阵列感应测井基础理论

合集下载

阵列感应测井仪讲义

阵列感应测井仪讲义
SL6515高分辨率阵列感应测井仪
1.前 言 2. 理论基础、测量原理 3. 仪器性能 4. 仪器刻度 5.测 井 6. 仪器电路描述 7. 仪器常规检查 8. 信号处理 9. 地质应用简介
前言
传统聚焦型感应测井仪存在如下问题:
•电阻率测量范围小,测量精度低。 •聚焦线圈系的探测深度与垂直分辨率难以调和, 只能折中兼顾,造成仪器的两个主要技术指标不 能满足生产需要。 •常规聚焦型感应仪器只提供深、中、浅三条电阻 率曲线,测量信息不够丰富,不能确定侵入深度, 更不能对复杂侵入剖面做出正确解释。 •浅电阻率测量仪器(八侧向或球形聚焦测井仪) 不能用于油基泥浆测井。
理论基础、测量原理
电磁感应原理为理论基础
线圈系结构
6
•三线位于
4
它们之间的补偿线圈;接收线圈和相应的补偿
线圈构成一个接收阵列
3
•多阵列
7个接收阵列(源距为6~94英寸)
2
•多频率
1
8种频率(10、30、50、70、90、
110、130、150KHz)
0
地面信号处理流程
进行傅立叶变 上传8道时间域 换,在频域中 采样,每道信号 得到8个频率
96个采样点 的实部与虚部 分量,共
7*8*2+1*8*2 =128个分量
计算视电 导率,得
到 7*8*2=11
2个视电导 率值
进行趋 肤效应 校正, 得到7条
视电导 率曲线
进行井 眼校 正,得 到7条视
电导率 曲线
T
仪器的总体结构、测量原理
指数 令据
编码译码 电路
控制测量 电路
前置放大 电路
控制信号
参考信号
接收线圈阵列ROR7

阵列感应测井原理及应用

阵列感应测井原理及应用

阵列感应测井原理及应用摘要:本文探讨了阵列感应测井原理,论述了在判断地层水矿化度方面的应用效果,阵列感应在使用中也存在一些缺陷,阵列感应在处理中,人为因素较大,不同的参数处理结果差异较大,这就造成了阵列感应在使用过程中对解释有一定的误导,引起对阵列感应可靠性的怀疑,这在以后的处理方法中有待改进。

关键词:阵列感应测井矿化度应用效果一、阵列感应测井原理简介阵列感应测井的最基本原理与普通感应测井原理类似,但它在硬件上采用简单的三线圈系结构,这种线圈系没有硬件聚焦功能,它采用数学方法对呈不对称形状的纵向响应曲线进行软件聚焦处理。

它由7组接收线圈对和1个共用的发射线圈组成,实际上相当于具有7种线圈距的三线圈系。

在接收线圈系的设计上充分考虑了以下几个问题:(1)、消除直藕信号;(2)、三线圈子阵列纵向特性的频率响应没有盲频;(3)、要有若干子阵列分别反映浅部和深部地层信息;(4)、各接收子阵列之间的间距应按一定规律变化和分布;(5)、离发射线圈较远的接收子阵列应考虑发射功率和接收信号的强度。

高分辨率阵列感应测井仪在硬件设计时充分考虑了上述因素,它的每个接收线圈系都由两个相互对称的线圈组成,即一个主接收线圈和一个辅助接收线圈,它利用了两个线圈电磁场叠加原理,来实现消除直藕信号影响的目的。

在线圈系的排列上设计了最小线圈距为6in,最大线圈距为94in,在这两个线圈距之间采用了近似于指数形式的线圈系分布,即全部子阵列间距为6in、10in、15.7in、24.5in、38.5in、60in、94in。

这种排列方式不仅有利于采集浅部地层和深部地层信号,而且有利于径向有效信息的均匀采样。

发射信号是加到一个单独的发射线圈上的,这种方法能使发射器的有效功率变为最大,由发射线圈发射出的是一个形状为方形的电压波形(即方波),发射波采用方波是由于其具有较高的发射频率,对于给定的电压能使发射线圈的功率变为最大。

而且它具有宽的频谱,它包括了方波频率(约等于10KHZ)及所有的奇次谐波的能量,因此每个线圈可以在10、30、50、70、90、110、130、150KHZ共8个频率下同时进行工作。

