨯⨯=,即5a =, 故椭圆的标准方程为:22154x y +=.(2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠, 故直线112:2y AB y x x +=-,令3y =-,则112M x x y =-+,同理222N xx y =-+. 直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=, 故()22900100450k k ∆=-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k +==++,故120x x >,所以0M N x x > 又1212=22M N x xPM PN x x y y +=++++ ()()2212121222212121222503024545=5253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k --++++===---++-+++故515k ≤即3k ≤,综上,31k -≤<-或13k <≤.2.【2021·全国高考真题】在平面直角坐标系xOy 中,已知点()1F、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0. 【分析】(1)利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)设点1,2T t ⎛⎫⎪⎝⎭,设直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,设点()11,A x y 、()22,B x y ,联立直线AB 与曲线C 的方程,列出韦达定理,求出TA TB ⋅的表达式,设直线PQ 的斜率为2k ,同理可得出TP TQ ⋅的表达式,由TA TB TP TQ ⋅=⋅化简可得12k k +的值.【详解】因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥;(2)设点1,2T t ⎛⎫ ⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点, 不妨直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,即1112y k x t k =+-, 联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+=⎪⎝⎭, 设点()11,A x y 、()22,B x y ,则112x >且212x >. 由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-, 所以,()()()()22122121121122112111*********t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+= ⎪-⎝⎭, 设直线PQ 的斜率为2k ,同理可得()()2222212116t k TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616t k t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=. 因此,直线AB 与直线PQ 的斜率之和为0.【点睛】方法点睛:求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.3.【2021·浙江高考真题】如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RNPN QN =⋅,求直线l 在x 轴上截距的范围.【答案】(1)24y x =;(2)()(),743743,11,⎡-∞---++∞⎣.【分析】(1)求出p 的值后可求抛物线的方程.(2)设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n ,联立直线AB 的方程和抛物线的方程后可得12124,4y y y y t =-+=,求出直线,MA MB 的方程,联立各直线方程可求出,,P Q R y y y ,根据题设条件可得()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,从而可求n 的范围.【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =.(2)设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n , 所以直线:2y l x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=, 因为2RN PN QN =⋅,故2R P Q y ⎫=⎪⎪⎭,故2R P Q y y y =⋅. 又()11:11y MA y x x =++,由()11112y y x x y x n⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-,同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-, 所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦, 整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭, ()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,令21s t =-,则12s t +=且0s ≠,故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-, 故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩,解得7n ≤--71n -+≤<或1n >.故直线l 在x轴上的截距的范围为7n ≤--71n -+≤<或1n >.【点睛】方法点睛:直线与抛物线中的位置关系中的最值问题,往往需要根据问题的特征合理假设直线方程的形式,从而便于代数量的计算,对于构建出的函数关系式,注意利用换元法等把复杂函数的范围问题转化为常见函数的范围问题. 4.【2021·全国高考真题(理)】在直角坐标系xOy 中,C 的圆心为()2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点()4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程. 【答案】(1)2cos 1sin x y αα=+⎧⎨=+⎩,(α为参数);(2)2cos()43πρθ+=-2cos()43πρθ-=+【分析】(1)直接利用圆心及半径可得的圆的参数方程;(2)先求得过(4,1)的圆的切线方程,再利用极坐标与直角坐标互化公式化简即可. 【详解】(1)由题意,C 的普通方程为22(2)(1)1x y -+-=,所以C 的参数方程为2cos 1sin x y αα=+⎧⎨=+⎩,(α为参数)(2)由题意,切线的斜率一定存在,设切线方程为1(4)y k x -=-,即140kx y k -+-=,由圆心到直线的距离等于11=,解得k =330y -+-=330y +--=,将cos x ρθ=,sin y ρθ=代入化简得2cos()43πρθ+=-2cos()43πρθ-=【点晴】本题主要考查直角坐标方程与极坐标方程的互化,涉及到直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.5.【2021·全国高考真题(理)】已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值. 【答案】(1)2p =;(2)【分析】(1)根据圆的几何性质可得出关于p 的等式,即可解出p 的值;(2)设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求出直线PA 、PB ,进一步可求得直线AB 的方程,将直线AB 的方程与抛物线的方程联立,求出AB 以及点P 到直线AB 的距离,利用三角形的面积公式结合二次函数的基本性质可求得PAB △面积的最大值. 【详解】(1)抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+, 所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =; (2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=, 同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=, 由韦达定理可得1202x x x +=,1204x x y =,所以,AB ===,点P 到直线AB的距离为d =所以,()3220011422PABS AB d x y =⋅==-△, ()()2222000000041441215621x y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-,所以,当05y =-时,PAB△的面积取最大值321202⨯=【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种: 一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.6.【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1). 则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线PA 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.7.【2020年高考全国Ⅱ卷理数】已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且43CD AB =. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【解析】(1)由已知可设2C 的方程为24y cx =,其中c不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12. (2)由(1)知2a c =,b =,故22122:143x y C c c+=,设00(,)M x y ,则220022143x y c c +=,2004y cx =,故20024143x x c c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而||5MF =,故05x c =-,代入①得22(5)4(5)143c c c c --+=,即2230c c --=,解得1c =-(舍去),3c =. 所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.8.【2020年高考全国Ⅲ卷理数】已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.【解析】(1=22516m =, 所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ的距离为2,故11APQ △的面积为15222⨯=. 22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q故22AP Q △的面积为1522=. 综上,APQ △的面积为52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.9.【2020年高考北京】已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值. 【解析】 (1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++. 直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.很明显0P Q y y <,且:PQPB y PQy =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭,而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y PQy ==. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.10.【2020年高考浙江】如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【解析】(Ⅰ)由116p =得2C 的焦点坐标是1(,0)32.(Ⅱ)由题意可设直线:(0,0)l x my t m t =+≠≠,点00(,)A x y .将直线l 的方程代入椭圆221:12x C y +=得222(2)220m y mty t +++-=,所以点M 的纵坐标22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得2220y pmy pt --=,所以02M y y pt =-,解得202(2)p m y m+=,因此22022(2)p m x m +=.由220012x y +=得2421224()2()160m m p m m =+++≥,所以当2m ,10t =时,p 10. 【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数学运算能力,是一道有一定难度的题.11.【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.【解析】(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=. (2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键. 12.【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【解析】(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++-=. 于是2121222426,1212km m x x x x k k-+=-=++.① 由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=, 可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k-+---+-+=++. 整理得(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠. 于是MN 的方程为21()(1)33y k x k =--≠.所以直线MN 过点21(,)33P -.若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=.又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P -.令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP ==. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.【点睛】本题考查椭圆的标准方程和性质,圆锥曲线中的定点定值问题,关键是第二问中证明直线MN 经过定点,并求得定点的坐标,属综合题,难度较大.13.【2020年新高考全国Ⅱ卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8, 与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d==由两点之间距离公式可得||AM==.所以△AMN的面积的最大值:1182⨯=.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.14.【2019年高考全国Ⅰ卷理数】已知抛物线C:y2=3x的焦点为F,斜率为32的直线l与C 的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若3AP PB=,求|AB|.【答案】(1)3728y x=-;(2)3.【解析】设直线()()11223:,,,,2l y x t A x y B x y=+.(1)由题设得3,04F⎛⎫⎪⎝⎭,故123||||2AF BF x x+=++,由题设可得1252x x+=.由2323y x ty x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t+-+=,则1212(1)9tx x-+=-.从而12(1)592t--=,得78t=-.所以l的方程为3728y x=-.(2)由3AP PB=可得123y y=-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||3AB =. 【名师点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及平面向量、弦长的求解方法,解题关键是能够通过直线与抛物线方程的联立,利用根与系数的关系构造等量关系.15.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【答案】(1)见解析;(2)(i )见解析;(ii )169. 【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点. (2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =||PG =△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812tS t=+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. 【名师点睛】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题,考查了数学运算能力,考查了求函数最大值问题.16.【2019年高考全国Ⅲ卷理数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2)3或【解析】(1)设()111,,,2D t A x y ⎛⎫- ⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- .整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E 到直线AB的距离,则12d d ==因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t =±时,S =因此,四边形ADBE 的面积为3或【名师点睛】此题第一问是圆锥曲线中的定点问题,第二问是求面积类型,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.17.【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【答案】(1)抛物线C 的方程为24x y =-,准线方程为1y =;(2)见解析.【解析】(1)由抛物线2:2C x py =-经过点(2,1)-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =. (2)抛物线C 的焦点为(0,1)F -. 设直线l 的方程为1(0)y kx k =-≠.由21,4y kx x y=-⎧⎨=-⎩得2440x kx +-=. 设()()1122,,,M x y N x y ,则124x x =-. 直线OM 的方程为11y y x x =. 令1y =-,得点A 的横坐标11A x x y =-. 同理得点B 的横坐标22B x x y =-. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=---=--- ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++2122212(1)44x x n x x =++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭ 21216(1)n x x =++ 24(1)n =-++.令0DA DB ⋅=,即24(1)0n -++=,则1n =或3n =-. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)-.【名师点睛】本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.18.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.【答案】(1)22154x y +=;(2或. 【解析】(1)设椭圆的半焦距为c,依题意,24,c b a ==222a b c =+,可得a =2,b =1c =.所以,椭圆的方程为22154x y +=.(2)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠, 又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P k x k =-+,代入2y kx =+得2281045P k y k-=+, 进而直线OP 的斜率24510P p y k x k-=-. 在2y kx =+中,令0y =,得2M x k=-. 由题意得()0,1N -,所以直线MN 的斜率为2k -. 由OP MN ⊥,得2451102k k k-⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而k =所以,直线PB或. 【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.19.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)设椭圆C 的焦距为2c . 因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 2222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.20.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为31,此时G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t -+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A ct t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,1221222134342S m S m m m m m=-=--=+++++当m =时,12S S 取得最小值1G (2,0). 【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.。
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(海南、宁夏卷)(文科)2580
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(海南、宁夏卷)(文科)测试题 2019.91,已知集合,,则()A. (-1,1)B. (-2,1)C. (-2,-1)D. (1,2)2,双曲线的焦距为()3,已知复数,则()A. 2B. -2C. 2iD. -2i4,如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2。
(1)求cos∠CBE的值;(2)求AE。
5,如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm)。
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结,证明:∥面EFG。
{|(2)(1))0}M x x x=+-<{|10}N x x=+<M N=221102x y-=1z i=-21zz=-'BC'BC6,为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10。
把这6名学生的得分看成一个总体。
(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本。
求该样本平均数与总体平均数之差的绝对值不超过0.5的概率。
7,已知m ∈R ,直线l :和圆C : 。
(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为的两段圆弧?为什么?8,设函数,曲线在点处的切线方程为。
(1)求的解析式;(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值。
9,如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线AP 垂直直线OM ,垂足为P 。
(1)证明:;(2)N 为线段AP 上一点,直线NB 垂直直线ON ,且交圆O 于B 点。
2008年全国各地高考数学试题及解答分类大全(平面向量)
点 D 的坐标为( A )
A.
