线性代数课后习题答案全)习题详解
线性代数课后习题答案全)习题详解
线性代数课后习题答案全)习题详解第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x yyx y x +++. 解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯-=416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2)1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个 ……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --1002310021214---34)1(142101+-⨯--=143102211014-- 321132c c c c ++141717001099-(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4)4444442222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边)()()222222222222a d d a c c a a d a c ad a c ------ =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xa a ax aa a x D n =; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(1000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na a a (再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nnn n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=n n n nd c d c b a b a a 0000111111--展开按第一行0000)11111111112c d c d c b a b a b nn n n n nn ----+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121n n n n a a a a a a a a +------10001001000100100010000114332展开(由下往上)按最后一列1(+n a nn n a a a a a a a ------00000000000000000000000224332 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x 解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=000100210151---= 112035122412111512-----=D 11503120270151------=313911230231115-2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 5101065100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--= 51100650000601000051001653=D 展开按第三列0000105165610050066100510656510650061+= 703114619=⨯+= 51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 11051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A TB .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗? 解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗? 解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k.解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k.解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以 AB =(AB)T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122.(3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A).另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1. 证明 由A 2-A -2E =O 得A 2-A =2E , 即A(A -E)=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得|A 2-A|=2,即 |A||A -E|=2,故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆.由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|. 解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |1-A =|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有 |A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以(A*)-1=|A|-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A*, 证明:(1)若|A|=0, 则|A*|=0;(2)|A*|=|A|n -1.证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到 |A||A*|=|A|n .若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立.因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫ ⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫ ⎝⎛=+=201030102E A B . 21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B .解 由A*BA =2BA -8E 得(A*-2E)BA =-8E ,B =-8(A*-2E)-1A -1=-8[A(A*-2E)]-1=-8(AA*-2A)-1=-8(|A|E -2A)-1=-8(-2E -2A)-1=4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫ ⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2.由ABA -1=BA -1+3E 得AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=-1030060600600006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001, 故 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫ ⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114. 25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解 41001200210100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A , 故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001.解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
线性代数课后习题答案
线性代数课后题详解第一章 行列式1.利用对角线法则计算下列三阶行列式:相信自己加油(1)381141102---; (2)b a c a c b cb a(3)222111c b a c b a ; (4)yxy x x y x y y x y x +++.解 注意看过程解答(1)=---38114112811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++- =4-(2)=ba c a c bcb a ccc aaa bbb cba bac acb ---++ 3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---=(4)yxyx x y x y y x y x+++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业(1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 …)12(-n 2 4 …)2(n ;(6)1 3 …)12(-n )2(n )22(-n … 2.解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2)1(-n n :3 2 1个 5 2,54 2个 7 2,7 4,7 6 3个 …………………)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 …………………)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个4 2 1个 6 2,6 4 2个 …………………)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:多练习方能成大财(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214;(2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-2605232112131412; (3)⎥⎥⎥⎦⎥⎢⎢⎢⎣⎢---ef cf bfde cd bd ae ac ab ;(4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d cb a100110011001 解(1)7110025102021421434327c c c c --0100142310202110214---=143102211014--321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412-14r r -0000032122130412-=0(3)ef cfbfde cd bdae acab ---=ecbe c be cb adf ---=111111111---adfbce =abcdef 4(4)dc b a 100110011001---21ar r +d cb a ab 100110011010---+=12)1)(1(+--dca ab 101101--+23dc c +010111-+-+cd c ad a ab=23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明:(1)1112222b b a a b ab a +=3)(b a -;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a ;(4)444422221111d c b a d c b a d c b a))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅; (5)1221100000100001a x a a a a x x x n n n +----- n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b ab a a b a ab ac c c c ------=左边a b ab a b a ab 22)1(22213-----=+21))((ab a a b a b +--=右边=-=3)(b a(2)bzay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bz ay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y byax z x bx az yzbz ay xa 分别再分bzay y x by ax x z bxaz z yb +++ zyxy x zx z y b yxzx z yz y x a 33+分别再分(3)2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c964496449644964422222++++++++d d dd c c c cb b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+d d d cc c bb b aa a(4) 444444422222220001a d a c a b a a d a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b a d a c a b --------- =)()()(111))()((222a d d a c c a b b ad ac ab a d ac a b++++++---=⨯---))()((a d a c a b)()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-xx a xD D n n n n右边=+=-n n a xD 1所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得nnnn a a a a D 11111=,11112n nnn a a a a D= ,11113a a a a D n nnn=,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n n n nnnn a a a a a a a a a a D 2211111111111)1(--==∴=--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn nn n a a a a111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xa aa x a a a xD n=;(3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nnnn ------=---+;提示:利用德蒙德行列式的结果.(4) nnnnnd c d c b a b a D000011112=;(5)j i a a D ij ij n -==其中),det(;(6)nna a a D +++=11111111121,021≠n a a a 其中.解)1()1(10000000010000)1(-⨯-+-n n n a a a)1)(1(2)1(--⋅-+n n n a a a(再按第一行展开) n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得a x xa a x xa a x x a a aa xD n ------=0000000再将各列都加到第一列上,得ax a x a x a a a an x D n ----+=00000)1()(])1([1a x a n x n --+=-(3)从第1+n行开始,第1+n 行经过n 次相邻对换,换到第1行,第n行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得此行列式为德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=1121)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4)nnnnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 000000011111111----展开按第一行0)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i i i nD c b d a D 222)(而 111111112c bd a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)ji a ij-=432140123310122210113210)det( --------==n n n n n n n n a D ij n,3221r r r r --0432111111111111111111111--------------n n n n ,,141312c c c c c c +++1524232102221002210002100001---------------n n n n n =212)1()1(----n n n(6)nna a a D +++=11111111121,,433221c c c c c c ---))(1(121-+n n a a a a nn n a a a a a a a a a --------0000000000000000000000022433221n n n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------0000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑+==n i in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D812073503211111------=145008130032101111---=1421420005410032101111-=---=112105132412211151------=D 112105132********----=1121023313090509151------=2331309050112109151------= 1202300461000112109151-----=14200038100112109151----=142-=11235122412111512-----=D 81150731203271151-------=31390011230023101151-=28428401910023101151-=----=14202132132212151114=-----=D 1,3,2,144332211-========∴DD x DD x D D x D D x(2)5100065100065100065100065=D 展开按最后一行6100051065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019 D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',)51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-=1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+=703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-=11000051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+=665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解μλμμμλ-==12111113D ,齐次线性方程组有非零解,则03=D即 0=-μλμ得10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解? 解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-= 3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵与其运算1.已知线性变换:⎪⎩⎪⎨⎧++=++=++=,323,53,22321332123211y y y x y y y x y y y x 求从变量321,,x x x 到变量321,,y y y 的线性变换.解由已知:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x 故 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛----=321423736947y y y ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947xx x y x x x y x x x y2.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=,54,232,232133212311y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=,3,2,3323312211z z y z z y z z y 求从321,,zz z 到321,,x x x 的线性变换.解 由已知⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛-=321310102013514232102z z z ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z所以有 ⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236zz z x z z z x z z z x3.设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A , ,150421321⎪⎪⎪⎭⎫ ⎝⎛--=B求.23B A A AB T及-解A AB 23-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=1504213211111111113⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫ ⎝⎛-=0926508503⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫ ⎝⎛----=22942017222132⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=150421321111111111B A T⎪⎪⎪⎭⎫ ⎝⎛-=0926508504.计算下列乘积:(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134; (2)()⎪⎪⎪⎭⎫ ⎝⎛1233,2,1; (3)()2,1312-⎪⎪⎪⎭⎫⎝⎛; (4)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412;(5)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛321332313232212131211321),,(x x x a a a a a a a a a x x x ;(6)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛3003200121013013000120010100121. 