金属塑性加工PPT课件
合集下载
课件塑性加工原理塑性与变形总课件参考.ppt
1.镦粗时组合件的变形特点 2.基本应力的分布特点 3.第一类附加应力的分布特点
*
上课课件
3. 4. 2 平辊轧制时金属的应力及变形特点
1.基本应力特点 2.变形区内金属质点流动特点 3.平辊轧制时,第一类附加应力的分布特点
*
上课课件
3. 4. 3 棒材挤压时的应力及变形特点
1.棒材挤压时的基本应力状态 2 .棒材挤压时的金属流动规律 3 .棒材挤压时的附加应力
变形程度ε
应力σ
σsb
σsn
图3-25 拉伸时真应力与变形程度的关系 1)无缺口试样拉伸时的真应力的曲线 2)有缺口样拉伸的真应力曲线
*
上课课件
3. 3. 4 残余应力
1.残余应力的来源 2.变形条件对残余应力的影响 3.残余应力所引起的后果 4.减小或消除残余应力的措施 5.研究残余应力的主要方法
*
上课课件
2.最大摩擦条件 当接触表面没有相对滑动,完全处于粘合状 态时,单位摩擦力( )等于变形金属流动 时的临界切应力k,即: = k 3.摩擦力不变条件 认为接触面间的摩擦力,不随正压力大小而变。其单位摩擦力是常数,即常摩擦力定律,其表达式为: =m·k 式中,m为摩擦因子
第3章 金属塑性加工的宏观规律
§3. 1 塑性流动规律(最小阻力定律) §3. 2 影响金属塑性流动和变形的因素 §3. 3 不均匀变形、附加应力和残余应力 §3. 4 金属塑性加工诸方法的应力与变形特点 §3. 5 塑性加工过程的断裂与可加工性
*
上课课件
§3.1 塑性流动规律(最小阻力定律)
上课课件
3. 2. 2 变形区的几何因素的影响
变形区的几何因子(如H/D、H/L、H/B等)是影响变形和应力分布很重要的因素。
金属塑性成形PPT课件
密排六方 (Close-package Hexagonal)
(Mg、Zn、Cd、α-Ti)
3.2塑性成 形机理
滑移
3 金属塑性 成形
滑移带 500倍
26
3.2塑性成 形机理 滑移
3 金属塑性 成形
27
3.2塑性成 形机理 滑
移
3 金属塑性 成形
28
3.2塑性成 形机理 滑移
3 金属塑性 成形
辊锻,楔横轧, 辗环,辊弯
7
3.1塑性成 形概述
塑性成形类型
3 金属塑性 成形
8
3.1塑性成 形概述
3 金属塑性 成形
体积成形
体积成形主要是指那些利用锻压设备和工、模具 ,对金属坯料(块料)进行体积重新分配的塑性 变形,得到所需形状、尺寸及性能的制件。
主要包括锻造(Forging)和挤压(Extrusion )两大类。
日 常 用 品
3
汽 车 覆 盖 件
飞
冲压成形产品示例—— 高科技产品
机 蒙 皮
4
5
6
3.1塑性成 形概述
3 金属塑性 成形
锻压3塑(性Met成al 形for分gin类g and stamping)
1.体积成形 (Bulk Metal Forming):
1.1 锻造 (Forging)
1.1.1自由锻造 1.1.2模锻
用伸长率δ、断面收缩率ψ表示:
δ= (L1-L0)/ L0 ×100% ψ=( S0-S1)/S0×100%
22
3.2塑性成
3 金属塑性
形机理
成形
2.金属塑性变形的实质
金 体—属——原—子显微组织——晶 典型晶格结构:
(Mg、Zn、Cd、α-Ti)
3.2塑性成 形机理
滑移
3 金属塑性 成形
滑移带 500倍
26
3.2塑性成 形机理 滑移
3 金属塑性 成形
27
3.2塑性成 形机理 滑
移
3 金属塑性 成形
28
3.2塑性成 形机理 滑移
3 金属塑性 成形
辊锻,楔横轧, 辗环,辊弯
7
3.1塑性成 形概述
塑性成形类型
3 金属塑性 成形
8
3.1塑性成 形概述
3 金属塑性 成形
体积成形
体积成形主要是指那些利用锻压设备和工、模具 ,对金属坯料(块料)进行体积重新分配的塑性 变形,得到所需形状、尺寸及性能的制件。
主要包括锻造(Forging)和挤压(Extrusion )两大类。
日 常 用 品
3
汽 车 覆 盖 件
飞
冲压成形产品示例—— 高科技产品
机 蒙 皮