2,7 2
B.
2,
1 2
C. (3,2)
D. (1,3)
9.(2008 辽宁理)已知 O,A,B 是平面上的三个点,直线 AB 上有一点 C,满足 2 AC CB 0 ,则 OC
(A
)
A. 2OA OB
B. OA 2OB
C.
2
OA
1
OB
33
D.
2
5.【解析】本小题考查向量的线性运算. 5a b
5a b
2
25a
2
10a
b
b
2
= 2512
10
1
3
1 2
32
49
,
5a b
7
6.(2008 湖南文) 已知向量 a (1, 3) , b (2,0) ,则 a b =____2____.
7.(2008 江西理)直角坐标平面内三点 A1, 2、B 3, 2 、C 9, 7 ,若 E、F 为线段 BC 的三等分点,
2008 年全国各地高考数学试题及解答分类大全
(平面向量)
一、选择题:
1.(2008 安徽文)若 AB (2, 4) , AC (1,3) , 则 BC ( B )
A.(1,1) B.(-1,-1) C.(3,7)
D.(-3,-7)
2.(2008 安徽理)在平行四边形 ABCD 中,AC 为一条对角线,若 AB (2, 4) , AC (1, 3) ,则 BD =
(A) 7,3
(B) 7, 7 (C) 1,7 (D) 1,3
12.(2008 浙江理))已知 a ,b 是平面内两个互相垂直的单位向量,若向量 c 满足 (a c) (b c) 0 , 则 c 的最大值是( C )
全国通用2020_2022三年高考数学真题分项汇编专题08平面解析几何解答题(含答案及解析)
全国通用2020_2022三年高考数学真题分项汇编:08 平面解析几何(解答题)1.【2022年全国甲卷】设抛物线C:y 2=2px(p >0)的焦点为F ,点D (p,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3.(1)求C 的方程;(2)设直线MD,ND 与C 的另一个交点分别为A ,B ,记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时,求直线AB 的方程. 【答案】(1)y 2=4x ; (2)AB:x =√2y +4. 【解析】 【分析】(1)由抛物线的定义可得|MF|=p +p2,即可得解;(2)设点的坐标及直线MN:x =my +1,由韦达定理及斜率公式可得k MN =2k AB ,再由差角的正切公式及基本不等式可得k AB =√22,设直线AB:x =√2y +n ,结合韦达定理可解.(1)抛物线的准线为x =−p2,当MD 与x 轴垂直时,点M 的横坐标为p , 此时|MF|=p +p2=3,所以p =2, 所以抛物线C 的方程为y 2=4x ; (2) 设M(y 124,y 1),N(y 224,y 2),A(y 324,y 3),B(y 424,y 4),直线MN:x =my +1,由{x =my +1y 2=4x 可得y 2−4my −4=0,Δ>0,y 1y 2=−4,由斜率公式可得k MN =y 1−y 2y 124−y 224=4y1+y 2,k AB =y 3−y 4y 324−y 424=4y3+y 4,直线MD:x =x 1−2y 1⋅y +2,代入抛物线方程可得y 2−4(x 1−2)y 1⋅y −8=0,Δ>0,y 1y 3=−8,所以y 3=2y 2,同理可得y 4=2y 1, 所以k AB =4y3+y 4=42(y1+y 2)=k MN 2又因为直线MN 、AB 的倾斜角分别为α,β, 所以k AB =tanβ=k MN 2=tanα2,若要使α−β最大,则β∈(0,π2), 设k MN =2k AB=2k >0,则tan(α−β)=tanα−tanβ1+tanαtanβ=k 1+2k 2=11k+2k ≤2√1k⋅2k=√24,当且仅当1k =2k 即k =√22时,等号成立,所以当α−β最大时,k AB =√22,设直线AB:x =√2y +n ,代入抛物线方程可得y 2−4√2y −4n =0, Δ>0,y 3y 4=−4n =4y 1y 2=−16,所以n =4, 所以直线AB:x =√2y +4. 【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.2.【2022年全国乙卷】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,−2),B (32,−1)两点. (1)求E 的方程;(2)设过点P (1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ .证明:直线HN 过定点. 【答案】(1)y 24+x 23=1(2)(0,−2) 【解析】 【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. (1)解:设椭圆E 的方程为mx 2+ny 2=1,过A (0,−2),B (32,−1), 则{4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.(2)A(0,−2),B(32,−1),所以AB:y +2=23x ,①若过点P(1,−2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M(1,2√63),N(1,−2√63),代入AB 方程y =23x −2,可得T(√6+3,2√63),由MT⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ 得到H(2√6+5,2√63).求得HN 方程: y =(2−2√63)x −2,过点(0,−2).②若过点P(1,−2)的直线斜率存在,设kx −y −(k +2)=0,M(x 1,y 1),N(x 2,y 2).联立{kx −y −(k +2)=0x 23+y 24=1,得(3k 2+4)x 2−6k(2+k)x +3k(k +4)=0,可得{x 1+x 2=6k(2+k)3k 2+4x 1x 2=3k(4+k)3k 2+4,{y 1+y 2=−8(2+k)3k 2+4y 2y 2=4(4+4k−2k 2)3k 2+4, 且x 1y 2+x 2y 1=−24k3k 2+4(∗) 联立{y =y 1y =23x −2 ,可得T(3y 12+3,y 1),H(3y 1+6−x 1,y 1).可求得此时HN:y −y 2=y 1−y 23y1+6−x 1−x 2(x −x 2),将(0,−2),代入整理得2(x 1+x 2)−6(y 1+y 2)+x 1y 2+x 2y 1−3y 1y 2−12=0, 将(∗)代入,得24k +12k 2+96+48k −24k −48−48k +24k 2−36k 2−48=0, 显然成立,综上,可得直线HN 过定点(0,−2). 【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 3.【2022年新高考1卷】已知点A(2,1)在双曲线C:x 2a 2−y 2a 2−1=1(a >1)上,直线l 交C 于P ,Q 两点,直线AP,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan ∠PAQ =2√2,求△PAQ 的面积. 【答案】(1)−1; (2)16√29.【解析】 【分析】(1)由点A(2,1)在双曲线上可求出a ,易知直线l 的斜率存在,设l:y =kx +m ,P (x 1,y 1),Q (x 2,y 2),再根据k AP +k BP =0,即可解出l 的斜率;(2)根据直线AP,AQ 的斜率之和为0可知直线AP,AQ 的倾斜角互补,再根据tan ∠PAQ =2√2即可求出直线AP,AQ 的斜率,再分别联立直线AP,AQ 与双曲线方程求出点P,Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出△PAQ 的面积. (1)因为点A(2,1)在双曲线C:x 2a 2−y 2a 2−1=1(a >1)上,所以4a 2−1a 2−1=1,解得a 2=2,即双曲线C:x 22−y 2=1易知直线l 的斜率存在,设l:y =kx +m ,P (x 1,y 1),Q (x 2,y 2), 联立{y =kx +m x 22−y 2=1可得,(1−2k 2)x 2−4mkx −2m 2−2=0,所以,x 1+x 2=−4mk 2k 2−1,x 1x 2=2m 2+22k 2−1,Δ=16m 2k 2+4(2m 2+2)(2k 2−1)>0⇒m 2−1+2k 2>0.所以由k AP +k BP =0可得,y 2−1x2−2+y 1−1x 1−2=0, 即(x 1−2)(kx 2+m −1)+(x 2−2)(kx 1+m −1)=0, 即2kx 1x 2+(m −1−2k )(x 1+x 2)−4(m −1)=0, 所以2k ×2m 2+22k 2−1+(m −1−2k )(−4mk2k 2−1)−4(m −1)=0,化简得,8k 2+4k −4+4m (k +1)=0,即(k +1)(2k −1+m )=0, 所以k =−1或m =1−2k ,当m =1−2k 时,直线l:y =kx +m =k (x −2)+1过点A (2,1),与题意不符,舍去, 故k =−1. (2)不妨设直线PA,PB 的倾斜角为α,β(α<β),因为k AP +k BP =0,所以α+β=π, 因为tan ∠PAQ =2√2,所以tan (β−α)=2√2,即tan2α=−2√2, 即√2tan 2α−tanα−√2=0,解得tanα=√2,于是,直线PA:y =√2(x −2)+1,直线PB:y =−√2(x −2)+1, 联立{y =√2(x −2)+1x 22−y 2=1可得,32x 2+2(1−2√2)x +10−4√2=0, 因为方程有一个根为2,所以x P =10−4√23,y P =4√2−53, 同理可得,x Q =10+4√23,y Q = −4√2−53.所以PQ:x +y −53=0,|PQ |=163,点A 到直线PQ 的距离d =|2+1−53|√2=2√23, 故△PAQ 的面积为12×163×2√23=16√29.4.【2022年新高考2卷】已知双曲线C:x 2a2−y 2b 2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x . (1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点P (x 1,y 1),Q (x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ∥AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x2−y23=1(2)见解析【解析】【分析】(1)利用焦点坐标求得c的值,利用渐近线方程求得a,b的关系,进而利用a,b,c的平方关系求得a,b的值,得到双曲线的方程;(2)先分析得到直线AB的斜率存在且不为零,设直线AB的斜率为k, M(x0,y0),由③|AM|=|BM|等价分析得到x0+ky0=8k2k2−3;由直线PM和QM的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率m=3x0y,由②PQ//AB等价转化为ky0=3x0,由①M在直线AB上等价于ky0=k2(x0−2),然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为F(2,0),∴c=2,∵渐近线方程为y=±√3x,∴ba=√3,∴b=√3a,∴c2=a2+ b2=4a2=4,∴a=1,∴b=√3.∴C的方程为:x2−y23=1;(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而x1=x2,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为y=k(x−2),则条件①M在AB上,等价于y0=k(x0−2)⇔ky0=k2(x0−2);两渐近线的方程合并为3x2−y2=0,联立消去y并化简整理得:(k2−3)x2−4k2x+4k2=0设A(x3,y3),B(x3,y4),线段中点为N(x N,y N),则x N=x3+x42=2k2k2−3,y N=k(x N−2)=6kk2−3,设M(x0,y0),则条件③|AM|=|BM|等价于(x0−x3)2+(y0−y3)2=(x0−x4)2+(y0−y4)2, 移项并利用平方差公式整理得:(x 3−x 4)[2x 0−(x 3+x 4)]+(y 3−y 4)[2y 0−(y 3+y 4)]=0, [2x 0−(x 3+x 4)]+y 3−y 4x 3−x 4[2y 0−(y 3+y 4)]=0,即x 0−x N +k (y 0−y N )=0,即x 0+ky 0=8k 2k 2−3;由题意知直线PM 的斜率为−√3, 直线QM 的斜率为√3, ∴由y 1−y 0=−√3(x 1−x 0),y 2−y 0=√3(x 2−x 0), ∴y 1−y 2=−√3(x 1+x 2−2x 0), 所以直线PQ 的斜率m =y 1−y2x 1−x 2=−√3(x 1+x 2−2x 0)x 1−x 2, 直线PM:y =−√3(x −x 0)+y 0,即y =y 0+√3x 0−√3x ,代入双曲线的方程3x 2−y 2−3=0,即(√3x +y)(√3x −y)=3中, 得:(y 0+√3x 0)[2√3x −(y 0+√3x 0)]=3, 解得P 的横坐标:x 1=2√3(y +√3x +y 0+√3x 0),同理:x 2=2√3(y−√3x y 0−√3x 0),∴x 1−x 2=√3(3y0y 02−3x 02+y 0),x 1+x 2−2x 0=−3xy 02−3x 02−x 0,∴m =3x 0y 0,∴条件②PQ//AB 等价于m =k ⇔ky 0=3x 0, 综上所述:条件①M 在AB 上,等价于ky 0=k 2(x 0−2); 条件②PQ//AB 等价于ky 0=3x 0;条件③|AM|=|BM|等价于x 0+ky 0=8k 2k 2−3;选①②推③:由①②解得:x 0=2k 2k 2−3,∴x 0+ky 0=4x 0=8k 2k 2−3,∴③成立;选①③推②:由①③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3, ∴ky 0=3x 0,∴②成立; 选②③推①:由②③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3,∴x 0−2=6k 2−3, ∴ky 0=k 2(x 0−2),∴①成立.5.