解(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎪⎭⎫⎝⎛=49635 (2)()⎪⎪⎪⎭⎫ ⎝⎛123321)10()132231(=⨯+⨯+⨯=(3)()21312-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎪⎭⎫ ⎝⎛---=632142 (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎪⎭⎫ ⎝⎛---=6520876(5)()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321x x x a a a a a a a a a x x x ()333223113323222112313212111x a x a x a x a x a x a x a x a x a ++++++= ⎪⎪⎪⎭⎫ ⎝⎛⨯321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++= (6)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎪⎪⎭⎫⎝⎛---=90003400421025215.设⎪⎪⎭⎫ ⎝⎛=3121A ,⎪⎪⎭⎫⎝⎛=2101B ,问:(1)BA AB =吗?(2)2222)(B AB A B A ++=+吗?(3)22))((B A B A B A -=-+吗?解(1)⎪⎪⎭⎫ ⎝⎛=3121A ,⎪⎪⎭⎫ ⎝⎛=2101B 则⎪⎪⎭⎫ ⎝⎛=6443AB ⎪⎪⎭⎫ ⎝⎛=8321BA BA AB ≠∴ (2)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎪⎭⎫⎝⎛=2914148 但=++222B AB A ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛43011288611483⎪⎪⎭⎫⎝⎛=27151610 故2222)(B AB A B A ++≠+(3)=-+))((B A B A =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10205222⎪⎪⎭⎫⎝⎛9060而=-22B A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛430111483⎪⎪⎭⎫⎝⎛7182 故22))((B A B A B A -≠-+6.举反列说明下列命题是错误的:(1)若02=A ,则0=A ; (2)若A A =2,则0=A 或E A =;(3)若AY AX =,且0≠A ,则Y X =.解 (1) 取⎪⎪⎭⎫ ⎝⎛=0010A 02=A ,但0≠A(2) 取⎪⎪⎭⎫ ⎝⎛=0011A A A =2,但0≠A 且E A ≠(3) 取⎪⎪⎭⎫ ⎝⎛=0001A ⎪⎪⎭⎫ ⎝⎛-=1111X ⎪⎪⎭⎫⎝⎛=1011YAYAX =且0≠A 但YX ≠7.设⎪⎪⎭⎫ ⎝⎛=101λA ,求k A A A ,,,32 . 解 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=12011011012λλλA ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1301101120123λλλA A A利用数学归纳法证明:⎪⎪⎭⎫ ⎝⎛=101λk A k当1=k时,显然成立,假设k 时成立,则1+k 时⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1)1(01101101λλλk k A A A kk 由数学归纳法原理知:⎪⎪⎭⎫ ⎝⎛=101λk A k8.设⎪⎪⎪⎭⎫⎝⎛=λλλ001001A ,求k A .解 首先观察⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ⎪⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A由此推测 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121)2(≥k用数学归纳法证明: 当2=k时,显然成立.假设k 时成立,则1+k 时,⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ 由数学归纳法原理知:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219.设B A ,为n 阶矩阵,且A 为对称矩阵,证明AB B T 也是对称矩阵.证明 已知:A A T=则 AB B B A B A B B AB B T T T TT T T T ===)()(从而 AB B T也是对称矩阵.10.设B A ,都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =.证明 由已知:A A T =B B T=充分性:BA AB =⇒A B AB TT =⇒)(AB AB T = 即AB 是对称矩阵.必要性:AB AB T =)(⇒AB A B TT =⇒AB BA =.11.求下列矩阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛5221; (2)⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos ; (3)⎪⎪⎪⎭⎫⎝⎛---145243121; (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4121031200210001; (5)⎪⎪⎪⎪⎪⎭⎫⎝⎛2500380000120025; (6)⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021)0(21≠a a a n解(1)⎪⎪⎭⎫⎝⎛=5221A 1=A1),1(2),1(2,522122111=-⨯=-⨯==A A A A⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=*122522122111A A A A A *-=A A A 11 故 ⎪⎪⎭⎫⎝⎛--=-12251A(2)01≠=A 故1-A 存在θθθθcos sin sin cos 22122111=-===A A A A从而 ⎪⎪⎭⎫ ⎝⎛-=-θθθθcos sin sin cos 1A (3)2=A , 故1-A 存在024312111==-=A A A 而 1613322212-==-=A A A21432332313-==-=A A A故 *-=A A A 11⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4121031200210001A24=A 0434232413121======A A A A A A 68122444332211====A A A A12411032001)1(312-=-=A 12421012021)1(413-=-=A3121312021)1(514=-=A 4421012001)1(523-=-=A5121312001)1(624-=-=A 2121021001)1(734-=-=A*-=A AA 11 故⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=-4112124581031612100212100011A(5)01≠=A 故1-A 存在而002141312111==-==A A A A005242322212===-=A A A A 320043332313-====A A A A 850044342414=-===A A A A从而⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=-85003200005200211A(6)⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 1001121112.解下列矩阵方程:(1)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛12643152X ; (2) ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--234311*********X ;(3)⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-101311022141X ; (4)⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 (1)⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-126431521X ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=12642153⎪⎪⎭⎫⎝⎛-=80232 (2)1111012112234311-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)11110210132141--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-=210110131142121 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫⎝⎛=04111 (4)11010100001021102341100001010--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎪⎭⎫ ⎝⎛---=20143101213.利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++;353,2522,132321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=-+=--=--.0523,132,2321321321x x x x x x x x x解 (1)方程组可表示为 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x 从而有 ⎪⎩⎪⎨⎧===001321x x x (2) 方程组可表示为 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x 故 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x 故有 ⎪⎩⎪⎨⎧===305321x x x14.设O A k =(k 为正整数),证明121)(--++++=-k A A A E A E .证明 一方面,)()(1A E A E E --=-另一方面,由O A k=有)()()(1122k k k A A A A A A A E E -+--+-+-=-- ))((12A E A A A E k -++++=-故 )()(1A E A E ---))((12A E A A A E k -++++=-两端同时右乘1)(--A E就有121)(--++++=-k A A A E A E15.设方阵A 满足O E A A =--22,证明A 与E A 2+都可逆,并求1-A 与1)2(-+E A .证明 由O E A A =--22得E A A 22=-两端同时取行列式:22=-A A即 2=-E A A ,故 0≠A所以A 可逆,而22A E A =+0222≠==+A A E A 故E A 2+也可逆.由O E A A =--22E E A A 2)(=-⇒E A E A A A 112)(--=-⇒)(211E A A -=⇒-又由O E A A =--22E E A A E A 4)2(3)2(-=+-+⇒ E E A E A 4)3)(2(-=-+⇒11)2(4)3)(2()2(--+-=-++∴E A E A E A E A)3(41)2(1A E E A -=+∴-16.设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A ,B A AB 2+=,求B . 解 由B A AB 2+=可得A B E A =-)2(故A E A B 1)2(--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-3210113301210113321⎪⎪⎪⎭⎫⎝⎛-=01132133017.设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=Λ2001,求11A .解 Λ=-AP P 1故1-Λ=P P A 所以11111-Λ=P P A3=P ⎪⎪⎭⎫ ⎝⎛-=*1141P ⎪⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=Λ11111120012001故⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎪⎭⎫ ⎝⎛--=6846832732273118.设m 次多项式m m x a x a x a a x f ++++= 2210)(,记m m A a A a A a E a A f ++++= 2210)()(A f 称为方阵A 的m 次多项式.(1)设⎪⎪⎭⎫ ⎝⎛=Λ2100λλ,证明:⎪⎪⎭⎫ ⎝⎛=Λk k k2100λλ,⎪⎪⎭⎫⎝⎛=Λ)(00)()(21λλf f f ; (2)设1-Λ=P P A ,证明:1-Λ=P P A k k ,1)()(-Λ=P Pf A f . 证明(1) i)利用数学归纳法.当2=k时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=Λ212120000λλλλ⎪⎪⎭⎫ ⎝⎛=222100λλ命题成立,假设k 时成立,则1+k 时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=ΛΛ=Λ+212110000λλλλk k k k ⎪⎪⎭⎫⎝⎛=++121100k k λλ 故命题成立. ii)左边m m a a a E a f Λ++Λ+Λ+=Λ= 2210)( ⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=m m m a a a 21211000001001λλλλ⎪⎪⎭⎫ ⎝⎛++++++++=m m m m a a a a a a a a 2222210121211000λλλλλλ ⎪⎪⎭⎫ ⎝⎛=)(00)(21λλf f =右边 (2) i) 利用数学归纳法.当2=k 时12112---Λ=ΛΛ=P P P P P P A 成立假设k 时成立,则1+k 时11111-+--+Λ=ΛΛ=⋅=P P P P P P A A A k k k k 成立,故命题成立,即 1-Λ=P P A k kii) 证明 右边1)(-Λ=P Pf12210)(-Λ++Λ+Λ+=P a a a E a P m m11221110----Λ++Λ+Λ+=P P a P P a P P a PEP a m m m m A a A a A a E a ++++= 2210)(A f ==左边19.设n 阶矩阵A 的伴随矩阵为*A ,证明:(1) 若0=A ,则0=*A ;(2)1-*=n AA .证明(1) 用反证法证明.假设0≠*A 则有E A A =-**1)(由此得O A E A A AA A ===-*-**11)()(O A =∴*这与0≠*A 矛盾,故当0=A 时有0=*A(2) 由于*-=A AA11, 则E A AA =*取行列式得到:nAA A =* 若0≠A 则1-*=n AA若0=A 由(1)知0=*A 此时命题也成立故有1-*=n AA20.取⎪⎪⎭⎫⎝⎛==-==1001D C B A ,验证DCB A DC B A ≠检验: =D C BA =--10100101101001011010010100200002--410012002==而01111==D C B A故 DCB A DCBA ≠21.设⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,求8A 与4A解 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A ,令⎪⎪⎭⎫ ⎝⎛-=34431A ⎪⎪⎭⎫ ⎝⎛=22022A 则⎪⎪⎭⎫ ⎝⎛=21A O O A A故8218⎪⎪⎭⎫ ⎝⎛=A OO A A ⎪⎪⎭⎫⎝⎛=8281A O O A 1682818281810===A A A A A⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=464444241422025005O O A OO A A22.设n 阶矩阵A 与s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O B A O .解 将1-⎪⎪⎭⎫ ⎝⎛O B A O 分块为⎪⎪⎭⎫ ⎝⎛4321C C C C其中 1C 为n s ⨯矩阵,2C 为s s ⨯矩阵3C 为n n ⨯矩阵,4C 为s n ⨯矩阵则⎪⎪⎭⎫ ⎝⎛⨯⨯O B A Os s n n ⎪⎪⎭⎫ ⎝⎛4321C C C C ==E ⎪⎪⎭⎫ ⎝⎛s n E O O E由此得到⎪⎪⎩⎪⎪⎨⎧=⇒==⇒==⇒==⇒=----122111144133)()(B C E BC B O C O BC A O C O AC A C E AC s n 存在存在故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛---O A B O O B A O 111.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1)⎪⎪⎪⎭⎫⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320;(3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解(1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛--------101050663*******34311 )5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022100343112423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000000000221003211(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----00000410001111020201 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶 子式?解 在秩是r的矩阵中,可能存在等于0的1-r阶子式,也可能存在等于0的r阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α 3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样?解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得 到的,所以在A 中能找到与D r 一样的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(-解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x 故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1)⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2)⎪⎪⎪⎭⎫ ⎝⎛-------815073131223123⎪⎪⎪⎭⎫⎝⎛---------15273321059117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r .二阶子式71223-=-.(3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210 131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000100007121002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x(3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫ ⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2)对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x(3)对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010*********~即得⎪⎪⎩⎪⎪⎨⎧====00004321x x x x故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4)对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3)⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4)⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000000021101201~即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----00007579751076717101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1)0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2))()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ得2-=λ时,方程组无解.(3)3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ,得1=λ时,方程组有无穷多个解.9.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解时求解.解⎪⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ 初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ当0≠A ,即02)10()1(2≠--λλ1≠∴λ且10≠λ时,有唯一解.当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解.当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解.此时,增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛-000000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)11.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1)⎪⎪⎪⎭⎫⎝⎛323513123; (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023. 解(1)⎪⎪⎪⎭⎫ ⎝⎛100010001323513123⎪⎪⎪⎭⎫⎝⎛---101011001200410123~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----10121121023200010023~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2102121129227100010003~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267100010001~ 故逆矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267。
《线性代数》同济大学版 课后习题答案详解
|2A1|(2)3|A1|8|A|18216
17设矩阵A可逆证明其伴随阵A*也可逆且(A*)1(A1)*
证明由 得A*|A|A1所以当A可逆时有
|A*||A|n|A1||A|n10
从而A*也可逆
因为A*|A|A1所以
(A*)1|A|1A
又 所以
(A*)1|A|1A|A|1|A|(A1)*(A1)*
5设 问
(1)ABBA吗?
解ABBA
因为 所以ABBA
(2)(AB)2A22ABB2吗?
解(AB)2A22ABB2
因为
但
所以(AB)2A22ABB2
(3)(AB)(AB)A2B2吗?