4
5
6
3.1塑性成 形概述
3 金属塑性 成形
锻压3塑(性Met成al 形for分gin类g and stamping)
1.体积成形 (Bulk Metal Forming):
1.1 锻造 (Forging)
1.1.1自由锻造 1.1.2模锻
用伸长率δ、断面收缩率ψ表示:
δ= (L1-L0)/ L0 ×100% ψ=( S0-S1)/S0×100%
22
3.2塑性成
3 金属塑性
形机理
成形
2.金属塑性变形的实质
金 体—属——原—子显微组织——晶 典型晶格结构:
金属塑性加工ppt
DLPU
材料成形工艺
第三章 金属塑性成形
回顾
冲压工艺分类 冲裁变形过程 冲裁断面 冲裁间隙、对冲裁的影响 弯曲工艺 应力中性层、应变中性层 弯曲变形中出现的缺陷和解决办法 管材弯曲分类
DLPU
本节内容
• 3.3 板料冲压工艺 • 3.3.1 冲裁工艺 • 3.3.2 弯曲工艺 • 3.3.3 拉深工艺 • 3.3.4 胀形工艺 • 3.3.5 挤压工艺 • 3.3.6 辊轧工艺 • 3.3.7 超塑性成形
变形区璧厚的变化
DLPU
液压成形(Hydroforming)
a typical part that is being formed by hydroforming
DLPU
technique.The tube is pressurized while axially fed towards
拉深压边装置
DLPU
双动拉深
DLPU
1—顶料器 2—拉深凸模 3—压力机工作台 4—拉深垫 (弹簧、橡胶或气垫) 5—滑块 6—拉深凹模 7—压边圈 8—顶杆
拉深件毛坯尺寸的确定
基本原则: 1. 不考虑厚度的变化; 2. 体积不变 3. 以板料的中心线为准 (为了计算方便,常以边缘尺寸计算)
DLPU
DLPU
反向拉深
DLPU
本部分重点
• 拉深工艺的受力变形分析(圆筒件) • 拉深系数、拉深比(极限)的概念 • 拉深缺陷的起因及预防 • 拉深载荷的影响因素
DLPU
3.3.4 胀形工艺(Bulging drawing)
DLPU
• 胀形工艺的特点及分类 • 管材胀形
胀形工艺的特点及分类
DLPU
表。若产品的拉深系数m小于相应材料最小极限拉深系数m
材料成形工艺
第三章 金属塑性成形
回顾
冲压工艺分类 冲裁变形过程 冲裁断面 冲裁间隙、对冲裁的影响 弯曲工艺 应力中性层、应变中性层 弯曲变形中出现的缺陷和解决办法 管材弯曲分类
DLPU
本节内容
• 3.3 板料冲压工艺 • 3.3.1 冲裁工艺 • 3.3.2 弯曲工艺 • 3.3.3 拉深工艺 • 3.3.4 胀形工艺 • 3.3.5 挤压工艺 • 3.3.6 辊轧工艺 • 3.3.7 超塑性成形
变形区璧厚的变化
DLPU
液压成形(Hydroforming)
a typical part that is being formed by hydroforming
DLPU
technique.The tube is pressurized while axially fed towards
拉深压边装置
DLPU
双动拉深
DLPU
1—顶料器 2—拉深凸模 3—压力机工作台 4—拉深垫 (弹簧、橡胶或气垫) 5—滑块 6—拉深凹模 7—压边圈 8—顶杆
拉深件毛坯尺寸的确定
基本原则: 1. 不考虑厚度的变化; 2. 体积不变 3. 以板料的中心线为准 (为了计算方便,常以边缘尺寸计算)
DLPU
DLPU
反向拉深
DLPU
本部分重点
• 拉深工艺的受力变形分析(圆筒件) • 拉深系数、拉深比(极限)的概念 • 拉深缺陷的起因及预防 • 拉深载荷的影响因素
DLPU
3.3.4 胀形工艺(Bulging drawing)
DLPU
• 胀形工艺的特点及分类 • 管材胀形
胀形工艺的特点及分类
DLPU
表。若产品的拉深系数m小于相应材料最小极限拉深系数m
第三节金属的塑性加工(共37张PPT)
正火组织
l 带状组织与枝晶偏析
l 被沿加工方向拉长有 关
l 。可通过屡次正火或 扩
l 散退火消除.