【2021年甲卷文科】抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M 与l 相切.(1)求C ,M 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.【答案】(1)抛物线2:C y x =,M 方程为22(2)1x y -+=;(2)相切,理由见解析 【解析】 【分析】(1)根据已知抛物线与1x =相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出,P Q 坐标,由OP OQ ⊥,即可求出p ;由圆M 与直线1x =相切,求出半径,即可得出结论;(2)方法一:先考虑12A A 斜率不存在,根据对称性,即可得出结论;若121323,,A A A A A A 斜率存在,由123,,A A A 三点在抛物线上,将直线121223,,A A A A A A 斜率分别用纵坐标表示,再由1212,A A A A 与圆M 相切,得出2323,y y y y +⋅与1y 的关系,最后求出M 点到直线23A A 的距离,即可得出结论. 【详解】(1)依题意设抛物线200:2(0),(1,),(1,)C y px p P y Q y =>-, 20,1120,21OP OQ OP OQ y p p ⊥∴⋅=-=-=∴=,所以抛物线C 的方程为2y x =,()2,0,M M 与1x =相切,所以半径为1,所以M 的方程为22(2)1x y -+=;(2)[方法一]:设111222333(),(,),(,)A x y A x y A x y 若12A A 斜率不存在,则12A A 方程为1x =或3x =, 若12A A 方程为1x =,根据对称性不妨设1(1,1)A , 则过1A 与圆M 相切的另一条直线方程为1y =,此时该直线与抛物线只有一个交点,即不存在3A ,不合题意; 若12A A 方程为3x =,根据对称性不妨设12(3,A A 则过1A 与圆M 相切的直线13A A为3)y x -=-,又131********A A y y k y x x y y -==∴=-+, 330,(0,0)x A =,此时直线1323,A A A A 关于x 轴对称,所以直线23A A 与圆M 相切; 若直线121323,,A A A A A A 斜率均存在,则121323121323111,,A A A A A A k k k y y y y y y ===+++, 所以直线12A A 方程为()11121y y x x y y -=-+, 整理得1212()0x y y y y y -++=,同理直线13A A 的方程为1313()0x y y y y y -++=, 直线23A A 的方程为2323()0x y y y y y -++=, 12A A 与圆M相切,1=整理得22212121(1)230y y y y y -++-=,13A A 与圆M 相切,同理22213131(1)230y y y y y -++-= 所以23,y y 为方程222111(1)230y y y y y -++-=的两根,2112323221123,11y y y y y y y y -+=-⋅=--,M 到直线23A A 的距离为:2123|2|y -+=22121111y y +===+,所以直线23A A 与圆M 相切;综上若直线1213,A A A A 与圆M 相切,则直线23A A 与圆M 相切.[方法二]【最优解】:设()()()222111113333322222,,,,,,,,A x y y x A x y y x A x y y x ===.当12x x =时,同解法1.当12x x ≠时,直线12A A 的方程为()211121y y y y x x x x --=--,即121212y y x y y y y y =+++. 由直线12A A 与M1=,化简得()121212130y y x x x +--+=,同理,由直线13A A 与M 相切得()131312130y y x x x +--+=.因为方程()1112130y y x x x +--+=同时经过点23,A A ,所以23A A 的直线方程为()1112130y y x x x +--+=,点M 到直线23A A1==.所以直线23A A 与M 相切.综上所述,若直线1213,A A A A 与M 相切,则直线23A A 与M 相切. 【整体点评】第二问关键点:过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;法一是要充分利用1213,A A A A 的对称性,抽象出2323,y y y y +⋅与1y 关系,把23,y y 的关系转化为用1y 表示,法二是利用相切等条件得到23A A 的直线方程为()1112130y y x x x +--+=,利用点到直线距离进行证明,方法二更为简单,开拓学生思路6.【2021年乙卷文科】已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. 【答案】(1)24y x =;(2)最大值为13.【解析】 【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设()00,Q x y ,由平面向量的知识可得()00109,10P x y -,进而可得20025910y x +=,再由斜率公式及基本不等式即可得解. 【详解】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭, 所以该抛物线的方程为24y x =;(2)[方法一]:轨迹方程+基本不等式法 设()00,Q x y ,则()00999,9PQ QF x y ==--, 所以()00109,10P x y -, 由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++, 当00y =时,0OQ k =; 当00y ≠时,0010925OQ k y y =+, 当00y >时,因为0092530y y +≥=, 此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q 的轨迹方程为229525=-y x . 设直线OQ 的方程为y kx =,则当直线OQ 与抛物线229525=-y x 相切时,其斜率k 取到最值.联立2,29,525y kx y x =⎧⎪⎨=-⎪⎩得22290525k x x -+=,其判别式222940525⎛⎫∆=--⨯= ⎪⎝⎭k ,解得13k =±,所以直线OQ 斜率的最大值为13.[方法三]:轨迹方程+换元求最值法同方法一得点Q 的轨迹方程为229525=-y x . 设直线OQ 的斜率为k ,则22229525⎛⎫==- ⎪⎝⎭y k x x x. 令11009⎛⎫=<≤ ⎪⎝⎭t t x ,则2292255=-+k t t 的对称轴为59t =,所以21110,933≤≤-≤≤k k .故直线OQ 斜率的最大值为13.[方法四]:参数+基本不等式法由题可设()24,4(0),(,)>P t t t Q x y .因为(1,0),9=F PQ QF ,所以()24,49(1,)--=--x t y t x y .于是249(1)49x t x y t y ⎧-=-⎨-=-⎩,所以21049104x t y t ⎧=+⎨=⎩则直线OQ的斜率为244194934==≤=++y t x t t t .当且仅当94t t=,即32t =时等号成立,所以直线OQ 斜率的最大值为13.【整体点评】方法一根据向量关系,利用代点法求得Q 的轨迹方程,得到直线OQ 的斜率关于y 的表达式,然后利用分类讨论,结合基本不等式求得最大值;方法二 同方法一得到点Q 的轨迹方程,然后利用数形结合法,利用判别式求得直线OQ 的斜率的最大值,为最优解;方法三同方法一求得Q 的轨迹方程,得到直线OQ 的斜率k 的平方关于x 的表达式,利用换元方法转化为二次函数求得最大值,进而得到直线OQ 斜率的最大值;方法四利用参数法,由题可设()24,4(0),(,)>P t t t Q x y ,求得x,y 关于t 的参数表达式,得到直线OQ 的斜率关于t 的表达式,结合使用基本不等式,求得直线OQ 斜率的最大值.7.【2021年乙卷理科】已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值. 【答案】(1)2p =;(2)【解析】 【分析】(1)根据圆的几何性质可得出关于p 的等式,即可解出p 的值;(2)设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求出直线PA 、PB ,进一步可求得直线AB 的方程,将直线AB 的方程与抛物线的方程联立,求出AB 以及点P 到直线AB 的距离,利用三角形的面积公式结合二次函数的基本性质可求得PAB △面积的最大值. 【详解】(1)[方法一]:利用二次函数性质求最小值由题意知,0,2p F ⎛⎫ ⎪⎝⎭,设圆M 上的点()00,N x y ,则()22041++=x y . 所以()()22001453=-+-≤≤-x y y .从而有||==FN=因为053y -≤≤-,所以当03y=-时,min ||4FN . 又0p >,解之得2p =,因此2p =.[方法二]【最优解】:利用圆的几何意义求最小值抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =; (2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法 抛物线C 的方程为24x y =,即24x y =,对该函数求导得=2xy ',设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=, 同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=, 所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=, 由韦达定理可得1202x x x +=,1204x x y =,所以,AB ==点P 到直线AB的距离为d =所以,()3220011422PABS AB d x y =⋅==-△, ()()2222000000041441215621x y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-,所以,当05y =-时,PAB △的面积取最大值321202⨯=[方法二]【最优解】:切点弦法+分割转化求面积+三角换元求最值 同方法一得到1201202,4+==x x x x x y .过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y .()32221200001111||242222⎛⎫=⋅-=-- ⎪⎝⎭PABSPQ x x x y x y . P 点在圆M 上,则00cos ,4sin ,x y αα=⎧⎨=-+⎩()()333222222001114cos 4sin 16(sin 2)21222ααα⎡⎤=-=-+=-++⎣⎦PABSx y . 故当sin 1α=-时PAB △的面积最大,最大值为 [方法三]:直接设直线AB 方程法设切点A ,B 的坐标分别为211,4x A x ⎛⎫⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭.设:AB l y kx b =+,联立AB l 和抛物线C 的方程得2,4,y kx b x y =+⎧⎨=⎩整理得2440x kx b --=.判别式2Δ16160=+>k b ,即20k b +>,且12124,4x x k x x b +==-. 抛物线C 的方程为24x y =,即24x y =,有2x y '=. 则()2111:42-=-PA x x l y x x ,整理得21124x x y x =⋅-,同理可得222:24=⋅-PB x x l y x .联立方程211222,24,24x x y x x x y x ⎧=⋅-⎪⎪⎨⎪=⋅-⎪⎩可得点P 的坐标为1212,24x x x x P +⎛⎫ ⎪⎝⎭,即(2,)P k b -. 将点P 的坐标代入圆M 的方程,得22(2)(4)1+-+=k b ,整理得221(4)4b k --=.由弦长公式得12||=-=AB x=点P 到直线AB的距离为d =所以21||222==+=PABSAB d k b= 其中[5,3]=-∈--P y b ,即[3,5]∈b .当5b =时,()max=PAB S【整体点评】(1)方法一利用两点间距离公式求得FN 关于圆M 上的点()00,N x y 的坐标的表达式,进一步转化为关于0y 的表达式,利用二次函数的性质得到最小值,进而求得p 的值;方法二,利用圆的性质,F 与圆22:(4)1M x y ++=上点的距离的最小值,简洁明快,为最优解;(2)方法一设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求得两切线方程,由切点弦方程思想得到直线AB 的坐标满足方程00220x x y y --=,然手与抛物线方程联立,由韦达定理可得1202x x x +=,1204x x y =,利用弦长公式求得AB 的长,进而得到面积关于()00,P x y 坐标的表达式,利用圆的方程转化得到关于0y 的二次函数最值问题;方法二,同方法一得到1202x x x +=,1204x x y =,过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y .由121||2PABSPQ x x =⋅-求得面积关于()00,P x y 坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线:AB l y kx b =+,联立直线AB 和抛物线方程,利用韦达定理判别式得到20k b +>,且12124,4x x k x x b +==-.利用点P 在圆M 上,求得,k b 的关系,然后利用导数求得两切线方程,解方程组求得P 的坐标(2,)P k b -,进而利用弦长公式和点到直线距离公式求得面积关于b 的函数表达式,然后利用二次函数的性质求得最大值;8.