(完整word版)一元二次方程的有理根与整数根的条件
一元二次方程的有理根与整数根的条件
a
。
如若认为 3a2 8a 2 4a2 2a2 13a 15 a2 a 22 是完全平方式,从而原方
3
5
程至少有一整数根,那就大错特错了。实际上由方程解出 x1 2 a ,x2 1 a 。故当
化为: 36m2 20m 105 k 2 0 2
因为 m 是整数,故再次利用有整数解的条件,应有1
20
4 36
2
105 k
2
16 9k 2 920 是某一整数的平方,也即9k 2 920 为一完全平方数,又设为a2 a 0,
于是9k 2 920 a 2 ,即 9k 2 a 2 920 或 920 3k a3k a
个。
解: x 2 mnx m n 0……(*) 有整数根,则 mn2 4m 4n 为一完全平方式,设为 k 2 k N ,于是m2n2 4m 4n k 2
即 m2n2 4m 4n k 2 0 1 视<1>为 m 的一元二次方程,它应有整数解,由
x1 x2 n24,x1 x2
x1 1,x2 5 ,有整数解,故 m 3,n 2 为所求。 由对称性知n 3,m 2 也为所求。
故符合题意的整数对 m、n 有(5,1)、(1,5)、(3,2)、(2,3)、(2,2)共 5 个。
- 2-
三、与因式分解有关的问题
例 3. m 是什么整数时,9m2 5m 26 能分解成两个连续自然数的积?
(2)令 n 2 ,则<1>式为: 4m2 4m 8 k 2 0
3
<3>若有整数解,则 42 4 4 8 k 2 16 9 k 2 应为某一完全平方式
一元二次方程的整数根
例 2 (2000 年全国初中数学联赛试题)设关于 x 的二次方程 (k2-6k+8)﹒x2+(2k2-6k-4)x+k2=4
的两根都是整数.求满足条件的所有实数 k 的值.
分析 此题也可通过直接求根法求出二根,但是它的条件与例 1 不同,例 1
况。 解 若 k=6, 则 x=-2; 若 k=9, 则 x=3;
若 k≠6 且 k≠9,原方程可化为 [(k-6)x-9][(k-9)x-6] = 0 ,故方程的二
根为 x1= k 9 6 ,x2= k 6 9 .为使 x1 和 x2 都是整数,则应有 k-6 = ±1,±3,± 9 , k=-3,3,5,7,9,15;还 应 有 k-9 = ± 1,± 2, ± 3,± 6, k=3,6, 7,8,10,11,12,15. 所以 k=3,7,15时,x 1 和 x 2都是整数,
当 m =1 时,方程 mx2-6x+9=0 的二根均为 1,方程 x2-4mx+4m2-4m-5=0 的
二根为-1 和 5,符合要求。 当 m =-1 时,方程 mx2-6x+9=0 的二根均不是整数,不符合要求. 所以仅当 m=1 时,方程的两根都是整数。 例 4. (1996 年上海市初中数学竞赛试题)若关于 x 的方程 ax2+2(a-3)x+(a-2)=0
a = 25, 18, 16, -9, -2, 0
因 a 为正实数,于是 a 25 或 18或 16均为所求.
例 8 (第十七届全俄数学奥林匹克十年级试题)求使方程 x2-pqx+p+q=0 有
整数根的所有正整数 p 和 q.
解 设原方程两根为 x1、x2,则 x1x2 = p+q
一元二次方程讲义——绝对经典实用
一元二次方程讲义——绝对经典实用一元二次方程是指方程中只含有一个未知数,而且未知数的最高次数是2.一般地,这样的方程都整理成为形如ax2+bx+c=0(a≠0)的一般形式,我们把这样的方程叫做一元二次方程。
其中ax2,bx,c分别叫做一元二次方程的二次项、一次项和常数项,a、b分别是二次项和一次项的系数。
如果方程中含有字母系数在讨论是否是一元二次方程时,则需要讨论字母的取值范围。
一元二次方程的求根方法有直接开平方法、配方法、公式法和因式分解法。
直接开平方法是指形如x=m(m≥0)的方程都可以用开平方的方法写成x=±m,求出它的解。
配方法是通过配方将原方程转化为(x+n)2=m(m≥0)的方程,再用直接开平方法求解。
配方是组成完全平方式的变形过程。
公式法是指一元二次方程ax2+bx+c=0(a≠0)的求根公式为x=(-b±√(b2-4ac))/2a。
因式分解法是把一元二次方程整理为一般形式后,方程一边为零,另一边是关于未知数的二次三项式,如果这个二次三项式可以作因式分解,就可以把这样的一元二次方程转化为两个一元一次方程来求解。
一元二次方程根的判别式的定义为b2-4ac,运用配方法解一元二次方程过程中得到显然只有当b2-4ac≥0时,才能直接开平方得到实数根。
这里b2-4ac叫做一元二次方程根的判别式。
只有当系数a、b、c满足条件b2-4ac≥0时才有实数根。
一元二次方程的根由其系数a、b、c确定,其根的情况(是否有实数根)由判别式Δ=b²-4ac确定。
设一元二次方程为2ax²+bx+c=0(a≠0),其根的判别式为Δ=b²-4ac,则解为x1,2=(-b±√Δ)/(2a)。
判定方程的根的情况有三种:①Δ>0,方程有两个不相等的实数根;②Δ=0,方程有两个相等的实数根;③Δ<0,方程没有实数根。
若a、b、c为有理数,且Δ为完全平方式,则方程的解为有理根;若Δ为完全平方式,同时-b±√Δ是2a的整数倍,则方程的根为整数根。
一元二次方程整数根-教师版
板块一.元二次方程的整数根问题1.有理数根问题方程20ax bx c ++=(0a ≠,a 、b 、c 均为有理数)的根为有理数的条件是:∆为有理数 2.整数根问题一元二次方程有正(负、非正、非负)整数根,用十字相乘或公式法求出两个根,并将两根化简,分子部分不能有字母,再讨论整数根, 并考虑根为正(负、非正、非负)数。
例如:3x=m2m-1x=m 2m-3x=m+1a-3+9-4a x=a一元二次方程有整数根,但用十字相乘或公式法求出的两个根含有根号时,如a -39-4ax=a±,要利用换元法,设9-4a =k ,得出29-k a=4,将x 中的a 全部替换,得出两个不含根号的解,再讨论整数根问题,方法同上;若△=4a 2-9且a 为整数,则设4a 2-9=k 2,4a 2- k2=9,可得(2a-k )(2a+k)=9,则讨论整数X 整数=9,讨论出所有满足情况的整数即可,注意k ≥0注意:若方程至少有一实数根,那么通过x1,x2推出的相关字母的值,应该取全部情况;若方程有两个实数根(已经确定方程为一元二次方程),那么通过x1,x2推出的相关字母的值,应该取公共解。
板块二.一元二次方程的应用1.增长率问题2.商品利润问题3.图形面积问题4.传播问题5.动点问题一.元二次方程的整数根问题1.有理数根问题【例1】 已知关于x 的一元二次方程22131(1)0444x mx k m k k +-+--+=有有理根,求k 的值。
【答案】∵原方程的根为有理根221314[(1)]444m k m k k ∆=-⨯⨯-+--+2231(1)44m k m k k =+++++所以∆为完全平方式,因此22131()244k k k +=++,整理得230k k +=一元二次方程整数根与实际应用新知学习基础演练解得0k =或13k =-【练一练】设m 是不为零的整数,关于x 的二次方程2(1)10mx m x --+=有有理根,求m 的值. 【解析】一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令22(1)4m m n ∆=--=,其中n 是非负整数,于是2261m m n -+=,所以22(3)8m n --=, 由于33m n m n -+--≥,并且(3)(3)8m n m n -+--=是偶数, 所以3m n -+与3m n --同奇偶,所以 3432m n m n -+=⎧⎨--=⎩,或3234m n m n -+=-⎧⎨--=-⎩. 所以61m n =⎧⎨=⎩,或01m n =⎧⎨=⎩(舍去).所以6m =,这时方程的两个根为12,13.点评:一个整系数的一元二次方程如果有整数根或有理根,那么它的判别式一定是完全平方数,然后利用平方数的性质、解不定方程等手段可以将问题解决.【答案】6m =【例2】 对于任意实数x ,二次三项式22134x mx m m ++-+是一个完全平方式,求m 的值 【解析】略【答案】由题意得2231()24m m m =-+,整理得25410m m +-=解得15m =或1m =- 2.整数根问题【例3】 已知方程21404x x n -+=的根都是整数,求正整数n 的值;【答案】根据题意得,16n ∆=-416821612nx n ±-==±-∵原方程的根均为整数,且n 为正整数 ∴7n =或12n =或15n =【例4】 设m 为整数,且440m <<,方程()2222341480x m x m m --+-+=有两个整数根,求m 的值及方程的根.【解析】4(21)m =+△为完全平方数,又m 为440m <<的整数,则12m =或24.当12m =时,116x =,226x =;当24m =时,338x =,452x =.点评:测及一元二次方程的整数根问题,一般用公式法把根表示出来,再让其为整数即可;或先让24b ac -为完全平方数,再检验.当然测及二次项系数的讨论更容易错.【答案】当12m =时,116x =,226x =;当24m =时,338x =,452x =.【练一练】已知1240m <<,且关于x 的二次方程222(1)0x m x m -++=有两个整数根,求整数m .【解析】由原方程由整数解可知,224(1)44(21)m m m ∆=+-=+必然是一个完全平方数.又1240m <<可知,252181m <+<,又21m +为奇数,故214924m m +=⇒=. 此时原方程的两个实数根为:1,22(1)501422m x +±∆±==,不妨设12x x >,则132x =,218x =故24m =.满足∆为完全平方数只是条件之一,另外一个条件也必须同时满足,要引起注意.【答案】24m =【例5】 已知方程()22238213150ax a a x a a --+-+=(a 是非负整数)至少有一个整数根,那么a = .【解析】∵0a ≠,∴由公式法可得()2212382322a a a a x a a -++==-,()2222382512a a a a x a a --+==-.即135a =,,. 【答案】1、3、5【练一练】b 为何值时,方程 220x bx --=和22(1)0x x b b ---=有相同的整数根?并且求出它们的整数根?【解析】两式相减,整理得(2)(2)(1)b x b b -=-+,当2b ≠时,1x b =+,代入第一个方程,得2(1)(1)20b b b +-+-= 解得1b =,2x =当2b =时,两方程无整数根. ∴1b =,相同的整数根是2 【答案】1b =,相同的整数根是2【例6】 已知关于x 的方程2(6)0x a x a +-+=的两根都是整数,求a 的值.【解析】本题的难点在于a 并不是整数,如果在采用求根公式,然后讨论∆是否为完全平方数,难度不小,因此本题采用韦达定理来求解【答案】设方程2(6)0x a x a +-+=的两个根为1x 、2x根据题意得12126x x a x x a +=-⎧⎨⋅=⎩①②,将②代入①,整理得12126x x x x +=- ∴212267111x x x x -==-++∵1x 、2x 均为整数 ∴21x +的值为1±或7± 当211x +=时,20x =,16x =,0a = 当211x +=-时,22x =-,18x =-,16a = 当217x +=时,26x =,10x =,0a = 当217x +=-时,28x =-,12x =-,16a = 综上所述,0a =或16a =【例7】 求方程2237x y x xy y+=-+的所有正整数解. 