第11讲阵列感应测井

第11讲阵列感应测井

z2.物理基础与方法原理
常规感应测井仪线圈系 z各种浅探测测量结果都受到井眼不规则和井眼 附近的其它因素影响。所带来的后果,特别是由 于一系列井眼不规则导致的测量噪声,常常影响 处理后的深电阻率读值。 z针对常规感应测井中深感应探测特性和纵向分 辨率的不足,1987年HES在常规感应线圈系的基 础上对线圈系进行了重新设计,研制出高分辨率 感应测井HRI(High Resolution Induction)。
z1.发展历程
z感应测井先后经历:常规感应测井(包括简单 的双线圈系、复合六线圈系、双感应组合测井 等)、高分辨率感应测井、高分辨率阵列感应测 井等几个阶段。 z1985年,SLB推出相量双感应测井仪器,能测 量感应测井中的虚部信号。 z1985年,英国BPB公司首次实现“软件聚焦”思 想,推出了商用的阵列感应测井仪器AIS(Array Induction Sonde),线圈系为一个发射线圈和四 个接收线圈。
z1.发展历程
z1957年,A.Poupon提出了阵列感应和“软件聚焦” 的思想,由于技术的限制,当时在测井仪器上未 能实现。 z感应测井最初设计是应用在不能使用直流电测 井的环境,如油基泥浆井、没有泥浆的井、塑料 套管井等。 z生产实践逐渐证实,在淡水泥浆井、原状地层 电阻率较低的地层也有非常好的应用价值。
z2.物理基础与方法原理
z1949年,Doll把电磁感应现象引入测井中,阐述 了感应测井的基本原理。 z发射线圈中的交流电流在接收线圈中产生一次 感应电动势。发射线圈和接收线圈均在井内,线 圈周围的介质可看成是由无数个小单元环组成。 z发射线圈的交流电流必然要在井周围闭合的小 单元环中感应出涡流,此涡流产生的二次交变电 磁场在接收线圈中也必然产生二次感应电动势; 二次感应的电动势与地层的电导率有关。

感应测井基本原理

感应测井基本原理

趋肤效应
0.100
0.010
0.001 0.001
0.010
0.100
1.00010.000地层电导率 (S/m)
1米双线圈系视电导率与地层电导率的关系
2016/10/31
产生趋肤效应的原因: 电磁波在导电媒质中传播时电磁感应产生的涡
流导致的能量损耗和相位改变。
2016/10/31
趋肤效应影响因素 频率选择考虑的因素
k 2 is
(2) 直耦电动势(直耦信号)
iI T AT N T AR N R Vm 3 2L
2016/10/31
(3) 视电导率(测量信号)
定义
V Vm sa K
2 2 AT AR N T N R I T K 4L
仪器常数
一般表达式
2i ikL 1 ikLe 1 sa 2 L
(4)趋肤深度
(2 (s ))
12
结论:均匀地层中,视电导率是L/δ的函数。
2016/10/31
(5)多线圈系的视电导率计算公式
sa

j 1 i 1 M
M
N
Ni N j

j 1 i 1
Lij N N N i j Lij
s aij
式中,M是发射线圈个数,N是接收线圈个数, Ni和Nj分别是发射线圈和接收线圈匝数,Lij是发射 与接收线圈间距。
2016/10/31
N B N R
3
(3) 视电导率
NT NR NT NB s aTR + s aTB LTR LTB sa NT NR NT NB + LTR LTB
2i 1 ikL ikL sa ( 1 ikL ) e ( 1 ik L ) e L2 1 2

阵列声波测井技术基础和应用

阵列声波测井技术基础和应用
单极子、偶极子发射
四、阵列声波测井基础
P-波:也就是纵波,它取“Primary”的字首,表示初至波的 意思。(也叫 Compressional Wave) S-波:就是横波,它取“Secondary”的字首,表示次到波的 意思。(也叫 Shear Wave)
四、阵列声波测井基础
斯通利波(Stoneley Wave):是一种沿井壁传播的、在井 壁和声波探头之间环状空间中的流体(一般是井内泥浆)中 产生的导波,即当声波脉冲与井壁和井内流体的界面相遇时 就会产生斯通利波。斯通利波在全波列上具有波幅相对较 大、频率较低、速度低于井内的流体纵波声速等突出的特 点。斯通利波的相速度一般为纵波速度的0.89-0.96倍,其频 率小于5000Hz,斯通利波在流体和固体交界面处波幅最大, 在流体介质中斯通利波的衰减最快。 应用:利用它的衰减可以进行地层渗透率的评价。
(MIRL 3206)
PA
小探头 ———
——— ———
9.0″ 5.5″
24″
550
井眼居中测量
五、阵列声波测井仪
三大测井公司 1、斯仑贝谢公司:DSI 2、阿特拉斯公司:MAC、XMAC 3、哈里伯顿公司:WaveSonic
六、声波慢度的提取
波形区分方法:
(1)、在声波全波列图上,横波幅度大于纵波幅度; (2)在声波全波列图上,纵波和横波首波相位是相反的,即相位相差180°; (3)从到达时间上区分速度较快的纵波和速度较慢的横波及其它速度更慢的 斯通利波。
增加井内液柱压力,将减小井眼周围的应力集中,当有 效切向应力变为拉伸并达到岩石的抗拉强度时,地层容易 张性破裂,在井壁上产生裂缝。当岩石受最大切向应力 时,θ应为90°,得到地层破裂时
3σ x − σ y − Pm − α Pp = −St