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0. 【解析】 【分析】(1) 利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值.【详解】(1)因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b =,所以,轨迹C 的方程为()221116y x x -=≥.(2)[方法一] 【最优解】:直线方程与双曲线方程联立 如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩, 化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB x -=-.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21()2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-. 因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=. [方法二] :参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩, 联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==,同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=, 故直线AB 的斜率与直线PQ 的斜率之和为0. [方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆. 设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=. 又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为: 221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得: []2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=, 其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦.由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=. 【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解;方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.9.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,且. (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【解析】 【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN 充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a ==a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意;当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +=⋅=,所以MN 所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =y x =-所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.10.【2020年新课标1卷理科】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析.【解析】 【分析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解.(2)方法一:设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,当203y ≠时,可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭即可知直线过定点3,02⎛⎫ ⎪⎝⎭,当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭,命题得证. 【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a +=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =- ∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)[方法一]:设而求点法 证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭ 当203y ≠时,∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭. 故直线CD 过定点3,02⎛⎫⎪⎝⎭.[方法二]【最优解】:数形结合设(6,)P t ,则直线PA 的方程为(3)9ty x =+,即930-+=tx y t . 同理,可求直线PB 的方程为330--=tx y t .则经过直线PA 和直线PB 的方程可写为(93)(33)0-+--=tx y t tx y t .可化为()22292712180-+-+=txy txy ty .④易知A ,B ,C ,D 四个点满足上述方程,同时A ,B ,C ,D 又在椭圆上,则有2299x y -=-,代入④式可得()2227912180--+=tytxy ty .故()227912180⎡⎤--+=⎣⎦y t y tx t ,可得0y =或()227912180--+=t y tx t .其中0y =表示直线AB ,则()227912180--+=t y tx t 表示直线CD .令0y =,得32x =,即直线CD 恒过点3,02⎛⎫⎪⎝⎭. 【整体点评】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.第二问的方法一最直接,但对运算能力要求严格;方法二曲线系的应用更多的体现了几何与代数结合的思想,二次曲线系的应用使得计算更为简单.11.【2020年新课标2卷理科】已知椭圆C 1:22221x y a b +=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =.【解析】 【分析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)[方法四]由(1)可得出1C 的方程为2222143x y c c+=,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点, 则直线AB 的方程为x c =,联立22222221x cx y a b a b c =⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22b AB a =,抛物线2C 的方程为24y cx =,联立24x cy cx =⎧⎨=⎩,解得2x cy c =⎧⎨=±⎩,4CD c ∴=,43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=,01e <<,解得12e =,因此,椭圆1C 的离心率为12; (2)[方法一]:椭圆的第二定义由椭圆的第二定义知20||=-MF e a x c,则有200||⎛⎫=-=- ⎪⎝⎭a MF e x a ex c ,所以0152-=a x ,即0210=-x a . 又由0||5=+=MF x c ,得052=-a x . 从而21052-=-aa ,解得6a=. 所以3,6,6====c a b p .故椭圆1C 与抛物线2C 的标准方程分别是2221,123627+==x y y x .[方法二]:圆锥曲线统一的极坐标公式以(c,0)F 为极点,x 轴的正半轴为极轴,建立极坐标系.由(Ⅰ)知2a c =,又由圆锥曲线统一的极坐标公式2||1cos θ=-cMF ,得255cos θ=-c ,由132||11cos 2θ⨯=+c MF ,得3105cos θ=+c ,两式联立解得3c =. 故1C 的标准方程为2213627x y+=,2C 的标准方程为212y x =.[方法三]:参数方程由(1)知2,a c b ==,椭圆1C 的方程为2222143x yc c+=,所以1C 的参数方程为{x =2c ⋅cosθ,y =√3c ⋅sinθ(θ为参数),将它代入抛物线22:4C y cx =的方程并化简得23cos 8cos 30θθ+-=,解得1cos 3θ=或cos 3θ=-(舍去),所以sin θ=M的坐标为23⎛ ⎝⎭c .又||5MF =,所以由抛物线焦半径公式有5+=M x c ,即253+=cc ,解得3c =. 故1C 的标准方程为2213627x y+=,2C 的标准方程为212y x =.[方法四]【最优解】:利用韦达定理由(1)知2a c =,b =,椭圆1C 的方程为2222143x yc c+=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=, 解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533cMF c c =+==,解得3c =. 因此,曲线1C 的标准方程为2213627x y+=,曲线2C 的标准方程为212y x =. 【整体点评】(2)方法一:椭圆的第二定义是联系准线与离心率的重要工具,涉及离心率的问题不妨考虑使用第二定义,很多时候会使得问题简单明了.方法二:圆锥曲线统一的极坐标公式充分体现了圆锥曲线的统一特征,同时它也是解决圆锥曲线问题的一个不错的思考方向.方法三:参数方程是一种重要的数学工具,它将圆锥曲线的问题转化为三角函数的问题,使得原来抽象的问题更加具体化.方法四:韦达定理是最常用的处理直线与圆锥曲线位置关系的方法,联立方程之后充分利用韦达定理可以达到设而不求的效果.12.【2020年新课标2卷文科】已知椭圆C 1:22221x y a b +=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.【答案】(1)12;(2)1C :2211612x y +=,2C : 28y x =. 【解析】 【分析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设,A C 在第一象限,运用代入法求出,,,A B C D 点的纵坐标,根据4||||3CD AB =,结合椭圆离心率的公式进行求解即可; (2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可; 【详解】解:(1)因为椭圆1C 的右焦点坐标为:(c,0)F ,所以抛物线2C 的方程为24y cx =,其中c 不妨设,A C 在第一象限,因为椭圆1C 的方程为:22221x ya b+=,所以当x c =时,有222221c y b y a b a +=⇒=±,因此,A B 的纵坐标分别为2b a ,2b a-;又因为抛物线2C 的方程为24y cx =,所以当x c =时,有242y c c y c =⋅⇒=±,所以,C D 的纵坐标分别为2c ,2c -,故22||bAB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⋅=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-. 由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y+=,2C 的标准方程为28y x =.【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.13.【2020年新课标3卷理科】已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积. 【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)方法一:过点P 作x 轴垂线,垂足为M ,设6x =与x 轴交点为N ,可得 PMB BNQ ≅△△,可求得P 点坐标,从而求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】 (1)222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率c e a ===,解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=. (2)[方法一]:通性通法不妨设P ,Q 在x 轴上方,过点P 作x 轴垂线,垂足为M ,设直线6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥, 90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒, 90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=, 设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=, 可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -, (6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为d ===,根据两点间距离公式可得:AQ ==,∴APQ 面积为:1522⨯=; ②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -, (6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为d ==根据两点间距离公式可得:AQ =∴APQ 面积为: 1522=,综上所述,APQ 面积为:52. [方法二]【最优解】:由对称性,不妨设P ,Q 在x 轴上方,过P 作PE x ⊥轴,垂足为E .