八年级数学下册相似图形相似三角形判定定理的证明同步练习及答案

合集下载

八年级数学相似三角形练习题(含答案哟)

八年级数学相似三角形练习题(含答案哟)

八年级数学相似三角形练习题(含答案哟)1、(2022年江苏省南通市)如图,四边形ABCD中,AD=CD,∠DAB =∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB·AF=CB·CD(2)已知AB=15cm,BC=9cm,P是射线DE上的动点.设DP=某cm (某>0),四边形BCDP2的面积为ycm.①求y关于某的函数关系式;②当某为何值时,△PBC的周长最小,并求出此时y的值.2、(2022湖南怀化)如图10,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:(1)AECG;(2)ANDNCNMN.3、(2022湖北恩施)如图11,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若ABC固定不动,AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.(2)求m与n的函数关系式,直接写出自变量n的取值范围.(3)以ABC的斜边BC所在的直线为某轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图12).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2.(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立,若成立,请证明,若不成立,请说明理由.4、(2022山东临沂)如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,DECD。

2AFD⑴求证:△ABF∽△CEB;⑵若△DEF的面积为2,求□ABCD的面积。

EB第21题图C5、(08中山)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.(1)填空:如图9,;四边形ABCD是.(2)请写出图9中所有的相似三角形(不含全等三角形).(3)如图10,若以AB所在直线为某轴,过点A垂直于AB的直线为y轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向某轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.图9.C图106、(2022年福建省福州市)(本题满分13分)如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/,点Q运动的速度是2cm/,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(),解答下列问题:(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?(第21题)1、(1)证明:∵AD=CD,DE⊥AC,∴DE垂直平分AC∴AF=CF,∠DFA=DFC=90°,∠DAF=∠DCF.∵∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°,∴∠DCF=∠DAF=∠B在Rt△DCF和Rt△ABC中,∠DFC=∠ACB=90°,∠DCF=∠B∴△DCF∽△ABC∴CDCFCDAF,即.∴AB·AF=CB·CDABCBABCB=12,∴CF=AF=6(2)解:①∵AB=15,BC=9,∠ACB=90°,∴AC∴y(某9)某6=3某+27(某>0)2②∵BC=9(定值),∴△PBC的周长最小,就是PB+PC最小.由(1)可知,点C关于直线DE的对称点是点A,∴PB+PC=PB+PA,故只要求PB+PA最小.显然当P、A、B三点共线时PB+PA最小.此时DP=DE,PB+PA=AB.由(1),∠ADF=∠FAE,∠DFA=∠ACB=90°,地△DAF∽△ABC.EF∥BC,得AE=BE=1159AB=,EF=.222∴AF∶BC=AD∶AB,即6∶9=AD∶15.∴AD=10.Rt△ADF中,AD=10,AF=6,∴DF=8.∴DE=DF+FE=8+∴当某=925=.2225129时,△PBC的周长最小,此时y=222、证明:(1)四边形ABCD和四边形DEFG都是正方形ADCD,DEDG,ADCEDG90,ADECDG,△ADE≌△CDG,AECG(2)由(1)得ADECDG,DAEDCG,又ANMCND,ANMNANDNCNMNCNDN∴AMN∽CDN3、解:(1)ABE∽DAE,ABE∽DCA∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°∴∠BAE=∠CDA又∠B=∠C=45°∴ABE∽DCA(2)∵ABE∽DCA∴BEBACACD由依题意可知CA=BA=2∴m22n∴m=2n自变量n的取值范围为1<n<2.(3)由BD=CE可得BE=CD,即m=n∵m=2n∴m=n=∵OB=OC=BC=12∴OE=OD=2-1∴D(1-2,0)∴BD=OB-OD=1-(2-1)=2-2=CE,DE=BC-2BD=2-2(2-2)=22-2∵BD2+CE2=2BD2=2(2-2)2=12-82,DE2=(22-2)2=12-82∴BD2+CE2=DE2(4)成立证明:如图,将ACE绕点A顺时针旋转90°至ABH的位置,则CE=HB,AE=AH,∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD,在EAD和∵AE=AH,∠HAD=∠EAH-∠FAG=45°=∠EAD,AD=AD.∴EAD≌HAD∴DH=DE 又∠HBD=∠ABH+∠ABD=90°∴BD+HB=DH即BD+CE=DE4、解:⑴证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB∥CD,∴∠ABF=∠CEB,∴△ABF∽△CEB.⑵∵四边形ABCD是平行四边形,∴AD∥BC,AB∥=CD,∴△DEF∽△CEB,△DEF∽△ABF,∵DE222222CD,222S1S1DEDE∴DEF,DEF,SCEBEC9SABFAB4∵SDEF2,∴SCEB18,SABF8,∴S四边形BCDFSBCESDEF16,∴S四边形ABCDS四边形BCDFSABF168245、解:(1)1分等腰;…………………………2分(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)①△DCE、△ABE与△ACD或△BDC两两相似,分别是:△DCE∽△ABE,△DCE∽△ACD,△DCE∽△BDC,△ABE∽△ACD,△ABE∽△BDC;(有5对)②△ABD∽△EAD,△ABD∽△EBC;(有2对)③△BAC∽△EAD,△BAC∽△EBC;(有2对)所以,一共有9对相似三角形 (5)分(3)由题意知,FP∥AE,∴∠1=∠PFB,又∵∠1=∠2=30°,∴∠PFB=∠2=30°,∴FP=BP (6)过点P作PK⊥FB于点K,则FKBK∵AF=t,AB=8,∴FB=8-t,BK(8t).2在Rt△BPK中,PKBKtan21(8t)tan30t).……………7分2∴△FBP的面积S11FBPK(8t)t),22∴S与t之间的函数关系式为:S24(t8)2,或St…………………………………8分12123t的取值范围为:0t8.…………………………………………………………9分6、解:(1)△BPQ是等边三角形,当t=2时,AP=2某1=2,BQ=2某2=4,所以BP=AB-AP=6-2=4,所以BQ=BP.又因为∠B=60,所以△BPQ是等边三角形.(2)过Q作QE⊥AB,垂足为E,由QB=2y,得QE=2t·in60=t,由AP=t,得PB=6-t,所以S△BPQ=3211某BP某QE=(6-t)某3t=-t+33t;222(3)因为QR∥BA,所以∠QRC=∠A=60,∠RQC=∠B=60,又因为∠C=60,所以△QRC是等边三角形,所以QR=RC=QC=6-2t.因为BE=BQ·co60=某2t=t,2所以EP=AB-AP-BE=6-t-t=6-2t,所以EP∥QR,EP=QR,所以四边形EPRQ 是平行四边形,所以PR=EQ=3t,又因为∠PEQ=90,所以∠APR=∠PRQ=90.因为△APR~△PRQ,所以∠QPR=∠A=60,所以tan60=0062tQR6,即,所以t=,PR5t所以当t=6时,△APR~△PRQ5。

相似三角形练习题及答案

相似三角形练习题及答案

相似三角形练习题及答案相似三角形是初中数学中的重要概念,它在几何形状的比较和计算中起着重要的作用。

通过相似三角形的练习题,我们可以加深对这一概念的理解,并提高解决几何问题的能力。

下面,我将给大家提供一些相似三角形的练习题,并附上详细的解答。

1. 题目:已知两个三角形ABC和DEF,已知∠A=∠D,∠B=∠E,∠C=∠F,且AB/DE = BC/EF = AC/DF。

证明三角形ABC与三角形DEF相似。

解答:根据已知条件,我们可以得到三个比例关系:AB/DE = BC/EF = AC/DF。

根据相似三角形的定义,我们知道如果三个角分别相等,并且对应的边的比例相等,那么这两个三角形是相似的。

首先,由于∠A=∠D,∠B=∠E,∠C=∠F,所以三个角分别相等。

其次,根据比例关系AB/DE = BC/EF = AC/DF,我们可以得到AB/DE = BC/EF,即AB/BC = DE/EF。

同理,AB/AC = DE/DF。

综上所述,根据相似三角形的定义,我们可以得出结论:三角形ABC与三角形DEF相似。

2. 题目:已知三角形ABC与三角形DEF相似,且AB=6cm,BC=8cm,AC=10cm,DE=9cm,求EF的长度。

解答:根据相似三角形的性质,我们知道相似三角形的对应边的比例相等。

即AB/DE = BC/EF = AC/DF。

已知AB=6cm,BC=8cm,AC=10cm,DE=9cm,代入比例关系得:6/9 = 8/EF = 10/DF。

解方程可得EF = 8/6 × 9 = 12cm。

所以,EF的长度为12cm。

通过以上两个练习题,我们可以看到相似三角形的概念在解决几何问题时起到了重要的作用。

相似三角形的性质和定理可以帮助我们推导出一些几何关系,从而简化问题的求解过程。

在实际应用中,相似三角形的概念也经常被用于测量高度、距离等问题。

例如,通过测量一棵树的阴影和一个人的阴影的长度,可以利用相似三角形的原理计算出树的高度。

2020--2021学年鲁教版八年级数学下册《9.4探索三角形相似的条件》同步训练(附答案)

2020--2021学年鲁教版八年级数学下册《9.4探索三角形相似的条件》同步训练(附答案)