解(AB)(AB)A2B2
因为
而
故(AB)(AB)A2B2
6举反列说明下列命题是错误的
(1)若A20则A0
解取 则A20但A0
解 令
则
故
29设n阶矩阵A及s阶矩阵B都可逆求
(1)
解设 则
由此得
所以
(2)
解设 则
由此得
所以
30求下列矩阵的逆阵
(1)
解设 则
于是
(2)
解设 则
第三章 矩阵的初等变换与线性方程组
1把下列矩阵化为行最简形矩阵
(1)
解 (下一步r2(2)r1r3(3)r1)
~ (下一步r2(1)r3(2))
~ (下一步r3r2)
(3)
解 (下一步r12r4r22r4r33r4)
~ (下一步r23r1r32r1)
~ (下一步r216r4r316r2)
~
~
矩阵的秩为3 是一个最高阶非零子式
10设A、B都是mn矩阵证明A~B的充分必要条件是R(A)R(B)
线性代数课后习题答案全解.pdf
第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102−−−;解 381141102−−−=2×(−4)×3+0×(−1)×(−1)+1×1×8 −0×1×3−2×(−1)×8−1×(−4)×(−1) =−24+8+16−4=−4. (2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba −bbb −aaa −ccc =3abc −a 3−b 3−c 3. (3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2−ac 2−ba 2−cb =(a −b )(b −c )(c −a ). 2(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx −y 3−(x +y )3−x =3xy (x +y )−y 3 3−3x 2 y −x 3−y 3−x =−2(x 3 3+y 3 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:).(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n −1) 2 4 ⋅ ⋅ ⋅ (2n );解 逆序数为2)1(−n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n −1)2, (2n −1)4, (2n −1)6, ⋅ ⋅ ⋅, (2n −1)(2n −2) (n −1个)(6)1 3 ⋅ ⋅ ⋅ (2n −1) (2n ) (2n −2) ⋅ ⋅ ⋅ 2. 解 逆序数为n (n −1) : 3 2(1个) 5 2, 5 4 (2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n −1)2, (2n −1)4, (2n −1)6, ⋅ ⋅ ⋅, (2n −1)(2n −2) (n −1个) 4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n )2, (2n )4, (2n )6, ⋅ ⋅ ⋅, (2n )(2n −2) (n −1个) 3. 写出四阶行列式中含有因子a 11a 23 解 含因子a 的项. 11a 23(−1)的项的一般形式为t a 11a 23a 3r a 4s 其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. ,所以含因子a 11a 23 (−1)的项分别是t a 11a 23a 32a 44=(−1)1a 11a 23a 32a 44=−a 11a 23a 32a 44 (−1), t a 11a 23a 34a 42=(−1)2a 11a 23a 34a 42=a 11a 23a 34a 42 4. 计算下列各行列式:.(1)71100251020214214; 解 71100251020214214010014231020211021473234−−−−−======c c c c 34)1(143102211014+−×−−−= 143102211014−−=01417172001099323211=−++======c c c c .(2)2605232112131412−; 解 2605232112131412−26053212213041224−−=====c c 041203212213041224−−=====r r 0000003212213041214=−−=====r r . (3)efcf bf de cd bd aeac ab −−−;解 ef cf bf de cd bd ae ac ab −−−ec b e c b ec b adf −−−=abcdef adfbce 4111111111=−−−=.(4)dc b a 100110011001−−−. 解d c b a 100110011001−−−dc b aab ar r 10011001101021−−−++===== d c a ab 101101)1)(1(12−−+−−=+01011123−+−++=====cd c ada ab dc ccdad ab +−+−−=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a −b )3 证明;1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c −−−−−−=====ab a b a b a ab 22)1(22213−−−−−=+21))((a b a a b a b +−−==(a −b )3 (2) . y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4−c 3, c 3−c 2, c 2−c 1 得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4−c 3, c 3−c 2得)022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a −b )(a −c )(a −d )(b −c )(b −d )(c −d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b −−−−−−−−−=)()()(111))()((222a d d a c c a b b dc b ad a c a b +++−−−= ))(())((00111))()((a b d b d d a b c b c c bd b c a d a c a b ++−++−−−−−−= )()(11))()()()((a b d d a b c c b d b c a d a c a b ++++−−−−−= =(a −b )(a −c )(a −d )(b −c )(b −d )(c −d )(a +b +c +d ). (5)12211 000 00 1000 01a x a a a a x x xn n n+⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−−− =x n +a 1x n −1+ ⋅ ⋅ ⋅ +a n −1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+−=, 命题成立. 假设对于(n −1)阶行列式命题成立, 即 D n −1=x n −1+a 1 x n −2+ ⋅ ⋅ ⋅ +a n −2x +a n −1则D , n 按第一列展开, 有 11100 100 01)1(11−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−−+=+−x x a xD D n n n n =xD n −1+a n =x n +a 1x n −1+ ⋅ ⋅ ⋅ +a n −1x +a n 因此, 对于n 阶行列式命题成立. .6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90°、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nnn a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n n nn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(−−==, D 3 证明 因为D =det(a =D .ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=−⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−=−− )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(−−+−+⋅⋅⋅++−=−=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=− )1(11112)1(2D D n n T n n 2)1(2)1()1()1(−−−=−=. D D D D D n n n n n n n n =−=−−=−=−−−−)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k (1)为k 阶行列式): aa D n 1 1⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解 aa a a a D n 010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(−×−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=n n n aa a )1()1(2 )1(−×−⋅⋅⋅⋅−+n n n a a an n n n n a a a+⋅⋅⋅−⋅−=−−+)2)(2(1)1()1(=a n −a n −2=a n −2(a 2−1).(2)xa aa x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(−1)分别加到其余各行, 得 ax x a ax x a a x x a aa a x D n −−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−⋅⋅⋅−−⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n −⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−+=0000 0 000 00 )1(=[x +(n −1)a ](x −a )n −1 (3). 111 1 )( )1()( )1(1111⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅⋅−⋅⋅⋅−−⋅⋅⋅−=−−−+n a a a n a a a n a a a D n n n n nn n ; 解 根据第6题结果, 有 nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1−⋅⋅⋅−−⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−=−−−++此行列式为范德蒙德行列式.∏≥>≥++++−−+−−=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++−−−=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+−++−⋅−⋅−=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+−=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn −−−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−+. 再按最后一行展开得递推公式D 2n =a n d n D 2n −2−b n c n D 2n −2, 即D 2n =(a n d n −b n c n )D 2n −2于是 . ∏=−=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D −==,所以 ∏=−=ni i i i i n c b d a D 12)(.(5) D =det(a ij ), 其中a ij 解 a =|i −j |; ij =|i −j |, 043214 01233 10122 21011 3210)det(⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅⋅⋅==n n n n n n n n a D ij n 04321 1 11111 11111 11111 1111 2132⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−−−⋅⋅⋅−−−⋅⋅⋅−−⋅⋅⋅−−⋅⋅⋅−=====n n n n r r r r15242321 0 22210 02210 00210 0001 1213−⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−−−⋅⋅⋅−−−⋅⋅⋅−−⋅⋅⋅−+⋅⋅⋅+=====n n n n n c c c c =(−1)n −1(n −1)2n −2 (6).nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 nn n n a a a a a a a a a c c c c +−⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−=====−−100001 000 100 0100 0100 0011332212132 1111312112111000011 000 00 11000 01100 001 −−−−−−+−⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=−−−−−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组: (1) =+++−=−−−−=+−+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为 14211213513241211111−=−−−−=D , 142112105132412211151−=−−−−−−=D , 284112035122412111512−=−−−−−=D , 426110135232422115113−=−−−−=D , 14202132132212151114=−−−−−=D , 所以 111==D D x , 222==D Dx , 333==DD x , 144−==D D x .(2)=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 15075100165100065100065000611==D , 114551010651000650000601000152−==D , 703511650000601000051001653==D , 39551601000051000651010654−==D , 2121100005100065100651100655==D , 所以66515071=x , 66511452−=x , 6657033=x , 6653954−=x , 6652124=x .9. 问λ, µ取何值时, 齐次线性方程组 =++=++=++0200321321321x x x x x x x x x µµλ有非零解?解 系数行列式为µλµµµλ−==1211111D .令D =0, 得 µ=0或λ=1.