乳液聚合原理
乳液聚合基本原理
乳液聚合基本原理2016-10-23 作者Ronald Lewarchik乳液聚合是由固特异轮胎橡胶公司在上世纪20年代发明的。
乳液聚合过程产生乳胶粒子,这是一种聚合物的水分散体。
主要使用乳液聚合物的水性涂料是全球范围使用最大的涂料技术类型,占总涂料市场的百分之一,并预计会持续增长。
在乳液聚合中,单体首先分散在水相中。
引发剂的自由基在水相中产生并迁移进入和单体分子一起溶胀的皂基胶束中。
随着聚合反应的进行,更多的单体进入胶束使得聚合继续进行。
图1:乳液聚合的机理【2】在结束反应前,只要有一个自由基存在于胶束中,就有形成近似百万甚至更高分子量的可能。
不像溶剂型聚合物,乳液的粘度取决于含有分散粒子的介质(连续介质)。
通过加入链转移剂来控制分子量。
得到的乳液粒子是一种水包油的乳状液。
单体在水相中。
一个不太常用的乳化技术称为反相乳液聚合过程,是将水溶性的单体分散在非水相。
乳液聚合可以使用间歇工艺,半连续工艺或连续工艺。
商业化乳液聚合物使用半连续或连续工艺甚过简单的间歇工艺,这是因为在一个大的反应釜中乳液间歇工艺产生的热量是不可控的。
在半连续间歇工艺中,单体和引发剂以可控的速率按比例加入可快速聚合。
这种方法便于控制温度,因为单体浓度较低,也可以说单体处在饥饿状态下。
种子乳液聚合反应的开始也使用这种方法。
在连续工艺中,反应体系以一定速率在合适的反应釜内连续进出,这样发生反应体系的总体积在任何时刻都是恒定的。
细乳液是利用混合的乳化剂体系由强力的机械搅拌或均化方式使单体分散在水中而得到的。
所用的混合乳化剂体系包括经典的乳化剂和与水不相溶的助表面活性剂,如长链脂肪醇或烷烃(如鲸蜡醇或鲸蜡烷)。
最终的聚合物颗粒几乎和初始单体液滴的大小相同。
相比用常规手段制得的乳液,它们的粒径分布更广泛。
【4】表1.乳液聚合中原材料的选择在微乳液聚合中,初始系统是由经典的乳化剂,例如月桂基磺酸钠的帮助下在水中分散成10到100纳米液滴的单体,助表面活性剂,如低分子量醇(戊醇或己醇)组成。
乳液聚合原理
M
M/P
R*
M
M
<1μm
乳胶粒长大阶段乳液状态示意图
乳液聚合机理
聚合完成阶段(聚合Ⅲ段) (单体转化率达到60~70%)
M/P ↓ P
聚合完成阶段乳液状态示意图
乳液聚合机理
乳液聚合各个阶段转化率与反应速度和表面张力的关系
表面张力及聚合速度与转化率的关系图
2、乳液聚合的基本原理
2、乳液聚合反应动力学
2、影响乳状液稳定的因素
(1)电解质的加入
当乳状液中加入一定量的电解质后,液相中离子浓度增加,在吸 附层中异性离子增多,电中和的结果是使动电位下降,双电层被压缩。 当电解质浓度达到足够浓度时,乳胶粒的动电位降至临界点以下,乳 胶粒之间的吸引力由于排斥力的消失而体现出来,使体系出现破乳和 凝聚现象。
根据疏水链的种类不同可分为碳氢型和碳氟型 Gemini表面活性剂
阳离子Gemini表面活性剂
阳离子型Gemini表面活性剂
最重要的是含氮的表面活性剂。目前对阳离子型 双子表面活性剂研究较多也是含氮原子的,而且主要 是季铵盐型表面活性剂。这是因为它生物降解性好, 毒性小,性能卓越。
例如:
C9H19
C9H19
Cl(HOH2CH2C)3N
O OH
O
N(CH2CH2OH)3Cl
OH
TM 结构式
阴离子Gemini表面活性剂
阴离子型Gemini表面活性剂
种类较多,大多数专利文献报道的内容属此类, 并已有工业化产品供应。
从报道的化合物结构来看,主要分为磷酸盐、 羧酸盐和磺酸盐型。
阴离子Gemini表面活性剂
Gemini型表面活性剂是一种新型的表面活 性剂,由两个双亲分子的离子头经联接基团通过 化学键联接而成。
乳液聚合的原理
乳液聚合的原理乳液聚合是一种重要的聚合方法,它是通过在水相中形成乳液,然后在乳液中进行聚合反应,最终得到聚合物产品。
乳液聚合具有许多优点,例如可以在水相中进行反应,操作简便,产品纯度高等。
下面将介绍乳液聚合的原理及其相关内容。
首先,乳液聚合的原理是基于乳液的形成和稳定机制。
乳液是由两种不相溶的液体组成的,其中一种液体分散在另一种液体中形成微小的液滴。
在乳液中,分散相的液滴被分散剂包裹,形成稳定的乳液系统。
在乳液聚合中,单体和引发剂溶解在水相中,通过机械搅拌或超声波等方法将单体和引发剂均匀地分散到水相中,形成乳液。
其次,乳液聚合的过程主要包括乳化、聚合和固化三个阶段。
首先是乳化阶段,单体和引发剂在水相中形成乳液,乳化剂的选择和使用对乳化效果有着重要的影响。