2021学年鲁教版八年级数学下册《9.4探索三角形相似的条件》同步提升训练(附答案)1.如图所示的4个三角形中,相似三角形有()A.1对B.2对C.3对D.4对2.如图,正方形ABCD中,AB=2,点N为AD为边上一点,连接BN,作AP⊥BN于点P,点M为AB边上一点,且∠PMA=∠PCB,连接CM.下列结论正确的个数有()(1)△P AM∽△PBC(2)PM⊥PC;(3)∠MPB=∠MCB;(4)若点N为AD中点,则S△PCN=6(5)AN=AMA.5个B.4个C.3个D.2个3.如图,在△ABC中,点D、E分别在边AB、AC上,则在下列四个条件中:①∠AED=∠B;②DE∥BC;③;④AD•BC=DE•AC,满足△ADE∽△ACB条件有()A.1个B.2个C.3个D.4个4.如图,在四边形ABCD中,∠BAC=90°,AB=6,AC=8,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.下列结论错误的是()A.四边形AECD的周长是20B.△ABC∽△FECC.∠B+∠ACD=90°D.EF的长为5.如图,AD∥BC,∠D=90°,DC=7,AD=2,BC=3.若在边DC上有一点P使△P AD 与△PBC相似,则这样的点P有()A.1个B.2个C.3个D.4个6.如图,已知:△ABC、△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,两条直角边AB、AD重合,把AD绕点A逆时针旋转α角(0°<α<90°),到如图所示的位置时,BC分别与AD、AE相交于点F、G,则图中共有()对相似三角形.A.1B.2C.3D.47.如图,在梯形ABCD中,AD∥BC,∠A=90°,AD=1,BC=4,AB=6,若点P在AB 上,且△P AD与△PBC相似,则这样的P点的个数为()A.1B.2C.3D.48.如图,△ABC的高CD和高BE相交于D,则与△DOB相似的三角形个数是()A.2个B.3个C.4个D.5个9.如图所示,点E是平行四边形ABCD的边CB延长线上的点,AB与DE相交于点F,则图中相似三角形共有()对.A.5B.4C.3D.210.如图,AC是矩形ABCD的对角线,E是边BC延长线上一点,AE与CD相交于F,则图中的相似三角形共有()A.2对B.3对C.4对D.5对11.如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是()A.4或4.8B.3或4.8C.2或4D.1或612.如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与A、C重合),DE 与AB相交于点F,则图中有()对相似三角形.A.2B.3C.4D.513.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.△P AB∽△PCA B.△P AB∽△PDA C.△ABC∽△DBA D.△ABC∽△DCA 14.如图,E是▱ABCD的边CD延长线上一点,连接BE,交AC于点O,交AD于F,则图中的相似三角形共有()A.7对B.6对C.5对D.4对15.如图、在△ABC中,AB=8,BC=16,点P从A开始沿AB边向点B以2个单位/秒的速度移动,点Q从点B开始沿BC边向点C以4个单位/秒的速度移动,如果P、Q分别同时出发,经过()秒后,△PBQ与△ABC相似.A.2B.C.或2D.或216.如图,△ABC中,∠A=60°,BM⊥AC于点M,CN⊥AB于点N,BM,CN交于点O,连接MN.下列结论:①∠AMN=∠ABC;②图中共有8对相似三角形;③BC=2MN.其中正确的个数是()A.1个B.2个C.3个D.0个17.如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF,AD的延长线相交于G,下面结论:①DB=BE②∠A=∠BHE③AB=BH④△BHD∽△BDG其中正确的结论的个数是()A.4B.3C.2D.118.如图所示,下列条件中能单独判断△ABC∽△ACD的个数是()个.①∠ABC=∠ACD;②∠ADC=∠ACB;③=;④AC2=AD•ABA.1B.2C.3D.419.如图,依据下列给定的条件不能判定△ABC∽△DBE的是()A.∠BDE=∠A B.∠DEB=∠CC.AC•BE=BC•DE D.AB•BE=BC•BD20.如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形,图中与△HBC相似的三角形为()A.△HBD B.△HCD C.△HAC D.△HAD21.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A.∠C=∠E B.∠B=∠ADE C.D.22.如图,点M是▱ABCD边CD上的一点,BM的延长线交AD大延长线于点N,则图中相似的三角形有()A.3对B.2对C.1对D.0对23.如图,在矩形ABCD中,点E,F分别在BC,CD边上,EF⊥AE,BH⊥AC于点H,EF与AC交于点M,BH与AE交于点N.则下列结论错误的是()A.△EFC∽△AEB B.△ECM∽△ABN C.△CFM∽△BEN D.△ANH∽△EFC 24.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,下列结论中错误的是()A.B.△ABE∽△AEF C.△ABE∽△ECF D.△ADF∽△ECF25.如图,点A、B、C、D四点共线,△PBC是等边三角形,当△P AB∽△DPC时,∠APD 的度数为()A.120°B.100°C.110°D.125°26.如图,正方形ABCD的边长为4,AE=EB,MN=2,线段MN的两端在CB、CD上滑动,当CM=时,△ADE与△CMN相似.27.如图,在△P AB中,点C、D在AB上,PC=PD=CD,∠A=∠BPD,求证:△APC ∽△BPD.参考答案1.解:第一个三角形的三边的三边之比为:1:2:,第二个三角形的三边的三边之比为:::,第三个三角形的三边的三边之比为:1:2:,第一个四角形的三边的三边之比为:1:1:,只有第一和第三个三角形的三边成比例,所以只有第一和第三个三角形相似,故选:A.2.解:(1)∵AP⊥BN,∴∠P AM+∠PBA=90°,∵∠PBA+∠PBC=90°,∴∠P AM=∠PBC,∵∠PMA=∠PCB,∴△P AM∽△PBC,故(1)正确;(2)∵△P AM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故(2)正确;(3)∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,∴∠MPB=∠MCB,故(3)正确;(4)过点P作EF⊥BC,分别交AD、BC于E、F点,∵N为AD的中点,AB=2∴AN=DN=,BC=EF=2,∴BN=,易证△ANP∽△NBA,得,即,∴PN=1,∴PB=5﹣1=4,∵AD∥BC,∴△PEN∽△PFB,∴,∴PF=,∴,故(4)错误;(5)易证△P AN∽△P AB,∴,∵△P AM∽△PBC,∴,∴,∵AB=BC,∴AM=AN,故(5)正确;故选:B.3.解:①∠B=∠AED,∠A=∠A,则可判断△ADE∽△ACB,故①符合题意;②DE∥BC,则△ADE∽△ABC,故②不符合题意,③,且夹角∠A=∠A,能确定△ADE∽△ACB,故③符合题意;④由AD•BC=DE•AC可得=,此时不确定∠ADE=∠ACB,故不能确定△ADE∽△ACB,故④不符合题意,故选:B.4.解:∵∠BAC=90°,AB=6,AC=8,∴BC==10,∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC=5,∴四边形AECD是菱形,∴菱形AECD的周长是20,故A选项正确,不符合题意;∵四边形AECD是菱形,∴∠ACB=∠ACD,∵∠B+∠ACB=90°,∴∠B+∠ACD=90°,故C选项正确,不符合题意;如图,过A作AH⊥BC于点H,∵S△ABC=BC•AH=AB•AC,∴AH==,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.故D选项正确,不符合题意;在Rt△EFC中,EF=,EC=5,∴FC==,在Rt△CAB中,AB=6,AC=8,BC=10,∵=,=,=,∴△ABC与△FEC不相似,故B选项错误,符合题意.故选:B.5.解:∵AD∥BC,∠D=90°∴∠C=∠D=90°∵DC=7,AD=2,BC=3.设PD=x,则PC=7﹣x;①若PD:PC=AD:BC,则△P AD∽△PBC∴x:7﹣x=2:3,解得:x=,即PD=;②若PD:BC=AD:PC,则△P AD∽△CBP∴x:3=2:7﹣x,解得:x=1或x=6,即PD=1或PD=6.∴这样的点P存在的个数有3个.故选:C.6.解:∵△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠EDA=90°,∴∠C=∠B=∠DAE=∠E=45°,∵∠CF A=∠B+∠F AB,∠GAB=∠F AG+∠F AB,∴∠CF A=∠BAG,∴△CAF∽△BGA,∴△BGA∽△AGF∽△CAF;还有△ABC≌△DEA,∴相似三角形共有4对.故选:D.7.解:设AP=x,则PB=AB﹣AP=6﹣x,∵AD∥BC,∠A=90°,∴∠B=90°,当=时,△ADP∽△BCP,即=,解得x=,即AP=;当=时,△ADP∽△BBC,即=,解得x=3+或x=3﹣,即AP=3+或AP=3﹣,综上所述,满足条件的P点有三个.故选:C.8.解:由∠DOB与∠EOC是对顶角,得∠DOB=∠EOC.由△ABC的高CD和高BE相交于D,得∠ODB=∠OEC=90°,∴△DOB∽△EOC;由∠DBO=∠EBA,∠ODB=AEO,得△DOB∽△EAB;由∠A+∠DBO=90°,∠A+∠ACD=90°,得∠DBO=∠ADC,又∠ODB=∠ADC,得△DBO∽△DCA;故选:B.9.解:∵四边形ABCD为平行四边形,∴AB∥CD,BC∥AD,△ADB∽△CBD,∵BF∥CD,∴△EFB∽△EDC,∵BE∥AD,∴△EFB∽△DF A,∴△EDC∽△DF A.故选:B.10.解:(1)∵∠E=∠E,∠FCE=∠D,∴△CEF∽△ADF.(2)∵∠E是公共角,∠B=∠FCE,∴△ABE∽△CEF,(3)∴△ABE∽△ADF.(4)∴△ABC∽△ADC.故有4对.故选:C.11.解:根据题意得:设当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是x秒,①若△ADE∽△ABC,则AD:AB=AE:AC,即x:6=(12﹣2x):12,解得:x=3;②若△ADE∽△ACB,则AD:AC=AE:AB,即x:12=(12﹣2x):6,解得:x=4.8;所以当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是3秒或4.8秒.故选:B.12.解:图中的相似三角形是△ABC∽△EBD,△BDC∽△BFE,△BFE∽△DF A,△BDC ∽△DF A,△BDF∽△BAD故选:D.13.解:∵∠APD=90°,而∠P AB≠∠PCB,∠PBA≠∠P AC,∴无法判定△P AB与△PCA相似,故A错误;同理,无法判定△P AB与△PDA,△ABC与△DCA相似,故B、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=P A,BD=2P A,∴,,∠ABC=∠DBA,∴∴△ABC∽△DBA,故C正确.故选:C.14.解:∵ABCD是平行四边形∴AD∥BC,AB∥DC∵△ABO∽△CEO,△AOF∽△COB,△EFD∽△EBC,△ABF∽△DEF,△ABF∽△EBC 五对,还有一对特殊的相似即△ABC≌△ADC,∴共6对.故选:B.15.解:设经过x秒后,△PBQ与△ABC相似,则BP=AB﹣AP=8﹣2x,BQ=4x,(1)当BP与AB是对应边时,,即,解得:x=2,(2)当BP与BC是对应边时,,即,解得:x=,故经过2或秒后,△PBQ与△ABC相似,故选:C.16.解:∵BM⊥AC,CN⊥AB,∴∠ANC=∠AMB=90°,又∵∠A=∠A,∴△ABM∽△ACN,∴,即,又∵∠A=∠A,∴△AMN∽△ABC,∴∠AMN=∠ABC,故①正确;由题可得,△ABM∽△ACN∽△OBN∽△OCM,△AMN∽△ABC,△BCO∽△NMO,∴图中共有8对相似三角形,故②正确;∵Rt△ACN中,∠A=60°,∴∠ACN=30°,∴AN=AC,又∵△AMN∽△ABC,∴,即BC=2MN,故③正确.故选:C.17.解:∵∠BDE=45°,DE⊥BC∴DB=BE,BE=DE∵DE⊥BC,BF⊥CD∴∠BEH=∠DEC=90°∵∠BHE=∠DHF∴∠EBH=∠CDE∴△BEH≌△DEC∴∠BHE=∠C,BH=CD∵▱ABCD中∴∠C=∠A,AB=CD∴∠A=∠BHE,AB=BH∴正确的有①②③,在△BHD和△BDG中,∠DBH=∠DBG,但是两锐角:∠BDH≠∠G,故△BHD与△BDG不相似,故④错误.故选:B.18.解:有三个.①∠B=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中∠A不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选:C.19.解:A、∵∠B=∠B,∠BDE=∠A,∴△ABC∽△DBE,故A选项不符合题意,B、∵∠DEB=∠C,∠B=∠B,∴△ABC∽△DBE,故B选项不符合题意,C、根据AC•BE=BC•DE不能判断△ABC∽△DBE,故C选项符合题意,D、∵AB•BE=BC•BD,∴,又∵∠DBE=∠ABC,∴△ABC∽△DBE,故D选项不符合题意.故选:C.20.解:设正方形ABGH的边长为1,运用勾股定理得HB=,HC=,则HC:HB:BC=::1.A、∵HB=,BD=2,HD=,∴HD:BD:HB=:2:=::1,∴HC:HB:BC=HD:BD:HB,∴△HBC∽△DBH,故本选项正确;B、∵HC=,CD=1,HD=,∴HD:HC:CD=::1,∴HC:HB:BC≠HD:HC:CD,∴△HBC与△HCD不相似,故本选项错误;C、∵HA=1,AC=2,HC=,HC:AC:HA=:2:1,∴HC:HB:BC≠HC:AC:HA,∴△HBC与△HAC不相似,故本选项错误;D、∵HA=1,AD=3,HD=,HD:AD:HA=:3:1,∴HC:HB:BC≠HD:AD:HA,∴△HBC与△HAD不相似,故本选项错误.故选:A.21.解:∵∠1=∠2,∴∠DAE=∠BAC,A、添加∠C=∠E,可用两角法判定△ABC∽△ADE,故本选项错误;B、添加∠B=∠ADE,可用两角法判定△ABC∽△ADE,故本选项错误;C、添加=,可用两边及其夹角法判定△ABC∽△ADE,故本选项错误;D、添加=,不能判定△ABC∽△ADE,故本选项正确;故选:D.22.解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△DMN∽△CMB,△DMN∽△NBA,∴△CMB∽△NBA,即有3对相似三角形,故选:A.23.解:∵矩形ABCD,∴∠ABE=∠ECF,∵∠BAE+∠AEB=90°,∠AEB+∠FEC=90°,∴∠BAE=∠FEC,∴△EFC∽△AEB,故A正确;∵∠ANH+∠NAH=90°,∠NAH+∠AME=90°,∴∠ANH=∠AME,∴∠ANB=∠EMC,∴△ABN∽△EMC,故B正确∴∠BNE=∠FMC,∵∠AEB=∠EFC,∴△BNE∽△MFC,故C正确;故选:D.24.解:∵在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,∴∠B=∠C=90°,AB:EC=BE:CF=2:1.∴△ABE∽△ECF.∴AB:EC=AE:EF=2:1,∠AEB=∠EFC.∵BE=CE,∠FEC+∠EFC=90°,∴AB:AE=BE:EF,∠AEB+∠FEC=90°.∴∠AEF=∠B=90°.∴△ABE∽△AEF.∴A,B,C正确.故选:D.25.解:∵△ABP∽△PCD,∴∠A=∠CPD.∵△PBC是等边三角形,∴∠PBC=PCB=60°.∴∠APB=120°.又∵∠A+∠D+∠APD=180°,∠A+∠APB+∠ABP=180°,∴∠APD=∠ABP=120°.故选:A.26.解:∵AE=EB,∴AD=2AE,又∵△AED与以M、N、C为顶点的三角形相似,∴分两种情况:①CM与AD是对应边时,CM=2CN,∴CM2+CN2=MN2=4,即CM2+CM2=4,解得:CM=;②CM与AE是对应边时,CM=CN,∴CM2+CN2=MN2=4,即CM2+4CM2=4,解得:CM=.综上所述:当CM为或时,△AED与△CMN相似.故答案是:或.27.证明:∵PC=PD,∴∠PCD=∠PDC,∵∠A+∠APC=∠PCD,∠B+∠BPC=∠PDC,又∵∠A=∠BPD,∴∠B=∠APC,∴△APC∽△BPD.。