高分辨率阵列感应测井评价技术多媒体2002

高分辨率阵列感应测井评价技术多媒体2002
1ft分辨率 2ft分辨率 4ft分辨率
测量信息进行井眼环境影响
校正,然后进行优化合成, 可以形成多种纵向分辨率电 阻率曲线曲线。
多种径向探测深度
常规感应采用硬件聚焦, 其探测深度随地层的电导率 的变化而变化,在高电导率 地层,探测深度降低。而
HDIL采用先进的数字处理
技术,可以同时获得六种不
同径向探测深度的电阻率曲
zh4x2hdil_subarray4_1400_wrong
zh4x2hdil_curve_1400_wrong
zh105x1hdil_subarray0_2920_ok
zh105x1hdil_subarray3_2920_ok
zh105X1Hdil_curve_2920_OK
HDIL测井资料的应用
六种探测深度、 四组纵向 深、中两种探测深度曲 分辨率曲线 线 10in、 20in、 30in、 60in、 90in、120in 中感应:0.81 米 深感应:1.63 米 中感应:0.81 米 深感应:1.63 米 0.2-200Ω ·m
1ft、2ft、4ft 和实际分 纵向分辨率 辨率 测量范围 0.2-2000Ω ·m
原状地层电阻率
率。常规感应是在代表特定模拟
条件的点之间进行插值,其模拟 采用“台阶剖面”三参数(Rxo、
侵入半径
侵入带地层电阻率
di、Rt)模型。HDIL1、r2、Rt)模型
侵入剖面
计算Rxo、Rt、侵入半径。
多种纵向分辨率
常规感应测井响应是径 向聚焦和纵向聚焦的一种折 中结果,提高纵向分辨率就 增大了对井眼附近地层的影 响,即扩大了井眼影响。而 HDIL测井曲线是通过对阵列
高分辨率阵列感应几何因子示意图 HDIL采用的新的趋肤影响校正 方法是建立在操作频率上的一个函 数,其信号变化的比例随频率而变 化。新的趋肤影响校正降低了噪音 的影响,平滑了不同阵列、不同频 率之间的影响。

高分辨率阵列感应测井资料应用研究

高分辨率阵列感应测井资料应用研究

第1章高分辨率阵列感应测量原理1.1 感应测井的回顾感应测井是利用电磁感应原理测量地层电导率,基本测量单元是双线圈系,一个发射线圈和一个接收线圈。

常规感应测井采用复合线圈系结构,根据电磁场的叠加原理,采用多个基本测量单元进行组合,即多个发射线圈和多个接收线圈进行串联,产生具有直藕信号近似为零的多个测量信号矢量叠加,实现硬件聚焦的效果,从而测量具有一种或两种探测深度的地层电导率。

感应测井主要存在以下几方面的问题。

a. 感应测井不能用来划分薄层b. 对高电率地层求得的地层真电阻率误差较大c. 对减阻侵入较深的油层不能如实反映地层电阻率1.2 高分辨率阵列感应测量原理高分辨率阵列感应测井仪仍以电磁感应原理为理论基础,其线圈系采用三线圈系结构(一个发射,两个接收基本单元)。

它运用了两个双线圈系电磁场叠加原理,实现消除直藕信号影响的目的,线圈系由七组基本接收单元(其源距为6-94英寸)组成,共用一个发射线圈,使用八种频率(10KHz、30KHz、50KHz、70KHz、90KHz、110KHz、130KHz、150KHz)同时工作(其测量电路图示意如图1-1),共测量112个原始实分量和虚分量信号。

采用软件进行数字聚焦和环境校正,可获得三种纵向分辨率、六种探测深度的测井曲线。

第2章高分辨率阵列感应测井的数字处理高分辨率阵列感应测井在采用多种频率阵列测量的同时,应用软件数字聚焦、环境校正、和反演技术。

通过对资料的数字处理可以大大提高其测量效果。

2.1新的趋肤影响校正感应仪器是假设在均质环境中测量,其校正方法只适应于同步信号的计算,在高电导率地层该方法存在一定问题。

在双相量感应(DPIL)、阵列感应(AIT)仪器中是使用积分曲线进行趋肤影响校正,该方法克服了高电导率的影响,但在低电导率时积分信号变得不可靠。

高分辨率阵列感应数字处理采用一种新的趋肤影响校正方式,即是建立在操作频率上的一个函数,其信号变化的比例随频率而变化,该方法类似于积分法但克服了低电导率的影响。

第二章 第二节阵列感应成像测井仪AIT

第二章 第二节阵列感应成像测井仪AIT

6ft分辨率,曲线符号AS10、AS20、 AS30、 AS60、 AS90 6ft分辨率 曲线符号AS10、AS20、 AS30、 AS60、 分辨率,
现在的AIT有三种垂向分辨率:1ft、2ft、4ft,它们的探测深度 现在的AIT有三种垂向分辨率:1ft、2ft、4ft,它们的探测深度
仍然是10in 20in、30in、60in、90in。 仍然是10in、20in、30in、60in、90in。 10in、 Atlas:1ft垂向分辨率是设计在光滑井眼中使用、2ft分辨率曲线组 Atlas:1ft垂向分辨率是设计在光滑井眼中使用、2ft分辨率曲线组 垂向分辨率是设计在光滑井眼中使用 孔洞效应不甚敏感、4ft或6ft垂向分辨率曲线组对孔洞效应 垂向分辨率曲线组对孔洞效应极不 对孔洞效应不甚敏感、4ft或6ft垂向分辨率曲线组对孔洞效应极不 敏感。 敏感。
1990年,阿特拉斯研制出了向量双感应测井仪,测量R分量和X分 年 阿特拉斯研制出了向量双感应测井仪,测量 分量 分量和 分 研制出了向量双感应测井仪 地面进行反褶积 采用了10、 、 反褶积, 工作频率改变探测半 量,地面进行反褶积,采用了 、20、30khz工作频率改变探测半 工作频率改变 同时扩大了电阻率测量的动态范围。 电阻率测量的动态范围 径,同时扩大了电阻率测量的动态范围。
90年代,斯伦貝谢研制出了阵列感应测井仪(AIT)。采用几种工作 年代,斯伦貝谢研制出了阵列感应测井仪( 年代 。采用几 频率来控制探测深度 采用阵列线圈测量R分量 同时提取X分量 探测深度, 分量, 分量, 频率来控制探测深度,采用阵列线圈测量 分量,同时提取 分量 获得几组具有相同纵向分辨率, 探测深度不同的电阻率曲线 几组具有相同纵向分辨率 的电阻率曲线。 获得几组具有相同纵向分辨率,但探测深度不同的电阻率曲线。可 得到一幅径向含水饱和度的垂直剖面,并能看到侵入带的全貌。 径向含水饱和度的垂直剖面 得到一幅径向含水饱和度的垂直剖面,并能看到侵入带的全貌。