其次是聚合阶段,通过加热或添加引发剂等方法,使得单体在乳液中发生聚合反应,形成聚合物微球。
最后是固化阶段,将聚合物微球进行固化处理,得到最终的聚合物产品。
乳液聚合的原理具有许多优点。
首先,乳液聚合可以在水相中进行反应,无需使用有机溶剂,有利于环保和资源节约。
其次,乳液聚合操作简便,不需要复杂的设备和条件,适用于工业化生产。
另外,乳液聚合产品的纯度较高,微球尺寸均匀,可以根据需要进行调控,广泛应用于涂料、胶粘剂、油墨等领域。
总之,乳液聚合是一种重要的聚合方法,其原理是基于乳液的形成和稳定机制,包括乳化、聚合和固化三个阶段。
乳液聚合具有操作简便、产品纯度高等优点,适用于涂料、胶粘剂、油墨等领域。
希望本文能够对乳液聚合的原理有所了解,为相关领域的研究和应用提供帮助。
第三章 乳液聚合
1、乳化剂的分类
高分子乳化剂 表面活性剂乳化剂 按照乳化剂作用形 成稳定胶束的机理 低分子乳化剂
高分散性固体粉末乳化剂
乳化剂的分类
阴离子型乳化剂 (使用条件:pH>7) 常用的阴离子型乳化剂有:硬脂酸盐、松香酸盐、 烷基硫酸盐、烷基磺酸盐、烷基芳基磺酸盐等。
阳离子型乳化剂 (使用条件:pH<7) 主要类型是胺类化合物的盐如脂肪胺盐 按照亲水基团的性质 和季胺盐。 非离子型乳化剂 (适用于很宽的pH值范围) 主要有聚氧乙烷基的酯和醚以及环氧乙烷和 环氧丙烷的共聚物等 两性型乳化剂
附层中异性离子增多,电中和的结果是使动电位下降,双电层被压 缩。当电解质浓度达到足够浓度时,乳胶粒的动电位降至临界点以
下,乳胶粒之间的吸引力由于排斥力的消失而体现出来,使体系出
现破乳和凝聚现象。 离子型乳化剂形成的乳状液其电解质稳定性差。
2、乳液聚合的基本原理
(2)机械作用
当机械作用能量超过聚集活化能时,乳胶粒就彼此产生凝聚。 非离子型乳化剂形成的乳状液其机械稳定性差;
细乳液聚合(Miniemulsion)
细乳液聚合
动力学稳定体系,必须依靠高剪切力, 有乳化剂和助乳化剂提供稳定性 助乳化剂通常为长链脂肪醇或长链烷烃 特点
粒子尺寸处于亚微米级 , 大于单体溶胀胶束 (40~50纳米),小于单体液滴(1000纳米), 粒径分布较宽 预乳化
细乳液的制备 乳化
细乳化
微乳液聚合(Microemulsion)
对于聚氧乙烯型和多元醇型非离子型乳化剂,其HLB值 可按如下公式进行计算: 非离子型乳化剂的HLB值=
乳化剂的基本特征参数
各种HLB值的表面活性剂在水中的性质
在水中溶解情况 不能够在水中分散 HLB值 0 2 4 分散性较差 不稳定乳状液 稳定的乳状液 生成半透明分散液 生成透明溶液 6 8 10 12 洗涤剂 增容剂 作为O/W型乳化剂 润湿剂 作为W/O型乳化剂 应用范围
乳液聚合原理 乳化剂
乳液聚合原理乳化剂乳液聚合原理及乳化剂一、引言乳液是由两种或多种不相溶的液体形成的混合物,其中一种液体被分散在另一种连续相中。
乳液广泛应用于食品、化妆品、医药和涂料等领域。
乳化剂是乳液形成的关键因素,它能够降低液体间的表面张力,使乳液稳定存在。
本文将探讨乳液聚合原理以及乳化剂的作用。
二、乳液聚合原理乳液聚合是指将两种或多种不相溶的液体通过乳化剂的作用,形成稳定的乳液体系的过程。
在乳液中,分散相的颗粒尺寸通常在0.1-10微米之间。
乳液的形成是由于乳化剂的存在,乳化剂的分子结构中同时具有亲水性和亲油性基团,能够在两种不相溶的液体界面上形成一层分子膜,称为吸附膜。
这种吸附膜能够降低液体间的表面张力,使不相溶的液体形成乳液。
乳化剂的分子结构通常包含两部分,一部分是亲水基团,能够与水分子相互作用,另一部分是亲油基团,能够与油类分子相互作用。
当乳化剂添加到不相溶的液体中时,亲水基团与水分子发生作用,亲油基团与油类分子发生作用,从而形成一个稳定的乳液体系。
乳化剂的亲水基团通常是羟基、羧基或胺基等,亲油基团通常是烷基、芳香基或烯基等。
在乳液聚合过程中,乳化剂的作用主要有两个方面。
首先,乳化剂能够降低液体间的表面张力,使分散相颗粒能够形成稳定的乳液。
其次,乳化剂能够抑制乳液的凝聚和分离,保持乳液的稳定性。
乳液的稳定性取决于乳化剂的种类和用量,以及外界温度、pH值和离子浓度等因素。
三、乳化剂的分类根据乳化剂的来源和性质,可以将乳化剂分为天然乳化剂和合成乳化剂。
1. 天然乳化剂:天然乳化剂是从植物或动物中提取的物质,具有较好的生物相容性和生物可降解性。
常见的天然乳化剂包括卵磷脂、明胶、明胶酸钠等。
天然乳化剂广泛应用于食品、药品和化妆品等领域。
2. 合成乳化剂:合成乳化剂是通过化学合成得到的物质,具有较好的乳化性能和稳定性。