〔三〕塑性变形对金属组织与性能的影响
1. 塑性变形对金属组织结构的影响
(1) 纤维组织形成 金属发生塑性变形时,外形发生变 化,其内部的晶粒也相应地被拉长或压扁。当变形量 很大时,晶粒将被拉长为纤维状。
(2) 亚结构形成
塑性变形 还使晶
粒破碎为亚晶粒。
(3)形变织构的产生 由于
晶粒的转动,当塑性变形到达
• 理论上,整体刚性滑移——滑移困难 • 实际上,位错移动——滑移容易
近代物理学证明,实际晶体内部存在大量缺陷。其中,以位错 (图3-2a)对金属塑性变形的影响最为明显。由于位错的存在,局部原 子处于不稳定状态。在比理论值低得多的切应力作用下,处于高能位 的原子很容易从一个相对平衡的位置上移动到另一个位置上(图3-2b), 形成位错运动。位错运动的结果,就实现了整个晶体的塑性变形(图 3-2c)。
再结晶退火温度对晶粒度的影响
2、预先变形度
预先变形度的影响,实质上是变形均匀程度的影响. 当变形度很小时,晶格畸变小,缺乏以引起再结晶.
当变形到达2~10%时,只有局部晶粒变形,变形极
不均匀,再结晶晶 粒大小相差悬殊, 易互相吞并和长大,
再结晶后晶粒特别 粗大,这个变形度
称临界变形度。
预先变形度对再结晶晶粒度的影响
滑移变形的特点 : • ⑴ 滑移只能在切应力的作用下发生。产生滑移的最小
切应力称临界切应力.
⑵ 滑移常沿晶体中原 子密度最大的晶面和晶
向发生。因原子密度最 大的晶面和晶向之间原 子间距最大,结合力最 弱,产生滑移所需切应 力最小。
金属的塑性加工教学PPT
在无模具或少模具情况下,对坯料施加外力,使其产生塑性变形,获得所需形状和性能的锻件。
自由锻
在模具腔内对坯料施加压力,使其产生塑性变形,获得所需形状和性能的锻件。
模锻
通过旋转轧辊对金属坯料施加压力,使其产生塑性变形,获得所需形状和性能的轧制产品。
轧制
通过挤压模具对金属坯料施加压力,使其产生塑性变形,获得所需形状和性能的挤压产品。
高强度材料
精密成形技术如激光成形和等离子喷涂等,在金属塑性加工中得到广泛应用,提高了加工精度和表面质量。
精密成形技术
数值模拟技术用于预测金属塑性加工过程中的变形行为、流动规律和工艺参数优化,有助于提高产品质量和降低成本。
数值模拟与优化
新材料与新技术的发展
随着智能化和自动化技术的不断发展,金属塑性加工将更加高效、精确和可控,实现自动化生产线和智能制造。
采取措施确保金属各部位受热均匀,以减小变形不均匀和开裂的风险。
加热均匀性
加热与温度控制
塑性变形过程
模具设计
根据产品形状和尺寸要求设计合理的模具结构。
变形方式选择
根据金属特性和产品需求选择合适的塑性变形方式,如轧制、锻造、挤压等。
变形程度控制
在保证产品质量的前提下,合理控制变形程度,以提高生产效率和降低能耗。
总结词
拉拔技术主要用于生产各种细线、丝材等制品,如钢丝、铁丝等。在拉拔过程中,金属坯料通过模具孔逐渐被拉长和变细,同时发生塑性变形。
详细描述
根据拉拔时金属坯料温度的不同,拉拔可分为热拉拔和冷拉拔两种。
总结词
热拉拔是将金属坯料加热至高温后进行拉拔,具有加工效率高、材料利用率高等优点,但产品精度相对较低。冷拉拔则是在常温下进行拉拔,产品精度高、表面质量好,但加工难度较大。
有色金属塑性加工课件汇总全套ppt完整版课件最全教学教程整套课件全书电子教案
轴承材料通常要满足上述性能的要求都不能是纯金 属或单相合金,必须配以软硬不同的多相合金。
通常是软基体上均匀分布一定数量和大小的硬质点, 或者硬基体上分布一定数量和大小的软质点。
轴 润滑油空间
硬基体
轴瓦 软质点
轴承合金