《阵列感应讲》PPT课件

《阵列感应讲》PPT课件

ppt课件
5
测井原理
4ft
2ft
1ft
4英尺
2英尺
1英尺
可获得三种纵向分辨率(1ft、2ft、4ft)、5—6种探测 深度(10in、20in、30in、6p0pti课n件、90in、120in)的测井曲线。 6
测井原理
仪器性能指标
AIT-H
HDIL
HARI
长度
16.0ft(4.88m)
27ft(8.27m)
纵向分辨率匹配:将浅探测的曲线特征组合到深探测曲线时,浅探测 信号的平均影响被消除,这样既没有改变深探测曲线分辨远离井眼地 层的电导率变化的能力(探测深度未变),又使得其纵向分辨率与浅 探测曲线匹配,得到相同的视纵向分辨率,形成“分辨率匹配曲线”。
合成双感应曲线、倾角校正
ppt课件
9
资料处理
一维电阻率反演处理
3
测井原理
根据电磁感应原理提出的感应测井,在
测量时通过对发射线圈供给交流电,在其周 围地层中形成交变电磁场;这种交变电磁场
接收线圈
既可在导电介质中传播,也可在非导电介质
中传播。在感应几何因子理论中,设想把地
层分成许多以井轴为中心的圆环,每个圆环
相当于一个导电环;在交变电磁场的作用下,
涡流
这些导电环就会产生感应电流,感应电流是
原状地层电阻率(Rt)、冲洗带
电阻率(Rxo)及侵入带的侵入
深度。
ppt课件
10
资料处理
二维电阻率反演处理
二维电阻率反演同时考虑地
层电阻率在纵向和径向上的变化, Rt,n-1
但目前在测井资料处理中还没有
一种技术能够实现与测井数据完 Rt,n
全吻合的反演。在实际反演中,