常见的合成乳化剂包括十二烷基苏糖酸酯、聚乙烯醇、聚丙烯酸酯等。
合成乳化剂广泛应用于涂料、塑料和洗涤剂等领域。
微流控乳液聚合
微流控乳液聚合第一部分:引言近年来,微流控技术在化学、生物、材料等领域得到了广泛的应用。
在这些领域中,乳液聚合作为一种重要的合成方法,因其在微流控条件下实现了高效、可控的聚合反应而备受关注。
本文将重点探讨微流控乳液聚合的原理、应用以及优势。
第二部分:微流控乳液聚合的原理微流控乳液聚合是利用微流控技术将两种或多种不相溶的液体通过微观通道混合,并在混合过程中进行聚合反应的一种方法。
通常情况下,乳液聚合需要通过剪切、离散相的形成以及聚合反应的进行来实现。
在微流控乳液聚合中,需要通过微流控芯片来实现液体的混合。
这种微流控芯片通常由微通道、混合区和反应区组成。
微通道用于将两种或多种不相溶的液体导入混合区,混合区通过特定的结构和流动条件来促使液体混合。
混合完成后,液体流入反应区进行聚合反应。
微流控乳液聚合的原理基于微观尺度下流体的特性。
由于微通道的尺寸较小,流体流动时存在较大的表面积与体积比,从而增加了液体之间的接触面积,促进了混合的发生。
同时,微流控芯片的结构设计可以通过调节液体流动的速度、方向和混合程度来控制聚合反应的进程,实现对反应的高效控制。
第三部分:微流控乳液聚合的应用微流控乳液聚合在化学、生物、材料等领域具有广泛的应用前景。
其中,最具代表性的应用之一是在纳米材料的合成中。
通过微流控乳液聚合,可以控制纳米粒子的形貌、尺寸和结构,实现对纳米材料性能的精确调控。
此外,微流控乳液聚合还可以应用于纳米药物载体的制备、微胶囊的合成等领域。
在生物领域,微流控乳液聚合也具有重要的应用价值。
例如,可以利用微流控乳液聚合制备具有特定结构和功能的微胶囊,用于细胞培养、组织工程等方面。
此外,微流控乳液聚合还可以用于生物传感器的制备,实现对生物分子的高灵敏检测。
微流控乳液聚合还可以应用于化学反应的快速筛选和优化。
由于微流控芯片可以实现高效的混合和反应控制,可以快速地进行多种反应条件的测试,从而找到最佳的反应条件。
这对于化学反应的高通量筛选和优化具有重要意义。
乳液聚合 助溶剂
乳液聚合助溶剂(实用版)目录1.乳液聚合的概念和原理2.乳液聚合中助溶剂的作用3.乳液聚合中助溶剂的选择4.乳液聚合中助溶剂的影响因素5.乳液聚合中助溶剂的案例分析正文一、乳液聚合的概念和原理乳液聚合是一种在液滴分散体系中进行的聚合反应,形成的聚合物具有独特的结构和性能。
乳液聚合的原理主要是通过引入表面活性剂和/或保护胶来稳定液滴,使得分散相和连续相能够共存,并在其中进行聚合反应。
二、乳液聚合中助溶剂的作用在乳液聚合过程中,助溶剂起到了至关重要的作用。
助溶剂可以提高聚合物在溶剂中的溶解度,促进聚合反应的进行,同时还可以改善聚合物的性能。
助溶剂的种类和用量对聚合物的结构和性能有着重要的影响。
三、乳液聚合中助溶剂的选择在乳液聚合中,助溶剂的选择主要取决于聚合物的种类和性能要求。
一般来说,助溶剂应该具有良好的溶解性和稳定性,且与聚合物具有良好的相容性。
此外,助溶剂的沸点、溶解度和毒性等性质也需要考虑。
四、乳液聚合中助溶剂的影响因素乳液聚合中助溶剂的影响因素主要包括以下几个方面:1.助溶剂的种类和用量:不同的助溶剂对聚合物的性能影响不同,而助溶剂的用量也会影响聚合物的结构和性能。
2.聚合物的种类和性能要求:不同的聚合物对助溶剂的需求不同,助溶剂的选择需要根据聚合物的种类和性能要求进行。
3.聚合反应的条件:聚合反应的温度、压力和时间等条件也会影响助溶剂的选择和效果。
五、乳液聚合中助溶剂的案例分析以聚丙烯酸酯乳液聚合为例,常用的助溶剂包括甲醇、乙醇、丙酮等。
这些助溶剂可以提高聚丙烯酸酯在溶剂中的溶解度,促进聚合反应的进行,同时还可以改善聚合物的性能。
乳液聚合原理 ppt课件
乳液聚合原理
2、乳液聚合的基本原理
(2)机械作用
当机械作用能量超过聚集活化能时,乳胶粒就彼此产生凝聚。 非离子型乳化剂形成的乳状液其机械稳定性差;
(3)冰冻
由于冰晶的继续增长而被覆盖在下面的乳状液一方面受到机械 压力,一方面水的析出时乳状液体系内电解质浓度升高,直至最 后造成破乳。
2、乳液聚合的基本原理
1、乳状液稳定的条件
(1)乳化剂使分散相和分散介质的表面张力降低
以表面活性剂作为乳化剂时,乳化剂使分散相和分散介质 的界面张力降低, 使液滴和乳胶粒的自然聚集的能力大大降 低,因而使体系稳定性提高。但这样仅使液滴和乳胶粒有自聚 集倾向,而不能彻底防治液滴之间的聚集。