设(6,0)D ,由题知,PEB BDQ ≌.故131p BP PE PEPE x QB BD ==⇒=⇒=±, ①因为(3,1),(5,0),(6,2)P A Q -,如图,所以,52APQAQDPEDQ PEAS SS S=--=.②因为(3,1),(5,0),(6,8)P A Q --,如图,所以52APQAQDPEDQ PEASSS S=--=.综上有52APQ S =△ [方法三]:由已知可得()5,0B ,直线,BP BQ 的斜率一定存在,设直线BP 的方程为()5y k x =-,由对称性可设0k <,联立方程22(5),161,2525y k x x y =-⎧⎪⎨+=⎪⎩消去y 得()22221161601625250k x k x k +-+⨯-=,由韦达定理得221625255116P k x k ⨯-=+,所以22805116P k x k -=+,将其代入直线BP 的方程得210116P ky k -=+,所以22280510,116116k k P k k ⎛⎫-- ⎪++⎝⎭,则||BP = 因为BP BQ ⊥,则直线BQ 的方程为1(5)y x k=--,则16,,||Q BQ k ⎛⎫-== ⎪⎝⎭ 因为||||BP BQ ==422566810k k -+=, 即()()22641410k k --=,故2164k =或214k =,即18k =-或12k =-.当18k =-时,点P ,Q的坐标分别为(3,1),(6,8),||P Q PQ -=直线PQ 的方程为71093y x =+,点A 到直线PQ故APQ 的面积为1522=.当12k =-时,点P ,Q 的坐标分别为(3,1),(6,2),||P Q PQ =直线PQ 的方程为13y x =,点(5,0)A -到直线PQ故APQ 的面积为1522.综上所述,APQ 的面积为52.[方法四]:由(1)知椭圆的方程为221612525x y +=,(5,0),(5,0)A B -.不妨设()00,P x y 在x 轴上方,如图.设直线:(5)(0)AP y k x k =+>.因为||||,BP BQ BP BQ =⊥,所以00||1,||5Q y BN y BM x ====-.由点P 在椭圆上得201612525x +=,所以209x =.由点P 在直线AP 上得()015k x =+,所以015k x k -=.所以2159k k -⎛⎫= ⎪⎝⎭,化简得216101k k =-. 所以0110155516k x k k k -⎛⎫-=--== ⎪⎝⎭,即(6,16)Q k . 所以,点Q 到直线AP 的距离d ==又)0||5AP x ==+=.故115222APQSAP d =⋅==.即APQ 的面积为52.[方法五]:由对称性,不妨设P ,Q 在x 轴上方,过P 作PC x ⊥轴,垂足为C ,设(6,0)D , 由题知PCB BDQ ≌,所以131p BP PC PCPC x QB BD ==⇒=⇒=±. (1)(3,1),(5,0),(6,2)P A Q -. 则221221115(||||)(||||)|82111|222APQSAP AQ AP AQ x y x y =⋅-⋅=-=⨯-⨯=. (其中()()1122,,,AP x y AQ x y ==). (2)(3,1),(5,0),(6,8)P A Q --. 同理,221221115(||||)()|28111|222APQSAP AQ AP AQ x y x y =-⋅=-=⨯-⨯=. (其中()()1122,,,AP x y AQ x y ==) 综上,APQ 的面积为52.【整体点评】(2)方法一:根据平面几何知识可求得点P 的坐标,从而得出点Q 的坐标以及直线AQ 的方程,再根据距离公式即可求出三角形的面积,是通性通法;方法二:同方法一,最后通过面积分割法求APQ 的面积,计算上有简化,是本题的最优解;方法三:通过设直线BP 的方程()5y k x =-与椭圆的方程联立,求出点P 的坐标,再根据题目等量关系求出k 的值,从而得出点Q 的坐标以及直线AQ 的方程,最后根据距离公式即可求出三角形的面积,思想简单,但运算较繁琐;方法四:与法三相似,设直线AP 的方程:(5)(0)AP y k x k =+>,通过平面知识求出点P 的坐标,表示出点Q ,再根据距离公式即可求出三角形的面积;方法五:同法一,只是在三角形面积公式的选择上,利用三角形面积的正弦形式结合平面向量的数量积算出.14.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【答案】(1)22163x y +=;(2)详见解析.【解析】 【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)方法一:设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭。
平面解析几何(选择题、填空题)(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)
专题05平面解析几何(选择题、填空题)考点三年考情(2022-2024)命题趋势考点1:直线方程与圆的方程2022年全国II卷、2022年全国甲卷(文)2022年全国乙卷(理)近三年高考对解析几何小题的考查比较稳定,考查内容、频率、题型难度均变化不大,备考时应熟练以下方向:(1)要重视直线方程的求法、两条直线的位置关系以及点到直线的距离公式这三个考点.(2)要重视直线与圆相交所得弦长及相切所得切线的问题.(3)要重视椭圆、双曲线、抛物线定义的运用、标准方程的求法以及简单几何性质,尤其是对离心率的求解,更是高考的热点问题,因方法多,试题灵活,在各种题型中均有体现.考点2:直线与圆的位置关系2024年北京卷、2022年全国甲卷(理)2022年天津卷、2022年北京卷2023年全国Ⅰ卷、2024年北京卷考点3:圆与圆的位置关系2022年全国I卷考点4:轨迹方程及标准方程2023年北京卷、2023年天津卷2024年全国Ⅱ卷、2022年天津卷2022年全国甲卷(文)考点5:椭圆的几何性质2022年全国I卷2023年全国甲卷(理)2023年全国甲卷(文)考点6:双曲线的几何性质2022年北京卷2023年全国乙卷(理)考点7:抛物线的几何性质2024年北京卷、2024年天津卷2023年全国乙卷(理)2023年天津卷、2023年全国Ⅱ卷2024年全国Ⅱ卷、2022年全国I卷考点8:弦长问题2022年全国乙卷(理)2023年全国甲卷(理)考点9:离心率问题2024年全国Ⅰ卷、2022年全国甲卷(文)2023年全国Ⅰ卷、2022年浙江卷2022年全国乙卷(理)2024年全国甲卷(理)2023年全国Ⅰ卷、2022年全国甲卷(理)考点10:焦半径、焦点弦问题2022年全国II卷、2023年北京卷考点11:范围与最值问题2022年全国II卷2024年全国甲卷(文)2023年全国乙卷(文)考点12:面积问题2024年天津卷、2023年全国Ⅱ卷2023年全国Ⅱ卷考点13:新定义问题2024年全国Ⅰ卷考点1:直线方程与圆的方程1.(2022年新高考全国II 卷数学真题)已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||23MA NB MN ==l 的方程为.【答案】2220x -=【解析】[方法一]:弦中点问题:点差法令AB 的中点为E ,设()11,A x y ,()22,B x y ,利用点差法得到12OE AB k k ⋅=-,设直线:AB y kx m =+,0k <,0m >,求出M 、N 的坐标,再根据MN 求出k 、m ,即可得解;令AB 的中点为E ,因为MA NB =,所以ME NE =,设()11,A x y ,()22,B x y ,则2211163x y +=,2222631x y +=,所以2222121206633x x y y -+-=,即()()()()12121212063x x x x y y y y -++-+=所以()()()()1212121212y y y y x x x x +-=--+,即12OE AB k k ⋅=-,设直线:AB y kx m =+,0k <,0m >,令0x =得y m =,令0y =得m x k =-,即,0m M k ⎛⎫- ⎪⎝⎭,()0,N m ,所以,22m m E k ⎛⎫- ⎪⎝⎭,即1222mk m k⨯=--,解得22k =或22k =(舍去),又23MN =,即()22223MN m m=+=2m =或2m =-(舍去),所以直线2:22AB y x =-+,即2220x -=;故答案为:2220x -=[方法二]:直线与圆锥曲线相交的常规方法由题意知,点E 既为线段AB 的中点又是线段MN 的中点,设()11,A x y ,()22,B x y ,设直线:AB y kx m =+,0k <,0m >,则,0m M k ⎛⎫- ⎪⎝⎭,()0,N m ,,22m m E k ⎛⎫- ⎪⎝⎭,因为3MN =3OE =联立直线AB 与椭圆方程得22163y kx m x y =+⎧⎪⎨+=⎪⎩消掉y 得222(12)4260k x mkx m +++-=其中2221224=4-4(12)260,12mkmk k m x x k ∆+-+=-+()()>,∴AB 中点E 的横坐标2212E mk x k =-+,又,22m m E k ⎛⎫- ⎪⎝⎭,∴22=122E mk x k m k =-+-∵0k <,0m >,∴22k 又22+322O m m k E -=()(),解得m=2所以直线2:22AB y x =-+,即2220x -=2.(2022年高考全国甲卷数学(文)真题)设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为.【答案】22(1)(1)5x y -++=【解析】[方法一]:三点共圆∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,点M 到两点的距离相等且为半径,2222(3)(12)(2)-+-+-a a a a R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,5R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=[方法二]:圆的几何性质由题可知,M 是以(3,0)和(0,1)为端点的线段垂直平分线y=3x-4与直线210x y +-=的交点(1,-1).5R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=3.(2022年高考全国乙卷数学(理)真题)过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为.【答案】()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭.【解析】[方法一]:圆的一般方程依题意设圆的方程为220x y Dx Ey F ++++=,(1)若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;(2)若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;(3)若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(4)若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭.[方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心)设()()()()0,04,01,14,2A B C D -点,,,(1)若圆过、、A B C 三点,圆心在直线2x =,设圆心坐标为(2,)a ,则()2224913,413a a a r a +=+-⇒=+=22(2)(3)13x y -+-=;(2)若圆过A B D 、、三点,设圆心坐标为(2,)a ,则22244(2)1,45a a a r a +=+-⇒==+=的方程为22(2)(1)5x y -+-=;(3)若圆过A C D 、、三点,则线段AC 的中垂线方程为1y x =+,线段AD 的中垂线方程为25y x =-+,联立得4765,333x y r ==⇒=,所以圆的方程为224765()()339x y -+-=;(4)若圆过B C D 、、三点,则线段BD 的中垂线方程为1y =,线段BC 中垂线方程为57y x =-,联立得813,155x y r ==⇒=,所以圆的方程为()228169()1525x -y +-=.故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭.【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.考点2:直线与圆的位置关系4.(2024年北京高考数学真题)若直线()3y k x =-与双曲线2214xy -=只有一个公共点,则k 的一个取值为.【答案】12(或12-,答案不唯一)【解析】联立()22143x y y k x ⎧-=⎪⎨⎪=-⎩,化简并整理得:()222214243640k x k x k -+--=,由题意得2140k -=或()()()2222Δ244364140k k k =++-=,解得12k =±或无解,即12k =±,经检验,符合题意.故答案为:12(或12-,答案不唯一).5.(2022年高考全国甲卷数学(理)真题)若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =.33【解析】双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离2211m d m==+,解得33m =或33m =.336.(2022年新高考天津数学高考真题)若直线()00x y m m -+=>与圆()()22113x y -+-=相交所得的弦长为m ,则m =.【答案】2【解析】圆()()22113x y -+-=的圆心坐标为()1,13圆心到直线()00x y m m -+=>1122m-+由勾股定理可得22322m ⎛⎫+= ⎪⎝⎭,因为0m >,解得2m =.故答案为:2.7.