【解析】原方程可化为关于x 的一元二次方程223(37)370x y x y y -++-=.由于x 为实数,则判别式不小于0,即[]22(37)43(37)0y y y ∆=-+-⨯-≥. 化简得227126490y y --≤,解得211439-≤211439y +≤.由于y 是正整数,则y 只能取1,2,3,4,5.分别将1,2,3,4,5y =代入原方程, 得原方程的两组正整数解为1145x y =⎧⎨=⎩,2254x y =⎧⎨=⎩.【答案】1145x y =⎧⎨=⎩,2254x y =⎧⎨=⎩【例8】 当m 是什么整数时,关于x 的一元二次方程2440mx x -+=与2244450x mx m m -+--=的根都是整数.【解析】由题意可知,方程2440mx x -+=的判别式21(4)1616(1)01m m m ∆=--=-≥⇒≤ 方程2244450x mx m m -+--=的判别式为222(4)4(445)4(45)0m m m m ∆=---=+≥故54m ≥-,又m 为整数,0m ≠,故1m =-或1m =当1m =时,题干中的两个方程分别为2440x x -+=、2450x x --=,满足题意; 当1m =-时,题干中的两个方程分别为2440x x +-=、2430x x ++=,不合题意.故1m =.也可通过方程是否有整数根的条件来判断出1m =,此时两个判别式都要是完全平方数.【答案】1m =【练一练】一直角三角形的两直角边长均为整数,且满足方程2(2)40x m x m -++=,试求m 的值及此直角三角形的三边长【解析】略【答案】由题意得,2124m m ∆=-+,∴2(2)1242m m m x +±-+=,∵该方程的根均为整数∴2124m m -+必为平方数,令22124m m n -+=(n 为正整数) 整理得22(6)32m n --=,∴(6)(6)32m n m n -+--= ∴6m n -+与6m n --同奇同偶 因此61662m n m n -+=⎧⎨--=⎩或6864m n m n -+=⎧⎨--=⎩ 解得157m n =⎧⎨=⎩或144m n =⎧⎨=⎩当157m n =⎧⎨=⎩时,方程2(2)40x m x m -++=为217600x x -+=,解得5x =或12x =∴直角三角形斜边为13当122m n =⎧⎨=⎩时,方程2(2)40x m x m -++=为214480x x -+=,解得6x =或8x =∴直角三角形斜边为10【练一练】已知a 是正整数,如果关于x 的方程32(17)(38)560x a x a x +++--=的根都是整数,求a 的值及方程的整数根.【解析】观察易知方程有一个整数根11x =,将方程的左边分解因式,得:2(1)(18)560x x a x ⎡⎤-+++=⎣⎦. 因为a 是正整数,所以关于x 的方程:2(18)560x a x +++= ……①的判别式2(18)2240a ∆=+->,它一定有两个不同的实数根.而原方程的根都是整数,所以方程①的根都是整数,因此它的判别式2(18)224a ∆=+-应该是一个完全平方数. 设22(18)224a k +-=(其中k 为非负整数),则22(18)224a k +-=,即:(18)(18)224a k a k +++-=. 显然18a k ++与18a k +-的奇偶性相同,且1818a k ++≥,1818a k a k +++-≥. 而2241122564288=⨯=⨯=⨯,所以:18112182a k a k ++=⎧⎨+-=⎩,或1856184a k a k ++=⎧⎨+-=⎩,或1828188a k a k ++=⎧⎨+-=⎩ 解得3955a k =⎧⎨=⎩,或1226a k =⎧⎨=⎩,或010a k =⎧⎨=⎩.而a 是正整数,所以只可能3955a k =⎧⎨=⎩,或1226a k =⎧⎨=⎩.当39a =时,方程①即257560x x ++=,它的两根分别为1-和56-.此时原方程的三个根为1,1-和56-.当12a =时,方程①即230560x x ++=,它的两根分别为2-和28-.此时原方程的三个根为1,2-和28-.【答案】当39a =时,原方程的三个根为1,1-和56-;当12a =时,原方程的三个根为1,2-和28-【例9】 若关于x 的方程()()()26911715540k k x k x ----+=的解都是整数,则符合条件的整数k 的值有_______个.【解析】当6k =时,得2x =;当9k =时,得3x =-,当9k ≠时,解得196x k =-,269x k =-,当6139k -=±±±,,时,1x 是整数,这时753153k =-,,,,;当91236k -=±±±±,,,时,2x 是整数这时10811712153k =,,,,,,综上所述,367915k =,,,,时原方程的解为整数.【答案】367915k =,,,,【练一练】若k 为正整数,且关于k 的方程22(1)6(31)720k x k x ---+=有两个相异正整数根,求k 值.【解析】原方程变形、因式分解为2(1)(1)6(31)720k k x k x +---+=,[(1)12][(1)6]0k x k x +---=.即1121x k =+,261x k =-.由121k +为正整数得1,2,3,5,11k =;由61k -为正整数得2,3,4,7k =.所以2,3k =使得1x ,2x 同时为正整数,但当3k =时,123x x ==,与题目不符,所以,只有2k = 为所求.【答案】2k =【例10】 当m 为何整数时,方程222525x mx m -+=有整数解. 【解析】解法1:将方程222525x mx m -+=左边因式分解可得 (2)(2)5x m x m --=故2521x m x m -=⎧⎨-=⎩,或2125x m x m -=⎧⎨-=⎩,或2521x m x m -=-⎧⎨-=-⎩,或2125x m x m -=-⎧⎨-=-⎩解得31x m =⎧⎨=⎩,13x m =-⎧⎨=-⎩,31x m =-⎧⎨=-⎩,13x m =⎧⎨=⎩解法2:将方程222525x mx m -+=整理成标准形式:2225250x mx m -+-=由原方程有整数解,首先必须满足222(5)42(25)940m m m ∆=-⨯⨯-=+为一个完全平方数, 不妨设2(0)n n ∆=>,则有22940(3)(3)40m n n m n m +=⇒-+=,又3n m -、3n m +的奇偶性相同,故它们必然同为偶数,则有32320n m n m -=⎧⎨+=⎩,32032n m n m -=⎧⎨+=⎩,32320n m n m -=-⎧⎨+=-⎩,32032n m n m -=-⎧⎨+=-⎩, 34310n m n m -=⎧⎨+=⎩,31034n m n m -=⎧⎨+=⎩,31034n m n m -=-⎧⎨+=-⎩,34310n m n m -=-⎧⎨+=-⎩解得311m n =⎧⎨=⎩,311m n =-⎧⎨=⎩,17m n =⎧⎨=⎩,17m n =-⎧⎨=⎩代入552222m m n±∆±=⨯⨯中检验可知,均满足题意,故1m =±或3m =±. 注意,题中要求有整数解即可,没要求所有的根都是整数,要注意区分这一点.点评:解法2看似复杂,但却是一元二次方程的整数根问题的通用解法,“希望杯”等考试中也常考到这种方法,值得引起注意.解法1看似简单,但使用起来有较多的局限性,如果无法进行因式分解,或者所分解的整数的因数过多,使用起来将很复杂.【答案】1m =±或3m =±【练一练】(2009密云)关于x 的方程22(3)(2)0ax a x a +-+-=至少有一个整数解,且a 是整数,求a 的值.【解析】当a=0时,原方程为620x --=,解得13x =-,即原方程无整数解.当0a ≠时,方程为一元二次方程,它至少有一个整数根, 说明判别式24(3)4(2)4(94)a a a a ∆=---=-为完全平方数,从而94a -为完全平方数,设294a n -=,则n 为正奇数,且3n ≠否则(0a =),所以,294n a -=.由求根公式得 22(3)234(3)1129a n n n x a a n --±±±==-+=-+- 所以 12441,1.33x x n n=-+=-++-要使1x 为整数,而n 为正奇数,只能1n =,从而2a =;要使2x 为整数,n 可取1,5,7,从而2,4,10.a =-- 综上所述,a 的值为2,4,10.--【练一练】(2013东城区)已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)当m 为何整数时,原方程的根也是整数.【解析】(1)证明: Δ=23)4(1)m m +-+( =26944m m m ++-- =225m m ++ =2(1)4m ++.∵ 2(1)m +≥0, ∴ 2(1)4m ++>0.∴ 无论m 取何实数时,原方程总有两个不相等的实数根. (2) 解关于x 的一元二次方程x 2+(m +3)x +m +1=0,得 23(1)42m m x --±++=.要使原方程的根是整数,必须使得2(1)4m ++是完全平方数.设22(1)4m a ++=,则(1)(1)4a m a m ++--=. ∵ a +1m +和1a m --的奇偶性相同, 可得12,1 2.a m a m ++=⎧⎨--=⎩或12,1 2.a m a m ++=-⎧⎨--=-⎩解得2,1.a m =⎧⎨=-⎩或2,1.a m =-⎧⎨=-⎩.将m=-1代入23(1)42m m x --±++=,得122,0x x =-=符合题意. ∴ 当m=-1 时 ,原方程的根是整数.二.一元二次方程的应用1.增长率问题【例11】某校去年对实验器材的投资为2万元,预计今明两年的投资总额为12万元,求该校这两年在实验器材投资上的平均增长率是多少?【解析】注意“累计”等名词【答案】设平均增长率为x ,根据题意得22(1)2(1)12x x +++=整理得2340x x +-=,解这个方程得:11x =,24x =-(舍) 答:该校这两年在实验器材投资上的平均增长率是100%【练一练】某公司成立3年以来,积极向国家上交利税,由第一年的200万元增加到800万元,则平均每年增长的百分数是【解析】略【答案】设平均每年增长的百分数是x根据题意得:2200(1)800x += 解得1x =或3x =-(舍)∴平均每年的增长的百分数是100%【练一练】北京市政府为了迎接2008年奥运会,决定改善城市面貌,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均每年绿地面积的增长率是( )A.10%B.20%C.30%D.40%【解析】略【答案】设绿地面积的增长率是x ,原有绿地面积为a ,根据题意得2(1)(144%)a x a +=+ 解得20%x =或220%x =-(舍) 则平均增长率为20% ∴选B【例12】 某个体户以50000元资金经商,在第一年中获得一定的利润,已知这50000元资金加上第一年的利润在第二年共获利润2612.5元,而且第二年的利润率比第一年多0.5%,则第一年的利润是多少元?【解析】略【答案】设第一年的利润为x 元,根据题意得(50000)(0.5%)2612.550000xx +⋅+=解得12250x =,252500x =-(舍) 答:第一年的利润为2250元【练一练】某商品两次价格下调后,单价从5元变成4.05元,则平均每次调价的百分率为( )A.9%B.10%C.11%D.12%【解析】略【答案】设平均每次调价的百分率为x ,根据题意得,25(1) 4.05x -=,解得0.1x =或 1.9x =(舍) 因此选B【练一练】某商场2002年的营业额比2001年上升10%,2003年比2002年又上升10%,而2004年和2005年连续两年比上一年降低10%,那么2005年的营业额比2001年的营业额( )A.