初中数学经典相似三角形练习题(附参考答案)

初中数学经典相似三角形练习题(附参考答案)

经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠A BC= _________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.BC==22、,可得BC=∵BC=EC=;∴,∴8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.面积的面积的则有:(×3×6,即面积的因此有①,或t=(t=t=都符合题意,同时出发后,经过秒或9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.P=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.CE=.AE=∴sin∠AEF=,∴AF=AE•sin∠AEF=∴.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.∴QM=PM=AB=12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.∴CM=MD=∴PC=BC=AD=∴.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.(AB=∴tan∠ADP=tan∠C==∴=,∴t=∴tan∠APD=tan∠C==,∴=∴t=∴t=t=时,△PAD∴PD=∵CE=t QE=t∴QH=BE=8﹣t t∴PH=t﹣t=t∴PQ=,,,>∴t=t=14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?时,有:;时,有:∴经过15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.=,即=,解得对应时,有=,即=16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解:∵AC=∴CD==.要使这两个直角三角形相似,有两种情况:时,有=,∴AB==3时,有=,∴AB=.317.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.a①若△CDM∽△MAN,则=∴AN=②若△CDM∽△NAM,则AN=18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?或)当,∴x=;)当,∴x=.所以,经过秒或19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.∴=,∴=,∴=,∴=,∴=,∴AP=.AP=时,由BP=,∴=,、20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.∴∴中有21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.所以所以;=,即=,;=,即=,t=时,以点22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?∴,23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.∴∴,∴.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)∴,即与①类似得:∴∴,与①类似得:,∴,∴MN=r(25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.AE∥BD,所以△ECA∽△DCB,则有∴∴26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.∵∴∴解得:.∴,,即.∴同理可得:,∴=)可知,即,同理可得:∴,由等比性质得:∴,所以人影顶端在地面上移动的速度为27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;。

相似三角形的判定及习题精讲(含答案)

相似三角形的判定及习题精讲(含答案)

14.75或27, 提示:当小多边形的周长为45时,大多边形的周长为 ×45=75;当大多边形的周长为45时,小多边形的周长为 ×45=27。 15.100cm和40cm
(二)选择题: 1. D 2.A 。 提示:过E作EG//AD交BD于G,则 = = ,设BG=2k, GD=3k, 则BD=5k, CD=15k,
A、 B、 C、 D、
6.正方形ABCD中,E是AD中点,BM⊥CE于M,AB=6cm, 则BM的长为 ( )。
A、12 cm B、
cm C、3 cm D、 cm 7.要把一个三角形的面积扩大到原来面积的8倍,而它的形状不变, 那么它的边长要增大到原来的( )倍。
A、2 B、4 C、2 D、64 8.梯形ABCD中,AD//BC,AC、BD交于E点,SΔADE∶SΔADC=1∶3, 则SΔADE∶SΔDBC=( )。 A、1∶3 B、1∶4 C、1∶5 D、1∶6 (三)已知:如图,在ΔABC中,AD为中线,E在AB上,AE=AC,CE交 AD于F,EF∶FC=3∶5,
(五)略 (六)提示:过点D作DM//AC交BC于M,证ΔBDM∽ΔBAC及 ΔQDM∽ΔQBD,通过等比代换可得。
(七)本题由正方形在三角形中的位置不同引起分类讨论。提示如 下: 解:直角三角形内接正方形有两种不同的位置。 如下图:
(1)如图(1),作CP⊥AB于P,交GF于H,则CH⊥GF, ∵ GF//AB, ∴ ΔCGF∽ΔCAB, ∴ = , ∵ ∠ACB=90°,AC=8,BC=6由勾股定理得AB=10, ∵ AC·BC=AB·CP, ∴ CP= = = , 设GF=x, 则CH=
∵ EG//PD,∴ = = =
3.C 4. A 5.D
6.B。 提示:如图,易证ΔBMC∽ΔCDE, ∵ ED=

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)1.在三角形ABC中,点D在边BC上,且∠BAC=∠DAG,∠XXX∠BAD。

证明:=。

当GC⊥BC时,证明:∠BAC=90°。

2.在三角形ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足。

证明:AC^2=AF•AD。

联结EF,证明:AE•DB=AD•EF。

3.在三角形ABC中,PC平分∠ACB,PB=PC。

证明:△APC∽△ACB。

若AP=2,PC=6,求AC的长。

4.在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠XXX∠C。

证明:△ABF∽△EAD。

若AB=4,∠BAE=30°,求AE的长。

5.在三角形ABC中,∠ABC=2∠C,BD平分∠ABC。

证明:AB•BC=AC•CD。

6.在直角三角形ABC中,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S。

说明AF•BE=2S的理由。

7.在等边三角形ABC中,边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P。

若AE=CF,证明:AF=BE,并求∠APB的度数。

若AE=2,试求AP•AF的值。

若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长。

8.在钝角三角形ABC中,AD,BE是边BC上的高。

证明。

9.在三角形ABC中,AB=AC,DE∥BC,点F在边AC 上,DF与BE相交于点G,且∠XXX∠ABE。

证明:(1)△DEF∽△BDE;(2)DG•DF=DB•EF。

10.在等边三角形ABC、△DEF中,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2.问E在何处时CH的长度最大?11.在AB和CD交于点O的图形中,当∠A=∠C时,证明:OA•OB=OC•OD。

12.在等边三角形△AEC中,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外)。

相似三角形及其判定练习及参考答案

相似三角形及其判定练习及参考答案

相似三角形及其判定练习一、选择题:1.下列判断正确的是()A.两个直角三角形相似B.两个相似三角形一定全等C.凡等边三角形都相似D.所有等腰三角形都相似2.下列各对三角形中一定不相似的是()A.△ABC中,∠A=54°,∠B=78°△A′B′C′中,∠C′=48°,∠B′=78°B.△ABC中,∠C=90°,AC=4cm,BC=3cm△A′B′C′中,∠C′=90°,A′C′=12cm,B′C′=15cmC.△ABC中,∠B=90°,AB=5,AC=13△A′B′C′中,∠B′=90°,A′B′=2.5a,B′C′=6aD.△ABC中,∠C=90°,∠A=45°,AB=5△A′B′C′中,∠A′=45°,A′B′=53.如图,AB∥CD,AC、BD交于O,BO=7,DO=3,AC=25,则AC长为()A.10B.12.5C.15D.17.54.在△ABC中,MN∥BC,MC、NB交于O,则图中共有()对相似三角形。

A.1B.2C.3D.4二、填空题1.如图16,已知△ABC中D为AC中点,AB=5,AC=7,∠AED=∠C,则ED= 。

2.在梯形ABCD中,AB∥CD,AC平分∠DAB,DC:AB=1:1.5,则AD:BC= 。

3.如图18在Rt △A B C 中∠ACB =90°,CD ⊥AB ,AC =6,AD =3.6,则BC = , BD = 。

4.已知:图19中AC ⊥BD ,DE ⊥AB ,AC 、ED 交于F ,BC =3,FC =1,BD =5,则AC = 。

三、解答题1.已知:如图20□AB C D 中E 为AD 的中点,AF :AB =1:6,EF 与AC 交于M 。

求:AM :AC 。

2.已知:如图21在△ABC 中EF 是BC 的垂直平分线,AF 、BE 交于一点D ,AB =AF 。

4.4相似三角形的定义及判定(第1课时)同步练习(含答案)

4.4相似三角形的定义及判定(第1课时)同步练习(含答案)