轴承合金的分类及牌号
➢常用的轴承合金按其化学成分可以分为锡基、铅
基、铝基、铜基和铁基等数种,前两种锡基、铅 基称为巴氏合金。
铜及其合金
工业纯铜的牌号与性能
➢纯铜:T1、T2、T3、T4; ➢无氧铜:TU1、TU2; ➢脱氧铜:TUP、TUMn; ➢纯铜主要用作导体和配制合金以及制造抗磁性干
扰的仪器、仪表零件,如罗盘、航空仪表等零件。
轴承合金
轴承合金的性能要求
➢ 在工作温度下有足够的抗压强度和疲劳强度,以承受轴所
施加载荷。
铝及其合金
工业纯铝 :
纯铝的性质:密度为2.72g/cm3,熔点660℃。为面心立 方晶格,无同素异构转变,具有极好的塑性 。
纯铝的牌号(用国际四位字符体系 ): 1)1A99(原LG5)、1A97(原LG4)、1A93(原
LG3)、1A90(原LG2)、1A85(原LG1); 2)1070A(代L1)、1060(代L2)、1050A(代L4)、
2)塑性成形主要是利用金属在塑性状态下的 体积转移,而不是靠部分的切除体积,因而材料 的利用率高,流线分布合理,提高了制品的强度。
材料塑性成形及其特点
塑性成形的特点 3)可以达到较高的精度。 4)具有较高的生产率。 5)塑性成形能耗高,并且不适宜加工形状
特别复杂的制品及脆性材料。
材料塑性成形的基本问题
二是成型(molding),指工件、产品经过 加工,成为所需要的形状,一般为液态或半液态 的金属或非金属原料在模型或模具中成形。
通常是软基体上均匀分布一定数量和大小的硬质点, 或者硬基体上分布一定数量和大小的软质点。
轴 润滑油空间
硬基体
轴瓦 软质点
轴承合金
轴承合金的分类及牌号
➢常用的轴承合金按其化学成分可以分为锡基、铅
基、铝基、铜基和铁基等数种,前两种锡基、铅 基称为巴氏合金。
铜及其合金
工业纯铜的牌号与性能
➢纯铜:T1、T2、T3、T4; ➢无氧铜:TU1、TU2; ➢脱氧铜:TUP、TUMn; ➢纯铜主要用作导体和配制合金以及制造抗磁性干
扰的仪器、仪表零件,如罗盘、航空仪表等零件。
轴承合金
轴承合金的性能要求
➢ 在工作温度下有足够的抗压强度和疲劳强度,以承受轴所
施加载荷。
铝及其合金
工业纯铝 :
纯铝的性质:密度为2.72g/cm3,熔点660℃。为面心立 方晶格,无同素异构转变,具有极好的塑性 。
纯铝的牌号(用国际四位字符体系 ): 1)1A99(原LG5)、1A97(原LG4)、1A93(原
LG3)、1A90(原LG2)、1A85(原LG1); 2)1070A(代L1)、1060(代L2)、1050A(代L4)、
2)塑性成形主要是利用金属在塑性状态下的 体积转移,而不是靠部分的切除体积,因而材料 的利用率高,流线分布合理,提高了制品的强度。
材料塑性成形及其特点
塑性成形的特点 3)可以达到较高的精度。 4)具有较高的生产率。 5)塑性成形能耗高,并且不适宜加工形状
特别复杂的制品及脆性材料。
材料塑性成形的基本问题
二是成型(molding),指工件、产品经过 加工,成为所需要的形状,一般为液态或半液态 的金属或非金属原料在模型或模具中成形。
【材料课件】金属塑性加工原理共550页
(c )
3. 塑性加工摩擦学
塑性加工过程中接触表面间的相对运动引 起摩 擦,发生一系列物理、化学和力学变化,对金属塑性 变形应力应变分布和产品质量产生重要影响。
➢ 机械摩擦理论: 阿芒顿-库仑定律; ➢ 粘着摩擦理论:
✓ 1、F.P.鲍-D.泰伯焊合摩擦理论 ✓ 2、И.B克拉盖尔斯基理论 ➢ 磨损 ➢ 润滑
2.适用范围
钢、铝、铜、钛等及其合金。
3. 主要加工方法