降低了2%B. 没有变化C.上升了2%D.降低了1.99%【解析】注意题目要求,还有注意是比较“2005年的营业额与2001年的营业额”【答案】设2001年的营业额为a 元,则2002年的营业额为1.1a 元,2003年的营业额1.21a 元,所以2005年的营业额为21.21(110%)0.9801a a ⨯-= 因此2005年的营业额比2001年的营业额降低了0.9801100% 1.99%a aa -⨯= 所以选择D2.商品利润问题【例13】某商场销售一批名牌衬衫,平均每天可以销售出20件,每件盈利40元,为扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降低多少元?【答案】解:设每件衬衫降价x 元,则每件所获得的利润为(40)x -元,但每天可多售2x 件,每天可卖(202)x +件,根据题意得(40)(202)1200x x -+=,方程化简整理得2302000x x -+=解得120x =,210x = ∵要尽快减少库存,∴20x =答:若商场每天要盈利1200元,每件应降价20元【练一练】吉安国光商场在销售中发现:某品牌衬衫平均每天可售出60件,每件赢利40元.为了迎接“十•一”黄金周,商场决定采取适当的降价措施,扩大销售量,增加赢利,减少库存.经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出6件.要想平均每天销售这种衬衫赢利3600元,那么每件衬衫应降价多少元?【解析】本题可设每件衬衫应降价x 元,则每件赢利(40)x -元,平均每天可售出(606)x +件,根据每件的盈利×销售的件数=衬衫的盈利,据此即可可列出方程,求出答案.【答案】设每件衬衫应降价x 元,根据题意得(40)(606)3600x x -+=整理得2302000x x -+=解得110x =,220x = ∵要尽快减少库存 ∴20x =答:每件衬衫应降价20元【例14】商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件. (1)问商场经营该商品原来一天可获利润多少元?(2)若商场经营该商品一天要获利润2160元,则每件商品售价应为多少元?【答案】(1)若商店经营该商品不降价,则一天可获利润100(10080)2000⨯-=(元).(2)设后来该商品每件降价x 元,依题意,得(10080)(10010)2160x x --+=整理得210160x x -+=解得12x =,28x = 当2x =时,售价为98元 当8x =时,售价为92元答:商店经营该商品一天要获利润2160元时,每件商品应售价为98元或92元【练一练】西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?【解析】设应将每千克小型西瓜的售价降低x 元.那么每千克的利润为:(32)x --,由于这种小型西瓜每降价0.1元/千克,每天可多售出40千克.所以降价x 元,则每天售出数量为:402000.1x +千克.本题的等量关系为:每千克的利润×每天售出数量-固定成本=200.【答案】设应将每千克小型西瓜的售价降低x 元.根据题意,得40(32)(200)242000.1xx --+-=原式可化为:2502530x x -+=解这个方程,得10.2x =,20.3x =答:应将每千克小型西瓜的售价降低0.2或0.3元.【例15】某商店以2400元购进某种盒装茶叶,第一个月按进价增加20%作为售价,售出50盒;第二个月每盒以低于进价5元作为售价,售完余下的茶叶,在整个买卖过程中盈利350元,求每盒茶叶的进价【解析】略【答案】设每盒进价x 元,依题意可列下列方程:24005020%5(50)350x x ⨯--=整理得21012000x x --=,解得130x =、240x =经检验130x =-、240x =都是原方程的解,但进价不能为负数,所以只取40x = 答:每盒茶叶进价为40元【练一练】某玩具厂生产一种玩具熊猫,每日最高产量为40只,且产出的产品全部售出,已知生产x 只玩具熊猫的成本为R (元),售价为每只P (元),且R 、P 与x 的关系式为50030R x =+,1702P x =-,当日产量为多少时,每日获得的利润为1750元?【解析】略【答案】根据题意得(1702)(50030)1750x x x --+=,解之,得125x =,245x =(舍),即日产量为25只时,每月获得利润为1750元【练一练】宏达汽车出租公司共有出租车120辆,每辆汽车的日租金为160元,出租业务天天供不应求,为适应市场需求,经有关部门批准,公司准备适当提高日租金,经市场调查发现,一辆汽车日租金每增加10元,每天出租的汽车相应地减少6辆。
《一元二次方程》复习经典讲义--绝对经典实用
《一元二次方程》复习经典讲义基础知识1、一元二次方程方程中只含有一个未知数,而且未知数的最高次数是2的方程,一般地,这样的方程都整理成为形如脳」「冰4;"『:寫占门的一般形式,我们把这样的方程叫一元二次方程。
其中'分别叫做一元二次方程的二次项、一次项和常数项,a b分别是二次项和一次项的系数。
如|满足一般形式「丁:、1,工宀L分别是二次项、一次项和常数项,2,—4分别是二次项和一次项系数。
注:如果方程中含有字母系数在讨论是否是一元二次方程时,则需要讨论字母的取值范围。
2.—元二次方程求根方法(1)直接开平方法形如•的方程都可以用开平方的方法写成' ,求出它的解,这种解法称为直接开平方法。
(2)配方法通过配方将原方程转化为V;工己丿的方程,再用直接开平方法求解。
配方:组成完全平方式的变形过程叫做配方。
配方应注意:当二次项系数为1时,原式两边要加上一次项系数一半的平方,若二次项系数不为1,只需方程两边同时除以二次项系数,使之成为1。
(3)公式法求根公式:方程小* X 「的求根公式_b 丄v b2-4ac2ti步骤:1)把方程整理为一般形式::匚『“甩.m」:,确定a b、c。
2)计算式子卜In的值。
3)当八心心-时,把a、b和卜L LI的值代入求根公式计算,就可以求出方程的解。
(4)因式分解法把一元二次方程整理为一般形式后,方程一边为零,另一边是关于未知数的二次三项式,如果这个二次三项式可以作因式分解,就可以把这样的一元二次方程转化为两个一元一次方程来求解,这种解方程的方法叫因式分解法。
3、一兀二次方程根的判别式的定义运用配方法解一元二次方程过程中得到显然只有当护仏“时,才能直接开平方得:也就是说,一元二次方程卅r吐m沁珥只有当系数'耳、满足条件託=眇一盘供訣氐时才有实数根.这里「n 叫做一元二次方程根的判别式.4、判别式与根的关系在实数范围内,一元二次方程'的根由其系数「、耳、确定,它的根的情况(是否有实数根)由二•,确定.设一元二次方程为' 7 ' 11■ 「,其根的判别式为:则hbph' ■4tjcr①1■- ' =■方程门厂山应二::緘町有两个不相等的实数根■br V ——丫——…_ _②方程' f'有两个相等的实数根•一.③.匸方程农用沁没有实数根.若I,4,匸为有理数,且二为完全平方式,则方程的解为有理根;若△为完全平方式,同时血是%的整数倍,则方程的根为整数根.说明:⑴用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有两个不相等的实数根时,:;有两个相等的实数根时,人-J;没有实数根时,「1⑵在解一元二次方程时,一般情况下,首先要运用根的判别式—氐判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根)•当亠忙仝:时,方程有两个相等的实数根(二重根),不能说方程只有一个根.①当时二抛物线开口向上二顶点为其最低点;②当…「时=抛物线开口向下二顶点为其最高点.5、一元二次方程的根的判别式的应用一元二次方程的根的判别式在以下方面有着广泛的应用:⑴运用判别式,判定方程实数根的个数;⑵利用判别式建立等式、不等式,求方程中参数值或取值范围;⑶通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.6韦达定理b如果能畋;:;的两根是;:,贝U " -丿.(隐含的条件:•「「)特别地,当一元二次方程的二次项系数为1时,设',’‘是方程"'的两个根,贝U '-7、韦达定理的逆定理以两个数,”为根的一元二次方程(二次项系数为1 )是F -(x t ^x2)x^x l x2 -0一般地,如果有两个数’,•满足<,「,那么',•'必定是加亠脉V.U =比爭為的两个根.8、韦达定理与根的符号关系在£已护仏心1J的条件下,我们有如下结论:-<0 丄邸⑴当・时,方程的两根必一正一负•若- ,则此方程的正根不小于负-*<0根的绝对值;若「,则此方程的正根小于负根的绝对值.->0 --> o⑵当J 时,方程的两根同正或同负.若」,则此方程的两根均为正--<0根;若「,则此方程的两根均为负根.更一般的结论是:若,'■是煜。
初中数学竞赛专题选讲-一元二次方程的根(含答案)
初中数学竞赛专题选讲(初三.1)一元二次方程的根一 、内容提要1. 一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的.根公式是:x=aac b b 242-±-. (b 2-4ac ≥0) 2. 根的判别式① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数.3. 设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么① ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);② x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b -, x 1x 2=ac (a ≠0, b 2-4ac ≥0). 4. 方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数.特殊的例子有:C=0⇔x 1=0 , a+b+c=0⇔x 1=1 , a -b+c=0⇔x 1=-1.二、例题例1. 已知:a, b, c 是实数,且a=b+c+1.求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.证明 (用反证法)设 两个方程都没有两个不相等的实数根,那么△1≤0和△2≤0.即⎪⎩⎪⎨⎧++=≤-≤ ③ ② ①-1040412c b a c a b由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥45, 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0,即(a -2)2+1≤0,这是不能成立的.既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.例2. 已知首项系数不相等的两个方程:(a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数)有一个公共根. 求a, b 的值.解:用因式分解法求得:方程①的两个根是 a 和12-+a a ; 方程②两根是b 和12-+b b . 由已知a>1, b>1且a ≠b.∴公共根是a=12-+b b 或b=12-+a a . 两个等式去分母后的结果是一样的.即ab -a=b+2, ab -a -b+1=3, (a -1)(b -1)=3.