4探索三角形相似的条件第1课时利用两角的关系判定三角形相似关键问答①相似三角形的性质有哪些?1.①如图4-4-1,已知△ABC∽△DEF,则x等于()图4-4-1A.40°B.60°C.80°D.80°或60°2.如图4-4-2,D,E,F,G四点在△ABC的边上,其中DG与EF相交于点H.若∠ABC=∠EFC=70°,∠ACB=60°,∠DGB=40°,则下列哪一组三角形相似()图4-4-2A.△BGD,△CEF B.△ABC,△CEFC.△ABC,△BGD D.△FGH,△ABC3.如图4-4-3,已知△ABC与△ADE相似,且∠B=∠ADE,则下列比例式正确的是()图4-4-3A.AD∶AC=DE∶BC B.AE∶BE=AD∶DCC.AE∶AB=AD∶AC D.AE∶AC=AD∶AB命题点1利用两角分别相等判定两三角形相似[热度:93%]4.②如图4-4-4,P为线段AB上一点,AD分别交BC,PC于点E,G,BC交PD于点F,∠CPD=∠A=∠B,则图中相似三角形有()图4-4-4A.1对B.2对C.3对D.4对方法点拨②根据相似三角形的定义可知:若△ABC∽△A′B′C′,△A′B′C′∽△A″B″C″,则△ABC∽△A″B″C″,即三角形相似具有传递性.5.③·株洲如图4-4-5所示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.(1)求证:△DAE≌△DCF;(2)求证:△ABG∽△CFG.图4-4-5解题突破③由正方形和等腰直角三角形我们可以得到哪些线段相等,哪些角相等?命题点2根据两三角形相似进行计算[热度:90%]6.④[·毕节]如图4-4-6,在△ABC中,D为AB边上一点,且∠BCD=∠A,已知BC =2 2,AB=3,则BD=________.图4-4-6方法点拨④在写相似表达式时要像写全等表达式那样,对应顶点的字母写在对应的位置上,这样也有利于正确写出边的比例式,保证结果正确.7.⑤将三角形纸片ABC按如图4-4-7所示的方式折叠,使点C落在AB边上的点D 处,折痕为EF.已知AB=AC=3,BC=4,若以点B,D,F为顶点的三角形与△ABC相似,则CF的长是________.图4-4-7易错警示⑤注意根据对应顶点分类讨论.8.⑥·六盘水如图4-4-8,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=________.图4-4-8解题突破⑥作平行线构造“A”字形图的相似三角形.命题点3有关相似三角形的存在性问题[热度:80%]9.⑦如图4-4-9,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过点P作PF⊥AE于点F.(1)求证:△PF A∽△ABE.图4-4-9(2)当点P在射线AD上运动时,设P A=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由.易错警示⑦注意x的值可能不止一个.10.⑧如图4-4-10①,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,O是AC边上一点,连接BO交AD于点F,OE⊥OB交BC于点E.(1)求证:△ABF∽△COE;(2)当O 为AC 边的中点,AC AB =2时,如图②,求OFOE 的值;(3)当O 为AC 边的中点,AC AB =n 时,请直接写出OFOE的值.图4-4-10方法点拨⑧求线段的比时常借助相似三角形的性质,当比例式中的线段不能构成相似形时,可考虑利用等量代换的方法求解.详解详析【关键问答】①相似三角形的性质:对应角相等、对应边成比例.1.C[解析] ∵△ABC∽△DEF,∴∠B=∠E.∵∠B=80°,∴∠E=x=80°.故选C.2.B[解析] ∵∠ABC=∠EFC=70°,∴EF∥AB,∴△ABC∽△EFC,故B正确;在△BDG中,∠B=70°,∠DGB=40°,则∠GDB=70°;在△ABC中,∠B=70°,∠ACB=60°,则∠A=50°,∴△ABC,△CEF与△BGD不相似,故A,C错误;∵EF∥AB,∴△FGH∽△BGD;∵△BGD与△ABC不相似,∴△FGH与△ABC不相似,故D错误.故选B.3.D[解析] 由∠B=∠ADE可知△ABC∽△ADE,∴AE∶AC=AD∶AB.故选D.4.C[解析] 在△PCF和△BCP中,∵∠CPF=∠B,∠C为公共角,∴△PCF∽△BCP;在△APD和△PGD中,∵∠GPD=∠A,∠D为公共角,∴△APD∽△PGD;∵△APD∽△PGD,∴∠APD=∠PGD,∴∠BPF=∠AGP.又∵∠A=∠B,∴△AGP∽△BPF.共有3对相似三角形.故选C.5.证明:(1)由正方形ABCD及等腰直角三角形DEF,可知∠ADC=∠EDF=90°,AD =CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF.在△DAE和△DCF中,DE=DF,∠ADE=∠CDF,AD=CD,∴△DAE≌△DCF.(2)延长BA交ED于点M,如图所示.∵△DAE≌△DCF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF.∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF.∵∠EAM=∠BAG,∴∠BAG=∠BCF.又∵∠AGB=∠CGF,∴△ABG∽△CFG.6.83[解析] ∵∠BCD=∠A,∠ABC=∠CBD,∴△ABC∽△CBD,∴BCBD=ABBC,即2 2BD=32 2,∴3BD=8,∴BD=83.7.127或2[解析] 因为△ABC沿EF折叠后点C和点D重合,所以FD=CF.设CF=x,则BF=4-x,若以点B,D,F为顶点的三角形与△ABC相似,分两种情况:①若∠BFD=∠C,则FDBF=ACBC,即x4-x=34,解得x=127;①若∠BFD=∠A,则FDBF=ACAB,即x4-x=1,解得x=2.综上所述,CF的长为127或2.8.169[解析] 如图,过点O作OM∥AD交AB于点M.∵四边形ABCD是平行四边形,∴OB=OD,∴MO是△ABD的中位线,∴AM=BM=12AB=52,MO=12BC=4.∵AF∥OM,∴△AEF∽△MEO,∴AEME=AFMO,即22+52=AF4,∴AF=169.9.[解析] (1)在△PF A与△ABE中,易得∠P AF=∠AEB及∠PF A=∠ABE=90°,故可得△PF A∽△ABE;(2)分两种情况列出关系式.解:(1)证明:∵四边形ABCD 是正方形, ∴AD ∥BC ,∴∠P AF =∠AEB . 又∵∠PF A =∠ABE =90°, ∴△PF A ∽△ABE .(2)若△EFP ∽△ABE ,,如图① 则∠PEF =∠EAB ,∴PE ∥AB , ∴四边形ABEP 为矩形, ∴P A =BE =2,即x =2;若△PFE ∽△ABE ,如图②, 则∠PEF =∠AEB .∵∠P AF =∠AEB ,∴∠PEF =∠P AF , ∴PE =P A .∵PF ⊥AE ,∴F 为AE 的中点. ∵AE =AB 2+BE 2=2 5, ∴EF =12AE = 5.∵PE AE =EF EB ,即PE 2 5=52, ∴PE =P A =5,即x =5. ∴满足条件的x 的值为2或5.10.[解析] (1)要求证△ABF ∽△COE ,只要证明∠BAF =∠C ,∠ABF =∠COE 即可. (2)作OH ⊥AC ,交BC 于点H ,易证△OF A 和△OEH 相似,根据相似三角形的对应边的比相等,即可得出所求的值.(3)同(2)可得,OFOE=n .解:(1)证明:∵AD ⊥BC ,∴∠DAC +∠C =90°. ∵∠BAC =90°,∴∠BAD +∠DAC =90°, ∴∠BAD =∠C .∵OE ⊥OB ,∴∠BOA +∠COE =90°. 又∵∠BOA +∠ABF =90°, ∴∠ABF =∠COE . ∴△ABF ∽△COE .(2)如图,过点O 作AC 的垂线交BC 于点H ,则OH ∥AB .由(1)得∠ABF =∠COE ,∠BAF =∠C , ∴∠AFB =∠OEC , ∴∠AFO =∠HEO .又∵∠BAF =∠C ,∠BAF +∠F AO =∠C +∠EHO =90°, ∴∠F AO =∠EHO ,∴△OF A ∽△OEH ,∴OF OE =OAOH .又∵O 为AC 的中点,OH ∥AB , ∴OH 为△ABC 的中位线, ∴OH =12AB ,OA =OC =12AC .而AC AB =2,∴OA OH =2,∴OF OE=2. (3)OF OE=n .。