例如将鱼肝油分散在浓度为2%的肥皂水中,其界面自由能 比纯水降低了90%以上。
N——乳胶粒的颗粒数
ρ——自由基的生成速乳液度聚合原理
乳液聚合反应动力学
乳胶粒的颗粒数与乳化剂的浓度及引发剂的浓度有关。对于苯乙 烯和其它水溶性较小的单体的乳液聚合,其关系为:
N [E]0.6[I]0.4 Rp [E]0.6[I]0.4 XN [E]0.6[I]-0.6
[E]——乳化剂浓度; [I]—— 引发剂浓度。
M
M/P
பைடு நூலகம்
R*
M
M
<1μm
乳胶粒长大阶段乳液状态示意图
乳液聚合原理
乳液聚合机理
聚合完成阶段(聚合Ⅲ段) (单体转化率达到60~70%)
M/P ↓ P
聚合完成阶段乳液状态示意图 乳液聚合原理
乳液聚合机理
乳液聚合各个阶段转化率与反应速度和表面张力的关系
表面张力及聚合速度与转化率的关系图乳液聚合原理
乳液聚合原理
乳液聚合原理乳液聚合是一种重要的合成方法,它在许多领域都有着广泛的应用。
乳液聚合是指在水相中存在的乳液中进行的聚合反应。
在这种反应中,单体以微乳滴的形式存在于水相中,通过乳化剂的作用形成乳液。
乳液聚合具有许多优点,如能够有效控制聚合反应的温度、提高反应速率、减小粒径等,因此在聚合工艺中得到了广泛的应用。
乳液聚合的原理是基于乳液的形成和稳定机制。
乳化剂在水相和油相之间形成一层薄膜,使得油相以微乳滴的形式分散在水相中。
在乳液中进行聚合反应时,乳化剂的存在可以有效地防止微乳滴的聚集和凝聚,从而保持微乳滴的稳定性。
此外,乳化剂还可以调节微乳滴的粒径和分布,使得聚合反应可以在更加均匀和稳定的条件下进行。
乳液聚合的原理还涉及到乳化剂的选择和使用。
乳化剂的种类和用量对于乳液的形成和稳定起着至关重要的作用。
合适的乳化剂可以有效地降低乳液的表面张力,增加乳液的稳定性,促进聚合反应的进行。
因此,在乳液聚合中,选择合适的乳化剂并合理控制其用量是至关重要的。
乳液聚合的原理还包括聚合反应的控制和调节。
在乳液中进行聚合反应时,需要控制好反应温度、搅拌速率、乳化剂用量等因素,以保证聚合反应的进行和产物的质量。
同时,还需要注意乳液的稳定性和分散性,以防止聚合反应过程中出现不均匀或不完全的情况。
总的来说,乳液聚合是一种重要的合成方法,其原理涉及到乳液的形成和稳定机制、乳化剂的选择和使用、聚合反应的控制和调节等方面。
乳液聚合不仅可以有效地改善聚合反应的条件,提高产物的质量,而且还具有许多其他优点,因此在聚合工艺中得到了广泛的应用。
希望通过本文的介绍,可以更加深入地了解乳液聚合的原理和应用,为相关领域的研究和应用提供一定的参考和帮助。
乳液聚合原理
Gemini表面活性剂分子中含有两个亲水基,具有足够 的亲水性,而且其分子含有两条疏水链,疏水性更强, 更易在水溶液表面吸附和在水溶液中形成胶团。因此, 与相应的单链表面活性剂相比较,具有更好地水溶性。
硬脂酸盐: R-COOM 松香酸盐: C19H29COOM 烷基硫酸盐: ROSO3M 烷基磺酸盐: R-SO3M 烷基芳基磺酸盐:R- -SO3M
R=CnH2n+1 , ,n<9,不能形成胶束 ; n=10,能形成胶束, 乳化能力较差; n=12~18,乳化效果最好; n>22,不能分散于水中,不能形成胶束。
C9H19
Cl(HOH2CH2C)3N
O OH
O
N(CH2CH2OH)3Cl
OH
TM 结构式
阴离子Gemini表面活性剂
阴离子型Gemini表面活性剂
种类较多,大多数专利文献报道的内容属此类, 并已有工业化产品供应。
从报道的化合物结构来看,主要分为磷酸盐、 羧酸盐和磺酸盐型。
阴离子Gemini表面活性剂
M
M/P
R*
M
M
<1μm
乳胶粒长大阶段乳液状态示意图
乳液聚合机理
聚合完成阶段(聚合Ⅲ段) (单体转化率达到60~70%)
M/P ↓ P
聚合完成阶段乳液状态示意图
乳液聚合机理
乳液聚合各个阶段转化率与反应速度和表面张力的关系
表面张力及聚合速度与转化率的关系图
2、乳液聚合的基本原理
2、乳液聚合反应动力学
Gemini型表面活性剂是一种新型的表面活 性剂,由两个双亲分子的离子头经联接基团通过 化学键联接而成。
自由基乳液聚合原理演示文稿ppt(共22张PPT)
T↑,乳液稳定性下降。
3、搅拌
乳液聚合的搅拌以维持单体和其它组分适当分散即可。它 的目的主要是加快单体和游离基的扩散速度,分散聚合物胶乳, 一般控制在 105-120 rpm 。
5、聚合速度、转化率
聚合速度与聚合物质量之间没有直接的关系,但反应速度太大,散 热困难,所以一般采取散热较好的情况下,尽可能加大反应速度。