(2022年新高考北京数学高考真题)若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ()A .12B .12-C .1D .1-【答案】A【解析】由题可知圆心为(),0a ,因为直线是圆的对称轴,所以圆心在直线上,即2010a +-=,解得12a =.故选:A .8.(2023年新课标全国Ⅰ卷数学真题)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A .1B .154C .104D .64【答案】B【解析】方法一:因为22410x y x +--=,即()2225x y -+=,可得圆心()2,0C ,半径5r =,过点()0,2P -作圆C 的切线,切点为,A B ,因为()22222PC =+-223PA PC r =-可得51036sin ,cos 442222APC APC ∠=∠==,则10615sin sin 22sin cos 2444APB APC APC APC ∠=∠=∠∠=⨯⨯=,22226101cos cos 2cos sin 0444APB APC APC APC ⎛⎫⎫∠=∠=∠-∠=-=-< ⎪⎪ ⎪⎪⎝⎭⎝⎭,即APB ∠为钝角,所以()15sin sin πsin 4APB APB =-∠=∠=α法二:圆22410x y x +--=的圆心()2,0C ,半径5r =,过点()0,2P -作圆C 的切线,切点为,A B ,连接AB ,可得()22222PC =+-223PA PB PC r ==-=,因为22222cos 2cos PA PB PA PB APB CA CB CA CB ACB +-⋅∠=+-⋅∠且πACB APB ∠=-∠,则()336cos 5510cos πAPB APB +-∠=+--∠,即3cos 55cos APB APB -∠=+∠,解得1cos 04APB ∠=-<,即APB ∠为钝角,则()1cos cos πcos 4APB APB =-∠=-∠=α,且α为锐角,所以215sin 1cos 4αα=-=;方法三:圆22410x y x +--=的圆心()2,0C ,半径5r 若切线斜率不存在,则切线方程为0x =,则圆心到切点的距离2d r =>,不合题意;若切线斜率存在,设切线方程为2y kx =-,即20kx y --=,22251k k -=+2810k k ++=,且644600∆=-=>设两切线斜率分别为12,k k ,则12128,1k k k k +=-=,可得()21212124215k k k k k k -+-=所以1212tan 151k k k k -==+αsin 15cos αα=,可得cos 15=α,则2222sin sin cos sin 115+=+=αααα,且()0,πα∈,则sin 0α>,解得15sin 4α=.故选:B.9.(2024年北京高考数学真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A 2B .2C .3D .32【答案】D【解析】由题意得22260x y x y +-+=,即()()221310x y -++=,则其圆心坐标为()1,3-,则圆心到直线20x y -+=()()221323211--+=+-故选:D.考点3:圆与圆的位置关系10.(2022年新高考全国I 卷数学真题)写出与圆221x y +=和22(3)(4)16x y -+-=都相切的一条直线的方程.【答案】3544y x =-+或7252424y x =-或=1x -【解析】[方法一]:显然直线的斜率不为0,不妨设直线方程为0x by c ++=,2||11c b =+24.1b=+故221c b =+①,|34||4|.b c c ++=于是344b c c ++=或344b c c ++=-,再结合①解得01b c =⎧⎨=⎩或247257b c ⎧=-⎪⎪⎨⎪=-⎪⎩或4353b c ⎧=⎪⎪⎨⎪=-⎪⎩,所以直线方程有三条,分别为10x +=,724250x y --=,3450.x y +-=(填一条即可)[方法二]:设圆221x y +=的圆心(0,0)O ,半径为11r =,圆22(3)(4)16x y -+-=的圆心(3,4)C ,半径24r =,则12||5OC r r ==+,因此两圆外切,由图像可知,共有三条直线符合条件,显然10x +=符合题意;又由方程22(3)(4)16x y -+-=和221x y +=相减可得方程3450x y +-=,即为过两圆公共切点的切线方程,又易知两圆圆心所在直线OC 的方程为430x y -=,直线OC 与直线10x +=的交点为4(1,)3--,设过该点的直线为4(1)3y k x +=+24311k k -=+,解得724k =,从而该切线的方程为724250.(x y --=填一条即可)[方法三]:圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,22345+=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l 的距离19116d ==+,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意22113441p k k p k ⎧=⎪+⎪⎨++⎪=⎪+⎩,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为=1x -,故答案为:3544y x =-+或7252424y x =-或=1x -.考点4:轨迹方程及标准方程11.(2023年北京高考数学真题)已知双曲线C 的焦点为(2,0)-和(2,0)2,则C 的方程为.【答案】22122x y -=【解析】令双曲线C 的实半轴、虚半轴长分别为,a b ,显然双曲线C 的中心为原点,焦点在x 轴上,其半焦距2c =,由双曲线C 22ca=2a =222b c a =-=所以双曲线C 的方程为22122x y -=.故答案为:22122x y -=12.(2023年天津高考数学真题)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12F F 、.过2F 向一条渐近线作垂线,垂足为P .若22PF =,直线1PF 的斜率为24,则双曲线的方程为()A .22184x y -=B .22148x y -=C .22142x y -=D .22124x y -=【答案】D【解析】如图,因为()2,0F c ,不妨设渐近线方程为by x a=,即0bx ay -=,所以222bc bcPF b ca b ==+,所以2b =.设2POF θ∠=,则2tan PF b bOP OP aθ===,所以OP a =,所以2OF c =.因为1122P ab c y =⋅,所以P ab y c =,所以tan P P P aby b c x x a θ===,所以2P a x c =,所以2,a ab P c c ⎛⎫ ⎪⎝⎭,因为()1,0F c -,所以122222222424PF ab ab a a ck a a c a a a c c=====+++++,)2224a a +=,解得2a =所以双曲线的方程为22124x y -=故选:D13.(2022年新高考天津数学高考真题)已知抛物线21245,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为()A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=【答案】C【解析】抛物线245y =的准线方程为5x =-5c =,则()15,0F 、)25,0F ,不妨设点A 为第二象限内的点,联立b y x a x c⎧=-⎪⎨⎪=-⎩,可得x c bc y a =-⎧⎪⎨=⎪⎩,即点,bc A c a ⎫⎛- ⎪⎝⎭,因为112AF F F ⊥且124F F A π∠=,则12F F A △为等腰直角三角形,且112AF F F =,即2=bc c a,可得2ba =,所以,22225ba c c ab ⎧=⎪⎪⎪⎨⎪=+⎪⎪⎩,解得125a b c ⎧=⎪=⎨⎪=⎩,因此,双曲线的标准方程为2214y x -=.故选:C.14.(2022年高考全国甲卷数学(文)真题)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为()A .2211816x y +=B .22198x y +=C .22132x y +=D .2212x y +=【答案】B【解析】因为离心率22113c b e a a ==-,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=- BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y +=.故选:B.15.(2024年新课标全国Ⅱ卷数学真题)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)【答案】A【解析】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A考点5:椭圆的几何性质16.(2022年新高考全国I 卷数学真题)已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是.【答案】13【解析】∵椭圆的离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE 的斜率为333直线DE 的方程:3x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:22136390y cy c --=,判别式()2222634139616c c c ∆=+⨯⨯=⨯⨯,∴()212Δ13226461313cDE y =+-==⨯⨯⨯=,∴138c =,得1324a c ==,∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE V 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为222211*********DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==.故答案为:13.17.(2023年高考全国甲卷数学(理)真题)设O 为坐标原点,12,F F 为椭圆22:196x y C +=的两个焦点,点P 在C 上,123cos 5F PF ∠=,则||OP =()A .135B .302C .145D .352【答案】B【解析】方法一:设12π2,02F PF θθ∠=<<,所以122212tan tan 2PF F F PF S b b θ∠== ,由22212222cos sin 1tan 3cos cos 2cos +sin 1tan 5F PF θθθθθθθ--∠====+,解得:1tan 2θ=,由椭圆方程可知,222229,6,3a b c a b ===-=,所以,1212111236222PF F p p S F F y y =⨯⨯=⨯=⨯ ,解得:23p y =,即2399162p x ⎛⎫=⨯-= ⎪⎝⎭,因此22930322p p OP x y =++故选:B .方法二:因为1226PF PF a +==①,222121212122PF PF PF PF F PF F F +-∠=,即2212126125PF PF PF PF +-=②,联立①②,解得:22121215,212PF PF PF PF =+=,而()1212PO PF PF =+ ,所以1212OP PO PF PF ==+ ,即22121122111315302212222522PO PF PF PF PF PF PF =++⋅+=+⨯⨯= .故选:B .方法三:因为1226PF PF a +==①,222121212122cos PF PF PF PF F PF F F +-∠=,即2212126125PF PF PF PF +-=②,联立①②,解得:221221PF PF +=,由中线定理可知,()()222212122242OP F F PF PF +=+=,易知1223F F=302OP =.故选:B .18.(2023年高考全国甲卷数学(文)真题)设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅=,则12PF PF ⋅=()A .1B .2C .4D .5【答案】B【解析】方法一:因为120PF PF ⋅= ,所以1290FPF ∠=,从而122121tan 4512FP F S b PF PF ===⨯⋅,所以122PF PF ⋅=.故选:B.方法二:因为120PF PF ⋅= ,所以1290FPF ∠= ,由椭圆方程可知,25142c c =-=⇒=,所以22221212416PF PF F F +===,又1225PF PF a +==22121212216220PF PF PF PF PF PF ++=+=,所以122PF PF ⋅=.故选:B.考点6:双曲线的几何性质19.(2022年新高考北京数学高考真题)已知双曲线221x y m +=的渐近线方程为33y x =±,则m =.【答案】3-【解析】对于双曲线221x y m+=,所以0m <,即双曲线的标准方程为221x y m -=-,则1a =,b m =-221x y m +=的渐近线方程为33y =±,所以33a b =33m =-,解得3m =-;故答案为:3-20.(2023年高考全国乙卷数学(理)真题)设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A .()1,1B .()1,2-C .()1,3D .()1,4--【答案】D【解析】设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +-+===+-+,因为,A B 在双曲线上,则221122221919y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()2222121209y y x x ---=,所以221222129AB y y k k x x -⋅==-.