∵a,b 都是正整数, ∴ ⎩⎨⎧=-3111b a =-; 或⎩⎨⎧=-1131b a =-. 解得⎩⎨⎧=42b a =; 或⎩⎨⎧==24b a . 又解: 设公共根为x 0那么⎪⎩⎪⎨⎧=+++--=+++-- ②( ①0)2()2()10)2()2()1(22202220b b x b x b a a x a x a 先消去二次项: ①×(b -1)-②×(a -1) 得[-(a 2+2)(b -1)+(b 2+2)(a -1)]x 0+(a 2+2a)(b -1)-(b 2+2b)(a -1)=0.整理得 (a -b )(ab -a -b -2)(x 0-1)=0.∵a ≠b∴x 0=1; 或 (ab -a -b -2)=0.当x 0=1时,由方程①得 a=1,∴a -1=0,∴方程①不是二次方程.∴x 0不是公共根.当(ab -a -b -2)=0时, 得(a -1)(b -1)=3 ……解法同上.例3. 已知:m, n 是不相等的实数,方程x 2+mx+n=0的两根差与方程y 2+ny+m=0的两根差相等.求:m+n 的值.解:方程①两根差是21x x -=221)x x -(=212214)(x x x x -+=n m 42-同理方程②两根差是21y y -=m n 42- 依题意,得n m 42-=m n 42-.两边平方得:m 2-4n=n 2-4m.∴(m -n )(m+n+4)=0∵m ≠n ,∴ m+n+4=0, m+n =-4.例4. 若a, b, c 都是奇数,则二次方程ax 2+bx+c=0(a ≠0)没有有理数根.证明:设方程有一个有理数根n m (m, n 是互质的整数). 那么a(n m )2+b(nm )+c=0, 即an 2+bmn+cm 2=0. 把m, n 按奇数、偶数分类讨论,∵m, n 互质,∴不可能同为偶数.① 当m, n 同为奇数时,则an 2+bmn+cm 2是奇数+奇数+奇数=奇数≠0;② 当m 为奇数, n 为偶数时,an 2+bmn+cm 2是偶数+偶数+奇数=奇数≠0;③ 当m 为偶数, n 为奇数时,an 2+bmn+cm 2是奇数+偶数+偶数=奇数≠0.综上所述不论m, n 取什么整数,方程a(n m )2+b(nm )+c=0都不成立. 即 假设方程有一个有理数根是不成立的.∴当a, b, c 都是奇数时,方程ax 2+bx+c=0(a ≠0)没有有理数根.例5. 求证:对于任意一个矩形A ,总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1).证明:设矩形A 的长为a, 宽为b ,矩形B 的长为c, 宽为d.根据题意,得 k ab cdb a dc ==++.∴c+d=(a+b)k, cd=abk.由韦达定理的逆定理,得c, d 是方程z 2-(a+b)kz+abk=0 的两个根.△ =[-(a+b )k ]2-4abk=(a 2+2ab+b 2)k 2-4abk=k [(a 2+2ab+b 2)k -4ab ]∵k ≥1,a 2+b 2≥2ab,∴a 2+2ab+b 2≥4ab ,(a 2+2ab+b 2)k ≥4ab.∴△≥0.∴一定有c, d 值满足题设的条件.即总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k(k ≥1). 例6. k 取什么整数值时,下列方程有两个整数解?①(k 2-1)x 2-6(3k -1)x+72=0 ; ②kx 2+(k 2-2)x -(k+2)=0.解:①用因式分解法求得两个根是:x 1=112+k , x 2=16-k .由x 1是整数,得k+1=±1, ±2, ±3, ±4, ±6, ±12.由x 2是整数,得k -1=±1, ±2, ±3, ±6.它们的公共解是:得k=0, 2, -2, 3, -5.答:当k=0, 2, -2, 3, -5时,方程①有两个整数解.②根据韦达定理⎪⎪⎩⎪⎪⎨⎧--=+-=+-=--=+k k k k x x k k k k x x 222221221 ∵x 1, x 2, k 都是整数,∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.) 把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合.答:当k 取2和-2时,方程②有两个整数解.三、练习1. 写出下列方程的整数解:① 5x 2-3x=0的一个整数根是___.② 3x 2+(2-3)x -2=0的一个整数根是___.③ x 2+(5+1)x+5=0的一个整数根是___.2. 方程(1-m )x 2-x -1=0 有两个不相等的实数根,那么整数m 的最大值是____.3. 已知方程x 2-(2m -1)x -4m+2=0 的两个实数根的平方和等于5,则m=___.4. 若x ≠y ,且满足等式x 2+2x -5=0 和y 2+2y -5=0. 那么yx 11+=___.(提示:x, y 是方程z 2+5z -5=0 的两个根.) 5. 如果方程x 2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q 应满足的关系是:___________.6. 若方程ax 2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是______.7. 如果方程mx 2-2(m+2)x+m+5=0 没有实数根,那么方程(m -5)x 2-2mx+m=0实数根的个数是( ).(A)2 (B )1 ( C )0 (D )不能确定8. 当a, b 为何值时,方程x 2+2(1+a)x+(3a 2+4ab+4b 2+2)=0 有实数根?9. 两个方程x 2+kx -1=0和x 2-x -k=0有一个相同的实数根,则这个根是( )(A)2 (B )-2 (C )1 (D )-110. 已知:方程x 2+ax+b=0与x 2+bx+a=0仅有一个公共根,那么a, b 应满足的关系是: ___________.11. 已知:方程x 2+bx+1=0与x 2-x -b=0有一个公共根为m ,求:m ,b 的值.12. 已知:方程x 2+ax+b=0的两个实数根各加上1,就是方程x 2-a 2x+ab=0的两个实数根.试求a, b 的值或取值范围.13. 已知:方程ax 2+bx+c=0(a ≠0)的两根和等于s 1,两根的平方和等于s 2, 两根的立方和等于s 3.求证:as 3+bs 2+cs 1=0.14. 求证:方程x 2-2(m+1)x+2(m -1)=0 的两个实数根,不能同时为负.(可用反证法)15. 已知:a, b 是方程x 2+mx+p=0的两个实数根;c, d 是方程x 2+nx+q=0的两个实数根.求证:(a -c )(b -c)(a -d)(b -d)=(p -q)2.16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:__________.17. 如果方程(x -1)(x 2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m的取值范围是 ( )(A ) 0≤m ≤1 (B )m ≥43 (C )43<m ≤1 (D )43≤m ≤1 18. 方程7x 2-(k+13)x+k 2-k -2=0 (k 是整数)的两个实数根为α,β且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k<4 (B)-2<k<-1 (C) 3<k<4 或-2<k<-1 (D )无解参考答案1. ①0, ②1, ③-12. 03. 1(舍去-2)4. 52 5. 9q=2p 2 6. 一正一负 7. D 8. a=1,b=-0.5 9. C10. a+b+1=0, a ≠b 11. m=-1,b=2 12.⎩⎨⎧-=-=⎪⎩⎪⎨⎧≤=.1,241,1b a b a : 13. 左边=a(x 13+x 23)+b(x 12+x 22)+c(x 1+x 2)=……14. 用反证法,设x 1<0,x 2<0,由韦达定理推出矛盾(m<-1,m>1) 15. 由韦达定理,把左边化为 p, q16. x 2±3x+2=0 17. C 18. C。
高考考点知识点专题总结复习:一元二次方程
一元二次方程基础知识1 、一元二次方程方程中只含有一个未知数,而且未知数的最高次数是 2 的方程,一般地,这样的方程都整理成为形如的一般形式,我们把这样的方程叫一元二次方程。
其中分别叫做一元二次方程的二次项、一次项和常数项, a 、 b 分别是二次项和一次项的系数。
如:满足一般形式,分别是二次项、一次项和常数项, 2 ,- 4 分别是二次项和一次项系数。
注:如果方程中含有字母系数在讨论是否是一元二次方程时,则需要讨论字母的取值范围。
2 . 一元二次方程求根方法( 1 )直接开平方法形如的方程都可以用开平方的方法写成,求出它的解,这种解法称为直接开平方法。
( 2 )配方法通过配方将原方程转化为的方程,再用直接开平方法求解。
配方:组成完全平方式的变形过程叫做配方。
配方应注意:当二次项系数为 1 时,原式两边要加上一次项系数一半的平方,若二次项系数不为 1 ,只需方程两边同时除以二次项系数,使之成为 1 。
( 3 )公式法求根公式:方程的求根公式步骤:1 )把方程整理为一般形式:,确定 a 、 b 、 c 。
2 )计算式子的值。
3 )当时,把 a 、 b 和的值代入求根公式计算,就可以求出方程的解。
( 4 )因式分解法把一元二次方程整理为一般形式后,方程一边为零,另一边是关于未知数的二次三项式,如果这个二次三项式可以作因式分解,就可以把这样的一元二次方程转化为两个一元一次方程来求解,这种解方程的方法叫因式分解法。
3 、一元二次方程根的判别式的定义运用配方法解一元二次方程过程中得到,显然只有当时,才能直接开平方得:.也就是说,一元二次方程只有当系数、、满足条件时才有实数根.这里叫做一元二次方程根的判别式.4 、判别式与根的关系在实数范围内,一元二次方程的根由其系数、、确定,它的根的情况(是否有实数根)由确定.设一元二次方程为,其根的判别式为:则① 方程有两个不相等的实数根.② 方程有两个相等的实数根.③ 方程没有实数根.若,,为有理数,且为完全平方式,则方程的解为有理根;若为完全平方式,同时是的整数倍,则方程的根为整数根.说明:⑴用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有两个不相等的实数根时,;有两个相等的实数根时,;没有实数根时,.⑵在解一元二次方程时,一般情况下,首先要运用根的判别式判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根).当时,方程有两个相等的实数根(二重根),不能说方程只有一个根.①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点.5 、一元二次方程的根的判别式的应用一元二次方程的根的判别式在以下方面有着广泛的应用:⑴运用判别式,判定方程实数根的个数;⑵利用判别式建立等式、不等式,求方程中参数值或取值范围;⑶通过判别式,证明与方程相关的代数问题;( 4 )借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.6 、韦达定理如果的两根是,,则,.(隐含的条件:)特别地,当一元二次方程的二次项系数为 1 时,设,是方程的两个根,则,.7 、韦达定理的逆定理以两个数,为根的一元二次方程(二次项系数为 1 )是.一般地,如果有两个数,满足,,那么,必定是的两个根.8 、韦达定理与根的符号关系在的条件下,我们有如下结论:⑴当时,方程的两根必一正一负.若,则此方程的正根不小于负根的绝对值;若,则此方程的正根小于负根的绝对值.⑵当时,方程的两根同正或同负.若,则此方程的两根均为正根;若,则此方程的两根均为负根.更一般的结论是:若,是的两根(其中),且为实数,当时,一般地:① ,② 且,③ 且,特殊地:当时,上述就转化为有两异根、两正根、两负根的条件.其他有用结论:⑴若有理系数一元二次方程有一根,则必有一根(,为有理数).⑵若,则方程必有实数根.⑶若,方程不一定有实数根.⑷若,则必有一根.⑸若,则必有一根.9 、韦达定理的应用⑴已知方程的一个根,求另一个根以及确定方程参数的值;⑵已知方程,求关于方程的两根的代数式的值;⑶已知方程的两根,求作方程;⑷结合根的判别式,讨论根的符号特征;⑸逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;⑹利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的.一些考试中,往往利用这一点设置陷阱10 、整数根问题对于一元二次方程的实根情况,可以用判别式来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.方程有整数根的条件:如果一元二次方程有整数根,那么必然同时满足以下条件:⑴为完全平方数;⑵或,其中为整数.以上两个条件必须同时满足,缺一不可.另外,如果只满足判别式为完全平方数,则只能保证方程有有理根 ( 其中、、均为有理数 )11 、一元二次方程的应用1 .求代数式的值;2. 可化为一元二次方程的分式方程。