(3)聚合结束阶段(减速期) 关于减速期的说明:
体系中只有水相和乳胶粒两相。乳胶粒内由单体和聚合物两 部分组成,水中的自由基可以继续扩散入内使引发增长或终止, 但单体再无补充来源,聚合速率将随乳胶粒内单体浓度的降低而 降低。
该阶段是单体 — 聚合物乳胶粒转变成聚合物乳胶粒的过程。
五、乳液聚合影响因素分析
II. 环氧乙烷和环氧丙烷的共聚物。
由于具有非离子特性,所以对 pH 变化不敏感比较稳定,但乳化能 力不足,一般不单独使用。
6、乳液的稳定性和破乳
固体乳胶微粒的粒径在 1 微米以下(微米),乳液体系长时 间静置时不沉降的状态为稳定乳液。
乳液由不互溶的分散相和分散介质所组成,属多相体系,乳液的 稳定性是相对有条件的。
1.8nm 3.2nm
薄层状胶束
棒状胶束 水
球状胶束
c. 浊点和三相点
非离子表面活性剂被加热到一定温度,溶液由透明变为浑浊,出现
此现象时的温度称为浊点(Cloud Point),乳液聚合在浊点温度以下进
进入增溶胶束,引发聚合,形成乳胶粒 —— 胶束成核
行。 脂肪胺盐,如 RNH2•HCl 、 RNH(CH3)•HCl
昆虫水黾为何能够毫不费力地站在水面上, 并能快速地移动和跳跃?
水黾脚和后脚特别细长,长着许多直径为纳米量级的细毛,具有疏 水性,利用水的表面张力,使它们能在水面上自由行走、快速滑移和 跳跃。
乳液聚合简介
Gemini表面活性剂的性质
更易聚集生成胶团,因而有更低的临界胶 束浓度
• Gemini表面活性剂比单链表面活性剂更易在水溶 液中自聚,且倾向于形成更低曲率的聚集体。 • Gemini表面活性剂的临界胶束浓度(CMC)值比 相应的传统表面活性剂低1~2个数量级。
Gemini表面活性剂的性质
具有更低的Kraff点
2、乳液聚合的基本原理
乳化现象及乳化液的稳定性
如果在水相中加入超过一定数量(临界胶束
浓度)的乳化剂,经搅拌后形成乳化液体,
停止搅拌后不再分层,此种现象称为乳化现
象,此种稳定的非均相液体即是乳状液。
2、乳液聚合的基本原理
1、乳状液稳定的条件
(1)乳化剂使分散相和分散介质的表面张力降低
以表面活性剂作为乳化剂时,乳化剂使分散相和分散介质
粘结剂、涂料:白胶、乳胶漆等
各种助剂(纺织、造纸、建筑)等
1、乳液聚合生产工艺的特点
乳液聚合生产的主要特点是:
(1) 聚合速度快,分子量高; (2) 以水为介质,成本低。反应体系粘度小,稳定性优良,反应热
易导出。可连续操作;
(3) 乳液制品可以直接作为涂料和粘合剂。粉料颗粒小,适合于某 些特殊使用场合; (4) 由于使用乳化剂,聚合物不纯。后处理复杂,成本高。
乳液聚合反应动力学
乳胶粒的颗粒数与乳化剂的浓度及引发剂的浓度有关。对于苯
乙烯和其它水溶性较小的单体的乳液聚合,其关系为:
N [E]0.6[I]0.4
Rp [E]0.6[I]0.4 XN [E]0.6[I]-0.6 [E]——乳化剂浓度; [I]—— 引发剂浓度。
乳液聚合反应动力学
对具有一定水溶性的单体,如VAc、MMA等,能同时在胶束和水 相中进行聚合,也很容易发生链转移,生成溶于水的自由基,它的反
乳液聚合的原理
乳液聚合的原理乳液聚合是一种重要的合成方法,它在化工领域得到了广泛的应用。
乳液聚合的原理是指通过将水溶性单体和油溶性单体分散在水相中,然后在适当的条件下进行聚合反应,最终形成乳液聚合物。
乳液聚合的原理涉及到乳液的形成、聚合反应的进行以及乳液聚合物的特性等方面。
下面将详细介绍乳液聚合的原理。
首先,乳液的形成是乳液聚合的第一步。
乳液是由水相和油相组成的两相系统,其中水相是由水溶性单体形成的水溶液,油相是由油溶性单体形成的油相。
在乳化剂的作用下,水溶性单体和油溶性单体可以在水相中形成胶束结构,使得油相分散在水相中,形成乳液。
这一过程是通过机械搅拌或者超声波等方法实现的,乳化剂的选择和使用对乳液的形成起着至关重要的作用。
其次,聚合反应的进行是乳液聚合的关键步骤。
在形成乳液后,需要加入引发剂或者起始剂等聚合引发剂,使得水溶性单体和油溶性单体在乳液中进行聚合反应。
聚合反应的进行需要控制适当的温度、pH值、搅拌速度等条件,以确保聚合反应的顺利进行。
在聚合反应过程中,水相和油相中的单体分子逐渐聚合形成高分子链,最终形成乳液聚合物。
聚合反应的进行对乳液聚合物的结构和性能有着重要的影响。
最后,乳液聚合物的特性是乳液聚合的重要表现。
乳液聚合物具有特殊的结构和性能,如粒径小、分散性好、表面活性高等特点。
这些特性使得乳液聚合物在涂料、胶黏剂、医药、食品等领域得到了广泛的应用。