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质和判定专项练习30题(有答案)1.已知:如图,在△ABC中,点D在边BC上,且∠BAC=∠DAG,∠CDG=∠BAD.(1)求证:=;(2)当GC⊥BC时,求证:∠BAC=90°.2.如图,已知在△ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足.(1)求证:AC2=AF•AD;(2)联结EF,求证:AE•DB=AD•EF.3.如图,△ABC中,PC平分∠ACB,PB=PC.(1)求证:△APC∽△ACB;(2)若AP=2,PC=6,求AC的长.4.如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长.5.已知:如图,△ABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB•BC=AC•CD.6.已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S,说明AF•BE=2S 的理由.7.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.8.如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:=.9.已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.10.如图,△ABC、△DEF都是等边三角形,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H 两点,BC=2,问E在何处时CH的长度最大?11.如图,AB和CD交于点O,当∠A=∠C时,求证:OA•OB=OC•OD.12.如图,已知等边三角形△AEC,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外).连接EB,过E作EF⊥AB,交AB的延长线为F.(1)猜测直线BE和直线AC的位置关系,并证明你的猜想.(2)证明:△BEF∽△ABC,并求出相似比.13.已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且BC2=BD•BA.(1)求证:△CED∽△ACD;(2)求证:.14.如图,△ABC中,点D、E分别在BC和AC边上,点G是BE边上一点,且∠BAD=∠BGD=∠C,联结AG.(1)求证:BD•BC=BG•BE;(2)求证:∠BGA=∠BAC.15.已知:如图,在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,BE,AD相交于点G,过点B作BF∥AC交AD的延长线于点F,DF=6.(1)求AE的长;(2)求的值.16.如图,△ABC中,∠ACB=90°,D是AB上一点,M是CD中点,且∠AMD=∠BMD,AP∥CD交BC延长线于P点,延长BM交PA于N点,且PN=AN.(1)求证:MN=MA;(2)求证:∠CDA=2∠ACD.17.已知:如图,在△ABC中,已知点D在BC上,联结AD,使得∠CAD=∠B,DC=3且S△ACD:S△ADB﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE,求的值.18.在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.19.如图,△ABC为等边三角形,D为BC边上一点,以AD为边作∠ADE=60°,DE与△ABC的外角平分线CE 交于点E.(1)求证:∠BAD=∠FDE;(2)设DE与AC相交于点G,连接AE,若AB=6,AE=5时,求线段AG的长.20.如图所示,△ABC中,∠B=90°,点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经几秒,使△PBQ的面积等于8cm2?(2)如果P,Q分别从A,B同时出发,并且P到B后又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒,使△PCQ的面积等于12.6cm2?21.已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长ED 交AC于点F,连接DC、AE.(1)求证:△ADE≌△DFC;(2)过点E作EH∥DC交DB于点G,交BC于点H,连接AH.求∠AHE的度数;(3)若BG=,CH=2,求BC的长.22.如图,在△ABC中,CD平分∠ACB,BE∥BC交AC于点E.(1)求证:AE•BC=AC•CE;(2)若S△ADE:S△CDE=4:3.5,BC=15,求CE的长.23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.25.如图,M、N、P分别为△ABC三边AB、BC、CA的中点,BP与MN、AN分别交于E、F.(1)求证:BF=2FP;(2)设△ABC的面积为S,求△NEF的面积.26.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E、F分别是AC,BC边上一点,且CE=AC,BF=BC,(1)求证:;(2)求∠EDF的度数.27.如图,△ABC是等边三角形,且AB∥CE.(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,①求E到BC的距离EH的长.②求BE的长.28.如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.(1)若AC=3,AB=4,求;(2)证明:△ACE∽△FBE;(3)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.29.如图,△ABC是等边三角形,∠DAE=120°,求证:(1)△ABD∽△ECA;(2)BC2=DB•CE.30.如图,在Rt△ABC中,∠C=90°,且AC=CD=,又E,D为CB的三等分点.(1)证明:△ADE∽△BDA;(2)证明:∠ADC=∠AEC+∠B;(3)若点P为线段AB上一动点,连接PE,则使得线段PE的长度为整数的点P的个数有几个?请说明理由.相似三角形性质和判定专项练习30题参考答案:1.解:(1)∵∠ADC=∠B+∠BAD,且∠CDG=∠BAD,∴∠ADG=∠B;∵∠BAC=∠DAG,∴△ABC∽△ADG,∴=.(2)∵∠BAC=∠DAG,∴∠BAD=∠CAG;又∵∠CDG=∠BAD,∴∠CDG=∠CAG,∴A、D、C、G四点共圆,∴∠DAG+∠DCG=180°;∵GC⊥BC,∴∠DCG=90°,∴∠DAG=90°,∠BAC=∠DAG=90°.2.解:(1)如图,∵∠ACB=90°,CF⊥AD,∴∠ACD=∠AFC,而∠CAD=∠FAC,∴△ACD∽△AFC,∴,∴AC2=AF•AD.(2)如图,∵CE⊥AB,CF⊥AD,∴∠AEC=∠AFC=90°,∴A、E、F、C四点共圆,∴∠AFE=∠ACE;而∠ACE+∠CAE=∠CAE+∠B,∴∠ACE=∠B,∠AFE=∠B;∵∠FAE=∠BAD,∴△AEF∽△ADB,∴AE:AD=BD:EF,∴AE•DB=AD•EF.3.解:(1)∵PB=PC,∴∠B=∠PCB;∵PC平分∠ACB,∴∠ACP=∠PCB,∠B=∠ACP,∵∠A=∠A,∴△APC∽△ACB.(2)∵△APC∽△ACB,∴,∵AP=2,PC=6,AB=8,∴AC=4.∵AP+AC=PC=6,这与三角形的任意两边之和大于第三边相矛盾,∴该题无解.4.(1)证明:∵AD∥BC,∴∠C+∠ADE=180°,∵∠BFE=∠C,∴∠AFB=∠EDA,∵AB∥DC,∴∠BAE=∠AED,∴△ABF∽△EAD;(2)解:∵AB∥CD,BE⊥CD,∴∠ABE=90°,∵AB=4,∠BAE=30°,∴AE=2BE,由勾股定理可求得AE=5.证明:∵∠ABC=2∠C,BD平分∠ABC,∴∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ACB中,,∴△ABD∽△ACB,∴=,即AB•BC=AC•BD,∴AB•BC=AC•CD.6.证明:∵AC=BC,∴∠A=∠B,∵∠ACB=90°,∴∠A=∠B=45°,∵∠ECF=45°,∴∠ECF=∠B=45°,∴∠ECF+∠1=∠B+∠1,∵∠BCE=∠ECF+∠1,∠2=∠B+∠1;∴∠BCE=∠2,∵∠A=∠B,∴△ACF∽△BEC.∴,∴AC•BC=BE•AF,∴S△ABC=AC•BC=BE•AF,∴AF•BE=2S.7.(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P 的路径为:.所以,点P经过的路径长为或3.8.证明:∵AD,BE是钝角△ABC的边BC,AC上的高,∴∠D=∠E=90°,∵∠ACD=∠BCE,∴△ACD∽△BCE,∴=.9.证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°.∴∠BDE=∠CED,∵∠EDF=∠ABE,∴△DEF∽△BDE;(2)由△DEF∽△BDE,得.∴DE2=DB•EF,由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴,∴DE2=DG•DF,∴DG•DF=DB•EF.10.解:设EC=x,CH=y,则BE=2﹣x,∵△ABC、△DEF都是等边三角形,∴∠B=∠DEF=60°,∵∠B+∠BDE=∠DEF+∠HEC,∴∠BDE=∠HEC,∴△BED∽△CHE,∴,∵AB=BC=2,点D为AB的中点,∴BD=1,∴,即:y=﹣x2+2x=﹣(x﹣1)2+1.∴当x=1时,y最大.此时,E在BC中点11.解:∵∠A=∠C,∠AOD=∠BOC,∴△OAD∽△OCB,∴=,∴OA•OB=OC•OD.12.解:(1)猜测BE和直线AC垂直.证明:∵△AEC是等边三角形,∴AE=CE,∵四边形ABCD是正方形,∴AB=CB,∵BE=BE,∴△AEB≌△CEB(SSS).∴∠AEB=∠CEB,∵AE=CE,∴BE⊥AC;(2)∵△AEC是等边三角形,∴∠EAC=∠AEC=60°,∵BE⊥AC,∴∠BEA=∠AEC=30°,∵四边形ABCD是正方形,∴∠BAC=45°,∴∠BAE=15°,∴∠EBF=45°,∵EF⊥BF,∴∠F=90°,∴∠EBF=∠BAC,∠F=∠ABC,∴△BEF∽△ACB,延长EB交AC于G,设AC为2a,则BG=a,EB=a﹣a,∴相似比是:===13.证明:(1)∵BC2=BD•BA,∴BD:BC=BC:BA,∵∠B是公共角,∴△BCD∽△BAC,∴∠BCD=∠A,∵CD平分∠ECB,∴∠ECD=∠BCD,∴∠ECD=∠A,∵∠EDC=∠CDA,∴△CED∽△ACD;(2)∵△BCD∽△BAC,△CED∽△ACD,∴=,=,∴.14.证明:(1)∵∠DBG=∠EBC,∠BGD=∠C,∴△BDG∽△BEC,∴=,则BD•BC=BG•BE;(2)∵∠DBA=∠ABC,∠BAD=∠C,∴△DBA∽△ABC,∴=,即AB2=BD•BC,∵BD•BC=BG•BE,∴AB2=BG•BE,即=,∵∠GBA=∠ABE,∴△GBA∽△ABE,∴∠BGA=∠BAC.15.解:(1)∵在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,∴AC=AB=BC,∴△ABC是等边三角形,∴∠C=60°,∵BF∥AC,∴∠CBF=∠C=60°,∵AD⊥BC,∴∠FDB=90°,∴∠F=30°,∵DF=6,∴BD=2,∵AE=EC=BD=DC,∴AE=2;(2)∵∠BDF=90°,∠F=30°,BD=2,∴BF=2DB=4,∵AC∥BF,∴△AEG∽△FBG,∴=()2=.16.证明:(1)∵AP∥CD,∴∠AMD=∠MAN,∠BMD=∠MNA,∵∠AMD=∠BMD,∴∠MAN=∠MNA,∴MN=MA.(2)如图,连接NC,∵AP∥CD,且PN=AN.∴==,∴MC=MD,∴CN为直角△ACP斜边AP的中线,∴CN=NA,∠NCA=∠NAC,∵AP∥CD,∴∠NAC=∠ACD,∴∠NCM=2∠ACD,∵∠CMN=∠DMB,∠DMA=∠BMD,∴∠CMD=∠DMA,在△CMN和△DMA中,,∴△CMN≌△DMA(SAS),∠ADM=∠NCM=2∠ACD.即:∠CDA=2∠ACD.17.解:(1)∵S△ACD:S△ADB﹦1:2,∴BD=2CD,∵DC=3,∴BD=2×3=6,∴BC=BD+DC=6+3=9,∵∠CAD=∠B,∠C=∠C,∴△ABC∽△DAC,∴=,即=,解得AC=3;(2)由翻折的性质得,∠E=∠C,DE=CD=3,∵AB∥DE,∴∠B=∠EDF,∵∠CAD=∠B,∴∠EDF=∠CAD,∴△EFD∽△ADC,∴=()2=()2=18.(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=,∵△ABC∽△FCD,BC=2CD,∴=()2=.∵S△ABC=×BC×AG=×8×=18,∴S△FCD=S△ABC=.19.(1)证明:∵△ABC为等边三角形,∴∠B=60°,由三角形的外角性质得,∠ADE+∠FDE=∠BAD+∠B,∵∠ADE=60°,∴∠BAD=∠FDE;(2)解:如图,过点D作DH∥AC交AB于H,∵△ABC为等边三角形,∴△BDH是等边三角形,∴∠BHD=60°,BD=BH,∴∠AHD=180°﹣60°=120°,∵CE是△ABC的外角平分线,∴∠ACE=(180°﹣60°)=60°,∴∠DCE=60°+60°=120°,∴∠AHD=∠DCE=120°,又∵AH=AB﹣BH,CD=BC﹣BD,∴AH=CD,在△AHD和△DCE中,,∴△AHD≌△DCE(ASA),∴AD=DE,∵∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=∠DEA=60°,AE=AD=5,∵∠BAD=∠BAC﹣∠CAD=60°﹣∠CAD,∠EAG=∠DAE﹣∠CAD=60°﹣∠CAD,∴∠BAD=∠EAG,∴△ABD∽△AEG,∴=,即=,解得AG=.20.解:(1)设x秒时,点P在AB上,点Q在BC上,且使△PBQ面积为8cm2,由题意得(6﹣x)•2x=8,解之,得x1=2,x2=4,经过2秒时,点P到距离B点4cm处,点Q到距离B点4cm处;或经4秒,点P到距离B点2cm处,点Q到距离B点8cm处,△PBQ的面积为8cm2,综上所述,经过2秒或4秒,△PBQ的面积为8cm2;(2)当P在AB上时,经x秒,△PCQ的面积为:×PB×CQ=×(6﹣x)(8﹣2x)=12.6,解得:x1=(不合题意舍去),x2=,经x秒,点P移动到BC上,且有CP=(14﹣x)cm,点Q移动到CA上,且使CQ=(2x﹣8)cm,过Q作QD⊥CB,垂足为D,由△CQD∽△CAB得,即QD=,由题意得(14﹣x)•=12.6,解之得x1=7,x2=11.经7秒,点P在BC上距离C点7cm处,点Q在CA上距离C点6cm处,使△PCQ的面积等于12.6cm2.经11秒,点P在BC上距离C点3cm处,点Q在CA上距离C点14cm处,14>10,点Q已超出CA的范围,此解不存在.综上所述,经过7秒和秒时△PCQ的面积等于12.6cm221.(1)证明:如图,∵线段DB顺时针旋转60°得线段DE,∴∠EDB=60°,DE=DB.∵△ABC是等边三角形,∴∠B=∠ACB=60°.∴∠EDB=∠B.∴EF∥BC.∴DB=FC,∠ADF=∠AFD=60°.∴DE=DB=FC,∠ADE=∠DFC=120°,△ADF是等边三角形.∴AD=DF.∴△ADE≌△DFC.(2)解:由△ADE≌△DFC,得AE=DC,∠1=∠2.∵ED∥BC,EH∥DC,∴四边形EHCD是平行四边形.∴EH=DC,∠3=∠4.∴AE=EH.∴∠AEH=∠1+∠3=∠2+∠4=∠ACB=60°.∴△AEH是等边三角形.∴∠AHE=60°.(3)解:设BH=x,则AC=BC=BH+HC=x+2,由(2)四边形EHCD是平行四边形,∴ED=HC.∴DE=DB=HC=FC=2.∵EH∥DC,∴△BGH∽△BDC.∴.即.解得x=1.∴BC=3.22.(1)证明:∵DE∥BC,∴∠ADE=∠B,∠AEC=∠ACB,∴△ADE∽△ABC,∴=,∵DE∥BC,∴∠EDC=∠BCD,∵CD平分∠ACB,∴∠BCD=∠DCE,∴∠DCE=∠EDC,∴DE=CE,∴=,即AE•BC=AC•CE;(2)∵S△ADE:S△CDE=4:3.5,∴AE:CE=4:3.5,∴=,∵由(1)知=,∴=,解得DE=6,∵DE=CE,∴CE=8.23.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.24.(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sinB==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:=:3.25.(1)证明:如图1,连接PN,∵N、P分别为△ABC边BC、CA的中点,∴PN∥AB,且.∴△ABF∽△NPF,∴.∴BF=2FP.(2)解:如图2,取AF的中点G,连接MG,∴MG∥EF,AG=GF=FN.∴△NEF∽△NMG,∴S△NEF=S△MNG=×S△AMN=××S△ABC=S.26.(1)证明:∵CD⊥AB,∴∠CDB=∠ADC=90°,∴∠ACD+∠BCD=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∴△ADC∽△CDB,∴=;(2)解:∵CE=AC,BF=BC,∴===,又∵∠A=∠BCD,∴∠ACD=∠B,∴△CED∽△BFD,∴∠CDE=∠BDF,∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.27.解;(1)∵AB∥CE,∴∠A=∠DCE,又∵∠ADB=∠EDC,∴△ABD∽△CED;(2)①过点E作EH⊥BF于点H,∵△ABC是等边三角形,△ABD∽△CED,AB=6,AD=2CD,∴==,∠A=∠ACB=60°,∴CE=3,∵AB∥CE,∴∠A=∠DCE=60°,∴∠ECH=180°﹣∠ACB﹣∠DCE=180°﹣60°﹣60°=60°,∴EH=CE•sin60°=3×=;②在Rt△ECH中,∵∠ECH=60°,CE=3,∴CH=CE•cos60°=3×=,∴BH=BC+CH=6+=,∴BE===3.28.(1)解:∵AC=AC′,AB=AB′,∴由旋转可知:∠CAB=∠C′AB′,∴∠CAB+∠EAC′=∠C′AB′+∠EAC′,即∠CAC′=∠BAB′,又∵∠ACB=∠AC′B′=90°,∴△ACC′∽△ABB′,∵AC=3,AB=4,∴==;(2)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,(1分)∴∠CAC′=∠BAB′,∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,∴∠ACC′=∠ABB′,(3分)又∵∠AEC=∠FEB,∴△ACE∽△FBE.(4分)(3)解:当β=2α时,△ACE≌△FBE.理由:在△ACC′中,∵AC=AC′,∴∠ACC′=∠AC′C====90°﹣α,(6分)在Rt△ABC中,∠ACC′+∠BCE=90°,即90°﹣α+∠BCE=90°,∴∠BCE=90°﹣90°+α=α,∵∠ABC=α,∴∠ABC=∠BCE,(8分)∴CE=BE,由(2)知:△ACE∽△FBE,∴△ACE≌△FBE.(9分)29.证明:(1)∵△ABC是等边三角形,∠DAE=120°,∴∠DAB+∠CAE=60°,∵∠ABC是△ABD的外角,∴∠DAB+∠D=∠ABC=60°,∴∠CAE=∠D,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACE=120°,∴△ABD∽△ECA;(2)∵△ABD∽△ECA,∴=,即AB•AC=BD•CE,∵AB=AC=BC,∴BC2=BD•CE30.(1)证明:∵AC=CD=DE=EB=,又∠C=90°,∴AD=2,∴=,==,∴=,又∵∠ADE=∠BDA,∴△ADE∽△BDA;(2)证明:∵△ADE∽△BDA,∴∠DAE=∠B,又∵∠ADC=∠AEC+∠DAE,∴∠ADC=∠AEC+∠B;(3)解:∵点P为线段AB上一动点,根据勾股定理得:AE==,BE=,∴PE的最大值为.作EF⊥AB,则EF=,则PE的最小值为∴≤EP≤,∵EP为整数,即EP=1,2,3,结合图形可知PE=1时有两个点,所以PE长为整数的点P个数为4个.。

初中相似三角形经典习题(附答案)

初中相似三角形经典习题(附答案)

一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。

分析:根据平行线的性质可知∠AED=∠C,∠A=∠FEC,根据相似三角形的判定定理可知△ADE∽△EFC.解答:证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:本题考查的是平行线的性质及相似三角形的判定定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.考点:相似三角形的判定;三角形中位线定理;梯形。

菁优网版权所有专题:几何综合题。

分析:(1)利用平行线的性质可证明△CDF∽△BGF.(2)根据点F是BC的中点这一条件,可得△CDF≌△BGF,则CD=BG,只要求出BG的长即可解题.解答:(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)点评:本题主要考查了相似三角形的判定定理及性质,全等三角形的判定及线段的等量代换,比较复杂.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.分析:由FD∥AB,FE∥AC,可知∠B=∠FDE,∠C=∠FED,根据三角形相似的判定定理可知:△ABC∽△FDE.解答:证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.点评:本题很简单,考查的是相似三角形的判定定理:(1)如果两个三角形的两个角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,则这两个三角形相似.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.解答:证明:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)点评:考查相似三角形的判定定理,关键是找准对应的角.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.考点:相似三角形的判定;全等三角形的判定;等腰三角形的判定;旋转的性质。