一元二次方程知识要点
文档一元二次方程1. 一元二次方程的一般形式: a ≠0时,ax 2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、 c ; 其中a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式: 当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根; Δ<0 <=> 无实根; Δ≥0 <=> 有两个实根(等或不等). 4. 一元二次方程的根系关系: 当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式: .acx x abx x )2(a 2ac 4b b x )1(212122,1=-=+-±-=,; ※ 5.当ax 2+bx+c=0 (a ≠0) 时,有以下等价命题:(以下等价关系要求会用公式 ac x x a b x x 2121=-=+,;Δ=b 2-4ac 分析,不要求背记)(1)两根互为相反数 ⇔ a b-= 0且Δ≥0 ⇔ b = 0且Δ≥0;(2)两根互为倒数 ⇔ a c=1且Δ≥0 ⇔ a = c 且Δ≥0;(3)只有一个零根 ⇔ ac = 0且a b-≠0 ⇔ c = 0且b ≠0;(4)有两个零根 ⇔ a c = 0且a b-= 0 ⇔ c = 0且b=0;(5)至少有一个零根 ⇔ ac=0 ⇔ c=0;(6)两根异号 ⇔ ac<0 ⇔ a 、c 异号;(7)两根异号,正根绝对值大于负根绝对值⇔ ac <0且a b->0⇔ a 、c 异号且a 、b 异号;(8)两根异号,负根绝对值大于正根绝对值⇔ ac <0且a b-<0⇔ a 、c 异号且a 、b 同号;(9)有两个正根 ⇔ ac >0,a b->0且Δ≥0 ⇔ a 、c 同号, a 、b 异号且Δ≥0;(10)有两个负根 ⇔ a c >0,a b-<0且Δ≥0 ⇔ a 、c 同号, a 、b 同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.文档ax 2+bx+c=a(x-x 1)(x-x 2) 或 ax 2+bx+c=⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛-+--a 2ac 4b b x a 2ac 4b b x a 22. 7.求一元二次方程的公式:x 2-(x 1+x 2)x + x 1x 2 = 0. 注意:所求出方程的系数应化为整数. 8.平均增长率问题--------应用题的类型题之一 (设增长率为x ): (1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程: 第三年=第三年 或 第一年+第二年+第三年=总和. 9.分式方程的解法: .0)1(≠),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2≠分母,值验增根代入原方程每个换元凑元,设元,换元法)(10. 二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧===------分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;⎪⎩⎪⎨⎧<-+-=--≥-+=-=-+-=+-+=+-+=--+=+)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x 1x (x1x 2)x 1x (x1x x x 4)x x ()x x (x x 2)x x (x x )1(212122122121212212212122222221221221212212221⎪⎩⎪⎨⎧=--=-=-⇒=-4x x .22x x 2x x .12x x )2(221212121)两边平方为(和分类为 ; ⎪⎩⎪⎨⎧-==⇒==.,)2(34x x 34x x )1()916x x (34x x )3(2121222121因为增加次数两边平方一般不用和分类为或 ;.0x ,0x :.1x x Bsin A cos ,1A cos A sin ,90B A B sin x ,A sin x )4(2122212221>>=+==+︒=∠+∠==注意隐含条件可推出由公式时且如文档AB C cba.0x ,0x :.x ,x ),,(,x ,x )5(212121>>注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个解三角形1.三角函数的定义:在Rt ΔABC 中,如∠C=90°,那么sinA=c a =斜对; cosA=cb =斜对;tanA=ba=邻对; cotA=a b =对邻.2.余角三角函数关系 ------ “正余互化公式” 如∠A+∠B=90°, 那么:sinA=cosB ; cosA=sinB ; tanA=cotB ; cotA=tanB. 3. 同角三角函数关系:sin 2A+cos 2A =1; tanA ·cotA =1. ※ tanA=A cos A sin ※ cotA=Asin Acos 4. 函数的增减性:在锐角的条件下,正弦,正切函数随角的增大,函数值增大;余弦,余切函数随角的增大,函数值反而减小.5.特殊角的三角函数值:如图:这是两个特殊的直角三角形,通过设k, 它可以推出特殊角的直角三角函数 值,要熟练记忆它们.K3 KKKK2 K230°45°60°ABC ABC文档※ 6. 函数值的取值范围: 在0° 90°时.正弦函数值范围:0 1; 余弦函数值范围: 1 0; 正切函数值范围:0 无穷大; 余切函数值范围:无穷大 0.7.解直角三角形:对于直角三角形中的五个元素,可以“知二可求三”,但“知二”中至少应该有一个是边.※ 8. 关于直角三角形的两个公式: Rt △ABC 中: 若∠C=90°, .:m :R :r .m 2cR 2c b a r c c 斜边上中线外接圆半径,内切圆半径,;==-+=9.坡度: i = 1:m = h/l = tan α; 坡角: α.10. 方位角:11.仰角与俯角:12.解斜三角形:已知“SAS ” “SSS ” “ASA ” “AAS ” 条件的任意三角形都可以经过“斜化直”求出其余的边和角.※ 13.解符合“SSA ”条件的三角形:若三角形存在且符合“SSA ”条件,则可分三种情况:(1)∠A ≥90°,图形唯一可解; (2) ∠A <90°,∠A 的对边大于或等于它的已知邻边,图形唯一可解;(3)∠A <90°,∠A 的对边小于它的已知邻边,图形分两类可解. 14.解三角形的基本思路:(1)“斜化直,一般化特殊” ------- 加辅助线的依据;(2)合理设“辅助元k ”,并利用k 进一步转化是分析三角形问题的常用方法-------转化思想; (3)三角函数的定义,几何定理,公式,相似形等都存在着大量的相等关系,利用其列方程(或方程组)是解决数学问题的常用方法---------方程思想.北东北偏西30南偏东70仰角俯角水平线铅垂线lha i=1:m文档函数及其图象一 函数基本概念1.函数定义:设在某个变化过程中,有两个变量x,、y, 如对x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的函数,x 是自变量.※ 2.相同函数三个条件:(1)自变量范围相同;(2)函数值范围相同;(3)相同的自变量值所对应的函数值也相同.※3. 函数的确定:对于 y=kx 2(k ≠0), 如x 是自变量,这个函数是二次函数;如x 2是自变量,这个函数是一次函数中的正比例函数. 4.平面直角坐标系:(1)平面上点的坐标是一对有序实数,表示为: M (x,y ),x 叫横坐标,y 叫纵坐标; (2)一点,两轴,(四半轴),四象限,象限中点的坐标符号规律如右图:(3) x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 即“x 轴上的点纵为0,y 轴上的点横为0”;反之也 成立;(4)象限角平分线上点M(x,y) 的坐标特征:x=y <=> M 在一三象限角平分线上; x=-y <=> M在二四象限角平分线上. (5)对称两点M(x 1,y 1), N(x 2,y 2) 的坐标特征:关于y 轴对称的两点 <=> 横相反,纵相同; 关于x 轴对称的两点 <=> 纵相反,横相同; 关于原点对称的两点 <=> 横、纵都相反. 5.坐标系中常用的距离几个公式 -------“点求距”(1)如图,轴上两点M 、N 之间的距离:MN=|x 1-x 2|=x 大-x 小 , PQ=|y 1-y 2|=y 大-y 小 . (2)如图, 象限上的点M (x,y ):到y 轴距离:d y =|x|; 到x 轴距离: d x =|y|;22y x r +=到原点的距离:.(3)如图,轴上的点M (0,y )、N (x,0)到原点的距离: MO=|y|; NO=|x|.※(4)如图,平面上任意两点M (x 2,y 2)、N (x 2,y 2)之间的距离: .)y y ()x x (d 221221-+-=xyo + +_ _-- ++ -xyoM(x ,y)r xyo M (x ,y)N(x ,y)C文档※ 6. 几个直线方程 :y 轴 <=> 直线 x=0 ; x 轴 <=> 直线 y=0 ; 与y 轴平行,距离为∣a ∣的直线 <=> 直线 x=a ; 与x 轴平行,距离为∣b ∣的直线 <=> 直线 y=b. 7. 函数的图象:(1) 把自变量x 的一个值作为点的横坐标,把与它对应的函数值y 作为点的纵坐标,组成一对有序实数对,在平面坐标系中找出点的位置,这样取得的所有的点组成的图形叫函数的图象;(2) 图象上的点都适合函数解析式,适合函数解析式的点都在函数图象上;由此可得“图象上的点就能代入”-------重要代入!