乳液聚合物的特性与乳化剂的选择、聚合条件的控制、单体的选择等因素密切相关,需要通过合理的设计和控制来实现。
综上所述,乳液聚合的原理涉及到乳液的形成、聚合反应的进行以及乳液聚合物的特性等方面。
了解乳液聚合的原理对于掌握乳液聚合的工艺条件、优化乳液聚合物的性能具有重要的意义。
乳液聚合作为一种重要的合成方法,将在化工领域继续发挥重要的作用。
乳液聚合机理
乳液聚合机理
乳液聚合是一种重要的合成方法,可以制备各种高分子乳液。
其基本原理是以水为连续相,以合适的表面活性剂和乳化剂将水不溶性单体或预聚体分散在水中,再通过聚合反应使其在水相中形成高分子颗粒。
乳液聚合机理主要包括以下几个方面:
1. 乳化剂作用:乳化剂在水相中形成一个分子膜,使水不溶性单体或预聚体在这个膜上形成胶束,保护它们不会凝聚成大分子。
同时,乳化剂还能调节胶束的粒径和稳定性。
2. 表面活性剂作用:表面活性剂能够吸附在单体或预聚体的表面,降低它们的表面张力,使其易于分散在水相中,并能够与乳化剂形成复合胶束,稳定分散体系。
3. 聚合反应:在合适的条件下,单体或预聚体开始进行聚合反应。
由于乳化剂和表面活性剂的存在,高分子聚合物会在水相中形成颗粒,与胶束结构相似。
同时,乳化剂和表面活性剂也参与了聚合反应,成为了高分子的一部分。
4. 聚合物稳定性:由于乳化剂和表面活性剂的存在,高分子颗粒会保持一定的稳定性,避免凝聚成大分子。
此外,高分子颗粒的粒径和形态也能够通过调节乳化剂和表面活性剂的种类和用量进行控制。
总之,乳液聚合机理是一个复杂的过程,涉及到多种因素的作用和相互作用。
通过合理选择乳化剂和表面活性剂,控制聚合条件,可
以制备出各种不同性质的高分子乳液,具有广泛的应用前景。
醋酸乙烯酯的乳液聚合实验现象
醋酸乙烯酯的乳液聚合实验现象一、实验介绍醋酸乙烯酯的乳液聚合实验是一种常见的实验,它可以用于探究乳液聚合的原理和过程。
在实验中,我们将醋酸乙烯酯、十二烷基硫酸钠、水和过硫酸铵混合后,通过搅拌和加热等操作使其发生聚合反应,最终得到白色均匀的聚合物乳液。
二、实验原理1. 乳液聚合乳液聚合是指将单体分散在水相中,通过引发剂诱导其在水相中发生自由基聚合反应而形成高分子物质的过程。
在这个过程中,单体首先被分散在水相中,并与表面活性剂形成胶束结构。
然后添加引发剂并加热搅拌,引发剂会分解产生自由基,在胶束表面形成活性物种。
这些活性物种会使单体发生自由基聚合反应,从而形成高分子物质。
2. 醋酸乙烯酯的特点醋酸乙烯酯是一种无色透明的液体,具有较好的挥发性和溶解性。
它可以通过乳液聚合的方式制备成均匀的聚合物乳液,这种乳液具有良好的稳定性和可加工性。
3. 十二烷基硫酸钠的作用十二烷基硫酸钠是一种阴离子表面活性剂,它可以使醋酸乙烯酯分散在水相中,并形成胶束结构。
同时,它还可以调节胶束大小和分布,从而影响乳液聚合反应的速率和效果。
4. 过硫酸铵的作用过硫酸铵是一种引发剂,它可以分解产生自由基,并在胶束表面形成活性物种。
这些活性物种会使单体发生自由基聚合反应,从而形成高分子物质。
三、实验步骤1. 准备材料:醋酸乙烯酯、十二烷基硫酸钠、水、过硫酸铵。
2. 在容量瓶中加入适量水,并加入十二烷基硫酸钠,搅拌至溶解。
3. 将醋酸乙烯酯加入容量瓶中,搅拌均匀。
4. 在另一个容量瓶中加入适量水,并加入过硫酸铵,搅拌均匀。
5. 将第4步中的溶液缓慢滴加到第3步中的溶液中,同时不断搅拌。
6. 加热搅拌,使反应温度保持在60℃左右。
反应过程中会出现白色乳液,继续加热搅拌直到乳液变得均匀。
7. 关闭加热器并停止搅拌。
让乳液自然冷却至室温。
8. 观察乳液的性质和外观,并进行相应的测试和分析。
四、实验结果1. 实验现象在实验过程中,我们可以观察到以下现象:(1)开始时,溶液呈现混浊状态,颜色为白色或微黄色。
丙烯酸聚合成丙烯酸乳液原理
丙烯酸聚合成丙烯酸乳液原理
丙烯酸乳液是由丙烯酸单体和其他单体通过乳液聚合反应合成的。
乳液聚合是一种自由基聚合反应,其基本原理如下:
1. 引发剂分解:在乳液聚合反应中,引发剂通常是过氧化物或偶
氮化合物,它们在一定温度下分解,产生自由基。
2. 自由基引发:自由基与丙烯酸单体中的双键发生反应,形成一
个新的自由基,这个自由基又可以引发其他单体的反应。
3. 链增长:自由基不断引发单体的反应,形成一个长链的聚合物。
4. 链终止:当自由基相互结合或与其他物质发生反应时,链增长
过程停止,形成一个稳定的聚合物。
在乳液聚合中,单体和引发剂被分散在水中,形成一个乳液体系。
乳液聚合的优点是反应速度快、分子量高、聚合物乳液稳定等。