于是, 当µ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组 =−++=+−+=+−−0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ−−+−−=−−−−=101112431111132421D=(1−λ)3 =(1−λ)+(λ−3)−4(1−λ)−2(1−λ)(−3−λ) 3+2(1−λ)2 令D =0, 得+λ−3. λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3 解 由已知:的线性变换.= 221321323513122y y y x x x ,故= −3211221323513122x x x y y y−−−−=321423736947y y y ,−+=−+=+−−=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换++=++−=+=32133212311542322y y y x y y y x y y x ,+−=+=+−=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3 解 由已知的线性变换.−= 221321514232102y y y x x x−− −=321310102013514232102z z z−−−−=321161109412316z z z ,所以有 +−−=+−=++−=3213321232111610941236z z z x z z z x z z z x .3. 设 −−=111111111A ,−−=150421321B , 求3AB −2A 及A T 解 B .−−− −− −−=−1111111112150421321111111111323A AB−−−−= −−− −=2294201722213211111111120926508503,−= −− −−=092650850150421321111111111B A T.4. 计算下列乘积: (1)−127075321134;解 −127075321134 ×+×+××+×−+××+×+×=102775132)2(71112374=49635.(2)123)321(;解123)321(=(1×3+2×2+3×1)=(10).(3))21(312−;解 )21(312−×−××−××−×=23)1(321)1(122)1(2−−−=632142. (4)−−−−20413121013143110412 ; 解−−− −20413121013143110412 −−−=6520876. (5)321332313232212131211321)(x x x a a a a a a a a a x x x ;解321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3a 13x 1+a 23x 2+a 33x 3321x x x )322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设 =3121A ,=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA . 因为=6443AB ,=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2 解 (A +B )吗? 2≠A 2+2AB +B 2 因为.=+5222B A ,=+52225222)(2B A=2914148,但 + +=++43011288611483222B AB A=27151610,所以(A +B )2≠A 2+2AB +B 2 (3)(A +B )(A −B )=A . 2−B 2 解 (A +B )(A −B )≠A 吗? 2−B 2 因为.=+5222B A ,=−1020B A ,==−+906010205222))((B A B A ,而= −=−718243011148322B A ,故(A +B )(A −B )≠A 2−B 2 6. 举反列说明下列命题是错误的:.(1)若A 2 解 取=0, 则A =0;=0010A , 则A 2 (2)若A =0, 但A ≠0. 2 解 取=A , 则A =0或A =E ;=0011A , 则A 2 (3)若AX =AY , 且A ≠0, 则X =Y .=A , 但A ≠0且A ≠E . 解 取=0001A , −=1111X ,=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k 解 . ==12011011012λλλA , ===1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,=101λk A k . 8. 设=λλλ001001A , 求A k 解 首先观察. =λλλλλλ0010010010012A=222002012λλλλλ,=⋅=3232323003033λλλλλλA A A ,=⋅=43423434004064λλλλλλA A A ,=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,=k A k k k k k k k k k k λλλλλλ0002)1(121−−−−. 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,−=⋅=−−−+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A+++=+−+−−+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:−=−−−k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T 证明 因为A AB 也是对称矩阵.T (B =A , 所以T AB )T =B T (B T A )T =B T A T B =B T 从而B AB ,T 10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .AB 是对称矩阵.证明 充分性: 因为A T =A , B T (AB )=B , 且AB =BA , 所以 T =(BA )T =A T B T 即AB 是对称矩阵.=AB ,必要性: 因为A T =A , B T =B , 且(AB )T AB =(AB )=AB , 所以T =B T A T 11. 求下列矩阵的逆矩阵:=BA .(1)5221; 解=5221A . |A |=1, 故A −1 存在. 因为−−= =1225*22122111A A A A A ,故 *||11A A A =−−−=1225. (2)−θθθθcos sin sin cos ; 解−=θθθθcos sin sin cos A . |A |=1≠0, 故A −1 存在. 因为−= =θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =−−=θθθθcos sin sin cos . (3)−−−145243121; 解−−−=145243121A . |A |=2≠0, 故A −1 存在. 因为−−−−−= =214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =−−−−−−=1716213213012. (4)n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解=n a a a A 0021, 由对角矩阵的性质知=−n a a a A 10011211 . 12. 解下列矩阵方程:(1) −=12643152X ; 解 −=−126431521X − −−=12642153 −=80232. (2) −=−−234311*********X ; 解 1111012112234311−−− −=X−−− −=03323210123431131 −−−=32538122. (3) −= − −101311022141X ;解 11110210132141−− − − −=X− −=210110131142121 =21010366121=04111. (4)−−−= 021102341010100001100001010X . 解 11010100001021102341100001010−−−−− =X −−− =010100001021102341100001010 −−−=201431012. 13. 利用逆矩阵解下列线性方程组:(1) =++=++=++3532522132321321321x x x x x x x x x ; 解 方程组可表示为= 321153522321321x x x , 故 = = −0013211535223211321x x x ,从而有 ===001321x x x . (2) =−+=−−=−−05231322321321321x x x x x x x x x . 解 方程组可表示为=−−−−−012523312111321x x x , 故 =−−−−−= −3050125233121111321x x x , 故有 ===305321x x x . 14. 设A k =O (k 为正整数), 证明(E −A )−1=E +A +A 2+⋅ ⋅ ⋅+A k −1 证明 因为A . k =O , 所以E −A k E −A =E . 又因为k =(E −A )(E +A +A 2+⋅ ⋅ ⋅+A k −1所以 (E −A )(E +A +A ),2+⋅ ⋅ ⋅+A k −1由定理2推论知(E −A )可逆, 且)=E ,(E −A )−1=E +A +A 2+⋅ ⋅ ⋅+A k −1.证明 一方面, 有E =(E −A )−1 另一方面, 由A (E −A ).k E =(E −A )+(A −A =O , 有2)+A 2−⋅ ⋅ ⋅−A k −1+(A k −1−A k )=(E +A +A 2+⋅ ⋅ ⋅+A k −1故 (E −A ))(E −A ),−1(E −A )=(E +A +A 2+⋅ ⋅ ⋅+A k −1两端同时右乘(E −A ))(E −A ),−1 (E −A ), 就有−1(E −A )=E +A +A 2+⋅ ⋅ ⋅+A k −1.15. 设方阵A 满足A 2−A −2E =O , 证明A 及A +2E 都可逆, 并求A −1及(A +2E )−1 证明 由A .2 A −A −2E =O 得2或 −A =2E , 即A (A −E )=2E ,E E A A =−⋅)(21, 由定理2推论知A 可逆, 且)(211E A A −=−. 由A 2 A −A −2E =O 得2或 −A −6E =−4E , 即(A +2E )(A −3E )=−4E ,E A E E A =−⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A −=+−.证明 由A 2−A −2E =O 得A 2 |A −A =2E , 两端同时取行列式得 2即 |A ||A −E |=2,−A |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2由 A ≠0, 故A +2E 也可逆. 2 ⇒A −A −2E =O ⇒A (A −E )=2E−1A (A −E )=2A −1)(211E A A −=−E ⇒,又由 A 2 ⇒ (A +2E )(A −3E )=−4 E ,−A −2E =O ⇒(A +2E )A −3(A +2E )=−4E所以 (A +2E )−1(A +2E )(A −3E )=−4(A +2 E )−1 ,)3(41)2(1A E E A −=+−.16. 设A 为3阶矩阵, 21||=A , 求|(2A )−1 解 因为−5A *|.*||11A A A =−, 所以 |||521||*5)2(|111−−−−=−A A A A A |2521|11−−−=A A=|−2A −1|=(−2)3|A −1|=−8|A |−1 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)=−8×2=−16.−1=(A −1 证明 由)*.*||11A A A =−, 得A *=|A |A −1 |A *|=|A |, 所以当A 可逆时, 有n |A −1|=|A |n −1从而A *也可逆.≠0,因为A *=|A |A −1 (A *), 所以−1=|A |−1又A .*)(||)*(||1111−−−==A A A A A , 所以(A *)−1=|A |−1A =|A |−1|A |(A −1)*=(A −1 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:)*.(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n −1 证明.(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)−1 A =A A *(A *)=E , 由此得 −1=|A |E (A *)−1所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.=O ,(2)由于*||11A A A =−, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n 若|A |≠0, 则|A *|=|A |.n −1 若|A |=0, 由(1)知|A *|=0, 此时命题也成立.;因此|A *|=|A |n −1.19. 设−=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A −2E )B =A , 故− −−−=−=−−321011330121011332)2(11A E A B −=011321330. 20. 设 =101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2 (A −E )B =A +B 得 2即 (A −E )B =(A −E )(A +E ).−E , 因为01001010100||≠−==−E A , 所以(A −E )可逆, 从而=+=201030102E A B .21. 设A =diag(1, −2, 1), A *BA =2BA −8E , 求B . 解 由A *BA =2BA −8E 得 (A *−2E )BA =−8E , B =−8(A *−2E )−1A =−8[A (A *−2E )]−1 =−8(AA *−2A )−1 =−8(|A |E −2A )−1 =−8(−2E −2A )−1 =4(E +A )−1 =4[diag(2, −1, 2)]−1−1)21 ,1 ,21(diag 4−==2diag(1, −2, 1).22. 已知矩阵A 的伴随阵−=8030010100100001*A , 且ABA −1=BA −1+3E , 求B .解 由|A *|=|A |3 由ABA =8, 得|A |=2. −1=BA −1 AB =B +3A ,+3E 得 B =3(A −E )−1A =3[A (E −A −1)]−1 A 11*)2(6*)21(3−−−=−=A E A E−=−−=−1030060600600006603001010010000161. 23. 设P −1 −−=1141P AP =Λ, 其中,−=Λ2001, 求A 11 解 由P . −1AP =Λ, 得A =P ΛP −1, 所以A 11= A =P Λ11P −1 |P |=3, .−=1141*P ,−−=−1141311P ,而−= −=Λ11111120 012001,故−− −−−=31313431200111411111A −−=68468327322731. 24. 设AP =P Λ, 其中−−=111201111P ,−=Λ511,求ϕ(A )=A 8(5E −6A +A 2 解 ϕ(Λ)=Λ). 8(5E −6Λ+Λ2 =diag(1,1,5)8)[diag(5,5,5)−diag(−6,6,30)+diag(1,1,25)]=diag(1,1,58 ϕ(A )=P ϕ(Λ)P )diag(12,0,0)=12diag(1,0,0).−1 *)(||1P P P Λ=ϕ−−−−−− −−−=1213032220000000011112011112=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A −1+B −1 证明 因为也可逆, 并求其逆阵.A −1(A +B )B −1=B −1+A −1=A −1+B −1而A ,−1(A +B )B −1是三个可逆矩阵的乘积, 所以A −1(A +B )B −1可逆, 即A −1+B −1 (A 可逆.