初二数学图形的相似试题答案及解析

初二数学图形的相似试题答案及解析

初二数学图形的相似试题答案及解析1.如图,在△PAB中,点C、D在边AB上,PC=PD=CD,∠APB=120°.(1)试说明△APC与△PBD相似.(2)若CD=1,AC=x,BD=y,请你求出y与x之间的函数关系式.(3)小明猜想:若PC=PD=1,∠CPD=α,∠APB=β,只要α与β之间满足某种关系式,问题(2)中的函数关系式仍然成立.你同意小明的观点吗?如果你同意,请求出α与β所满足的关系式;若不同意,请说明理曲.【答案】(1)说明见解析(2)(3)同意,2β-α=180°【解析】(1)根据PC=PD=CD,得∠PCD=∠PDC=∠CPD=60°,则∠ACP=∠BDP=120°,可证明∠A=∠BPD,从而证得△APC与△PBD;(2)由(1)得,则,从而得出y与x的函数关系式;(3)根据题意仍可得出(2)中的函数关系式,则同意这种说法.试题解析:(1)∵PC=PD=CD,∴∠PCD=∠PDC=∠CPD=60°,∴∠ACP=∠BDP=120°,∵∠A+∠APC=60°,∠APC+∠BPD=∠APB-∠CPD=120°-60°=60°,∴∠A=∠BPD∴△APC∽△PBD由(1)得△APC∽△PBD,,∴,即(3)同意,2β-α=180°【考点】相似三角形的判定与性质2.在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N.(1)如图1,当点M在AB边上时,连接BN①试说明:;②若∠ABC=60°,AM=4,求点M到AD的距离.(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.【答案】(1)①见解析;②;(2)x为6或18-或12时,△ADN为等腰三角形.【解析】(1)根据菱形的四条边都相等可得AB=AD,对角线平分一组对角可得∠BAN=∠DAN,然后利用“边角边”证明;(2)根据有一个角是直角的菱形的正方形判断出四边形ABCD是正方形,再根据正方形的性质点M与点B、C重合时△ADN是等腰三角形;AN=AD时,利用勾股定理列式求出AC,再求出CN,然后求出△ADN和△CMN相似,利用相似三角形对应边成比例列式求出CM,然后求出BM即可得解.试题解析:(1)证明:在菱形ABCD中,AB=AD,∠BAN=∠DAN,在△ABN和△ADN中,∴△ABN≌△ADN(SAS);(2)∵∠ABC=90°,∴菱形ABCD是正方形,∴当x=6时,点M与点B重合,AN=DN,△ADN为等腰三角形,当x=12时,点M与点C重合,AD=DN,△ADN为等腰三角形,当AN=AD时,在Rt△ACD中,,CN=AC-AN=,∵正方形ABCD的边BC∥AD,∴△ADN∽△CMN,∴,即,解得CM=,∴BM=BC-AM=6-()=12-,x=AB+BM=6+12- =18-,综上所述,x为6或18-或12时,△ADN为等腰三角形.【考点】四边形综合题.3.如图,△ABC中,D、E分别是AB、AC上的点,DE∥BC,DE=1,BC=3,AB=6,则AD的长为()A.1 B.1.5 C.2 D.2.5【答案】C【解析】由DE∥BC可证得△ADE∽△ABC,再根据相似三角形的性质求解即可.解:∵DE∥BC∴△ADE∽△ACB∴∵DE=1,BC=3,AB=6∴,解得故选C.【考点】相似三角形的判定和性质点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.4.已知a、b、c、d是成比例的线段,其中a=3cm,b=2cm,c=6cm,则d=_______【答案】4㎝【解析】已知a、b、c、d是成比例的线段,则a:b=c:d。

新人教版八年级数学下册27.2.2 相似三角形的性质(同步练习)

新人教版八年级数学下册27.2.2 相似三角形的性质(同步练习)

27.2.2 相似三角形的性质1. 若△ABC ∽△A`B`C`,则相似比k 等于( )A .A`B`:AB B .∠A: ∠A`C .S △ABC :S △A`B`C`D .△ABC 周长:△A`B`C`周长2. 把一个三角形改成和它相似的三角形,如果面积扩大到原来的100倍,那么边长扩大到原来的( )A .10000倍B .10倍C .100倍D .1000倍3. 两个相似三角形,其周长之比为3:2,则其面积比为( )A .2:3B .3:2C .9:4D .不能确定4. 把一个五边形改成和它相似的五边形,如果面积扩大到原来的49倍,那么对应的对角线扩大到原来的( )A .49倍B .7倍C .50倍D .8倍5. 两个相似多边形的一组对应边分别为3cm 和4.5cm ,如果它们的面积和为78cm 2,那么较大多边形的面积为( )A .46.8 cm 2B .42 cm 2C .52 cm 2D .54 cm 26. 两个多边形的面积之比为5,周长之比为m ,则m5为( ) A .1 B .55 C .5 D .5 7. 在一张1:10000的地图上,一块多边形地区的面积为6cm 2,则这块多边形地区的实际面积为( )A .6m 2B .60000m 2C .600m 2D .6000m 28. 已知△ABC ∽△A`B`C`,且BC :B`C`=3:2,△ABC 的周长为24,则△A`B`C`的周长为_______.9. 两个相似三角形面积之比为2:7,较大三角形一边上的高为2,则较小三角形的对应边上的高为_______.10. 两个相似多边形最长的的边分为10cm 和25cm ,它们的周长之差为60cm ,则这两个多边形的周长分别为_______.11. 四边形ABCD ∽四边形A`B`C`D`,他们的面积之比为36:25,他们的相似比_____,若四边形A`B`C`D`的周长为15cm ,则四边形ABCD 的周长为________.12. 如图,矩形ABCD 中,E ,F 分别在BC ,AD 上,矩形ABCD ∽矩形ECDF ,且AB =2,S 矩形ABCD =3S 矩形ECDF 。

八年下册数学相似三角形同步练习及答案

八年下册数学相似三角形同步练习及答案

八年下册数学相似三角形同步练习及答案一、请你填一填(1)如果两个三角形的相似比为1,那么这两个三角形________.(2)若△ABC 与△A B C '''相似,一组对应边的长为AB =3 cm ,A B ''=4 cm ,那么△A B C '''与△ABC 的相似比是________. (3)若△ABC 的三条边长的比为3∶5∶6,与其相似的另一个△A B C '''的最小边长为12 cm ,那么△A B C '''的最大边长是________.(4)已知△ABC 的三条边长分别为3 cm,4 cm,5 cm,△ABC ∽△A B C ''',那么△A B C '''的形状是______,又知△A B C '''的最大边长为20 cm ,那么△A B C '''的面积为________. 二、认真选一选(1)下列命题错误的是( ) A.两个全等的三角形一定相似 B.两个直角三角形一定相似C.两个相似三角形的对应角相等,对应边成比例D.相似的两个三角形不一定全等(2)若△ABC ∽△DEF ,它们的周长分别为6 cm 和8 cm ,那么下式中一定成立的是( ) A.3AB =4DE B.4AC =3DE C.3∠A =4∠D D.4(AB +BC +AC )=3(DE +EF +DF )(3)若△ABC 与△A B C '''相似,∠A =55°,∠B =100°,那么∠C ′的度数是( ) A.55° B.100° C.25° D.不能确定(4)把△ABC 的各边分别扩大为原来的3倍,得到△A B C ''',下列结论不能成立的是( )A.△ABC ∽△A B C '''B.△ABC 与△A B C '''的各对应角相等C.△ABC 与△A B C '''的相似比为41 D.△ABC 与△A B C '''的相似比为31 三、△ABC 中,AB =12 cm ,BC =18 cm ,AC =24 cm ,若△A B C '''∽△ABC ,且△A B C '''的周长为81 cm ,求△A B C '''各边的长.四、好好想一想如图5:分别取等边三角形ABC 各边的中点D 、E 、F ,得△DEF .若△ABC 的边长为a . (1)△DEF 与△ABC 相似吗?如果相似,相似比是多少? (2)分别求出这两个三角形的面积.(3)这两个三角形的面积比与边长之比有什么关系吗?FEDABC图5参考答案一、(1)全等 (2)3∶4 (3)24cm (4)直角三角形 96cm 2二、(1)B (2)D (3)C (4)C 三、解法1:设△A B C '''与△ABC 的相似比为x ,根据题意得:BCC B AC C A AB B A ''=''='' =x 将AB =12,BC =18,AC =24代入上式可得:A B ''=12x ,B C ''=18x ,A C ''=24x ∵△A B C '''的周长为81 cm ∴12x +18x +24x =81,解得:x =23∴A B ''=12x =18(cm ), B C ''=18x =27(cm ),A C ''=24x =36(cm ) 解法2:由已知得△ABC 的周长为12+18+24=54(cm ) 所以△A B C '''与△ABC 的相似比等于81∶54即3∶2 则23=''=''=''AC C A BC C B AB B A , ∴23241812=''=''=''C A C B B A ∴A B ''=18(cm ), B C ''=27(cm ), A C ''=36(cm ) 四、(1)根据三角形中位线定理得DE =21a ,EF =DF =21a所以△DEF 是等边三角形,△DEF 与△ABC 相似,相似比为21 (2)△ABC 的面积为21AB ·A E =21a ·22243)21(a a a =- △DEF 的面积为21·21a ·163)41()21(22=-a a a 2(3)S △DEF ∶S △ABC =163a 2∶43a 2=41∶1=1∶4这两个三角形的面积比等于边长之比的平方.。

北师大八年级初二下册相似三角形练习题答案

北师大八年级初二下册相似三角形练习题答案

相似三角形练习题一、填空题:1、若b m m a 2,3==,则_____:=b a 。

2、已知653zy x ==,且623+=z y ,则__________,==y x 。

3、在Rt △ABC 中,斜边长为c ,斜边上的中线长为m ,则______:=c m 。

4、反向延长线段AB 至C ,使AC =21AB ,那么BC :AB = 。

5、如果△ABC ∽△A ′B ′C ′,相似比为3:2,若它们的周长的差为40厘米,则 △A ′B ′C ′的周长为 厘米。

6、如图,△AED ∽△ABC ,其中∠1=∠B ,则()()()AB BC AD_________==。

第6题图 第7题图7、如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,若∠A =30°,则BD :BC = 。

若BC =6,AB =10,则BD = ,CD = 。

8、如图,梯形ABCD 中,DC ∥AB ,DC =2cm ,AB =3.5cm ,且MN ∥PQ ∥AB , DM =MP =PA ,则MN = ,PQ = 。

第8题图 第9题图9、如图,四边形ADEF 为菱形,且AB =14厘米,BC =12厘米,AC =10厘米,那BE = 厘米。

10、梯形的上底长1.2厘米,下底长1.8厘米,高1厘米,延长两腰后与下底所成的三角形的高为 厘米。

二、选择题:11、下面四组线段中,不能成比例的是( )A 、4,2,6,3====d c b aB 、3,6,2,1====d c b a C 、10,5,6,4====d c b a D 、32,15,5,2====d c b aEAD C 1C BD AD CM P N Q AB12、等边三角形的中线与中位线长的比值是( )A 、1:3B 、2:3C 、23:21 D 、1:3 13、已知754zy x ==,则下列等式成立的是( ) A 、91=+-y x y x B 、167=++z z y x C 、38=-+++z y x z y x D 、x z y 3=+14、已知直角三角形三边分别为b a b a a 2,,++,()0,0>>b a ,则=b a :( ) A 、1:3 B 、1:4 C 、2:1 D 、3:115、△ABC 中,AB =12,BC =18,CA =24,另一个和它相似的三角形最长的一边是36,则最短的一边是( )A 、27B 、12C 、18D 、2016、已知c b a ,,是△ABC 的三条边,对应高分别为c b a h h h ,,,且6:5:4::=c b a ,那么c b a h h h ::等于( )A 、4:5:6B 、6:5:4C 、15:12:10D 、10:12:15 17、一个三角形三边长之比为4:5:6,三边中点连线组成的三角形的周长为30cm ,则原三角形最大边长为( )A 、44厘米B 、40厘米C 、36厘米D 、24厘米 18、下列判断正确的是( )A 、不全等的三角形一定不是相似三角形B 、不相似的三角形一定不是全等三角形C 、相似三角形一定不是全等三角形D 、全等三角形不一定是相似三角形19、如图,△ABC 中,AB =AC ,AD 是高,EF ∥BC ,则图中与△ADC 相似的三角形共有( )A 、1个B 、2个C 、3个D 、多于3个第19题图 第20题图20、如图,在平行四边形ABCD 中,E 为BC 边上的点,若BE :EC =4:5,AE 交BD 于F ,则BF :FD 等于( )A 、4:5B 、3:5C 、4:9D 、3:8 三、解答题:A E F GBC21、已知()3:2:=-y y x ,求yx yx 2352-+的值。