通过
调整单体的种类和比例、引发剂的种类和用量、反应温度等参数,可
以控制乳液的性能和质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乳胶粒
M
M/P M
R*
~1μm
乳胶粒生成阶段乳液状态示意图
乳液聚合机理
乳胶粒长大阶段(聚合Ⅱ段)(单体转化率达到20~60%)
M
M/P
R*
M
M <1μm
乳胶粒长大阶段乳液状态示意图
乳液聚合机理
聚合完成阶段(聚合Ⅲ段) (单体转化率达到60~70%)
M/P ↓ P
聚合完成阶段乳液状态示意图
乳液聚合机理
3、乳液聚合物料体系及其影响因素
单体
乳液聚合的单体必须具备以下几个条件:
⑴ 单体可以增溶溶解但不能全部溶解于乳化剂的水溶液; ⑵ 单体可以在增溶溶解温度下进行聚合反应; ⑶ 单体与水和乳化剂无任何作用
⑷ 对单体的纯度要求达到99%以上
⑸ 在乳液聚合中,单体的含量一倍控制在30%~60%之间 。
3、乳液聚合物料体系及其影响因素
• 分散阶段(聚合前段) • 乳胶粒长大阶段(聚合II段)
• 乳胶粒生成阶段(聚合I段) • 聚合完成阶段(聚合III段)
乳液聚合机理
分散阶段(聚合前段)
M
M
增容胶束M胶束M NhomakorabeaM
单体液滴 M
M
~1μm
分散阶段乳液状态示意图
乳液聚合机理
乳胶粒生成阶段(聚合Ⅰ段)(单体转化率达到10~20%)
M
M
固定层 吸附层
有电荷,故彼此之间存在静电排斥 力。而且距离越近排斥力越大,使
+
乳胶粒难以接近而不发生聚集,从 而使乳状液具有稳定性。
带负电的乳胶粒双电层示意图
+
力之间的平衡。由于乳胶粒表面带
+ + + _ _ _ + _ _ _ _ + _ 乳胶粒 _ + _ _ _ + + +
+
2、乳液聚合的基本原理
Gemini表面活性剂的性质
更易吸附在气/液表面,从而更有效地降
低水的表面张力
Gemini表面活性剂分子含有两条疏水链,疏水性 强,而且Gemini表面活性剂分子中的连接基通过 化学键将两个亲水基连接起来,削弱了亲水基间 的静电斥力及其水化层间的斥力,促进了Gemini 表面活性剂分子在水溶液表面的吸附和在水溶液 中的自聚,从而导致其具有很高的表面吸附能力 和聚集体形成能力。
C10H21CHCH2O(EO)n H O
O C10H21CHCH2O(EO)n H
非离子 Gemini 表面活性剂
其它Gemini表面活性剂
阴阳离子Gemini表面活性剂 不对称结构Gemini表面活性剂 多烷基多季胺盐型Gemini表面活性剂 含有杂原子的Gemini表面活性剂 含碳氟链的Gemini表面活性剂
乳化剂
1、乳化剂的分类
高分子乳化剂 表面活性剂乳化剂 按照乳化剂作用形 成稳定胶束的机理 低分子乳化剂
高分散性固体粉末乳化剂
乳化剂的分类
阴离子型乳化剂 (使用条件:pH>7) 常用的阴离子型乳化剂有:硬脂酸盐、松香酸盐、 烷基硫酸盐、烷基磺酸盐、烷基芳基磺酸盐等。
阳离子型乳化剂 (使用条件:pH<7) 主要类型是胺类化合物的盐如脂肪胺盐 按照亲水基团的性质 和季胺盐。 非离子型乳化剂 (适用于很宽的pH值范围) 主要有聚氧乙烷基的酯和醚以及环氧乙烷和 环氧丙烷的共聚物等 两性型乳化剂
非离子型表面活性剂的亲水基主要是聚氧乙烯基。升高
温度会破坏聚氧乙烯基同水的结合,而使溶解度下降,甚至 析出。所以加热时可以观察到溶液发生混浊现象。
发生混浊的最低温度称为浊点
聚氧乙烯的分子数越多,亲水性越强,浊点就越高。反 之,亲油性越强,浊点越低。
Gemini表面活性剂定义、结构特 征
双子表面活性剂(Gemini surfactant), 又称孪连表面活性剂、 双生表面活性剂、 偶联表面活性剂, Gemini型表面活性剂是一种新型的表面活 性剂,由两个双亲分子的离子头经联接基团通过 化学键联接而成。 Gemini是双子星座的意思。 1991年, Gemini的概念由Menger等第一次 提出。
TM 结构式
阴离子Gemini表面活性剂
阴离子型Gemini表面活性剂
种类较多,大多数专利文献报道的内容属此 类,并已有工业化产品供应。 从报道的化合物结构来看,主要分为磷酸盐、 羧酸盐和磺酸盐型。
阴离子Gemini表面活性剂
举例:
O NaO P O(CH2)m O O P ONa
O O SO3Na
(3)冰冻
由于冰晶的继续增长而被覆盖在下面的乳状液一方面受到机 械压力,一方面水的析出时乳状液体系内电解质浓度升高,直至 最后造成破乳。
(4)长期存放