−1+B −1)−1=[A −1(A +B )B −1]−1=B (A +B )−1 26. 计算A .−−−30003200121013013000120010100121. 解 设 =10211A , =30122A , −=12131B ,−−=30322B ,则 2121B O B E A O E A+=222111B A O B B A A ,而 −= −−+−=+4225303212131021211B B A ,−−= −− =90343032301222B A , 所以 2121B O B E A O E A +=222111B A O B B A A−−−=9000340042102521, 即−−−30003200121013013000120010100121−−−=9000340042102521. 27. 取==−==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021010*********0021010010110100101==−−=−−=D C B A , 而 01111|||||||| ==D C B A ,故 ||||||||D C B A D C B A ≠. 28. 设 −=22023443O O A , 求|A 8|及A 4解 令. −=34431A ,=22022A , 则=21A O O A A ,故 8218=A O O A A=8281A O O A ,1682818281810||||||||||===A A A A A .= =464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1−O B A O ; 解 设 =−43211C C C C O B A O , 则O B A O 4321C C C C = =s n E O O E BC BC AC AC 2143. 由此得====s n EBC OBC O AC E AC 2143⇒ ====−−121413B C O C O C A C ,所以= −−−O A B O O B A O 111. (2)1−B C O A . 解 设 =−43211D D D D B C O A , 则 = ++= s nE O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得=+=+==s nEBD CD O BD CD O AD E AD 423121⇒ =−===−−−−14113211B D CA B D O D A D ,所以−= −−−−−11111B CA B O A BC O A . 30. 求下列矩阵的逆阵: (1)2500380000120025; 解 设 =1225A , =2538B , 则−−= =−−5221122511A ,−−==−−8532253811B .于是 −−−−= = =−−−−850032000052002125003800001200251111B A B A .(2)4121031200210001. 解 设 =2101A ,=4103B ,=2112C , 则−= =−−−−−−1111114121031200210001B CA B O A BC O A−−−−−=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵: (1)−−340313021201;解−−340313021201(下一步: r 2+(−2)r 1, r 3+(−3)r 1 ~. )−−−020*********(下一步: r 2÷(−1), r 3 ~÷(−2). )−−010*********(下一步: r 3−r 2 ~. )−−300031001201(下一步: r 3 ~÷3. )−−100031001201(下一步: r 2+3r 3 ~. )−100001001201(下一步: r 1+(−2)r 2, r 1+r 3 ~. )100001000001.(2)−−−−174034301320;解−−−−174034301320(下一步: r 2×2+(−3)r 1, r 3+(−2)r 1 ~. )−−−310031001320(下一步: r 3+r 2, r 1+3r 2 ~. )0000310010020(下一步: r 1 ~÷2. )000031005010.(3)−−−−−−−−−12433023221453334311;解−−−−−−−−−12433023221453334311(下一步: r 2−3r 1, r 3−2r 1, r 4−3r 1~. )−−−−−−−−1010500663008840034311(下一步: r 2÷(−4), r 3÷(−3) , r 4~÷(−5). )−−−−−22100221002210034311(下一步: r 1−3r 2, r 3−r 2, r 4−r 2~. )−−−00000000002210032011.(4)−−−−−−34732038234202173132. 解−−−−−−34732038234202173132(下一步: r 1−2r 2, r 3−3r 2, r 4−2r 2~. )−−−−−1187701298804202111110(下一步: r 2+2r 1, r 3−8r 1, r 4−7r 1 ~. )−−41000410002020111110(下一步: r 1↔r 2, r 2×(−1), r 4−r 3~. )−−−−00000410001111020201(下一步: r 2+r 3~. )−−00000410003011020201. 2. 设= 987654321100010101100001010A , 求A .解100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(−1))−=100010101.− =100010101987654321100001010A= − =287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵: (1)323513123;解 100010001323513123~−−−101011001200410123~ −−−−1012002110102/102/3023~−−−−2/102/11002110102/922/7003~−−−−2/102/11002110102/33/26/7001故逆矩阵为−−−−21021211233267.(2)−−−−−1210232112201023.解−−−−−10000100001000011210232112201023~−−−−00100301100001001220594012102321~−−−−−−−−20104301100001001200110012102321~ −−−−−−−106124301100001001000110012102321 ~−−−−−−−−−−10612631110`1022111000010000100021 ~−−−−−−−106126311101042111000010000100001故逆矩阵为−−−−−−−10612631110104211. 4. (1)设 −−=113122214A ,−−=132231B , 求X 使AX =B ;解 因为−−−−=132231 113122214) ,(B A−−412315210 100010001 ~r ,所以−−==−4123152101B A X .(2)设−−−=433312120A , −=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为−−−−=134313*********) ,(T T B A−−−411007101042001 ~r ,所以−−−==−417142)(1T T T B A X ,从而−−−==−4741121BA X . 5. 设−−−=101110011A , AX =2X +A , 求X .解 原方程化为(A −2E )X =A . 因为−−−−−−−−−=−101101110110011011) ,2(A E A−−−011100101010110001~,所以−−−=−=−011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r −1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r −1阶子式, 也可能存在等于0的r 阶子式. 例如,=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, −1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:−0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式: (1)−−−443112112013;解−−−443112112013(下一步: r 1↔r 2 ~. )−−−443120131211(下一步: r 2−3r 1, r 3−r 1 ~. )−−−−564056401211(下一步: r 3−r 2 ~. )−−−000056401211, 矩阵的2秩为, 41113−=−是一个最高阶非零子式.(2)−−−−−−−815073*********;解−−−−−−−815073*********(下一步: r 1−r 2, r 2−2r 1, r 3−7r 1 ~. )−−−−−−15273321059117014431(下一步: r 3−3r 2~. )−−−−0000059117014431, 矩阵的秩是2, 71223−=−是一个最高阶非零子式.(3)−−−02301085235703273812. 解−−−02301085235703273812(下一步: r 1−2r 4, r 2−2r 4, r 3−3r 4~. )−−−−−−023*********63071210(下一步: r 2+3r 1, r 3+2r 1~. )−0230114000016000071210(下一步: r 2÷16r 4, r 3−16r 2. )~−02301000001000071210 ~−00000100007121002301, 矩阵的秩为3, 070023085570≠=−是一个最高阶非零子式.10. 设A 、B 都是m ×n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设−−−−=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 −−−−=32321321k k k A+−−−−−)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =−2且k ≠1时, R (A )=2;(3)当k ≠1且k ≠−2时, R (A )=3.12. 求解下列齐次线性方程组: (1) =+++=−++=−++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A = −−212211121211~ −−−3/410013100101,于是 ==−==4443424134334x x x x x x x x ,故方程组的解为−= 1343344321k x x x x (k 为任意常数).(2) =−++=−−+=−++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A = −−−−5110531631121~−000001001021,于是 ===+−=4432242102x x x xx x x x ,故方程组的解为+−= 10010*********k k x x x x (k 1, k 2 (3)为任意常数).=−+−=+−+=−++=+−+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A =−−−−−7421631472135132~1000010000100001,于是 ====0004321x x x x ,故方程组的解为 ====00004321x x x x .(4) =++−=+−+=−+−=+−+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有 A =−−−−−3127161311423327543~−−000000001720171910171317301,于是 ==−=−=4433432431172017191713173x x x x x x x xx x ,故方程组的解为−−+= 1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组: (1) =+=+−=−+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有。
线性代数课后练习参考答案(初稿)
线性代数课后习题参考答案(初稿)习题一1. 用行列式定义计算下列各题(1)4245322635-=-⨯-⨯=-(2)12130111110101(1)(1)21011110++=-+-=(3)1312001002020030(1)3002(1)243000040040004++=-=⨯-=- (4)11121310000230234645(1)4562(1)3(1)4045681089891078910+++=-=⨯-+⨯-= 2. 利用行列式的性质计算下列各题(1)214121413121506201232123250625062-== (2)28512851105131025319061906512511310805120512121100107609712--------==---=----=----------(3)111111111abac aebcebdcdde adf b c e adfbce bfcfef b c e ----=-=----111024020adfbce adfbce -== (4)3300011()()01000a b b b a b b b ab a b a b a a b a a b a a b a a b b a a b b b b a b a b a -==--=-------- (5)x a a aa x aa a ax a a a ax =(1)(1)(1)(1)x n a a aax n a x a ax n a a x a x n a a ax+-+-+-+- =[(1)]x n a+-1111a aa x a a a x a a ax=[(1)]x na +-1001001001x ax a x a---[(1)]x n a =+-1()n x a --(6)22222222222222222222(1)(2)(3)212325(1)(2)(3)2123250(1)(2)(3)212325(1)(2)(3)212325a a a a a a a ab b b b b b b bc c c c c c c cd d d d d d d d ++++++++++++==++++++++++++(7)12311000011231110001223110200(1)!1232110020123111001n n n n n n n n n n n n n nn -+-+-==--+----+-(8)0121111110001012111112002131111122012301230123241n n n n n n n n n n n n n --------==-----------------12(1)2(1)n n n --=--3. 