(3) 坐标平面上,横轴叫自变量轴,纵轴叫函数轴;利用已知的图象,可由自变量值查出函数值,也可由函数值查出自变量值;可由自变量取值范围查出对应函数值取值范围,也可由函数值取值范围查出对应自变量取值范围;(4) 函数的图象由左至右如果是上坡,那么y 随x 增大而增大(叫递增函数);函数的图象由左至右如果是下坡,那么y 随x 增大而减小(叫递减函数). 8. 自变量取值范围与函数取值范围:一次函数1. 一次函数的一般形式:y=kx+b . (k ≠0)2. 关于一次函数的几个概念:y=kx+b (k ≠0)的图象是一条直线,所以也叫直线y=kx+b,图象必过y 轴上的点( 0,b )和x 轴上的点( -b/k,0 );注意:如图,这两个点也是画直线图象时应取的两个点. b 叫直线y=kx+b (k ≠0)在y 轴上的截距,b 的本质是直线与y轴交点的纵坐标,知道截距即知道解析式中b 的值.x y (x,y)00(0,b)(-b/k, 0)b -b/k, 即取点对角 03.y=kx+b (k≠0) 中,k,b符号与图象位置的关系:yxok>0, b>0k>0, b<0图象过一二三象限,图象上坡.图象过一三四象限,图象上坡.图象过一二四象限,图象下坡.图象过二三四象限,图象下坡.4. 两直线平行:两直线平行 <=> k1=k2※两直线垂直<=> k1k2=-1.5. 直线的平移:若m>0,n>0, 那么一次函数y=kx+b图象向上平移m个单位长度得y=kx+b+m;向下平移n 个单位长度得y=kx+b-n (直线平移时,k值不变).6.函数习题的四个基本功:(1) 式求点:已知某直线的具体解析式,设y=0,可求出直线与x轴的交点坐标(x0 ,0);设x=0,可求出直线与y轴的交点坐标(0,y0);已知两条直线的具体解析式,可通过列二元一次方程组求出两直线的交点坐标(x0 ,y0);交点坐标的本质是一个方程组的公共解;(2) 点求式:已知一次函数图象上的两个点,可设这个函数为y=kx+b,然后代入这两个点的坐标,得到关于k、b的两个方程,通过解方程组求出k、b,从而求出解析式 ------ 待定系数法;(3) 距求点:已知点M(x0 ,y0)到x轴,y轴的距离和所在象限,可求出点M的坐标;已知坐标轴上的点P到原点的距离和所在半轴,可求出点P的坐标;(4) 点求距:函数题经常和几何相结合,利用点的坐标与它所在的象限或半轴特征可求有关线段的长,从而使得函数问题几何化.正比例函数1.正比例函数的一般形式:y=kx (k≠0);属于一次函数的特殊情况;(即b=0的一次函数)它的图象是一条过原点的直线;也叫直线y=kx.2.画正比例函数的图象:正比例函数y=kx (k≠0)的图象必过(0,0)点和(1,k)点,注意:如图,这两个点也是画正比例函数图象时应取的两个点,即列表如右:xy(x, y)1K(0,0)(1,K)文档文档3.y=kx (k ≠0)中,k 的符号与图象位置的关系:k>0k<0象过一三限,图象坡.象过二四象限,图象下坡.4. 求正比例函数解析式:已知正比例函数图象上的一点,可设这个正比例函数为y=kx,把已知点的坐标代入后, 可求k, 从而求出具体的函数解析式------ 待定系数法.二次函数1. 二次函数的一般形式:y=ax 2+bx+c.(a ≠0)2. 关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax 2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点.3. y=ax 2(a ≠0)的特性:当y=ax 2+bx+c (a ≠0)中的b=0且c=0时二次函数为y=ax 2 (a ≠0);这个二次函数是一个特殊的二次函数,有下列特性:(1)图象关于y 轴对称;(2)顶点(0,0);(3)y=ax 2(a ≠0)可以经过补0看做二次函数的一般式,顶点式和双根式,即: y=ax 2+0x+0, y=a(x-0)2+0, y=a(x-0)(x-0). 4. 二次函数y=ax 2+bx+c (a ≠0)的图象及几个重要点的公式:5. 二次函数y=ax 2+bx+c (a ≠0)中,a 、b 、c 与Δ的符号与图象的关系: (1) a >0 <=> 抛物线开口向上; a <0 <=> 抛物线开口向下; (2) c >0 <=> 抛物线从原点上方通过; c=0 <=> 抛物线从原点通过;文档c <0 <=> 抛物线从原点下方通过;(3) a, b 异号 <=> 对称轴在y 轴的右侧; a, b 同号 <=> 对称轴在y 轴的左侧;b=0 <=> 对称轴是y 轴;(4) Δ>0 <=> 抛物线与x 轴有两个交点;Δ=0 <=> 抛物线与x 轴有一个交点(即相切); Δ<0 <=> 抛物线与x 轴无交点.6.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax 2+bx+c ,并把这三点的坐标代入,解关于a 、b 、c 的三元一次方程组,求出a 、b 、c 的值, 从而求出解析式-------待定系数法. 8.二次函数的顶点式: y=a(x-h)2+k (a ≠0); 由顶点式可直接得出二次函数的顶点坐标(h, k ),对称轴方程 x=h 和函数的最值 y 最值= k.9.求二次函数的解析式:已知二次函数的顶点坐标(x 0,y 0)和图象上的另一点的坐标,可设解析式为y=a(x-x 0)2+ y 0,再代入另一点的坐标求a ,从而求出解析式.(注意:习题无特殊说明,最后结果要求化为一般式)10. 二次函数图象的平行移动:二次函数一般应先化为顶点式,然后才好判断图象的平行移动;y=a(x-h)2+k的图象平行移动时,改变的是h, k 的值, a 值不变,具体规律如下: k 值增大 <=> 图象向上平移; k 值减小 <=> 图象向下平移; (x-h )值增大 <=> 图象向左平移; (x-h)值减小 <=> 图象向右平移.11. 二次函数的双根式:(即交点式) y=a(x-x 1)(x-x 2) (a ≠0);由双根式直接可得二次函数图象与x 轴的交点(x 1,0),(x 2,0).12. 求二次函数的解析式:已知二次函数图象与x 轴的交点坐标(x 1,0),(x 2,0)和图象上的另一点的坐标,可设解析式为y= a(x-x 1)(x-x 2),再代入另一点的坐标求a ,从而求出解析式. (注意:习题最后结果要求化为一般式)13.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.反比例函数1. 反比例函数的一般形式:);0k (kx y xk y 1≠==-或图象叫双曲线.※ 2. 关于反比例函数图象的性质: 反比例函数y=kx -1中自变量x 不能取0, 故函数图象与y 轴无交点; 函数值y 也不会是0, 故图象与x 轴也不相交.3. 反比例函数中K的符号与图象所在象限的关系:图象过二四象限,图象上坡.图象过一三象限,图象下坡.k>0k<04. 求反比例函数的解析式:已知反比例函数图象上的一点,即可设解析式y=kx-1, 代入这一点可求k 值,从而求出解析式.函数综合题1.数学思想在函数问题中的应用:数学思想经常在函数问题中得到体现,例如:分析函数习题常常需要先估画符合题意的图象,利用数形结合降低难度;而点求式、式求点、点求距、距求点等基本操作则是转化思想在函数中应用;当函数问题与几何问题相结合时,方程思想则成为解决问题的基本思路;函数习题中,当图象与图形不唯一、点位置不唯一、可知条件不唯一时,往往造成函数问题的分类.2.数学方法在函数问题中的应用:建立坐标系、建立新函数、函数问题几何化、挖掘隐含条件、分类讨论、相等关系找方程、不等关系找不等式、等量代换、配方、换元、待定系数法、等各种数学方法在函数中经常得到应用,了解这些数学方法是十分必要的.3.函数与方程的关系:正比例函数y=kx (k≠0)、一次函数y=kx+b (k≠0)都可以看作二元一次方程,而二次函数y=ax2+bx+c (a≠0)可以看作二元二次方程,反比例函数)0k(xky≠-=可以看作分式方程,这些函数图象之间的交点,就是把它们联立为方程组时的公共解.4.二次函数与一元二次方程的关系:(1)如二次函数y=ax2+bx+c (a≠0)中的Δ>0时,图象与x轴相交,函数值y=0,此时, 二次函数转化为一元二次方程ax2+bx+c=0 (a≠0),这个方程的两个根x1 、x2是二次函数y=ax2+bx+c与x轴相交两点的横坐标,交点坐标为(x1 ,0)(x2 ,0);(2)当研究二次函数的图象与x轴相交时的有关问题时,应立即把函数转化为它所对应的一元二次方程,此时,一元二次方程的求根公式,Δ值,根系关系等都可用于这个二次函数.(3)如二次函数y=ax2+bx+c (a≠0)中的Δ>0时,图象与x轴相交于两点A(x1 ,0),B(x2 ,0)有重要关系式: OA=|x1|, OB=|x2|,若需要去掉绝对值符号,则必须据题意做进一步判断;同样,图象与y轴交点C(0,c),也有关系式: OC=|c|.5.二元二次方程组解的判断:一个二元一次方程和一个二元二次方程组成的方程组,若消去一个未知数,则转化为一元二次方程,此时的Δ值将决定原方程组解的情况,即:Δ>0 <=> 方程组有两个解;Δ=0 <=>方程组有一个解;Δ<0 <=>方程组无实解.文档初三数学应知应会的知识点 ( 圆 )几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)文档文档几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:圆的几何定义和集合定义、弦、弦心距、弧、等弧、弓形、弓形高文档文档三角形的外接圆、三角形的外心、三角形的内切圆、 三角形的内心、 圆心角、圆周角、 弦 切角、 圆的切线、 圆的割线、 两圆的内公切线、 两圆的外公切线、 两圆的内(外) 公切线长、 正多边形、 正多边形的中心、 正多边形的半径、 正多边形的边心距、 正 多边形的中心角. 二 定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角形. 三 公式:1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2. (4)扇形面积S 扇形 =LR 21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧 =LR 21. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形. 2. 圆心角的度数等于它所对弧的度数.3. 三角形的外心 ⇔ 两边中垂线的交点 ⇔ 三角形的外接圆的圆心;三角形的内心 ⇔ 两内角平分线的交点 ⇔ 三角形的内切圆的圆心.4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 ⇔ d <r ; 直线与圆相切 ⇔ d=r ; 直线与圆相离 ⇔ d >r.5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )两圆外离 ⇔ d >R+r ; 两圆外切 ⇔ d=R+r ; 两圆相交 ⇔ R-r <d <R+r ; 两圆内切 ⇔ d=R-r ; 两圆内含 ⇔ d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.7.关于圆的常见辅助线:文档文档。
二次函数与整数根的问题
整数根问题把传统的方程知识与古老的整数理论相结合; 不但涉及解方程、根的判别式等知识,而且又关联着整 除、奇数与偶数的性质等整数知识. 整数根也是研究初中数学中的“数”与“形”关联问题 的一个非常奇妙的“桥梁”; 通过对整数根的探索,能提高学生利用方程建立数学模 型来解决问题的能力和综合运用知识的能力.