阵列感应测井原理

阵列感应测井原理

阵列感应测井原理阵列感应测井(Array Induction Logging)是一种用于获取地下水文和岩性信息的测井方法。

其原理是基于电磁感应,利用工具中的多个感应线圈和测量电磁场的变化来研究地层的性质和含水情况。

本文将详细介绍阵列感应测井的原理及其应用。

一、阵列感应测井的原理阵列感应测井通过感应线圈测量地下电磁场的变化来分析地层的性质和含水情况。

其原理是基于法拉第定律和麦克斯韦方程组的电磁感应现象。

当工具经过地下时,感应线圈感应到的电磁场的变化反映了地层的电导率和磁导率的变化,从而获得地层的相关信息。

阵列感应测井工具通常由多个线圈组成,分别位于测井仪内部和侧向。

内部线圈用于感应地层中电流的分布情况,而侧向线圈则用于测量地层中电流的方向。

通过对这些电磁数据的处理和解释,可以获得地下地层的电导率和磁导率等信息。

二、阵列感应测井的应用阵列感应测井广泛应用于地下水文和岩性信息的研究。

其主要应用有以下几个方面:1. 地层电导率的研究地层的电导率是阵列感应测井的主要目标。

电导率反映了地层中的含水量和盐度等参数。

通过测量电磁场的变化,可以推断地下含水层和非含水层的位置,进而判断地下水的分布情况。

2. 岩性分析阵列感应测井还可以用于岩性分析。

不同的岩石有着不同的电导率和磁导率,因此可以通过测量电磁场的变化来判断地下岩石的类型和性质。

这对于油田勘探和开发具有重要意义。

3. 水文地质研究阵列感应测井能够提供水文地质研究中的许多重要参数,如含水层的渗透率、饱和度和盐度等。

这对于地下水资源的评估和管理非常关键。

4. 油气勘探阵列感应测井在油气勘探中也有重要的应用。

通过测量地下油气层中电磁场的变化,可以推断油气层的位置、厚度和含量等信息。

这对于油气勘探和储量评估非常重要。

总之,阵列感应测井是一种重要的地球物理勘探方法,可以提供地下水文和岩性的信息。

通过测量电磁场的变化,可以研究地层的电导率和磁导率等参数,为地下水资源评估、油气勘探和岩性分析等提供有力的支持。

第二章 第二节阵列感应成像测井仪AIT要点

第二章 第二节阵列感应成像测井仪AIT要点
第二节
阵列感应成像测井仪AIT
本节主要内容有:
一、AIT的仪器结构
二、AIT测井原理
三、数据处理
四、测井解释 五、资料应用
一、阵列感应测井的提出
双感应存在的问题
•采用单一的工作频率,只测R分量,测量电阻率动态范围小,低阻 探测深度小,主要反映冲洗带。 •中深感应线圈系不匹配,探测深度和垂向分辨率也不同,使其受邻 层影响不同。 •对渗透性好的储集层,当减阻侵入时,中深感应的探测范围均超 不出侵入带,深感应的电阻率值不能反映原始地层的真电阻率。
计算钻井液侵入体积:用ARCHIE公式计算
解释时注意: •Rxo和Rt差别很小时,不能很好地反映侵入特性 •图像上给出的都是对称剖面,实际大多数是不是圆的, 在井周侵入不是均匀的,侵入剖面可能是不对称的。
•要考虑到Rmf的明显变化对侵入界面和泥浆滤液体积的 影响
•井眼直径突变和Rt和Rxo差别很大时,在界面处会使计 算的参数产生假象。
1983年,斯伦貝谢研制出了向量双感应测井仪,测量R分量,同时 提取X分量
1990年,阿特拉斯研制出了向量双感应测井仪,测量R分量和X分 量,地面进行反褶积,采用了10、20、30khz工作频率改变探测半 径,同时扩大了电阻率测量的动态范围。
90年代,斯伦貝谢研制出了阵列感应测井仪(AIT)。采用几种工作 频率来控制探测深度,采用阵列线圈测量R分量,同时提取X分量, 获得几组具有相同纵向分辨率,但探测深度不同的电阻率曲线。可 得到一幅径向含水饱和度的垂直剖面,并能看到侵入带的全貌。
斯伦貝谢径向电阻率变化图像
径向响应函数对一组匹配良好的纵向分辨率的AIT 曲线进行反褶积,得到径向电阻率变化的详细描 述。有两种模型确定径向电阻率的变化。

最新钻井地球物理勘探教案——第四章感应测井.docx

最新钻井地球物理勘探教案——第四章感应测井.docx

第四章感应测井感应测井可在井眼不导电的情况下(如油基泥浆井,空气钻井等)测量地层的电导率。

这种方法对低阻层反应灵敏,因此更适合区分低阻油、水层和油水过渡带。

第一节感应测井的基本理论一、基本原理感应测井是利用交变电磁场研究岩石导电性的一种方法。

发射线圈T,通以20kHz交变电流,该电流在周围介质中产生交变电磁场中。

φ 1在介质中适应出环形电流i 1 ,同时在接收线圈R 中,产生感应电动势 E 1 。

环形电流 i 1 ,在介质中亦将引起二次磁场φ2,φ 1 在 R 中引起适应由动势 E 2。

φ 1在 R 中引起的电动势为无用信号,而φ2在 R中引起的感应电动势 E 2与 i 1有关, i 1 又与地层导电能力有关,因而,通过测量 E 2的大小,便可测量介质的导电能力。

在均匀无限介质的条件下,通过求解电磁场的基本方程可得出,接收线圈中,总适应电动势的表达式:该式展开后,可简化为:上式中,虚部是无用信号,实部与σ成正比,是有用信号,二者相位上差90°。

这就是感应测井的基础。

上式的得出是忽略了三次方以上的高次项的结果,是忽略了趋肤效应影响的一种近似方法。

这样就可把有用信号看作是介质各部分所引起的感应由动势线性相加的结果,这种方法就是“几何因子”理论。

几何因子理论要点:①认为发射电磁场与每个单元环电磁场之间互不发生作用(即幅度衰减和相位移动场可忽略)②认为电磁波瞬间便可通过地层,(而实际地层中电磁波传播速度仅为自由空间的0.15% )。

根据几何因子理论,得到的接收线圈中的有用信号为:dE 2 = kgσ· ds几何因子 g 的物理意义:在均匀无限介质中,任意一点上截面积为一个单位的单元介质环对总信号的相对供献。

二、均匀介质双线圈系感应测井的电磁理论1.传播效应(趋肤效应)2.麦克斯韦方程组及其解3.感应测井信号的虚、实分量第二节感应测井线圈系特性空间各部分介质对总的感应电动势贡献大小是由每部分介质的电导率与它的几何因子两部分因素决定的,因此,必须研究几何因子的空间分布,才能研究各部分介质对感应电动势的贡献,而几何因子的空间分布与线圈系结构有关,因而必须研究线圈系的特性。