证明下列各题(1)111111111111111122222222222222223333333333333333a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a ++++++++++=++++++++++++111111111111112222222222222233333333333333a b c c b c c a a b c b c a a b c c b c c a a b c b c a a b c c b c c a a b c b c a ++=+++=+++ 1112223332a b c a b c a b c = (2)00()()()()00x y z x z yx y z y z x z x y x y z y z x z y x =-+++-+-+-(证明略)(3)11111111111111111110111111111110111111111110111x x x x x y y y y y y+---=++++--- 21000111111111001111110111001111110111000x x x x y xy x y y y y y y y-⎛-⎫- ⎪=++=++++ ⎪ ⎪---⎝⎭- 222222210011001100y xy x y x xy xy x y x y y y ⎛⎫+ ⎪=+-=-+= ⎪- ⎪-⎝⎭(4)设01211000100010n n n a a x D a x a x----=-, 则按最后一行展开,可得01113210001101(1)0011n n n n n a a x xD a x a x x a x+-------=-+--211122122()n n n n n n n n a xD a x a xD a xa x D --------=+=++=++. 332123223321123210n n n n n n n n n n n a xa a x a xx D a xa a x a x a x a x -----------==+++++=++++++4. 解法参考例 1.11.5. 问齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩ 有非零解时,必须满足什么条件? 解:齐次线性方程组有非零解,当且仅当1242310111λλλ---=-. 又124111111231231012111112403(1)(3)λλλλλλλλλλλλ-----=--=--------+-(2)(3)0,λλλ=---=解得,0,λ=或2λ=,或3λ=.所以,当0,λ=或2λ=,或3λ=,齐次线性方程组有非零解.习题二 1. 1654127,2211210712A B A B -⎛⎫⎛⎫+=-=⎪ ⎪---⎝⎭⎝⎭2. 解:由A X B +=, 得020133.221X B A -⎛⎫⎪=-=-- ⎪ ⎪--⎝⎭ 3. 解:213220583221720,0564292290T AB A A B -⎛⎫⎛⎫ ⎪ ⎪-=--=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ 4. 解:(1)()31,2,32132231101⎛⎫ ⎪=⨯+⨯+⨯= ⎪ ⎪⎝⎭ (2)()22411,212336-⎛⎫⎛⎫ ⎪ ⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, (3)12110162134021311491231042217--⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭(4) 131********78113413120510402⎛⎫⎪--⎛⎫⎛⎫⎪= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎪⎝⎭5. 解: (1) 错误,令1101,,0111A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则有AB BA ≠;(2)错误,令1101,,0111A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则有222()2.A B A AB B +≠++(3) 错误,令1101,,0111A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则可得22()().A B A B A B +-≠- (4) 错误, 设00,10A ⎛⎫= ⎪⎝⎭则有20A =,但0.A ≠(5)错误, 设10,00A ⎛⎫= ⎪⎝⎭则有2A A =,但.A I ≠6. 解:2221010(),0101AB A B -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭7. 证明: 因为A 为对称矩阵,所以T A A =. 故(),T T T T T B AB B A B B AB ==因此,T B AB 是对称矩阵.8. 证明: 因为(),(),T T T T T T A A A A AA AA == 所以,T T A A AA 是对称矩阵.9. 解: 由32,A X B -=得43/211(3)15/2127/211/25/2X B A -⎛⎫ ⎪=--=- ⎪ ⎪⎝⎭. 10. 2cos 2sin 2,sin 2cos 2A θθθθ-⎛⎫=⎪⎝⎭cos sin sin cos n n n A n n θθθθ-⎛⎫= ⎪⎝⎭对n 作数学归纳法. 当2n =时,22222cos 2sin 2cos sin 2cos sin sin 2cos 22cos sin cos sin A θθθθθθθθθθθθ-⎛⎫--⎛⎫==⎪ ⎪-⎝⎭⎝⎭, 结论成立. 假设, 当n k =时, 结论成立, 即cos sin sin cos k k k A k k θθθθ-⎛⎫=⎪⎝⎭. 下证1n k =+结论成也立. 由归纳假设可得,1k A+=cos sin cos sin sin cos sin cos k k k A A k k θθθθθθθθ--⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭cos cos sin sin cos sin sin cos cos sin sin cos cos cos sin sin k k k k k k k k θθθθθθθθθθθθθθθθ---⎛⎫=⎪+-⎝⎭cos(1)sin(1)sin(1)cos(1)k k k k θθθθ+-+⎛⎫=⎪++⎝⎭因此,由归纳法可得cos sin sin cos n n n A n n θθθθ-⎛⎫=⎪⎝⎭. 11. (1)解: 由初等行变换可得,11103111031110311007221240012200122001043314500244000390001311118002150000000000A -------⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪----⎪ ⎪ ⎪ ⎪=→→→⎪ ⎪ ⎪ ⎪------ ⎪⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭(2)解: 由初等行变换可得,111111107125016016234000000⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭12. 解法见第38页 例2.14. 13. (1)解:22222311111111111011111110111λλλλλλλλλλλλλλλλλλλ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→---⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭2221101100(1)(2)(1)(1)λλλλλλλλλλ⎛⎫ ⎪→--- ⎪ ⎪-+-+⎝⎭, 当2λ=-时, 方程组无解, 当1λ=时,方程组的增广矩阵为111100000000⎛⎫⎪ ⎪ ⎪⎝⎭因此方程组的解为12111010001k k --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12,k k 为任意常数, 当1λ≠, 且2λ≠-时,方程组有唯一解,221211(1)(1),,222x x x λλλλλλλ+++=-=-+=-+++(2)解:322111************213221λλλλλλλλλλλλ---⎛⎫⎛⎫ ⎪⎪--→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭ 112111210111011101(2)(1)2(1)00(1)(3)1λλλλλλλλλλλλλλλ--⎛⎫⎛⎫⎪ ⎪→-+--→--- ⎪ ⎪ ⎪ ⎪-------⎝⎭⎝⎭当1λ=时,方程组无解,方程组的增广矩阵为111100000000⎛⎫⎪ ⎪ ⎪⎝⎭因此方程组的解为12111010001k k --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12,k k 为任意常数,当3λ=时,方程组无解,当3λ≠且1λ≠时,方程组有唯一解,123411,,.33x x x λλλ-=-==-- 14. 解: 通过初等变换,可得A 的标准型矩阵为,17100010101002800105100015⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭15. 解析:通过初等行变换可将矩阵()A I 化为()()A I I B →,则1A B -= 例如(1)通过初等行变换,121012101052250101210121-⎛⎫⎛⎫⎛⎫→→ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭, 故 112522521--⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭相类似的方法可求的其余矩阵的逆矩阵,答案见教材第177页. 16. 解: 原线性方程组可写成123123122103430x x x ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,因此,11231123132210234301x x x -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭17.(1) 由原矩阵方程可得121122111321182431511133X --⎛⎫-⎛⎫-⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪-- ⎪⎝⎭ ⎪-⎝⎭⎝⎭, (2) 由原矩阵方程可得1111143120112011104X --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪== ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭(3)由原矩阵方程可得11010143100210100201001134001120010102X ----⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪=-=- ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭18证明: 因为21()()k k I A I A A A I A I +-++++=-=, 所以12()()k I A I A A A --=++++19. 解: 由220A A I --=, 得()2A I AI -=,3(2)4A IA I I -+=-, 因此,1(),2A I A --=13(2)4A IA I --+=- 20. 证明: 由220A AB B ++=, 且B 可逆得,22[()],()A A B B E B A A B E ---+=-+=,因此,,A A B +可逆,且1212(),().A A B B A B B ----=-++=-21. 令11123,01121001B C ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭,则111311044,0111100122B C --⎛⎫-⎛⎫- ⎪ ⎪==-⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭, 因此1111130004411000002200001100001101B B A A A ----⎛⎫- ⎪ ⎪ ⎪-⎛⎫⎛⎫⎪=== ⎪⎪ ⎪⎝⎭⎝⎭- ⎪ ⎪- ⎪⎝⎭. 22. 证明: 若,B C 可逆,则有11000B C I CB --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 所以A 可逆,且1110.0C A B---⎛⎫= ⎪⎝⎭ 反之,若A 可逆, 设其逆为XY Z V ⎛⎫⎪⎝⎭, 则, 000B X Y I o C Z V I ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 因此,,BZ I CY I ==, 因此,B C 可逆.23. 证明:用反证法. 假设A 是奇异矩阵,则由2A A =, 得211A A AA --=, 即A E =, 这与已知条件矛盾,所以A 是非奇异矩阵.习题三 1. (3,8,7)T β=2. 解: 设11223344,x x x x βαααα=+++ 即12341111121111,1111111111x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪=+++ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 解得, 12345111,,,4444x x x x ===-=-, 因此12345111.4444βαααα=+--3. 解: 由3(),αβαβ-=+ 得117(1,,2,)222T αα=-=---. 4. 类似第2题的解法,可得1234243.βαααα=+-+ 5. (1) 解: 设1122330,x x x ααα++= 即1231111260133x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 上面方程组只有零解,所以123,,ααα线性无关. (2) 因为111111111141406120612117024000A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, 所以秩(A)=2, 故123,,ααα线性相关. 6. 用反证法容易证明结论成立.7. 证明: (1) 设11220,m m x x x βββ+++= 则有11220,m m x x x ααα+++= 又因为12,,,m ααα线性无关, 所以120,m x x x ==== 因此12,,,,mβββ线性无关.(2) 若12,,,,m βββ线性相关, 则存在不全为零的数12,,,,m x x x 使得11220,m m x x x βββ+++= 因此11220,m m x x x ααα+++= 故而12,,,m ααα线性相关.8. 证明: ()⇒设112223331()()()0,k k k αααααα+++++= 整理得,131122233()()()0k k k k k k ααα+++++=,因为123,,ααα线性无关, 所以131223000k k k k k k +=⎧⎪+=⎨⎪+=⎩ 又因为1011100011≠, 所以上面方程组只有零解, 故122331,,αααααα+++线性无关.()⇐ 设1122330,k k k ααα++= 整理得,123121232312331111()()()()()()0,222k k k k k k k k k αααααα+-++-++++-++= 又因为122331,,αααααα+++线性无关, 所以123123123(000k k k k k k k k k +-=⎧⎪-++=⎨⎪-+=⎩ 解得上面方程组只有零解, 因此,123,,ααα线性无关. 证明: 9.(⇒)设1mi i i k αα==∑, 和10.mi i i l α==∑ 则,111()mmmi i i i i i i i i i k l k l αααα====+=+∑∑∑,又α的表达式唯一,因此,i i i k l k += 即0,i l = 故,12,,,m ααα 线性无关.(⇐)设11m m i i i i i i k l ααα====∑∑, 则1()0mi i i i k l α=-=∑,因为12,,,m ααα 线性无关,所以,,i i k l =故α的表达式唯一.10. 