对于选项A :可得1,9AB k k ==,则:98AB y x =-,联立方程229819y x y x =-⎧⎪⎨-=⎪⎩,消去y 得272272730x x -⨯+=,此时()2272472732880∆=-⨯-⨯⨯=-<,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得92,2AB k k =-=-,则95:22AB y x =--,联立方程22952219y x y x ⎧=--⎪⎪⎨⎪-=⎪⎩,消去y 得245245610x x +⨯+=,此时()224544561445160∆=⨯-⨯⨯=-⨯⨯<,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得3,3AB k k ==,则:3AB y x=由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :94,4AB k k ==,则97:44AB y x =-,联立方程22974419y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得2631261930x x +-=,此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;故选:D.考点7:抛物线的几何性质21.(2024年北京高考数学真题)抛物线216y x =的焦点坐标为.【答案】()4,0【解析】由题意抛物线的标准方程为216y x =,所以其焦点坐标为()4,0.故答案为:()4,0.22.(2024年天津高考数学真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.【答案】45/0.8【解析】圆22(1)25-+=x y 的圆心为()1,0F ,故12p=即2p =,由()2221254x y y x ⎧-+=⎪⎨=⎪⎩可得22240x x +-=,故4x =或6x =-(舍),故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-=,故原点到直线AF 的距离为4455d ==,故答案为:4523.(2023年高考全国乙卷数学(理)真题)已知点(5A 在抛物线C :22y px =上,则A 到C 的准线的距离为.【答案】94【解析】由题意可得:2521p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =-,点A 到C 的准线的距离为59144⎛⎫--= ⎪⎝⎭.故答案为:94.24.(2023年天津高考数学真题)已知过原点O 的一条直线l 与圆22:(2)3C x y ++=相切,且l 与抛物线22(0)y px p =>交于点,O P 两点,若8OP =,则p =.【答案】6【解析】易知圆()2223x y ++=和曲线22y px =关于x 轴对称,不妨设切线方程为y kx =,0k >,2231k k =+3k =232y y px ⎧=⎪⎨=⎪⎩解得:00x y =⎧⎨=⎩或23233p x p y ⎧=⎪⎪⎨⎪=⎪⎩,所以2222348333p p p OP ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:6p =.当3k =-故答案为:6.25.(多选题)(2024年新课标全国Ⅱ卷数学真题)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A .l 与A 相切B .当P ,A ,B 三点共线时,||15PQ =C .当||2PB =时,PA AB⊥D .满足||||PA PB =的点P 有且仅有2个【答案】ABD【解析】A 选项,抛物线24y x =的准线为=1x -,A 的圆心(0,4)到直线=1x -的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长22224115PQ PA r =-=-=,B 选项正确;C 选项,当2PB =时,1P x =,此时244P P y x ==,故(1,2)P 或(1,2)P -,当(1,2)P 时,(0,4),(1,2)A B -,42201PA k -==--,4220(1)AB k -==--,不满足1PA AB k k =-;当(1,2)P -时,(0,4),(1,2)A B -,4(2)601PA k --==--,4(2)60(1)AB k --==--,不满足1PA AB k k =-;于是PA AB ⊥不成立,C 选项错误;D 选项,方法一:利用抛物线定义转化根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题,(0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k -=,于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y -+=,2164301360∆=-⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确.方法二:(设点直接求解)设2,4t P t ⎛⎫⎪⎝⎭,由PB l ⊥可得()1,B t -,又(0,4)A ,又PA PB =,422(4)1164t t t +-=+,整理得216300t t -+=,2164301360∆=-⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确.故选:ABD26.(多选题)(2022年新高考全国I 卷数学真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则()A .C 的准线为1y =-B .直线AB 与C 相切C .2|OP OQ OA ⋅>D .2||||||BP BQ BA ⋅>【答案】BCD【解析】将点A 的代入抛物线方程得12p =,所以抛物线方程为2x y =,故准线方程为14y =-,A 错误;1(1)210AB k --==-,所以直线AB 的方程为21y x =-,联立221y x x y=-⎧⎨=⎩,可得2210x x -+=,解得1x =,故B 正确;设过B 的直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点,所以,直线l 的斜率存在,设其方程为1y kx =-,1122(,),(,)P x y Q x y ,联立21y kx x y=-⎧⎨=⎩,得210x kx -+=,所以21212Δ401k x x k x x ⎧=->⎪+=⎨⎪=⎩,所以2k >或2k <-,21212()1y y x x ==,又2221111||OP x y y y =+=+,2222222||OQ x y y y =+=+所以2121212||||(1)(1)||2||OP OQ y y y y kx kx k OA ⋅=++=⨯=>=,故C 正确;因为21||1||BP k x =+,22||1|BQ k x =+,所以2212||||(1)||15BP BQ k x x k ⋅=+=+>,而2||5BA =,故D 正确.故选:BCD27.(多选题)(2023年新课标全国Ⅱ卷数学真题)设O 为坐标原点,直线)31y x =--过抛物线()2:20C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则().A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN 为等腰三角形【答案】AC【解析】A 选项:直线)31y x =-过点()1,0,所以抛物线()2:20C y px p =>的焦点()1,0F ,所以1,2,242pp p ===,则A 选项正确,且抛物线C 的方程为24y x =.B 选项:设()()1122,,,M x y N x y ,由)2314y x y x⎧=--⎪⎨=⎪⎩消去y 并化简得()()231033310x x x x -+=--=,解得1213,3x x ==,所以121163233MN x x p =++=++=,B 选项错误.C 选项:设MN 的中点为A ,,,M N A 到直线l 的距离分别为12,,d d d ,因为()()12111222d d d MF NF MN =+=+=,即A 到直线l 的距离等于MN 的一半,所以以MN 为直径的圆与直线l 相切,C 选项正确.D 选项:直线)31y x =-330x y +=,O 330y +的距离为3d =所以三角形OMN 的面积为1163432323⨯=由上述分析可知)1212333123,3133y y ⎫=--=-=--=⎪⎭所以()22221231332321,333OM ON ⎛⎫⎛⎫=+-==+= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以三角形OMN 不是等腰三角形,D 选项错误.故选:AC.考点8:弦长问题28.(2022年高考全国乙卷数学(理)真题)设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =()A .2B .22C .3D .32【答案】B【解析】由题意得,()1,0F ,则2AF BF ==,即点A 到准线=1x -的距离为2,所以点A 的横坐标为121-+=,不妨设点A 在x 轴上方,代入得,()1,2A ,所以()()22310222AB =-+-=.故选:B29.(2023年高考全国甲卷数学(理)真题)已知双曲线2222:1(0,0)x y C a b a b-=>>5C 的一条渐近线与圆22(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A .55B .255C .355D .455【答案】D【解析】由5e =222222215c a b b a a a+==+=,解得2ba=,所以双曲线的一条渐近线为2y x =,则圆心(2,3)到渐近线的距离25521d ==+,所以弦长22145||22155AB r d =-=-=.故选:D考点9:离心率问题30.(2024年新课标全国Ⅰ卷数学真题)设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为.【答案】32【解析】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b -=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225bAF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3231.(2022年高考全国甲卷数学(文)真题)记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值.【答案】2(满足15e <皆可)【解析】2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为b y x a =±,结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”所以221145=++c b e a a又因为1e >,所以15e <≤故答案为:2(满足15e <皆可)32.(2023年新课标全国Ⅰ卷数学真题)已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A F B ⊥=- ,则C 的离心率为.355/355【解析】方法一:依题意,设22AF m =,则2113,22BF m BF AF a m ===+,在1Rt ABF 中,2229(22)25m a m m ++=,则(3)()0a m a m +-=,故a m =或3a m =-(舍去),所以124,2AF a AF a ==,213BF BF a ==,则5AB a =,故11244cos 55AF a F AF ABa ∠===,所以在12AF F △中,2221216444cos 2425a a c F AF a a +-∠==⨯⨯,整理得2259c a =,故355c e a =方法二:依题意,得12(,0),(,0)F c F c -,令()00),,(0,A x y B t ,因为2223F A F B =-,所以()()002,,3x c y c t -=--,则00235,3x c y t ==-,又11F A F B ⊥ ,所以()1182,,33F A F B c t c t ⎛⎫⋅=-⋅ ⎪⎝⎭ 2282033c t =-=,则224t c =,又点A 在C 上,则2222254991c t a b-=,整理得2222254199c t a b -=,则22222516199c c a b -=,所以22222225169c b c a a b -=,即()()2222222225169c c a a c a c a --=-,整理得4224255090c a c a -+=,则()()22225950c a c a --=,解得2259c a =或225c a =,又1e >,所以355e =或55e =(舍去),故355e =故答案为:355.33.(2022年新高考浙江数学高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是.【答案】364【解析】过F 且斜率为4b a 的直线:()4b AB y x c a=+,渐近线2:b l y x a =,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率36e 4=.36434.