感应测井获奖课件

感应测井获奖课件
一、电磁感应原理
当一种导体回路中旳电流变化时,在附近旳另一种 导体回路中将出现感应电流;或者把一种磁铁在一种闭 合导体回路附近移动时,回路中也将出现感应电流,即 穿过一种回路旳磁通发生变化时,这个回路中将出现感 应电动势,并在回路中产生电流,感应电动势等于磁通 量变化率旳负值,这一现象称为电磁感应现象。
电导率曲线为非对称曲线。 厚层(h>2m)旳中部,电 导率接近于地层实际值,伴 随厚度旳减小,视电导率受 围岩电导率影响增长,与地 层旳差别增大,相对于其他 地方,地层中部值与实际值 最为接近。
上下界面分别用各自旳半幅 点拟定其界面。
第三节 感应测井曲线旳特点及应用
二、感应测井曲线旳影响原因
1、均质校正
1
2L L 8z2
,当 | ,当 |
z | z |
L
2 L
2
从曲线能够看出,在线圈系所对着旳部 分介质范围内,即在T,R之间旳地层贡献 最大(gz最大),且对δa旳贡献为常数(等于 1/2L);在线圈系外,即在T,R外,伴随 z值旳增大,地层旳贡献按1/z2规律减小 。
该图也阐明,双线圈系旳主要信号来自 线圈系范围内旳介质。
第二节 感应线圈系旳探测特征
2、0.8m六线圈系旳探测特征
2)0.8米六线圈系纵向探测特征
0.8米六线圈系和其根本圈正确纵向微分、积 分几何因子特征如图。比较发觉:0.8米六线圈 系旳纵向微分几何因子旳极大值不小于根本圈 正确纵向微分几何因子极大值,阐明0.8米六线 圈系旳纵向辨别能力强。0.8米六线圈系旳纵向 积分几何因子上升比较快,而根本圈正确纵向 积分几何因子上升比较缓慢,
从上式还能够看出,L越小 ,gz越大,对读数影响最大旳 纵向范围越窄,围岩旳影响就 越小。所以,L旳大小决定了 双线圈系旳分层能力,L越小 ,分层能力越强。

阵列感应测井方法和技术进展

阵列感应测井方法和技术进展

阵列感应测井方法和技术进展前言:就目前而言,测井的方法种类繁多,并且趋于系列化。

其基本的方法有电、声、放射性测井三种。

此外还有特殊方法,如电缆地层测试、地层倾角、成像、核磁共振测井。

当然还存在其他形式的测井方法,如随钻测井。

然而每种方法都只能反映岩层地质特性的某一侧面。

在实际运用中应当综合地应用多种测井方法。

[1] 阵列感应测井技术始于20世纪90年代初。

阵列感应测井技术的原理是利用阵列在接受线圈集中在一侧的好处可大大缩短仪器长度。

目前广泛应用的阵列感应测井有斯仑贝谢的AIT-A和AIT-H、Baker Altas的HDIL以及哈里伯顿的HRIA等。

与传统的双感应和双侧向相比,具有测量信息多、分辨率高、探测深度大、反映侵入直观等优点。

一、国内外研究及应用现状感应测井仪器经历了双感应测井、聚焦感应测井、阵列感应测井仪器等几个发展阶段[2]。

感应测井解决了淡水和油基泥浆井中的电阻率测量问题,由于早期的普通电阻率测井、侧向测井,只能在导电的泥浆中进行测量,有时为了获取地层原始含油饱和度信息,需要用油基泥浆或空气钻井,针对这个问题,1949年Doll提出了感应测井及其在油基泥浆井中的应用理论,该理论的根据是电磁感应原理。

如果忽略趋肤效应的影响,则依据电磁场Maxwell方程就可以推导出Doll几何因子表达式。

1962年研制出具有商用价值的双感应测井仪器,但是该测井仪器在实际应用中出现了很多问题,例如不能进行薄层分析,分辨率低,受井眼、侵入、围岩以及趋肤效应环境影响严重等,这些不足导致测井曲线不能反映实际的地层信息。

作为一维的测量和处理方法,传统的聚焦感应测井方法不能有效地消除二维的井眼、围岩,侵入等环境影响以及趋肤效应的影响。

为了解决测井方面遇到的问题,二十世纪九十年代出现了新的测井方法和测井仪器——阵列感应测井方法和阵列感应测井器。

该测井方法在测井过程中易于获取丰富的井下地层信息。

这种测井方法不仅能有效地消除二维的环境影响,获取地层的真电导率[3],而且使感应测井的应用范围更广泛,进行薄层分析和复杂的侵入解释,对油气储藏的准确评价具有重要的作用。

《测井储层评价方法》阵列感应成像测井AIT

《测井储层评价方法》阵列感应成像测井AIT
50% point on integrated radial response function
Vertical resolution
90% of vertical response function
AIT 2英尺分辨率曲线径向几何因子
几何因子,GF
1.1
0.9
0.7
0.5
AT10
AT20
0.3
(二) 阵列感应成像测井
AIT Array Induction Imager Tool
传统感应测井仪器的基本组成单元
Schlumberger
1、AIT 线圈系 (1 个发射线圈/8组接收线圈)

R8
R7 R5 R3 R1 T
R2 R4 R6
72”
39பைடு நூலகம்
21 15 6 0
9 15 27
Two frequencies: 20kHz, 40kHz R(电阻) & X(电抗) signals
第一道: r1为冲洗带半径,r2为过 渡带半 径; 第二道: 合成曲线及Rt、Rxo反演结果 第三道: 计算得到的侵入地层的泥浆滤 液体积。
由相同AlT的测井数据 生成的三种图像: 左:地层电阻率 中:视地层水电阻率 右:含油气饱和度
AIT Permeable Zone
Permeable Zones
3、AIT 信号处理结果
——获得3种分辨率、5种探测深度共15条曲线
探测深度(英寸)
分辨率(英尺)
10 20 30 60 90
1
AO10 AO20 AO30 AO60 AO90
2
AT10 AT20 AT30 AT60 AT90
4
AF10 AF20 AF30 AF60 AF90