(1) 轧制:金属通过旋转的轧辊受到压缩,横断面积 减小,长度增加的过程。(可实现连续轧制)纵轧、横 轧、斜轧。
举例:汽车车身板、烟箔等; 其它:多辊轧制(24辊)、孔型轧制等。
3. 主要加工方法
(2) 挤压:金属在挤压筒中受推力作用从模孔中流出 而制取各种断面金属材料的加工方法。
1、航空航天
2、武器装备
3、交通运输
4、建筑
5、家用电器
§0.2 材料加工的内涵 1.材料加工
采用一定的加工方法和技术,使材料达 到与原材料不同的状态(化学成分上完全相 同),使其具有更优良的物理性能、化学性能 和力学性能。
2.材料的可加工性
材料对加工成形和工艺所表现出来的特 性,包括铸造性能、锻造性能、焊接性能、 热处理性能和切削加工性能等。
PVD(phsical vapour deposition)等
5.小结
金属材料在国民经济、国防军工建设中 占有极其重要战略地位,金属塑性加工原理 这门课程旨在讲述有关高性能材料设计、成 形制备、性能表征与评价以及应用方面的重 要专业基础知识。
§0.3 金属塑性加工 1.材料加工
金属坯料在外力作用下产生塑性变形,从而获得具有 一定几何形状,尺寸和精度,以及服役性能的材料、 毛坯或零件的加工方法。
3. 塑性加工摩擦学
塑性加工过程中接触表面间的相对运动引 起摩 擦,发生一系列物理、化学和力学变化,对金属塑性 变形应力应变分布和产品质量产生重要影响。
➢ 机械摩擦理论: 阿芒顿-库仑定律; ➢ 粘着摩擦理论:
✓ 1、F.P.鲍-D.泰伯焊合摩擦理论 ✓ 2、И.B克拉盖尔斯基理论 ➢ 磨损 ➢ 润滑
2.适用范围
钢、铝、铜、钛等及其合金。
3. 主要加工方法
(1) 轧制:金属通过旋转的轧辊受到压缩,横断面积 减小,长度增加的过程。(可实现连续轧制)纵轧、横 轧、斜轧。
举例:汽车车身板、烟箔等; 其它:多辊轧制(24辊)、孔型轧制等。
3. 主要加工方法
(2) 挤压:金属在挤压筒中受推力作用从模孔中流出 而制取各种断面金属材料的加工方法。
1、航空航天
2、武器装备
3、交通运输
4、建筑
5、家用电器
§0.2 材料加工的内涵 1.材料加工
采用一定的加工方法和技术,使材料达 到与原材料不同的状态(化学成分上完全相 同),使其具有更优良的物理性能、化学性能 和力学性能。
2.材料的可加工性
材料对加工成形和工艺所表现出来的特 性,包括铸造性能、锻造性能、焊接性能、 热处理性能和切削加工性能等。
PVD(phsical vapour deposition)等
5.小结
金属材料在国民经济、国防军工建设中 占有极其重要战略地位,金属塑性加工原理 这门课程旨在讲述有关高性能材料设计、成 形制备、性能表征与评价以及应用方面的重 要专业基础知识。
§0.3 金属塑性加工 1.材料加工
金属坯料在外力作用下产生塑性变形,从而获得具有 一定几何形状,尺寸和精度,以及服役性能的材料、 毛坯或零件的加工方法。
金属的塑性变形和加工硬化课件
金属的屈服准则和流动法则
屈服准则
描述金属开始屈服的条件,常用的有Von Mises屈服准则和 Tresca屈服准则。
流动法则
描述金属在塑性变形过程中应力的变化与变形的关系,常用 的有Prandtl-Reuss流动法则和Coulomb-Mohr流动法则。
02 金属塑性变形的过程
弹性变形和塑性变形的比较
高性能金属材料的开发提供理论支持。
金属构件的疲劳寿命
02
研究金属其疲劳寿命,为金属构件的优化设计提供依据。
金属材料的可回收性和可持续性
03
研究金属塑性变形和加工硬化对材料可回收性和可持续性的影