证明:因为12,,,m ααα 线性相关, 则存在不全为零的数12,,,m k k k 使得,10.mi i i k α==∑若有某个0i k =, 不妨设10k =,则有20,mi i i k α==∑ 又任一1m -向量都线性无关,因此230m k k k ====, 这与12,,,m k k k 不全为零矛盾,因此12,,,m k k k 全不为零, 命题得证. 11. 答案见教材178页. 12. 解: (1) 因为13213213221307107132076005A c c c ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+-+⎝⎭⎝⎭⎝⎭所以, 当50,c -+≠ 即5c ≠时,123,,ααα线性无关.(2 ) 当5c =时,123,,ααα线性相关, 且312111.77ααα=+ 13. 解: (1)因为234411231123112311232344050100501032613261050100000102110210120000A ------⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪-- ⎪ ⎪ ⎪ ⎪=→→→⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪------⎝⎭⎝⎭⎝⎭⎝⎭因此,向量组1234,,,αααα的秩为2, 12,αα是一个极大线性无关组, 且314122,2.ααααα==-+用类似的方法可求(2), (3), 答案见教材.14. (1) 因为120131(,)1224αα⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭, 有一个二阶子式01331=--,所以秩(12,αα)=2, 即12,αα线性无关.(2) 容易计算124,,ααα线性无关. 15. 答案见教材.16. (1)任取()()12121,,,,,,,,,n n x x x y y y V k R ∈∈则有11220n n x y x y x y ++++++=,120n kx kx kx +++=所以()()()121211221,,,,,,,,,n n n n x x x y y y x y x y x y V +=+++∈,12121(,,,)(,,,)n n k x x x kx kx kx V =∈,因此,1V 是线性空间.(2) 任取()()12122,,,,,,,n n x x x y y y V ∈,则有11222n n x y x y x y ++++++=,因此, ()()()121211222,,,,,,,,,.n n n n x x x y y y x y x y x y V +=+++∉ 因此,2V 不是线性空间. 17. 证明: 因为111111101101211110011==-=--,所以123,,ααα线性无关, 即秩(123,,ααα)=3,故123,,ααα生成的子空间就是R .18. 因为 12311160,032-=-≠ 所以,秩(123,,ααα)=3,故123,,ααα是R 的一组基.令1112233k k k βααα=++, 即123(5,0,7)(1,1,0)(2,1,3)(3,1,2).k k k =-++ 因此123123232350327k k k k k k k k ++=⎧⎪-++=⎨⎪+=⎩, 解得,1232,3,1,k k k ===- 所以112323βααα=+-.19. 方法见例3.17. 20. 见教材答案21. 证明: 因为A 是正交阵, 所以21,1T A A A -==.又*,A A A E = 即*1A A A -=.因此,2**()T A A A E E ==, 故*A 是正交阵. 习题四 1. 解(1)1251251251320170171490214000378017000⎛⎫⎛⎫⎛⎫⎪ ⎪⎪---⎪ ⎪ ⎪→→⎪ ⎪ ⎪-- ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭, 所以,原方程组与下面方程组同解,1232325070x x x x x ++=⎧⎨-=⎩选取3x 作为自由未知量, 解得基础解系为1971-⎛⎫ ⎪ ⎪ ⎪⎝⎭, 因此, 方程组的解为1971k -⎛⎫ ⎪ ⎪ ⎪⎝⎭(2)313411311131159815980467113131340000------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭, 选取选取34,x x 作为自由未知量, 解得基础解系为3/23/43/27/4,1001-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故方程组的同解为123/23/43/27/41001k k -⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(3)见教材答案 (4)见教材答案2. (1) 对增广矩阵做行初等变换得1121011210(,)211210*********/200031/2A b --⎛⎫⎛⎫ ⎪ ⎪=--→ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭解得特解为5/6101/6⎛⎫⎪ ⎪ ⎪ ⎪-⎝⎭, 对应的齐次线性方程组的基础解系为3510-⎛⎫ ⎪- ⎪ ⎪ ⎪⎝⎭, 因此方程组的同解为5/6101/6⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭+3510k -⎛⎫ ⎪- ⎪ ⎪ ⎪⎝⎭(2) 答案见教材 3. (略)4. 证明: 令i e 为n 阶单位矩阵的第i 列,即(0,0,,1,0,,0)Ti ie =, 则有0,1,2,,i Ae i n ==,因此12(,,,)0,n A e e e AI == 故0A =。
(完整版)线性代数课后习题答案第1——5章习题详解
第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
线性代数课后答案解析 第二版 同济大学出版社
线性代数习题解答 同济大学出版社习题11.求下列各排列的逆序数:(1)1 2 3 4; (2)4 1 3 2;(3)4 1 5 3 2; (4)3 7 1 2 4 5 6; (5)1 3 … (21)n - 2 4 … (2)n ; (6)1 3 … (21)n - (2)n (22)n - … 2. 2.利用对角线法则计算下列二阶、三阶行列式:(1)3214---; (2)201141183---;(3)a b c b c a c a b ; (4)x y x y yx y x x yxy+++.3.在六阶行列式中,下列两项各应带什么符号: (1)233142561465a a a a a a ;(2)334214516625a a a a a a . 4.计算下列各行列式:(1)000100020010000000n n -; (2)1234214334124321------;(3)2100121001210012; (4)0451250201720343115023013-------;(5)abac aebdcd de bfcfef---; (6)1111111111111111x x y y+-+-.5.证明:(1)11121314152122232425313241425152000000000a a a a a a a a a a a a a a a a =; (2)2222111a abb aa b b +=3()a b -;(3)111111222222b cc a a bb c c a a b b c c a a b +++++++++=1112222ab ca b c a b c ; (4)222244441111a b c d a b c d a b c d ; ()()()()()a b a c a d b c b d =-----()()-+++c d a b c d ;(5)1221100001000001n n n x x xa a a a x a -----+111n n n n x a x a x a --=++++ .6.计算下列各n 阶行列式:(1)11aa,其中对角线上元素都是a ,未写出的元素都是0;(2)111x a a a x a a a x --- ;(3)123111100100100n a a a a,230≠其中n a a a ; (4)12111111111na a a +++,120n a a a ≠ 其中;(5)111222(1)(2)()(1)(2)()12111n n n n n n a a a n a a a n a a a n ---------------;(6)det(),n ij ij D a a i j ==-其中. 7.利用拉普拉斯定理计算下列各行列式:(1)320000430000002100003200000032000054;(2)3002034040030560; (3)112110000nnn nna b a b D c d c d =.解答习题11.(1)0;(2)4;(3)6;(4)7;(5)(1)2-n n ;(6)(1)-n n . 2.(1)-14;(2)-4;(3)3333---ab a b c ;(4)332()-+x y . 3.(1)正号;(2)负号. 4.(1)(1)(2)2(1)!---n n n ;(2)900;(3)5;(4)-799;(5)4abcdef ;(6)22x y . 5.提示:(1)用行列式定义证明;(2)、(3)、(4)用行列式性质证明;(5)用数学归纳法证明.6.(1)22(1)--n aa ;(2)1[1(1)](1)--+---n x n a x a ;(3)23121()()nn i ia a a a a =-∑ ;(4)1211()(1)=+∑nn i i a a a a ;(5)1()≥>≥-∏n i j i j ;(6)12(1)(1)2----n n n . 7.(1)2;(2)2;(3)1()=-∏niii i i a db c .习题21.有6名选手参加乒乓球比赛,成绩如下:选手1胜选手2,4,5,6负于选手3;选手2胜选手4,5,6负于选手1,3;选手3胜选手1,2,4负于选手5,6;选手4胜选手5,6负于选手1,2,3;选手5胜选手3,6负于选手1,2,4;若胜一场得1分,负一场得零分试用矩阵表示输赢状况,并排序.2.某种物资以3个产地运往4个销地,两次调运方案分别为矩阵A 与矩阵B .且357220430123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,132021570648B ⎛⎫ ⎪= ⎪ ⎪⎝⎭试用矩阵表示各产地运往各销地两次的物资调运量.3.设111123111124111051A B ⎛⎫⎛⎫⎪ ⎪=-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,,求32AB A -与TA B .4.某厂研究三种生产方法,生产甲、乙、丙三种产品,每种生产方法的每种产品数量用如下矩阵表示:234123241A ⎛⎫ ⎪= ⎪ ⎪⎝⎭甲乙丙方法一方法二方法三 若甲、乙、丙各种产品每单位的利润分别为10元,8元,7元,试用矩阵的乘法求出以何种方法获利最多.5.设12101312A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,问(1)AB BA =吗?(2)()2222A B A AB B +=++吗?(3)()()22A B A B A B +-=-吗?6.举反例说明下列命题是错误的: (1)若2A O =,则A O =;(2)若2A A =,则A O =或A E =;(3)若AX AY =,且A O ≠,则X Y =. 7.设101A λ⎛⎫=⎪⎝⎭,求23kA A A ,,,. 8.设AB 、都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA =. 9.用伴随矩阵法求下列矩阵的逆阵:(1)1225⎛⎫ ⎪⎝⎭; (2)cos sin sin cos θθθθ-⎛⎫⎪⎝⎭; (3)121342541-⎛⎫ ⎪- ⎪ ⎪-⎝⎭; (4)1234012300120001⎛⎫⎪⎪ ⎪ ⎪⎝⎭. 10.解下列矩阵方程: (1)25465321X -⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(2)211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭;(3)010100143100001201001010120X -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.11.设方阵A 满足225A A E O +-=,证明3A E +可逆,并求其逆矩阵.12.已知对给定方阵A ,存在正整数k ,成立kA O =,试证E A -可逆,并指出()1E A --的表达式.13.设A 为3阶方阵,12A =,求()125A A -*-. 14.设方阵A 可逆,证明其伴随矩阵A *也可逆,且()()11AA -**-=.15.设131020101A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2AB E A B +=+,求B .16.设三阶矩阵A B ,满足关系:16A BA A BA -=+,且100210041007A ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭, 求B .17.设033110123A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,2AX A X =+,求X .18已知AP P =Λ,其中100100210000211001P ⎛⎫⎛⎫⎪ ⎪=-Λ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,=,求A 及5A .19.设A B ,和A B +均可逆,证明11A B --+也可逆,并求其逆矩阵.20.将矩阵2131425442622140A -⎛⎫⎪-⎪= ⎪--- ⎪-⎝⎭化为行阶梯形矩阵,并求矩阵A 的一个最高阶非零子式.21.用初等变换法求下列矩阵的逆:(1)111211120⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2)321315323⎛⎫⎪ ⎪ ⎪⎝⎭;(3)3201022112320121--⎛⎫⎪ ⎪ ⎪--- ⎪⎝⎭; (4)1357012300120001-⎛⎫⎪⎪⎪⎪⎝⎭.22.下列矩阵的秩.:(1)1234124511012⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2)321312131370518---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭; (3)1001310312011457⎛⎫⎪-⎪ ⎪-⎪⎝⎭; (4)24131121023636a -⎛⎫ ⎪- ⎪ ⎪⎝⎭.23.设A 为n 阶矩阵,且2A A =,证明()()R A R A E n +-=.24.设34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭,求84A A ,. 25.设矩阵A 和B 均可逆,求分块矩阵O A B O ⎛⎫⎪⎝⎭的逆矩阵,并利用所得结果求矩阵005200218300520⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭的逆矩阵.解答习题21.123456110111200111311100400011500101600100⎛⎫⎪⎪⎪⎪⎪⎪⎪⎪⎝⎭,选手按胜多负少排序为1 2 3 4 5 6.2.357213202043215701230648 A B⎛⎫⎛⎫⎪ ⎪+=+⎪ ⎪⎪ ⎪⎝⎭⎝⎭48924191007611⎛⎫⎪= ⎪ ⎪⎝⎭.3.111123111 3331111242111111051111 AB A⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=-----⎪⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭21322217204292-⎛⎫⎪=--⎪⎪-⎝⎭058123056124290051TTA B⎛⎫⎛⎫⎪ ⎪=---⎪ ⎪⎪ ⎪⎝⎭⎝⎭002123058559124056860051290⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=---=-⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.4.1072844759A⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,方法一获利最多. (1)AB BA≠,因为34124638AB BA⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,所以AB BA≠.