(多选题)(2022年高考全国乙卷数学(理)真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A 52B .32C 132D .172【答案】AC【解析】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B ,所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支,OB a =,1OF c =,1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,21NF NF 2a-=532222a a b a ⎛⎫--= ⎪⎝⎭,52b e 2a =∴=,选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OB a =,1OF c =,1FB b =,设12F NF α∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,12NF NF 2a -=352222a b a a +-=,所以23b a =,即32b a =,所以双曲线的离心率221312c b e a a =+=选C[方法二]:答案回代法5A e 2=选项特值双曲线())22121,F 5,0,F 5,04x y -=∴,过1F 且与圆相切的一条直线为(y 2x 5=+,两交点都在左支,62N 5,555⎛∴ ⎝,2112NF 5,NF 1,FF 5∴===,则123cos 5F NF ∠=,13C e 2=选项特值双曲线())2212x y 1,F 13,0,F 13,049-=∴-,过1F 且与圆相切的一条直线为(2y x 133=+, 两交点在左右两支,N 在右支,1418N 13,131313∴,2112NF 5,NF 9,FF 213∴===,则123cos 5F NF ∠=,[方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,若,M N 分别在左右支,因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支,又OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,在12F NF △中,有()212sin sin sin NF NF cβαβα==+,故()122sin sin sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin a c β=,cos bcβ=,故4sin 5α=,代入整理得到23b a =,即32b a =,所以双曲线的离心率221312c b e a a =+=若,M N 均在左支上,同理有()212sin NF NF c βαβα==+,其中β为钝角,故cos bcβ=-,故()212sin sin sin NF NF cβαβα-=-+即sin sin cos cos sin sin a c βαβαβα=--,代入3cos 5α=,sin a c β=,4sin 5α=,整理得到:1424a b a =+,故2a b =,故2512b e a ⎛⎫=+= ⎪⎝⎭,故选:AC.35.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D 2【答案】C【解析】由题意,设()10,4F -、()20,4F 、()6,4P -,则1228F F c ==,()22164410PF =++=,()2226446PF +-=,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.36.(2023年新课标全国Ⅰ卷数学真题)设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若213e e =,则=a ()A 233B 2C 3D 6【答案】A【解析】由213e e =,得22213e e =,因此2241134a a --=⨯,而1a >,所以233a =.故选:A37.(2022年高考全国甲卷数学(理)真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A .32B .22C .12D .13【答案】A【解析】[方法一]:设而不求设()11,P x y ,则()11,Q x y -则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+,由2211221x y a b +=,得()2221212b a x y a-=,所以()2221222114b a x ax a -=-+,即2214b a =,所以椭圆C 的离心率22312c b e a a ==- A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQ k k =-故()14AP AQ PA PB k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA PBb k k a⋅=-,故2214b a =所以椭圆C 的离心率22312c b e a a ==- A.考点10:焦半径、焦点弦问题38.(多选题)(2022年新高考全国II 卷数学真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则()A .直线AB 的斜率为26B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒【答案】ACD【解析】对于A ,易得(,0)2p F ,由AF AM =可得点A 在FM 的垂直平分线上,则A 点横坐标为3224ppp +=,代入抛物线可得2233242p y p p =⋅=,则36()42p A ,则直线AB 的斜率为6226342p p =-,A 正确;对于B ,由斜率为26可得直线AB 的方程为226p x y =+,联立抛物线方程得2206y py p -=,设11(,)B x y ,则16626p y p +=,则163y =-,代入抛物线得2162p p x ⎛=⋅ ⎝⎭,解得13p x =,则6(,)33p pB ,则22673332p p p p OB OF ⎛⎫⎛⎫=+-≠= ⎪ ⎪ ⎪⎝⎭⎝⎭,B 错误;对于C ,由抛物线定义知:325244312p p pAB p p OF =++=>=,C 正确;对于D ,23663663()(,)0423343234p p p p p p p p OA OB ⎛⎫⋅=⋅-=⋅+⋅-=-< ⎪ ⎪⎝⎭,则AOB ∠为钝角,又26262665()(,)0423343236p p p p p MA MB ⎛⎫⎛⎫⋅=-⋅--=-⋅-+⋅-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭,则AMB ∠为钝角,又360AOB AMB OAM OBM ∠+∠+∠+∠= ,则180OAM OBM ∠+∠< ,D 正确.故选:ACD.39.(2023年北京高考数学真题)已知抛物线2:8C y x =的焦点为F ,点M 在C 上.若M 到直线3x =-的距离为5,则||MF =()A .7B .6C .5D .4【答案】D【解析】因为抛物线2:8C y x =的焦点()2,0F ,准线方程为2x =-,点M 在C 上,所以M 到准线2x =-的距离为MF ,又M 到直线3x =-的距离为5,所以15MF +=,故4MF =.故选:D.考点11:范围与最值问题40.(2022年新高考全国II 卷数学真题)设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离()()223342132a ad a ----=≤-+,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦41.(2024年高考全国甲卷数学(文)真题)已知直线20ax y a ++-=与圆2241=0C x y y ++-:交于,A B 两点,则AB 的最小值为()A .2B .3C .4D .6【答案】C 【解析】因为直线20ax y a ++-=,即()120a x y -++=,令10x -=,则x 1,y 2==-,所以直线过定点()1,2-,设()1,2P -,将圆2241=0C x y y ++-:化为标准式为()2225x y ++=,所以圆心()0,2C -,半径5r =,1PC =当PC AB ⊥时,AB 的最小,此时222514AB r PC =-⨯-.故选:C42.(2023年高考全国乙卷数学(文)真题)已知实数,x y 满足224240x y x y +---=,则x y -的最大值是()A .3212B .4C .132+D .7【答案】C【解析】法一:令x y k -=,则x k y =+,代入原式化简得()22226440y k y k k +-+--=,因为存在实数y ,则0∆≥,即()()222642440k k k --⨯--≥,化简得22170k k --≤,解得132132k -≤≤+故x y -的最大值是321,法二:224240x y x y +---=,整理得()()22219x y -+-=,令3cos 2x θ=+,3sin 1y θ=+,其中[]0,2πθ∈,则π3cos 3sin 132cos 14x y θθθ⎛⎫-=-+=++ ⎪⎝⎭,[]0,2θπ∈ ,所以ππ9π,444θ⎡⎤+∈⎢⎥⎣⎦,则π2π4θ+=,即74πθ=时,x y -取得最大值321,法三:由224240x y x y +---=可得22(2)(1)9x y -+-=,设x y k -=,则圆心到直线x y k -=的距离|21|32k d =≤,解得132132k -≤≤+故选:C.考点12:面积问题43.(2024年天津高考数学真题)双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=【答案】C【解析】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m =,211122,PF F PF F θθ∠=∠=,由21tan 2PF k θ==,求得1sin 5θ=因为1290F PF ∠=︒,所以121PF PF k k ⋅=-,求得112PF k =-,即21tan 2θ=,2sin 5θ=121212::sin :sin :sin 902:1:5PF PF F F θθ=︒=则由2PF m =得1122,25PF m F F c m ===,由1212112822PF F S PF PF m m =⋅=⋅= 得22m =则211222,42,2210,10PF PF F F c c =====由双曲线第一定义可得:1222PF PF a -==222,8a b c a ==-所以双曲线的方程为22128x y -=.故选:C44.(2023年新课标全国Ⅱ卷数学真题)已知直线:10l x my -+=与()22:14C x y -+= 交于A ,B 两点,写出满足“ABC 面积为85”的m 的一个值.【答案】2(112,2,,22--中任意一个皆可以)【解析】设点C 到直线AB 的距离为d ,由弦长公式得224AB d =-,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题08 平面解析几何(解答题)1.【2020年高考全国Ⅰ卷文数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线C D 过定点.2.【2020年高考全国Ⅱ卷文数】已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.3.【2020年高考全国Ⅲ卷文数】已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.4.【2020年高考北京】已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.5.【2020年高考浙江】如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.6.【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.7.【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.8.【2020年新高考全国Ⅱ卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.9.【2020年高考天津】已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.10.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由.11.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.12.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 13.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.14.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已|2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.15.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.16.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.17.【2018年高考全国Ⅰ文数】设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.18.【2018年高考全国Ⅱ卷文数】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.19.【2018年高考全国Ⅱ卷文数】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.20.【2018年高考北京卷文数】已知椭圆2222:1(0)x y M a b a b +=>>的离心率为3.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)44Q -共线,求k .21.【2018年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3,||AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.22.【2018年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.23.【2018年高考浙江卷】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+24y=1(x<0)上的动点,求△P AB面积的取值范围.。