响,为绿色制造和可持续发展提供支持。
加工硬化在金属材料的改性效果中起着重要作用,如通过 加工硬化可以改善金属材料的抗腐蚀性能、磁性能和热性 能等。
加工硬化在金属材料连接技术中的应用
金属材料连接技术
加工硬化可以用于金属材料的连接技术中,如通过焊接、铆接和粘 接等工艺,将两个或多个金属材料连接在一起。
金属材料连接工艺
加工硬化在金属材料的连接工艺中有着重要的应用,如通过控制焊 接温度、焊接速度和焊接压力等,可以获得高质量的焊接接头。
弹性变形
金属在受到外力作用时发生形变,当外力去除后,金属能够恢复原状。
塑性变形
金属在受到外力作用时发生形变,当外力去除后,金属不能恢复原状。
金属的塑性变形机制
滑移
金属晶体中的原子在切向应力作用下沿着一定的晶面和晶向相对滑移。
孪生
金属晶体中的一部分原子或分子的位置发生改变,以适应外力作用下的形变。
金属塑性变形的影响因素
纳米尺度实验技术
利用纳米压痕、原子力显微镜等纳米尺度实验技 术,研究金属在纳米尺度下的塑性变形和加工硬 化特性。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n Sxl Sym Szn
n xl2 ym2 zn2 2(xylm yzmn zxnl)
2 n
S2
2 n
3. 应力张量、主应力及应力不变量
张量:指由一组坐标系变换到另一组 坐标系时,研究对象的分量若能按照一 定规律变化,则称这些分量的集合为张 量。
s2
对金属塑性成型工艺应提出如下要求: (1)使金属具有良好的塑性; (2)使变形抗力小;
(3)保证塑性成型件质量:组织均匀、晶 粒细小、强度高、残余应力小等;
(4)能了解变形力,以便为选择成型设备、 设计模具提供理论依据。
要求:讲述塑性成型的物理基础和力学 基础,即掌握金属塑性变形体内的应 力场、应变场、应力-应变之间的关 系及塑性变形时的力学条件。
应变状态:压缩应变有利于塑性的发挥, 拉伸应变对塑性不利。
3. 提高金属塑性的基本途径 (1)提高材料成分和组织的均匀性 (2)合理选择变形温度和应变速率 (3)选择三向压缩性较强的变形方式
挤压、开式模锻、自由锻 (4)减少变形的不均匀性
二、塑性加工过程受力分析
1.正压力的分析要点 正压力是指工具与工件接触面上的垂直作
用力。
注意:塑性变形过程中接触面的变化以及约 束 面上存在着的反压力。同时注意塑性变形 整个过程中的受力, 而不是仅关注瞬时的受力。
2.摩擦力的分析要点 (1)塑性加工过程中摩擦的特点
a. 伴随有变形金属的塑性流动 b. 各处摩擦力方向可能不同 c. 接触面上压强高 d. 真实接触面积大 e. 不断有新的摩擦面产生 f. 常在高温下发生摩擦
S = 0cos 小结:在单向均匀拉伸的情况下,通过一
点的不同切面上,应力是不同的。只要 已知过一点一个切面上的应力,就可确 定过任意切面上应力。
复杂应力状态下描述一点应力状态的必要
条件:
一点应力状态表示方法:
x xy xz
力
在法线方向为x的面上所作用的应
yx y yz
力
在法线方向为y的面上所作用的应
一、金属在塑性加工过程中 的塑性行为
1. 模拟实际塑性加工过程的试验方法: (1)偏心轧辊轧制矩形试样 (2)杯突试验
2. 影响金属塑性的因素: (1)金属的化学成分和组织 (2)变形温度 (3)应变速率 (4)变形力学条件: 应力状态:在主应力状态下,压应力个数
越多、数值越大,金属的塑性越好。
金属塑性加工
绪论
• 金属塑性加工的定义、特点、 应用状况
• 金属塑性加工分类 • 本章目的及内容
金属塑性加工原理