11阵列感应测井解析

11阵列感应测井解析

公司 斯伦 贝谢
仪器 型号
AIT-B AIT-H
推出时 间
1990’初 1995
发射 频率
3种 1种
接收子 阵列
8个 8个
原始 曲线
28条 16条
径向探测深度 (cm)
25,50,75,150,225 25,50,75,150,225
纵向分辨率 (cm)
30,60,120 30,60,120
阿特 拉斯
27号线圈测量低频实部信号 39号线圈测量中频实部信号 39号线圈测量低频实部信号 72号线圈测量中频实部信号 72号线圈测量低频实部信号
A27MX
A27LX A39MX A39LX A71MX A72LX
27号线圈测量中频虚部信号
27号线圈测量低频虚部信号 39号线圈测量中频虚部信号 39号线圈测量低频虚部信号 72号线圈测量中频虚部信号 72号线圈测量低频虚部信号
哈里 伯顿 中国 石油 俄罗 斯
HDIL
HRAI
1997
2000
8种
2种
7个
10个
112条
40条
30,60,90,150,225, 300
30,60,90,150,225,300
30,60,120
30,60,120
MIT
2003
3种
8个
28条
25,50,75,150,225
30,60,120
HIL
2002(国 内应用)
1种
1个(+4 发射)
8条
72,123,182,297
60,100,110, 140
2 、 阵列感应仪器优点

阵列感应与双感应相比,具有以下优点:

(完整版)《测井仪器原理》第三章阵列感应测井仪器

(完整版)《测井仪器原理》第三章阵列感应测井仪器
主控制板的功能有:
(1)与地面计算机通信(包括对控制命令的解码、发送和 接收数据)。
(2)采集信号并处理。
(3)与发射电路通信。
二、主要电路分析
1.发送控制电路 2. 预处理电路 3. 发射驱动电路 4. 通信接口电路 5. 信号采集电路 6. C30主控制电路
+5V +15V C36
.1 8
OP1776S C14
4 5 U18 6
.1 -15V
NC74HC860
9 10
U18
8
NC74HC860 12 13 U18 11
NC74HC860
+5V R64 1K
NR
500KHZ
SER_TX SER_RX
NR
80 81 82 83 84 85 86 87 88 89 90 91 92 95
+
+
预处理
模数转换
堆垛处理
图3-5 子阵列处理框图
每个子阵列的信号经预处理通道处理后 经屏蔽双绞线传送到其上部的EA短节, 然后由EA短节中的七个DSP采集模块对 每个子阵列的信号进行采集和处理,这 个处理过程形象的称之为“栈式存储”, 从而得到对应每个子阵列的七个特性信 息,每个特性信息占用96个缓冲区,每 个缓冲区字长为32位。
图3-3 HDIL阵列感应测井仪器组成框图
经由地层传来的R-信号由多组线圈接收。每组线圈,包括 发送线圈,都是测量部分的子阵列,发射线圈是所有子阵 列的基础。仪器共有7个子阵列。都具有靠近发射线圈的接 收线圈。每组接收线圈都由两个线圈组成,一个线圈是辅 助线圈(靠近发射线圈),另一个线圈是主接收线圈,图3-4 给出了每个子阵列的工作方式。
INC+ INC-
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线圈系由一个主发射和上下非对 称布置的8个接收线圈系组成。每个线 圈系包含一个主接收线圈和一个屏蔽 接收线圈,与主发射线圈构成一个三 线圈系子阵列。主接收线圈与发射线 圈的距离从6in(0.15m)到72in (1.83m),有三个工作频率 (26.325kHz,52.65kHz,105.3kHz), 根据主线圈间距的大小来选择子阵列 的工作频率。
第四节 电阻率测井仪器的分类及适用范围
(1)普通电阻率测井
包括电位和梯度电极系测井,普通电阻率测井仪器属 于非聚焦电极,它受井眼和邻层的影响很大,对于薄层、 低电阻率地层以及侵入较严重的地层,测量精度会受到影 响。尤其在盐水泥浆井中,供电电极发出的电流大部分被 井内导电的盐水泥浆所分流,因此测出的视电阻率曲线难 以反映地层真电阻率。
式中, Cw—地层水矿化度 T—地层温度
第一节 岩电方程
3、地层电阻率和饱和度方程
abRw Rt= ————
Swnφm 式中, a、b—常数
m—胶结指数或孔隙度指数 n—饱和度指数
第二节 电阻率测井及测井环境
一、电阻率测井
电阻率测井方法主要分为两种: 第一种是传导电流法,该方法使用直流电,需要井
第三节 电阻率测井的历史背景与发展
1942年——Archie公式诞生。 1943年——带有照相井斜仪的三臂倾角仪研制成功, 它可以同时确定地层倾斜的方位和角度。 1949年——Doll提出感应测井几何因子理论,第一台 感应测井仪器研制成功。 1951年——Doll首先提出侧向测井的原理,研制出侧 向测井仪器,这是第一个聚焦式深探测的电阻率测井仪器。 20世纪50年代末——六线圈系的感应测井仪投入使用。 1963年——研制出双感应测井仪器。 1972年——研制出双侧向测井仪器。
第三节 电阻率测井的历史背景与发展
1983年——BPB公司首先推出了早期的阵列感应测井 仪(数字感应测井仪,AIS) 。
1990年——斯仑贝谢公司发表了AIT仪器的初步研究 成果,并进入商用阶段。
1992年——Atlas公司开始研究高分辨率阵列仪HDIL, 1995年生产出仪器样机。
1995年——戴维斯等研制成新一代侧向测井仪-方位 电阻率成像测井仪ARI;史密斯等研制出高分辨率方位侧 向测井电极系HALS。
眼中有导电泥浆。传导电流法测量的是电阻率。 第二种是感应法,使用交流电,井内可以含有任何
流体(空气、任何导电或不导电泥浆)。感应法测量的 是电导率。
第二节 电阻率测井及测井环境 二、井眼附近的测井环境
围岩
井 眼
冲 洗 带
过 渡 带
渗 透 层
围岩
井眼附近的地层模型
第三节 电阻率测井的历史背景与发展
1998年——斯仑贝谢公司推出阵列侧向测井仪器。
第四节 电阻率测井仪器的分类及适用范围
1、传导电流型
传导电流法测井也称直流电法测井,它是用供电电极 把电流注入地层,在井周围地层中形成电场,通过测量周 围地层中电场或电位的分布,来确定地层的电阻率。
要求:井内有导电泥浆,提供电流通道。 普通电阻率测井仪器和侧向测井都属于传导电流型测 井仪器。
1931年——斯仑贝谢兄弟完善了连续记录的方法,研 制成第一台笔记录仪,测井曲线包括自然电位和普通电阻 率测井曲线。
1936年——照相胶片记录仪诞生,电测井曲线已包括 自然电位、短电位、长电位以及长梯度电极系电阻率曲线。
1938年——Dress-Atlas公司使用电测井进行服务。 1939年——翁文波先生在四川隆昌的一口井中测出了 中国第一条电测井曲线(点测)。
主讲人:
第一章 电阻率测井基础
第一节 岩电方程
第二节 电阻率测井及测井环境 第三节 电阻率测井的历史背景与发展
主 第四节 电阻率测井仪器的分类及适用范围 要 第二章 阵列感应测井
第一节 引言
内 第二节 阵列感应测井线圈系结构设计 第三节 阵列感应测井பைடு நூலகம்率选择
容 第四节 阵列感应测井的优化聚焦合成处理 第五节 阵列感应测井影响因素校正 第六节 径向电阻率反演 第七节 阵列感应测井的测井环境和工艺要求 第八节 阵列感应测井原始资料的质量控制 第三章 高分辨率阵列感应(HDIL)处理软件
二、阵列感应测井仪器介绍 1、Schlumberger公司的阵列感应成像测井仪器AIT
仪器同时测量实部和虚部 信号,得到28个测量信号,接 收信号数字化后传到地面,由 地面软件聚焦合成得到5种不 同探测深度10in(0.25m), 20in(0.50m),30in (0.75m),60in(1.50m), 90in(2.25m)的3组分辨率1ft (0.3m),2ft(0.6m),3ft (1.2m)曲线。
第一章 电阻率测井基础
第一节 岩电方程
1、电阻率与电导率 UA
R= —— ·—— IL
式中, U—物体两端的电压 I—通过的电流 A—物体的横截面积 L—物体的长度
σ=1/R
2、地层水电阻率
第一节 岩电方程
3647.5
82
Rw=(0.0123+ ————) ·————
Cw0.955 1.8T+39
(2)侧向测井 当井眼充满高矿化度泥浆,井眼电阻率较低、地层
电阻率较高(如碳酸盐岩或地层被高电阻率的淡水所饱 和),使得侵入带电阻率小于地层电阻率形成低侵(也 称减阻侵入)时,一般使用双侧向测井来确定地层电阻 率。双侧向测井仪器的响应范围为0.2-40000Ω·m。
第四节 电阻率测井仪器的分类及适用范围
2、感应型
当井眼充满低矿化度泥浆,井眼电阻率较高、 地层电阻率较低,使得侵入带电阻率大于地层电 阻率(但是地层电阻率不是太低),形成高侵 (也称增阻侵入)时,一般使用感应测井来确定 地层电阻率。
第二章 阵列感应测井
第一节 引言
一、问题的提出
二、阵列感应测井仪器介绍 1、Schlumberger公司的阵列感应成像测井仪器AIT
20世纪初——地面电法勘探; 20世纪20年代后期——电测井; (世界上第一条测井曲线是1927 年由法国人斯仑贝谢兄弟在法国 东北部阿尔萨斯省皮切尔布朗油 田的一口井内通过点测测得的。
第三节 电阻率测井的历史背景与发展
1929年8月17日——壳牌石油公司在美国加利福尼亚 进行了美国的第一次电阻率测井。
相关文档
最新文档