a 1 2 x2 1 a 1 a 1
利用整除性求解
①从求根入手:若根可用有理式表示, 则求出根,结合整除求解;
a 1 = 1, 2
例2
当 m 是什么整数时,关于 x 的
2
一元二次方程 mx 4 x 4 0 与
x2 4mx 4m2 4m 5 0
④巧选主元:当方程中参数次数较低时,选择参 数为主元求解;
例 1 已 知 关 于 x 的 二 次方 程
2 a 1 x 2x a 1 0
的根都是整
数,求符合条件的整数 a.
a 1
4a
2
判别式为完全 平方,可求根
a 1 x1 1, x2 a 1
转化为分解分式
方程整数根
小专题---有理根、整数根问题(不深入)
解含参数的一元二次方程的整数解问题的基本方法有: ①从求根入手:若根可用有理式表示, 则求出根,结合整除求解; ②运用判别式:在二次方程有解的前提下 运用判别式求出参数或根的取值范围, 通过枚举讨论、不等分析求解;或利用奇偶性求解 ③ 利用韦达定理的关系:有韦达定理得到含参数的关 系式,消元参数,利用因数分解、因式分解解含两根 的不定方程
整数,求 m.
4 2m 1
判别式非完全平方式,不求 根.结合已知列不等式
9 2 m 1 81.
(完整word版)一元二次方程应用题含答案(2),推荐文档
1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600展开后化简得:x²-44x+144=0即(x-36)(x-4)=0∴x=4或x=36(舍)即每件降价4元要找准关系式2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?解:设增加x(8+x)(12+x)=96+69x=3增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得:y=(x-30)[60+2(70-x)]-500=-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4..运动员起跑20m后速度才能达到最大速度10m/s,若运动员的速度是均匀增加的,则他起跑开始到10m处时需要多少s?5.一辆警车停在路边,当警车发现一辆一8M/S的速度匀速行驶的货车有违章行为,决定追赶,经过2.5s,警车行驶100m追上货车.试问(1)从开始加速到追上货车,警车的速度平均每秒增加多少m?(2)从开始加速到行驶64m处是用多长时间?4解:(0+10)除2为平均增加为5(0+5a)除2乘a5解:2.5*8=20 100-20=80 80/8=10100/【(0+10a)/2】=10解方程为264/【(0+2a)/2】=a解方程为86.一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)解:设第一次倒出x升,则第二次为x(20-x)/20.(此处为剩下的酒精占总体积20升的多少即比率然后乘上倒出的升数即为倒出的纯酒精数则20-x-x(20-x)/20=5解得x=106.1一个长方体的长与宽的比为5:2,高为5厘米,表面积为40平方厘米。
论文:浅谈一元二次方程的整数根问题
此文发表在《中学数学杂志》2012年第6期(总第272期、教研版)上浅谈一元二次方程的整数根问题在各级各类的初中数学竞赛中,一元二次方程的整数根问题备受命题者的青睐,本文介绍几种求一元二次方程的整数根的方法以及与此有关的问题的解法.1、整系数一元二次方程整数根的求法:➊利用判别式:整系数一元二次方程有整数解时,判别式是完全平方数,利用这条性质可以确定整参数的值,但需验证这些值是否使方程的根为整数。
例1、设m 是整数,4<m<40,方程x 2-2(2m-3)x+4m 2-14m+8=0有两个整数根,求m 的值。
解:已知方程的判别式⊿=4(2m+1),它是一个完全平方数,所以2m+1也是一个完全平方数。
又∵4<m<40,∴9<2m+1<81,从而2m+1=25或49, ∴m=12或者24。
代入已知方程,得:x=16,26或x=38,52.综上所述,所求m 的值为12,24。
➋利用韦达定理:利用韦达定理处理二次方程有两整数根,其思路是由x 1+x 2=-b a ,x 1x 2=c a消去其中的参数,得整数根x 1,x 2的一个不定方程,解这个不定方程可求得其整数根,从而可确定方程中参数的值,最后需验证所求的参数值满足⊿≥0。
例2、求一切实数k,使得关于x 的方程:5x 2-5kx+66k-1=0的两根均为正整数。
解:设x 1,x 2是方程的正整数解,则⎩⎨⎧x 1+x 2=kx 1x 2=66k-15消去k,得:5x 1x 2=66(x 1+x 2)-1 ∴(5x 1-66)(5x 2-66)=4351=19×229不妨设x 1≤x 2,则 ⎩⎨⎧5x 1-66=195x 2-66=229∴x 1=17, x 2=59. ∴k=x 1+x 2=76 又⊿=25k 2-20(66k-1)=25×762-20×(66×76-1)=2102>0∴k=76为所求。
(完整word版)九年级上册数学知识点总结
九年级上册数学知识点总结归纳1第二十一章一元二次方程第二十二章二次函数第二十三章旋转第二十四章圆第二十五章概率初步第二十一章 一元二次方程知识点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程. 一般形式:ax 2+bx+c=0(a ≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
知识点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b<0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。
步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程乘积的形式,解这两个一元一次方程,它们的解就是原一元二次方程的解. 因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程. ⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x +4)中,不能随便约去x +4。
一元二次方程两根均为正数
一元二次方程两根均为正数
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c
为实数且a不等于0。
一元二次方程的根可以通过求根公式来求得,即x = (-b ± √(b^2 4ac)) / (2a)。
根据题目要求,我们需要找
到满足条件的a、b、c,使得方程的两个根均为正数。
首先,我们知道一元二次方程的判别式Δ = b^2 4ac,当Δ
大于0时,方程有两个不相等的实根;当Δ等于0时,方程有两个
相等的实根;当Δ小于0时,方程没有实根。
为了使方程的两个根均为正数,我们可以考虑以下几种情况:
1. 当Δ大于0时,即b^2 4ac大于0,且a、b、c的取值能
够使得方程的两个根均为正数。
2. 当Δ等于0时,即b^2 4ac等于0,且a、b、c的取值能
够使得方程有两个相等的正实根。
3. 当Δ小于0时,即b^2 4ac小于0,且a、b、c的取值能
够使得方程没有实根,但是通过配方法可以得到两个正实根。
举例来说,我们可以取a=1,b=-5,c=6,这样方程x^2 5x + 6 = 0的两个根为x=2和x=3,都是正数。
又比如,取a=2,b=-4,
c=2,这样方程2x^2 4x + 2 = 0的两个根为x=1,都是正数。
总之,要使一元二次方程的两个根均为正数,我们需要仔细选择a、b、c的取值,使得方程的判别式Δ大于等于0,并且通过求根公式计算得到的根均为正数。
希望这些例子能够帮助你更好地理解这个问题。
(完整版)一元二次方程的解法总结,推荐文档
一元二次方程的解法(直接开平方法、配方法、公式法和分解法)一元二次方程定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫做一元二次方程。
一般形式:ax²+bx+c=0(a,b,c为常数,x为未知数,且a≠0)。
顶点式:y=a(x-h)²+k(a≠0,a、h、k为常数)交点式:y=a(x-x₁)(x-x₂) (a≠0)[有交点A(x₁,0)和B(x₂,0)的抛物线,即b²-4ac≥0] .直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)²=n(n≥0)的方程,其解为x=m±配方法 :1.将此一元二次方程化为ax²+bx+c=0的形式(此一元二次方程满足有实根) 2.将二次项系数化为1 3.将常数项移到等号右侧 4.等号左右两边同时加上一次项系数一半的平方 5.将等号左边的代数式写成完全平方形式 6.左右同时开平方 7.整理即可得到原方程的根公式法:1.化方程为一般式:ax²+bx+c=0 (a≠0)2.确定判别式,计算Δ(=b²-4ac);3.若Δ>0,该方程在实数域内有两个不相等的实数根:x=若Δ=0,该方程在实数域内有两个相等的实数根:x₁=x₂=若Δ<0,该方程在实数域内无实数根因式分解法:因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
用因式分解法解一元二次方程的步骤1.将方程右边化为0;2.将方程左边分解为两个一次式的积;3.令这两个一次式分别为0,得到两个一元一次方程;4.解这两个一元一次方程,它们的解就是原方程的解.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax²+bx+c(a≠0)。
一元二次方程的有理数根、公共根与整数根整合
一元二次方程的有理根总结求一元二次方程的有理根、整数根问题常与一元二次方程根的判别式发生联系,也就是说,常常利用根的判别式为完全平方数来讨论。
1、 如果()112++-x m x 是完全平方式,求m 的值 2、 若20052+a 是整数,求所有满足条件的正整数a 的值3、关于x ,y 的方程29222=++y xy x 有整数解,求满足条件的()y x ,的值 4、设k 为整数,且0≠k ,方程()0112=+--x k kx 有有理根,求k 的值。
5、当q 是什么实数时,对于任意有理数p ,方程()()0431222=+--++q p p x p x 有有理根? 6、已知关于x 的方程()01212=--+-a x x a 的根都是整数,那么符合条件的整数a 有_________个。
7、已知a 是正整数,且使得关于x 方程()()0341222=-+-+a x a ax 至少有一个整数根。
求a 的值。
8、试确定一切有理数r ,使得关于x 的方程()02322=-+++r x r rx 有根且只有整数根。
9、试确定一切有理数r ,使得关于x 的方程rx2+(r+2)x+r-1=0有根且只有整数根.10、已知p 为质数,使一元二次方程015222=--+-p p px x 的两根都是整数,求出p 的所有可能值。
11、已知198=+q p ,求方程02=++q px x 的整数根。
12、设关于x 的二次方程()()4462862222=+--++-k x k k x k k 的两根都是整数。
求满足条件的所有实数k 的值。
13、已知关于x 的方程()01122=-+--m x m x 的两个根都是正整数,求m 的值。
一元二次方程的公共根与整数根一、公共根问题二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根.二、整数根问题对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ∆=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.求有整数根的二次方程中,参数问题,要根据方程的结构特点,设法将二次方程转化为两个一次式,再根据整数根确定其解。
整数根问题
• 5个(注意讨论) • 只要让x的表达式中分子是分母的整倍数
• 含字母系数的方程问题,在没有指明是二 次方程时,要考虑是一次方程的可能,是 否要分类讨论,要看清题目的条件,一般 设问方式有两种: • (1)前置式,即“二次方程” • (2)后置式,即“两实数根”. • 这都表明是二次方程,不需讨论,但切不 可忽视二次项系数不为零的要求.