一、金属塑性加工的定义、 特点、应用状况
1. 定义:
金属塑性加工是利用金属的塑性, 通过外力使金属铸锭、金属粉末或各种 金属坯料发生塑性变形,成为具有所需 形状、尺寸和性能的制品的加工方法。
3. 工具形状对作用力的影响
4. 关于内力的分析要点 内力产生情况: 为了平衡外力 工件中变形区与非变形区之间的相互作用 变形区的各部分变形不均
(1)受拉与受压
(2)径向应力与切向应力
小结:薄壁回转体受均匀的径向应力时, 必产生绝对值大得多的切向应力。内侧受 力r与异号,外侧受力r与同号。
(3)工件上近自由表面处的内力
• 板料成形:坯料是各种板材或用板材预先 加工成的中间坯料,板材的形状发生显著 变化,但其横截面形状基本上不变。
轧制示意图
板材
拉拔示意图
实心
空心
挤压示意图
正挤
反挤
复合 挤
锻造示意图
镦粗
镦头
拔长
开式
闭式
拉深示意图
胀形示意图
弯曲示意图
形弯
胀弯
辊弯
剪切示意图
切断
剥皮
剁切
修边
三、本章目的及内容
zx zy z
力
Байду номын сангаас
在法线方向为z的面上所作用的应
应力作用线沿z轴方向
应力作用线沿y轴方向
应力作用线沿x轴方向
xy =yx xz =zx yz= zy
x xy xz
1 0 0
· y yz
0 2 0
• 小结:描述一点应力状态的必要条件为 过该点三个互相垂直坐标上的六个独立 应力分量或三个主应力。
2. 任意斜面上的应力 ——描述一点应力状态的充分条件
(2)摩擦对塑性加工过程的影响
有利的一面:轧制咬入、开式模锻金 属充填、板料拉深防裂
不利的一面:
a. 增加能量消耗 b. 改变应力状态,增加变形抗力,影响 金属流动性及其充填过程
c. 引起变形不均匀 d. 加剧模具的磨损,降低了模具的寿命
(3)描述接触面上摩擦的数学模型 a. 库仑定律: = µ —摩擦应力 µ—摩擦系数 —摩擦面上的正应力 b. 常摩擦力假设 =mK m—摩擦因子,取值0~1 K—金属的屈服剪切强度
三、应力和应力状态
1. 外力和应力 面力或接触力 体积力:重力、磁力、惯性力
内力:在外力作用下,物体内各质点之 间产生相互作用的力。 应力:单位面积上的内力,称为应力。
S= 2+ 2
0=S0=P/F0 =Pcos/A=Pcos/(F0/cos)=0cos2 =Psin/A=Psin/(F0/cos)= 0sin cos
2.特点 ①材料利用率高。 ②生产效率高。 ③产品质量高,性能好,缺陷少。 ④加工精度和成形极限有限。 ⑤模具、设备费用昂贵。 3.应用
二、金属塑性加工分类
体积成形 板料成形
轧制 挤压 拉拔 锻造 剪切 弯曲 拉深 胀形
• 体积成形:坯料一般为棒材或扁坯,坯料 经受很大的塑性变形,坯料的形状或横截 面以及表面积与体积之比发生显著的变化。
目的 掌握基本理论、基本知识,能够正确选择 加工方法。
内容 1. 塑性加工基本理论:应力、应变状态分析,
屈服准则等。 2. 轧制、挤压、拉拔、锻造和板材成形简介。
第一节 塑性加工基础
• 任务:阐明金属在各种塑性成型时的共同 性;
• 目的:为下面的工艺分析作理论准备,也 为合理制订塑性成型工艺规范及选择设备、 设计模具奠定理论基础。
可以证明:只要已知受力物体上过某一点 的一组三个互相垂直坐标面上的六个应 力分量或主坐标面上的三个主应力,则 与三个坐标轴任意倾斜的平面上的应力 都可求出。
S2
Sx2
S
2 y
Sz2
ABC Sx OBC x OCA yx OAB zx
Sx xl yxm zxn sy xyl ym zyn sz xzl zym zn