有关电梯系统优化问题的数学模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于电梯系统优化问题的数学模型
摘要
在高层商务楼里,电梯承担着将人和货物运送到各个楼层的任务。在当今社会,工作生活节奏愈发加快,因而电梯系统的运行效率对人们的生活的影响不可忽视。目前的高层商务楼等大多数高层建筑中,一般都使用单井道单轿厢或者单井道双轿厢两种模式的电梯,本文就结合这两种模式,根据实际情况将问题分为两种情况考虑,重点讨论了将电梯运行效率最大化的方法,建立了相关模型,并给出了相应的优化参数。
本文将电梯系统的优化分为高峰期和非高峰期两种时期进行讨论。高峰期时通过对问题的分析,发现可以设置电梯区间以尽可能减少目标层较高的乘客占用目标层较低的乘客的电梯资源,根据这一思想,我们将其简化为排队问题来考虑,并据此建立了排队模型,通过实地统计数据以及C语言的编程,能够较好地解出模型,得到在高峰期时将一部分电梯区间的顶层设为第14层左右的优化方案。非高峰期时通过对这一时期特点的分析,以每台电梯在无乘梯需求时自动停留的楼层为着眼点,采用枚举的方法编程求解,得到在非高峰期将电梯均匀分布在楼层中的优化方案。最后,我们对模型参数进行了灵敏度的分析,发现虽然模型对数据的依赖性较强,但最优方案不随参数的波动而变化,所以这个结果还是可信的。
本文提出的方案直观易行,且几乎不需额外的经济投入,可行性很强,具有较好的参考价值。
一问题重述
在高层商务楼里,电梯承担着将人和货物运送到各个楼层的任务。目前的高层商务楼等大多数高层建筑中,主要使用单轿厢和双轿厢两种电梯运行系统。单轿厢电梯在向上运行时,只有满足了所有“上行请求”时才会开始满足“下行请求”,反之亦然;而对于双轿厢电梯,乘客在进入轿厢前就通过按钮面板选择了要停靠的楼层,系统迅速整合分析接收到的流量数据,并调度合适的轿箱来应接乘客。
现有一座商务楼,设计地上层数为28层,地下停车楼2层,每层的建筑面积为1500平方米,楼有6个用于客梯的电梯井道。电梯按照商务楼建筑面积15至20平方米每人的标准来设计。第1层的楼层高为4.8米,其余层均为3.2米,设计电梯的平均运行速度1.6米/秒。我们的任务是:
1.建立一个合适的单轿箱客梯系统的运行方案,使尽可能地提高电梯系统的运行效率;2.分别在运行的高峰期与非高峰期,对双轿箱的电梯系统与单轿箱的电梯系统的运行效率等进行对比分析,评价两种方案的优劣性,估计双轿厢系统运行效率的提高率。
二基本假设
1.电梯载客量为13人,且不超载。13人载客量是国最常见的一种电梯规格,并且为了乘梯安全,电梯不应超载。
2.电梯在每层停留的时间相等。在假设1成立的前提下,电梯乘客可以迅速有序地离开电梯,电梯停留时间受离开人数的影响可以忽略不计。
3.乘客的到达形成泊松流。
4.商务楼工作人员均匀分布在地上2层到28层的每一层,即电梯乘客在每一层下电梯的概率相等。
5.在上班高峰期无人下电梯,在下班高峰期无人上电梯。
6.使用每层地下停车楼的人数相等。
三符号及名词说明
输入层:有需要乘电梯的人流入的楼层。
目标层:乘客想要到达的楼层。
服务:在上班高峰期电梯由输入层出发到载完13个人回到输入层
称为一次服务。
αα=(α,α)α:第k个电梯或电梯井道的运行区间,即被限制只能从p层运
行到q层。
A =(α1,α2,α3,α4,α5,α6):高峰期电梯系统运行的一种安排方案。
αα:第k个电梯在无乘梯需停留的楼层。
β=(α1,α2,…αα)α:m个电梯在非高峰期的一种运行方案,m=6或12。
f(A):安排方案A下乘客等待时间的期望。
f(β) :安排方案β下乘客等待时间的期望。
W(αα) :乘坐第k个电梯的乘客等待时间的期望。
λ,Λ:乘客形成的泊松流的强度。
t(p,q):电梯从p层运行到q层所用的时间
α0:电梯在每层停留的时间。
t(αα) :在高峰期第k个电梯完成一次服务所用的时间。
α1:使用地下停车楼的人数比例。
α2:不使用地下停车楼的人数比例。
N(αα) :第k个电梯一次服务中所能运行到的最高层。
P(n) :在上班高峰期电梯在一次服务中停留n次的概率。
四问题分析
本题是对电梯系统的优化问题,优化的标准就是找到一种方案A使所有乘客等待时间的期望f(A)最小。这里为了叙述方便,将地下1层、2层分别记为 -1层、-2层,地上1层、2层、…28层分别记为0层、1层、…27层。
我们发现,不管是单轿厢电梯系统,还是双轿厢电梯系统,在上班高峰期,0层、-1层和-2层为输入层,1层至27层为目标层,在下班高峰期,1层至27层为输入层,0层、-1层和-2层为目标层,也就是说,在高峰期,输入层和目标层分别有所集中;而在非高峰期,输入层和目标层都是随机分散的。所以,为了合理优化电梯系统的效率,应把这两种时期分开考虑。
4.1高峰期的分析
4.1.1上班高峰期的分析
上班高峰期的输入层为0,-1,-2层,则电梯的初始位置只能集中分布在这三层。目标层越大,电梯需要上升的高度就越高,一次服务的时间就会越多。由于乘客想要到达的目标层是随机的,因而一次服务中只要有人的目标层较大,相应电梯的等待人群需要等待的时间就越多,而一些目标层较低的乘客同样需要等待这样的时间,可以理解为高目标层乘客占用了低目标层乘客的“资源”。这就造成了等待时间的增加。所以我们提出一种电梯区间的思想,即在上班高峰期将每个电梯所能运行的围加以限制,同时令目标层不同的乘客乘坐不同区间的电梯,这样目标层较低的乘客乘坐区间较小的电梯,等待的时间就会有所降低,而目标层较高的乘客乘坐区间较大的电梯,等待时间影响不大。
在这种情况下,单轿厢电梯系统和双轿厢电梯系统的模型一致,考虑到这一过程符合排队过程的特点,可以将其简化为排队模型,并编程求得最优解。
4.1.2下班高峰期的分析
下班高峰期的输入层为1层至27层,目标层为0,-1,-2层,电梯的初始位置无法集中。输入层越高,电梯需要运行到很低的目标层再回到输入层,经过的楼层数越多,所用的时间也就越多。因而只要高输入层的乘客有乘梯需求,那么低输入层的乘客就会