2、乳液聚合的基本原理
乳液聚合机理及动力学
1、乳液聚合机理
乳液聚过程合体系的相转变: 液-液体系→液-固体系
根据间隙乳液聚合的动力学特征,可以把整个乳液聚合过程分为四 个阶段:
(可以在任何pH值条件下使用)
乳化剂的分类
阴离子型乳化剂
是溶液聚合中使用最广泛的乳化剂。
由于阴离子型乳化剂外层具有静电荷,所以其机械稳定性好,
化学稳定性差。
硬脂酸盐:
松香酸盐: 烷基硫酸盐: 烷基磺酸盐:
R-COOM
C19H29COOM ROSO3M R-SO3M -SO3M
R=CnH2n+1
, ,n<9,不能形成胶束
可以是亲水性的,也可以是疏水性的。
Gemini表面活性剂的类型
根据亲水头基的性质,双子表面活性剂可分为:
阳离子型——研究的最为广泛,主要研究为季铵盐型表 面活性剂 阴离子型——包含磷酸盐、羧酸盐、硫酸盐和磺酸盐4种 类型 非离子型——一般是从糖类化合物衍生而来 两性离子双子表面活性剂
根据疏水链的种类不同可分为碳氢型和碳氟型 Gemini表面活性剂
粘结剂、涂料:白胶、乳胶漆等
各种助剂(纺织、造纸、建筑)等
1、乳液聚合生产工艺的特点
乳液聚合生产的主要特点是:
(1) 聚合速度快,分子量高; (2) 以水为介质,成本低。反应体系粘度小,稳定性优良,反应热
易导出。可连续操作;
(3) 乳液制品可以直接作为涂料和粘合剂。粉料颗粒小,适合于某 些特殊使用场合; (4) 由于使用乳化剂,聚合物不纯。后处理复杂,成本高。
O
SO3Na
OC 12H25
OC12H25
双烷氧基双磷酸盐 Gemini 表面活性剂
二聚体磺酸盐阴离子Gemini 表面活性剂
O O O
COONa COONa
二聚体羧酸盐阴离子Gemini 表面活性剂
非离子Gemini表面活性剂
近年来,阳离子Gemini 表面活性剂和阴离子 Gemini 表面活性剂研究 较多,而非离子Gemini 表面活性剂研究的相对 较少。 右图是以十二酸为原料 制备的一种非离子 Gemini 表面活性剂
(3)空间位阻的保护作用
乳化剂使液滴或乳胶粒周围形
乳胶粒
成有一定厚度和强度的水合层,起 空间位阻的保护作用 。这种空间位
阻的保护作用阻碍了液滴或乳胶粒之 间的聚集而使乳状液稳定 具有空间位阻作用的水合层示意图
2、乳液聚合的基本原理
2、影响乳状液稳定的因素
(1)电解质的加入
当乳状液中加入一定量的电解质后,液相中离子浓度增加,在吸
乳液聚合反应动力学
乳胶粒的颗粒数与乳化剂的浓度及引发剂的浓度有关。对于苯
乙烯和其它水溶性较小的单体的乳液聚合,其关系为:
N [E]0.6[I]0.4
Rp [E]0.6[I]0.4 XN [E]0.6[I]-0.6 [E]——乳化剂浓度; [I]—— 引发剂浓度。
乳液聚合反应动力学
对具有一定水溶性的单体,如VAc、MMA等,能同时在胶束和水 相中进行聚合,也很容易发生链转移,生成溶于水的自由基,它的反
乳液聚合各个阶段转化率与反应速度和表面张力的关系
表面张力及聚合速度与转化率的关系图
2、乳液聚合的基本原理
2、乳液聚合反应动力学
一般乳胶粒的颗粒数为1014个/ml左右;
而自由基生成速度为1013/ml*s;
二个自由基分别扩散到一个乳胶粒中的时间间隔为10s。按照自由基 反应机理,有S-E-H(smith-Ewart-Harkins)方程: RP=kp[M][M· kp[M](N/2) ]= Xn= [kp[M](N/2)]/(ρ/2)= kp[M]N/ρ N——乳胶粒的颗粒数 ρ——自由基的生成速度
Gemini表面活性剂的性质
更易聚集生成胶团,因而有更低的临界胶
束浓度
• Gemini表面活性剂比单链表面活性剂更易在水溶 液中自聚,且倾向于形成更低曲率的聚集体。 • Gemini表面活性剂的临界胶束浓度(CMC)值比 相应的传统表面活性剂低1~2个数量级。
Gemini表面活性剂的性质
具有更低的Kraff点 离子型表面活性剂的溶解度随着温度的升高而增加,当 达到一定温度后,其溶解度会突然迅速增加,这个转变 温度称为Kraff点 Gemini表面活性剂分子中含有两个亲水基,具有足够 的亲水性,而且其分子含有两条疏水链,疏水性更强, 更易在水溶液表面吸附和在水溶液中形成胶团。因此, 与相应的单链表面活性剂相比较,具有更好地水溶性。
第七章 自由基乳液聚合
生产工艺及设备
1、乳液聚合生产工艺的特点
乳液聚合的定义:
乳液聚合是单体和水在乳化剂的作用下配制成的 乳状液中进行的聚合,体系主要由单体、水、乳化剂 及水溶性引发剂四种成分组成。
1、乳液聚合生产工艺的特点