相似三角形(含练习有答案、 例题和知识点)

相似三角形(含练习有答案、    例题和知识点)

第27章:相似一、基础知识(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:(2)合比定理:(3)等比定理:3.黄金分割:如图,若,则点P为线段AB的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定(1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。

(2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

(4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

4.相似三角形的性质(1)对应边的比相等,对应角相等.(2)相似三角形的周长比等于相似比.(3)相似三角形的面积比等于相似比的平方.(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比.5.三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线.三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。

6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半.7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式);2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。

如求河的宽度、求建筑物的高度等。

(三)位似:位似:如果两个图形不仅是相似图形,而且是每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。

这个点叫做位似中心.这时的相似比又称为位似比.位似性质:位似图形上任意一对对应点到位似中心的距离之比等于位似位似比二、经典例题例1.如图在4×4的正方形方格中,△ABC和△DEF的顶点都在长为1的小正方形顶点上.(1)填空:∠ABC=______,BC=_______.(2)判定△ABC与△DEF是否相似?[考点透视]本例主要是考查相似的判定及从图中获取信息的能力.[参考答案] ①135°,2 ②能判断△ABC与△DEF相似,∵∠ABC=∠DEF=135°,=【点评】注意从图中提取有效信息,再用两对应边的比相等且它们两夹角相等来判断.例2. 如图所示,D、E两点分别在△ABC两条边上,且DE与BC不平行,请填上一个你认为适合的条件_________,使得△ADE∽△ABC.[考点透视]本例主要是考查相似的判定[参考答案] ∠1=∠B或∠2=∠C,或点评:结合判定方法补充条件.例3. 如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走2米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度等于( )A.4.5米 B.6米 C.7.2米 D.8米[考点透视]本例主要是考查相似的应用[参考答案] B【点评】在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中介比,它是解题的桥梁,如该题中“”.例4. 如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?[考点透视]本例主要是考查相似的实际应用[参考答案] 48mm【点评】解决有关三角形的内接正方形(或矩形)的计算问题,一般运用相似三角形“对应高之比等于相似比”这一性质来解答.例5.如图所示,在△ABC中,AB=AC=1,点D、E在直线BC上运动,设BD=x,CE=y.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;(2)如果∠BAC的度数为α,∠DAE的度数为β,当α、β满足怎样的关系式时,(1)中y与x之间的函数关系式还成立,试说明理由.[考点透视]本例主要是考查相似与函数的综合运用.[参考答案]解:在△ABC中,AB=AC=1,∠BAC=30°,∠ABC=∠ACB=75°,∠ABD=∠ACE=105°.又∠DAE=105°,∴∠DAB+∠CAE=75°.又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,∴△ADB∽△EAC,∴,∴y=.当α1β满足β- =90°,y=仍成立.此时∠DAB+∠CAE=β-α,∴∠DAB+∠ADB=β-α,∴∠CAE=∠ADB.又∵∠ABD=∠ACE,∴△ADB∽△EAC,∴y=.【点评】确定两线段间的函数关系,可利用线段成比例、找相等关系转化为函数关系.例6. 一般的室外放映的电影胶片上每一个图片的规格为:3.5cm×3.5cm,放映的荧屏的规格为2m×2m,若放映机的光源距胶片20cm时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?解析:胶片上的图象和荧屏上的图象是位似的,镜头就相当于位似中心,因此本题可以转化为位似问题解答.[考点透视]本例主要是考查位似的性质.[参考答案] m【点评】位似图形是特殊位置上的相似图形,因此位似图形具有相似图形的所有性质.三.适时训练(一)精心选一选1.梯形两底分别为m、n,过梯形的对角线的交点,引平行于底边的直线被两腰所截得的线段长为( )(A) (B) (C) (D)2.如图,在正三角形ABC中,D,E分别在AC,AB上,且=,AE=BE,则( )(A)△AED∽△BED(B)△AED∽△CBD(C)△AED∽△ABD(D)△BAD∽△BCD题2 题4 题53.P是Rt△ABC斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有( )(A)1条 (B)2条 (C)3条 (D)4条4.如图,∠ABD=∠ACD,图中相似三角形的对数是( )(A)2 (B)3 (C)4 (D)55.如图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP与△ECP相似的是( )(A)∠APB=∠EPC (B)∠APE=90°(C)P是BC的中点(D)BP ︰BC=2︰36.如图,△ABC中,AD⊥BC于D,且有下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3)=;(4)AB2=BD·BC其中一定能够判定△ABC是直角三角形的共有( )(A)3个 (B)2个 (C)1个 (D)0个题6 题7 题87.如图,将△ADE绕正方形ABCD顶点A顺时针旋转90°,得△ABF,连结EF交AB于H,则下列结论中错误的是( )(A)AE⊥AF (B)EF︰AF=︰1(C)AF2=FH·FE (D)FB ︰FC=HB︰EC8.如图,在矩形ABCD中,点E是AD上任意一点,则有( )(A)△ABE的周长+△CDE的周长=△BCE的周长(B)△ABE的面积+△CDE的面积=△BCE的面积(C)△ABE∽△DEC(D)△ABE∽△EBC9.如图,在□ABCD中,E为AD上一点,DE︰CE=2︰3,连结AE、BE、BD,且AE、BD交于点F,则S△DEF︰S△EBF︰S△ABF等于( )(A)4︰10︰25 (B)4︰9︰25 (C)2︰3︰5 (D)2︰5︰25题9 题10 题1110.如图,直线a∥b,AF︰FB=3︰5,BC︰CD=3︰1,则AE︰EC为( ).(A)5︰12 (B)9︰5 (C)12︰5 (D)3︰2 11.如图,在△ABC中,M是AC边中点,E是AB上一点,且AE=AB,连结EM并延长,交BC的延长线于D,此时BC︰CD为( )(A)2︰1 (B)3︰2 (C)3︰1 (D)5︰212.如图,矩形纸片ABCD的长AD=9 cm,宽AB=3 cm,将其折叠,使点D与点B重合,那么折叠后DE的长和折痕EF的长分别为( )(A)4 cm、cm (B)5 cm、cm(C)4 cm、2 cm (D)5 cm、2 cm题12(二)细心填一填13.已知线段a=6 cm,b=2 cm,则a、b、a+b的第四比例项是_____cm,a+b与a-b的比例中项是_____cm.14.若===-m2,则m=______.15.如图,在△ABC中,AB=AC=27,D在AC上,且BD=BC=18,DE∥BC交AB于E,则DE=_______.16.如图,□ABCD中,E是AB中点,F在AD上,且AF=FD,EF交AC于G,则AG︰AC=______.题16 题17 题1817.如图,AB∥CD,图中共有____对相似三角形.18.如图,已知△ABC,P是AB上一点,连结CP,要使△ACP∽△ABC,只需添加条件______(只要写出一种合适的条件).19.如图,AD是△ABC的角平分线,DE∥AC,EF∥BC,AB=15,AF =4,则DE的长等于________.题19 题20 题2120.如图,△ABC中,AB=AC,AD⊥BC于D,AE=EC,AD=18,BE =15,则△ABC的面积是______.21.如图,直角梯形ABCD中,AD∥BC,AC⊥AB,AD=8,BC=10,则梯形ABCD面积是_________.22.如图,已知AD∥EF∥BC,且AE=2EB,AD=8 cm,AD=8 cm,BC=14 cm,则S梯形AEFD︰S梯形BCFE=____________.(三)认真答一答23.方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.请你在图示的10×10的方格纸中,画出两个相似但不全等的格点三角形,并加以证明(要求所画三角形是钝角三角形,并标明相应字母).24.如图,△ABC中,CD⊥AB于D,E为BC中点,延长AC、DE相交于点F,求证=.25.如图,在△ABC中,AB=AC,延长BC至D,使得CD=BC,CE⊥BD交AD于E,连结BE交AC于F,求证AF=FC.26.已知:如图,F是四边形ABCD对角线AC上一点,EF∥BC,FG∥AD.求证:+=1.27.如图,BD、CE分别是△ABC的两边上的高,过D作DG⊥BC于G,分别交CE及BA的延长线于F、H,求证:(1)DG2=BG·CG;(2)BG·CG=GF·GH.28.如图,∠ABC=∠CDB=90°,AC=a,BC=b.(1)当BD与a、b之间满足怎样的关系时,△ABC∽△CDB?(2)过A作BD的垂线,与DB的延长线交于点E,若△ABC∽△CDB.求证四边形AEDC为矩形(自己完成图形).29.如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F,连结FC(AB>AE).(1)△AEF与△EFC是否相似?若相似,证明你的结论;若不相似,请说明理由;(2)设=k,是否存在这样的k值,使得△AEF∽△BFC,若存在,证明你的结论并求出k的值;若不存在,说明理由.30.如图,在Rt△ABC中,∠C=90°,BC=6 cm,CA=8 cm,动点PC出发,以每秒2 cm的速度沿CA、AB运动到点B,则从C点出发多少秒时,可使S△BCP=S△ABC31. 如图,小华家(点A处)和公路(L)之间竖立着一块35m长且平 行于公路的巨型广告牌(DE).广告牌挡住了小华的视线,请在图中画出视点A的盲区,并将盲区内的那段公路设为BC.一辆以60km/h匀速行驶的汽车经过公路段BC的时间是3s,已知广告牌和公路的距离是40m,求小华家到公路的距离(精确到1m).32. 某老师上完“三角形相似的判定”后,出了如下一道思考题:如图所示,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,试问:△AOB和△DOC是否相似?某学生对上题作如下解答:答:△AOB∽△DOC.理由如下:在△AOB和△DOC中,∵AD∥BC,∴,∵∠AOB=∠DOC,∴△AOB∽△DOC.请你回答,该学生的解答是否正确?如果正确,请在每一步后面写出根据;如果不正确,请简要说明理由.33. 如图:四边形ABCD中,∠A=∠BCD=90°,①过C作对角线BD的垂线交BD、AD于点E、F,求证:;②如图:若过BD上另一点E作BD的垂线交BA、BC延长线于F、G,又有什么结论呢?你会证明吗?34.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.35. (1)如图一,等边△ABC中,D是AB上的动点,以CD为一边,向上作等边△EDC,连结AE。