例试确定一切有理数 r,使得关于x的方程 rx (r )x r 有且只有整数根
解题思路:因方程的类型未确定,故应分类讨论.当r≠0时,由根与系数的关系得 到关于r的两个等式,消去r,先求出两整数根.
1 若r ,则x 不是整数 2 ( )若r ,设方程两根为 x ,x( x x ),则x x , r r ,x x r r
例试求出所有这样的正整 数a,使得二次方程 ax ( a )x (a ) 至少有一个整数根
解题思路:根的表达式复杂、从关于a的两个等式中消去a也较困难,由于a的次 数较低,不妨先将原方程变形于关于a的一元二次方程.
• 提示:(x_1-4)(x_2-4)=16=(-16)*(-1)= • (-8)*(-2)=(-4)*(-4)=4*4=2*8=1*16,由此得 a=16或18或25
阅读与思考
• 解一元二次方程问题时,我们不但需熟练 地解方程,准确判断根的个数、符号特征、 存在范围,而且能作深入的探讨根的其他 性质,这便是大量出现与各级数学竞赛中 的一元二次方程的整数根问题,由于这类 问题涵盖了整数性质,一元二次方程的相 关理论,融合了丰富的数学思想方法而倍 受命题者青睐,解整系数一元二次方程的 整数根问题的基本方法有:
r r 于是 x x (x x ) ( ) ,有( x )( x ) ,解得 r r x ,x 或x ,x 则r 或r
谈一元二次方程的有理根与整数根的条件
谈一元二次方程的有理根与整数根的条件一元二次方程必须同时满足三个条件:①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
②只含有一个未知数;③未知数项的最高次数是2。
方程形式:通常形式使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。
变小形式解题方法:公式法x=(-b±√(b^2-4ac))/2a求根公式十字二者乘法解法因式分解法因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
用因式分解法求解一元二次方程的步骤(1)将方程右边化为0;(2)将方程左边水解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)求解这两个一元一次方程,它们的求解就是原方程的求解.十字相乘法公式公式法(可解全部一元二次方程)求根公式去求出方程的木配方法(可以求解全部一元二次方程)开方法(可以求解部分一元二次方程)均值代换法(可以求解部分一元二次方程)设x1=-b/(2a)+m,x2=-b/(2a)-m (m≥0)根据x1·x2=c/a求得m。
再求出x1, x2。
简单解法1.看看与否能够用因式分解法求解(因式分解的数学分析中,先考量加公因式法,再考虑平方公式法,最后考量十字相加法)2.看是否可以直接开方解3.采用公式法解4.最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是有时候解题太麻烦)如果要参加竞赛,可按如下顺序:a.因式分解;b.韦达定理;c.判别式; d.公式法;e.配方法;f.开平方;g.求根公式;h.表示法。
一元二次方程的整数根和有理根
一元二次方程的整数根和有理根
【知识要点】
对于整系数一元二次方程02=++c bx ax )0(≠a
1.方程有有理根的充要条件是△=ac b 42-为一有理数的平方;
2.若c b a ,,为奇数,则方程无整数根。
【例题】
例1设a 为任意的有理数,b 为何值时有理系数方程0)43()1(222=+--++b a a x a x 的根是有理数?
例2 如果n k p ,,为有理数,求证:方程0)()(2)(2=-+++-++n k p x k p x n k p 的根总是有理数。
例3 若12<m<60(m 为整数),且方程0)1(222=++-m x m x 的两根都为整数,求方程的根。
例4 k 是什么整数值时,方程018)13(3)1(22=+---x k x k 有两个不相等的正整数根。
例5 求所有实数k ,使二次方程0)1()1(2=-+++k x k kx 的两根都是整数。
例6 若k 为正整数,一元二次方程0)1(2=+--k px x k 有两个正整数根,求)(k p kp k p k +的值。
例7 一直角三角形的两直角边均为整数,且满足方程04)2(2=++-m x m x 。
试求m 的值及此直角三角形的边长。
例8 设方程012=-+qx x 的二根分别是方程012=-+px x 的两个根的五次方,其中p 和q 都是整数,试证明:p 、q 决不可能是质数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谈一元二次方程的有理根与整数根的条件
整系数一元二次方程()ax bx c a 2
00++=≠有有理根的充要条件是:∆=-b ac 24为一有
理数的平方。
而有整数根,△必为一完全平方式。
注意这里c b a ,,皆为整数,前者△是有理数的平方,而非一般认为的完全平方式。
而后者△为一完全平方式只是必要条件,不是充分条件,正确应用这些条件,可以解决很多有趣的问题,但在应用中往往要结合整数性质进行讨论。
一、与有理根有关的问题
例1. m 为有理数,问k 为何值时,方程x mx x m m k 22443240-++-+=的根为有理数?
解:原方程即: ()x m x m m k 22
413240--+-+=
如若有有理根,则()()()[]
∆=---+=-+-161432446412
2
2
m m m k m m k 应是某一有
理数的平方,可知()419-=k ,从而k =-54。
本题也可这样解:原方程化为()
[]
()x m m k --=---213542
2
如有有理根,则--=540k 得k =-54
二、与整数根有关的问题
例2. 若方程x mnx m n 2
0-++=有整数根,且n m ,为自然数,则n m ,的值有__________个。
解:x mnx m n 2
0-++=……(*)有整数根,则()∆=--mn m n 2
44为一完全平方式,设为
()k k N 2∈,于是m n m n k 22244--=
即m n m n k 2
2
2
440
1---=<>
视<1>为m 的一元二次方程,它应有整数解,由
x x n x x n k n 122122
2
44+==-+, 可见n ≤2
(1)令n =1,则<1>式为:m m k 2
2
4402---=<>
<2>若要有整数解,则()(
)()∆=----=+4444822
2
k
k 应为完全平方式。
令()822+=∈k a a N ,则()()822
=-=+-a k a k a k
因为81824=⨯=⨯ 所以有如下两种情形。
⎩
⎨⎧=-=+18)k a k a a 无整数解,舍去。
b a k a k a k )+=-=⎧⎨
⎩→==⎧⎨
⎩423
1
代入<2>式得:m m 24410---= 所以m =5或m =-1(舍去) 将n m ==15,代入(*)式得: x x 1223==,
所以m n ==51,满足条件。
由对称性(方程系数是对称的)知n m ==51,也是所求。
(2)令n =2,则<1>式为:448032
2
m m k ---=<>
<3>若有整数解,则()(
)()∆=--⨯--=+444816922
2
k
k 应为某一完全平方式
故令()922+=∈k b b N ,则 ()()922
=-=+-b k b k b k
因为99133=⨯=⨯ 所以又有两种情形。
a b k b k b k )+=-=⎧⎨⎩→
==333
代入<3>式得:m =2或m =-1(舍去) 将n m ==22,代入(*)得:
x x 122==
所以m n ==22,为所求。
b b k b k b k )+=-=⎧⎨⎩→==⎧⎨
⎩
915
4 代入<3>式得:m =3或m =-2(舍去) 将m n ==32,代入(*)式得:
x x 1215==,,有整数解,故m n ==32,为所求。
由对称性知n m ==32,也为所求。
故符合题意的整数对m 、n 有(5,1)、(1,5)、(3,2)、(2,3)、(2,2)共5个。
三、与因式分解有关的问题
例3. m 是什么整数时,95262m m ++能分解成两个连续自然数的积?
解:设()952612
m m n n ++=+(n 为自然数),则:
n n m m 22
95260
1+---=<>
原问题即m 为何值时关于n 的一元二次方程<1>有正整数解,所以:
()
∆=----=++149526362010522m m m m 应为某整数的平方,
设为()t
t 2
0>。
则:362010522m m t ++=
化为:3620105022
2
m m k ++-=<>
因为m 是整数,故再次利用有整数解的条件,应有()
∆12220436105=-⨯-=k
()
1699202k -是某一整数的平方,
也即99202
k -为一完全平方数,又设为()a a 20>,于是992022k a -=,即992022k a -=或()()920333=+-<>k a k a
因为92025233=⨯⨯
所以9202460423051848115109220464023=⨯=⨯=⨯=⨯=⨯=⨯=⨯ 又因()332k a k a a +--=是偶数,故3k a +与3k a -有相同的奇偶性,故:
①3460
32k a k a +=-=⎧⎨⎩
②3230
34k a k a +=-=⎧⎨⎩
③392310k a k a +=-=⎧⎨⎩ ④346320k a k a +=-=⎧⎨⎩
由①解得:k =77,此时<2>式为: 362016012
m m m +-=→=-或m =4
9
(舍去) 由②解得:k =39,此时<2>式为: 36201416062
m m m +-=→=或m =-59
9
(舍去) 由③解得:k =17,此时<2>式为: 3620184022m m m +-=→=或m =-23
9
(舍去) 由④解得:k =11,此时<2>式为: 362016012m m m +-=→=-或m =
4
9
(舍去) 经检验,m =--12613、、、均为所求值,所以m =--12613、、、时,
95262m m ++能分解成两个连续的自然数的积。
事实上,对95262m m ++:
m =-1时,3056=⨯ m =2时,7289=⨯ m =6时,3801920=⨯ m =-13时,14823839=⨯
注意“△是一完全平方式”只是整系数一元二次方程有整数根的必要条件,倘若将它视为充要条件则会出现错误。
例4. (1998年全国初中数学竞赛试题)已知方程()
a x a a x a a 222238213150--+-+=(a 是非负整数)至少有一个整数根,那么a =____________。
如若认为(
)
()
()∆=---+=+3842131522
2
2222
a a
a a a a a 是完全平方式,从而原方
程至少有一整数根,那就大错特错了。
实际上由方程解出x a x a
122315
=-=-,。
故当a =2或a =4或a >5时均不可能有整数解。