北师大版八年级数学下册第四章相似图形探索三角形相似的条件第2课时相似三角形的判定2同步练习及答案

北师大版八年级数学下册第四章相似图形探索三角形相似的条件第2课时相似三角形的判定2同步练习及答案

相似三角形的判定——典型题专项训练图4-4-14知识点由两边成比例且夹角相等判定两三角形相似1.如图4-4-14所示,已知△ABC,则图4-4-15中与△ABC相似的是( )图4-4-152.如图4-4-16,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE 的是( )A.∠C=∠E B.∠B=∠ADEC.ABAD=ACAED.ABAD=BCDE4-4-16 4-4-173.如图4-4-17,能保证△ABC与△ACD相似的条件是( )A.ABBC=ACCDB.BCAC=CDADC.AC2=AD·ABD.CD2=AD·DB4.2016·贵阳期末在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是( )图4-4-185.如图4-4-19,在△ABC中,点D,E分别在AB与AC上,且AD=5,DB=7,AE=6,EC=4,△ADE与△ACB相似吗?请说明理由.图4-4-196.在△ABC和△A′B′C′中,∠B=∠B′,AB=6,BC=8,B′C′=4,则当A′B′=________时,△ABC与△A′B′C′相似.图4-4-207.如图4-4-20所示,在△ABC中,AB=6,AC=4,P是AC的中点,过点P的直线交AB于点Q,若以A,P,Q为顶点的三角形和△ABC相似,则AQ的长为________.8.2017·贵阳期末如图4-4-21,在正三角形ABC中,D,E分别在AC,AB上,且ADAC =13,AE=EB.求证:△AED∽△CBD.图4-4-219.如图4-4-22,已知∠DAB=∠ECB,∠ABD=∠CBE.求证:△ABC∽△DBE.图4-4-22详解1.C2.D [解析] ∵∠1=∠2,∴∠DAE=∠BAC.A.添加∠C=∠E,可用两角法判定△ABC∽△ADE,故本选项不合题意;B.添加∠B=∠ADE,可用两角法判定△ABC∽△ADE,故本选项不合题意;C.添加ABAD=ACAE,可用两边及其夹角法判定△ABC∽△ADE,故本选项不合题意;D.添加ABAD=BCDE,不能判定△ABC∽△ADE,故本选项符合题意.故选D.3.C [解析] 从图中可看出,两个三角形有一公共角,若AB∶AC=AC∶AD成立,则可利用“两边成比例且夹角相等的两个三角形相似”来判定△ABC与△ACD相似.故选C.4.D [解析] 三角形纸片ABC中,AB=8,BC=4,AC=6.A.4AB=48=12,对应边ACAB=68=34≠12,则沿虚线剪下的阴影部分的三角形与△ABC 不相似,故此选项错误;B.3AB=38,对应边ACAB=68=34≠38,则沿虚线剪下的阴影部分的三角形与△ABC不相似,故此选项错误;C.2AC=26=13,对应边ACAB=68=34≠13,则沿虚线剪下的阴影部分的三角形与△ABC 不相似,故此选项错误;D.2BC=24=12,对应边BCAB=48=12,则沿虚线剪下的阴影部分的三角形与△ABC相似,故此选项正确.故选D.5.解:△ADE∽△ACB.理由如下:∵AD=5,DB=7,AE=6,EC=4,∴ADAC=56+4=12,AEAB=67+5=12,∴ADAC=AEAB.又∵∠A=∠A,∴△ADE∽△ACB.6.3或163[解析] 两个三角形中已经有一组角对应相等,只需这两个角的夹边对应成比例即可说明这两个三角形相似,成比例有两种情况:AB∶A′B′=BC∶B′C′,AB∶B′C′=BC∶A′B′.7.3或43[解析] ∵AC=4,P是AC的中点,∴AP=12AC=2.∵∠A=∠A,∴①若APAC =AQAB,则△APQ∽△ACB,即24=AQ6,解得AQ=3;②若AQAC=APAB,则△APQ∽△ABC,即26=AQ4,解得AQ=43.综上,AQ的长为3或43.8.证明:∵△ABC为正三角形,∴∠A=∠C=60°,BC=AB.∵AE=BE,∴BC=2AE,∵ADAC=13,∴CD=2AD,∴ADCD=AEBC=12.又∵∠A=∠C,∴△AED∽△CBD.9.证明:在△ABD和△CBE中,∵∠DAB=∠ECB,∠ABD=∠CBE,∴△ABD∽△CBE,∴ABCB=BDBE,即ABDB=BCBE.∵∠ABC=∠ABD+∠DBC,∠DBE=∠DBC+∠CBE,∠ABD=∠CBE,∴∠ABC=∠DBE.在△ABC和△DBE中,ABDB=BCBE,∠ABC=∠DBE,∴△ABC∽△DBE.。

鲁教版八年级下册数学课件第9章9.5相似三角形判定定理的证明

鲁教版八年级下册数学课件第9章9.5相似三角形判定定理的证明

夯实基础
2.【中考·黄石】在△ABC中,AB=AC,∠BAC= 2∠DAE=2α. (1)如图①,若点D关于直线AE的对称点为F,求证: △ADF∽△ABC.
夯实基础
证明:∵点 D 与点 F 关于直线 AE 对称, ∴AD=AF,∠DAE=∠FAE=α. ∴∠DAF=2α=∠BAC. ∵AB=AC,AD=AF, ∴AADF=AABC=1. ∴△ADF∽△ABC.
夯实基础
证明:∵四边形 ABCD 是菱形, ∴CD=CB,∠D=∠B,CD∥AB. 又∵DF=BE,∴△CDF≌△CBE(SAS). ∴∠DCF=∠BCE. ∵CD∥BH,∴∠H=∠DCF.∴∠BCE=∠H. 又∵∠B=∠B,∴△BEC∽△BCH.
夯实基础
(2)如果BE2=AB·AE,求证:AG=DF. 解:∵BE2=AB·AE,∴BAEB=ABEE. ∵AG∥BC,∴△AEG∽△BEC. ∴ABEE=ABGC.∴BAEB=ABGC. ∵四边形 ABCD 是菱形,∴AB=BC.∴BE=AG. 又∵BE=DF,∴AG=DF.
习题链接
提示:点击 进入习题
1 见习题 2 见习题
3 见习题 4 见习题
答案显示
夯实基础
1.【F 分别 在边 AB,AD 上,BE=DF,CE 的延长线交 DA 的延长线于 点 G,CF 的延长线交 BA 的延长线于点 H. (1)求证:△ BEC∽△BCH;
夯实基础
(3)应用拓展:如图②,在Rt△ABC与Rt△ABD中,∠C =∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕 着点A顺时针旋转角α(0°<∠α<∠BAC),得到 Rt△AB′D′(如图③),当凸四边形AD′BC为等邻角四 边形时,求出它的面积.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形判定定理的证明——典型题专项训练知识点 1 证明相似三角形判定定理
图4-5-1
1.如图4-5-1,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,若AD=1,BD=2,则DEBC的值为( )
A.12
B.13
C.14
D.19
2.如图4-5-2,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF∶FC=( )
A.1∶4 B.1∶3 C.2∶3 D.1∶2
4-5-2
4-5-3
3.2017·恩施州如图4-5-3,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )
A.6 B.8 C.10 D.12
4.用相似三角形的定义证明平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.
知识点 2 相似三角形判定的综合应用
5.如图4-5-4,为了测量一池塘的宽DE,在岸边找到一点C,测得CD=30 m,在DC 的延长线上找到一点A,测得AC=5 m,过点A作AB∥DE交EC的延长线于点B,测得AB=6 m,则池塘的宽DE为( )
A.25 m B.30 m C.36 m D.40 m
4-5-4
4-5-5
6.如图4-5-5,AB是斜靠在墙上的长梯,梯脚B距墙脚1.6 m,梯上点D距墙1.4 m,BD长0.55 m,该梯子的长是________.
7.如图4-5-6所示,已知AD⊥BD,AE⊥BE,求证:AD·BC=AC·BE.
图4-5-6
8.如图4-5-7,在正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
图4-5-7
9.如图4-5-8,△ABC中,点D,F在边AB上,点E在边AC上,如果DE∥BC,EF∥CD,那么一定有( )
A.DE2=AD·AE B.AD2=AF·AB
C.AE2=AF·AD D.AD2=AE·AC
4-5-8
4-5-9
10.如图4-5-9,在边长为9的等边三角形ABC中,BD=3,∠ADE=60°,则AE的长为________.
11.如图4-5-10,已知AB∶AD=BC∶DE=AC∶AE,请猜想∠ABD与∠ACE的关系,并说明理由.
图4-5-10
12.教材习题4.9第3题变式题如图4-5-11,在△ABC中,AC=BC,点E,F在直线AB上,∠ECF=∠A.
(1)如图4-5-11①,点E,F在AB上时,求证:AC2=AF·BE;
(2)如图4-5-11②,点E,F在AB及其延长线上,∠A=60°,AB=4,BE=3,求BF 的长.
图4-5-11
13.如图4-5-12,已知AB⊥DB于点B,CD⊥DB于点D,AB=6,CD=4,BD=14,问:在DB上是否存在点P,使得△PCD与△PAB相似?如果存在,请求出PD的长;如果不存在,请说明理由.
图4-5-12
14.如图4-5-13,已知直线l的函数表达式为y=-43x+8,且l与x轴、y轴分别交于A,B两点,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,同时动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,设点Q,P移动的时间为t秒.
(1)求点A,B的坐标;
(2)当t为何值时,以A,P,Q为顶点的三角形与△AOB相似?
(3)求出(2)中当以A,P,Q为顶点的三角形与△AOB相似时线段PQ的长度.
图4-5-13
详解
1.B 2.D
3.C [解析] 由DE∥BC可得出∠ADE=∠B,结合∠ADE=∠EFC可得出∠B=∠EFC,进而可得出BD∥EF,结合DE∥BC可证出四边形BDEF为平行四边形,根据平行四边形的性质可得出DE=BF,由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质可得出BC=85DE,再根据CF=BC-BF=35DE=6,所以DE=10.
4.解:已知:如图,在△ABC中,DE∥BC,并分别交AB,AC于点D,E.
求证:△ADE与△ABC相似.
证明:∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C.
过点D作DF∥AC交BC于点F,
又∵DE∥BC,
∴四边形DFCE是平行四边形,
∴DE=FC,
∴FCBC=DEBC=ADAB,
∴ADAB=AEAC=DEBC.
而∠A=∠A,∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC.
5.C.
6.4.4 m
7.证明:∵AD⊥BD,AE⊥BE,
∴∠ADC=90°,∠BEC=90°.
在△ACD和△BCE中,
∵∠ACD=∠BCE,∠ADC=∠BEC,
∴△ACD∽△BCE,∴ADBE=ACBC,
∴AD·BC=AC·BE.
8.解:(1)证明:∵四边形ABCD是正方形,∴∠B=90°,AD∥BC,
∴∠AMB=∠EAF.
又∵EF⊥AM,∴∠AFE=90°,
∴∠B=∠AFE,∴△ABM∽△EFA.
(2)∵∠B=90°,AB=12,BM=5,
∴AM=122+52=13,AD=AB=12.
∵F是AM的中点,∴AF=12AM=6.5.
∵△ABM∽△EFA,∴BMFA=AMEA,
即56.5=13EA,∴EA=16.9,
∴DE=EA-AD=4.9.
9.B
10.7.
11.解:∠ABD=∠ACE.理由如下:
∵AB∶AD=BC∶DE=AC∶AE,
∴△ABC∽△ADE,
∴∠BAC=∠DAE,
∴∠BAD=∠CAE.
又∵AB∶AD=AC∶AE,
即AB∶AC=AD∶AE,
∴△BAD∽△CAE,∴∠ABD=∠ACE.
12.解:(1)证明:∵AC=BC,
∴∠A=∠B.
∵∠BEC=∠ACE+∠A,∠ACF=∠ACE+∠ECF,∠ECF=∠A,
∴∠ACF=∠BEC,
∴△ACF∽△BEC,∴ACBE=AFBC,
∴AC2=AF·BE.
(2)∵∠A=60°,AC=BC,
∴△ABC是等边三角形,
∴∠A=∠ABC=∠ACB=60°=∠ECF,
∴∠ACE=∠FCB.
又∵∠ECB=∠ACB-∠ACE,∠F=∠ABC-∠FCB,∴∠ECB=∠F.
又∵∠ABC=∠A,
∴△ACF∽△BEC,
∴ACBE=AFBC,∴AF=163,
∴BF=AF-AB=43.
13.解:存在.
①若△PCD∽△APB,则CDPB=PDAB,即414-PD=PD6,解得PD=2或PD=12;
②若△PCD∽△PAB,则CDAB=PDPB,即46=PD14-PD,解得PD=5.6.
∴当PD的长为2或12或5.6时,△PCD与△PAB相似.
14.解:(1)在y=-43x+8中,
当x=0时,y=8;
当y=0时,x=6.
故点A的坐标为(6,0),点B的坐标为(0,8).
(2)在△AOB中,∠AOB=90°,OA=6,OB=8,由勾股定理,得AB=10.
由题意易知BQ=2t,AQ=10-2t,AP=t.
在△AOB和△AQP中,∠BAO=∠PAQ,
第一种情况:
当AQAB=APAO时,△APQ∽△AOB,
即10-2t10=t6,解得t=3011;
第二种情况:
当AQAO=APAB时,△AQP∽△AOB,
即10-2t6=t10,解得t=5013.
故当t为3011或5013时,以A,P,Q为顶点的三角形与△AOB相似.
(3)∵以A,P,Q为顶点的三角形与△AOB相似,
∴当t=3011时,PQ8=30116,解得PQ=4011;
当t=5013时,PQ8=501310,解得PQ=4013.
故当以A,P,Q为顶点的三角形与△AOB相似时,线段PQ的长度是4011或4013.。

相关文档
最新文档