(2)()2222A B A AB B +≠++因为 2225A B ⎛⎫+=⎪⎝⎭()2222281425251429A B ⎛⎫⎛⎫⎛⎫+== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭但 2238681010162411812341527A AB B ⎛⎫⎛⎫⎛⎫⎛⎫++=++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以()2222A B A AB B +≠++(3)()()22A B A B A B +-≠- 因为 22022501A B A B ⎛⎫⎛⎫+=-=⎪ ⎪⎝⎭⎝⎭,,()()220206250109A B A B ⎛⎫⎛⎫⎛⎫+-== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,而 223810284113417A B ⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()()22A B A B A B +-≠-6.(1)取1111A O ⎛⎫=≠ ⎪--⎝⎭,而2A O =; (2)取1000A ⎛⎫=⎪⎝⎭,有A O A E ≠≠,,而2A A =; (3)取101010000001A X Y ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,有X Y ≠,而AX AY =.7. 21010101121A AA λλλ⎛⎫⎛⎫⎛⎫===⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;3210101021131A A A λλλ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;由此推出 ()10231kA k k λ⎛⎫==⎪⎝⎭,,下面利用数学归纳法证明这个结论. 当12k k ==,时,结论显然成立. 假设1k -时结论成立,即有 ()11011k Ak λ-⎛⎫=⎪-⎝⎭则对于k 时,有 ()11010101111kk A A A k k λλλ-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,故结论成立. 8. 证明 由已知:T A A = TB B =充分性:由AB BA =,得T TAB B A =,所以()TAB AB =即 AB 是对称矩阵. 必要性:由()TAB AB =得,T T B A AB =所以BA AB =.9. (1) 公式法:1225A ⎛⎫= ⎪⎝⎭1A =112112225,2(1),2(1),1A A A A ==⨯-=⨯-=112112225221AA A A A *-⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭ 11A A A -*= 故 15221A --⎛⎫= ⎪-⎝⎭初等行变换法:()12102501AE ⎛⎫=⎪⎝⎭21212100121r r -⎛⎫−−−→ ⎪-⎝⎭12210520121r r --⎛⎫−−−→ ⎪-⎝⎭所以 15221A--⎛⎫= ⎪-⎝⎭. (2) 10A =≠ 故1A -存在11211222cos sin sin cos A A A A θθθθ===-=从而 1c o s s i n s i n c o s A θθθθ-⎛⎫=⎪-⎝⎭(3) 公式法;2A =, 故1A -存在 112131420A A A =-== 而 1222321361A A A =-==- 13233332142A A A =-==-故 11A A A -*=2101313221671-⎛⎫⎪ ⎪=-- ⎪⎪--⎝⎭初等行变换法:()121100342010541001AE -⎛⎫⎪=- ⎪ ⎪-⎝⎭ 2131351211000213100146501r r r r ---⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭3271211000213100011671r r --⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭2313120157102013610011671r r r r +---⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭3210021002013610011671r r +-⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭2122101001310103220011671r --⎛⎫ ⎪ ⎪−−−→-- ⎪- ⎪-⎝⎭所以 12101313221671A --⎛⎫⎪ ⎪=-- ⎪ ⎪--⎝⎭.(4)由对角矩阵的性质知 12110101n a a A a -⎛⎫ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪⎝⎭. 10. (1) 125461321X --⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭35461221--⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭22308-⎛⎫= ⎪⎝⎭(2) 1211113210432111X --⎛⎫-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭10111312324323330⎛⎫-⎛⎫ ⎪=-- ⎪ ⎪⎝⎭ ⎪-⎝⎭22182533-⎛⎫⎪= ⎪-- ⎪⎝⎭ (3) 11143120120111X --⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭243110111011212-⎛⎫⎛⎫⎛⎫= ⎪⎪⎪-⎝⎭⎝⎭⎝⎭66101301212⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭11104⎛⎫⎪= ⎪⎝⎭11. 由22A A E O --=得22A A E -= 两端同时取行列式: 22A A -=即 2A A E -=,故 0A ≠ 所以A 可逆,而22A E A +=2220A E A A +==≠ 故2A E +也可逆.由22A A E O --=得()2A A E E -=所以 11()2A A A E A E ---=,则11()2AA E -=- 又由22A A E O --=(2)3(2)4A E A A E E +-+=-(2)(3)4A E A E E +-=-所以 11(2)(2)(3)4(2)A E A E A E A E --++-=-+则 11(2)(3)4A E E A -+=-. 12.()11k E A E A A ---=+++ .13. 因为11AA A-*=,所以 ()1111111255522A A A A A A A -*-----=-=- ()31112288216A A A ---=-=-=-=-⨯=-.14. 由11AA A-*=,得1A A A *-=, 所以 当A 可逆时,有110nn A A A A-*-==≠,从而A *也可逆.因为1A A A *-=,所以()11A AA --*=又()()1111A A A A A**---==,所以()()()11111A AA AA A A -**--*--===15. 由2AB E A B +=+得()2A E B A E -=-即()()()A E B A E A E -=-+因为 0011010100A E -==-≠,所以()A E -可逆,则 201030102B A E ⎛⎫ ⎪=+= ⎪ ⎪⎝⎭.16.600020001⎛⎫⎪ ⎪ ⎪⎝⎭.17.033123110⎛⎫ ⎪- ⎪ ⎪⎝⎭18. 因为AP P =Λ,所以1A P P -=Λ;又 1P =-, 1100210411P --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,55115⎛⎫⎪Λ ⎪ ⎪⎝⎭= 所以 1100110021012102115411A P P ---⎛⎫⎛⎫⎛⎫⎪⎪⎪=Λ=-- ⎪⎪⎪ ⎪⎪⎪-⎝⎭⎝⎭⎝⎭100200611⎛⎫ ⎪= ⎪ ⎪--⎝⎭5100200611A ⎛⎫⎪= ⎪ ⎪--⎝⎭.19. 因为()1111A B A E CA B B B A ----+=+=+,由()()1A B A B E -++=得()()()()111111AB A A B B A B A B B ------++=++=则()()1111A B A A B B B B E ----++==所以11A B --+可逆,其逆为()1A B A B -+.20. 213241221312131425400124262001221400011r r r r r r A -+---⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪=−−−→ ⎪ ⎪---- ⎪ ⎪--⎝⎭⎝⎭ 32344221312131001200120000000100010000r r r r r r B -↔+--⎛⎫⎛⎫⎪⎪-- ⎪ ⎪−−−→−−−→= ⎪⎪⎪ ⎪⎝⎭⎝⎭B 的秩为3,其一个3阶非零子式为13112001--,对应于A 的3阶非零子式为131254262----. 故2131001200010000-⎛⎫⎪- ⎪⎪⎪⎝⎭即为矩阵A 的行阶梯形矩阵,矩阵A 的一个最高阶非零子式为131254262----. 21.(1)111222111444513444⎛⎫- ⎪ ⎪⎪- ⎪ ⎪ ⎪-- ⎪⎝⎭,(2)72363211211022⎛⎫- ⎪ ⎪-- ⎪ ⎪- ⎪⎝⎭,(3)11240101113621610--⎛⎫ ⎪-⎪ ⎪-- ⎪--⎝⎭,(4)131120012100120001--⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. 22.(1)2,(2)3,(3)4,(4)当4a =-时,秩为2;当4a ≠-时,秩为3.24.34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭,令13443A ⎛⎫= ⎪-⎝⎭ 22022A ⎛⎫= ⎪⎝⎭ 则12A O A OA ⎛⎫=⎪⎝⎭故8182A O A O A ⎛⎫=⎪⎝⎭8182A O OA ⎛⎫= ⎪⎝⎭8888816121210A A A A A ===444414426450052022O A O A OA O ⎛⎫⎪⎛⎫ ⎪==⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭25. nn s ns s A O E O C B OE ⨯⎛⎫⎪⎝⎭ 111n nA r ns ns s EO A O C B OE --⨯⎛⎫−−−→ ⎪⎝⎭()2111r Cr nns n ns EOA O OB C A E ---⨯⎛⎫−−−−−→ ⎪-⎝⎭左乘 ()121111s s B r nns n nsA O EO B C A B O E -----⨯⎛⎫−−−−→ ⎪ ⎪-⎝⎭左乘 11111s s n s n nA O A OBC A B C B -----⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭利用这个结果取103021121412A B C ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,则由11111ss n s n n A O A O B C A B C B -----⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭得 112040111113212A B --⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,,114021201241111312113512224B CA ----⎛⎫⎛⎫⎛⎫⎛⎫=-⋅= ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭-,则 1124080111212262424A B --⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,故 110002400012001212001213012482412143526-⎛⎫⎛⎫⎪ ⎪-⎪ ⎪=⎪ ⎪--⎪ ⎪--⎝⎭⎝⎭习题31.设α=(1,1,0,-1)T ,β=(-2,1,0,0)T ,γ=(-1,-2,0,1)T ,求35αβγ-+.2.设34αβ+=(2,1,1,2)T 23αβ+=(-1,2,3,1)T求,αβ.3.解向量方程325X αβ-=其中,α=(3,5,7,9)T ,β=(-1,5,2,0)T .4.判断向量β能否由其余向量线性表示?若能,写出表示式.(1)β=(0,10,8,7)T ,1α=(-1,2,3,9)T ,2α=(1,3,1,0)T ,3α=(1,8,5,-2)T .(2)β=(1,2,1,1)T ,1α=(1,1,1,1)T ,2α=(1,1,-1,-1)T ,3α=(1,-1,1,-1)T ,4α=(1,-1,-1,1)T .5.设1α=(1+k ,1,1,1)T ,2α=(1,1+k ,1,1)T ,3α=(1,1,1+k ,1)T ,β=(1,3,2,1)T ,试问k 取何值时,β可由123,,ααα线性表示?并写出表示式.6.设1α=(1,0,2,3)T ,2α=(1,1,3,5)T ,3α=(1,-1,a +2,1)T ,4α=(1,2,4,a +8)T ,β=(1,1,b +3,5)T ,试问当,a b 为何值时.(1)β不能由1234,,,αααα线性表示;(2)β能由1234,,,αααα线性表示,且表示法唯一,并写出该表示式; (3)β能由1234,,,αααα线性表示,且表示法不唯一,并写出两个表示式.7.设向量β可由向量组12,,,m ααα 线性表示,但不能由121,,,m ααα- 线性表示,则向量组12,,,m ααα 与向量组121,,,,m αααβ- 等价.8.判断下列向量组是否线性相关?(1)1α=(2,2,7,-1)T ,2α=(3,-1,2,4)T ,3α=(1,1,3,1)T .(2)1α=(1,4,2,7)T ,2α=(3,2,4,5)T ,3α=(1,-1,2,2)T ,4α=(1,4,2,7)T .9.问k 取何值时下列向量组线性相关?线性无关?1α=(k ,2,1)T ,2α=(2,k ,0)T ,3α=(1,-1,1)T10.设向量组123,,ααα线性无关,112323βααα=--,21232βααα=++,3123βααα=-+,讨论向量组123,,βββ的线性相关性.11.已知向量组12,,,m ααα 线性无关,设112βαα=+,223βαα=+,…,11m m m βαα--=+,1m m βαα=+,讨论向量组12,,,m βββ 的线性相关性.12.设向量组12,,,m ααα 不含零向量,且αk (k =2,3,…,m)不能由121,,,k ααα- 线性表示,则向量组12,,,m ααα 线性无关.13.求下列向量组的秩及一个极大线性无关组,并用极大线性无关组线性表示其余向量.(1)1α=(2,1,3,-1)T ,2α=(3,-1,2,0)T ,3α=(1,3,4,-2)T ,4α=(4,-3,1,1)T .(2)1α=(1,2,3,-1)T ,2α=(3,2,1,-1)T ,3α=(2,3,1,1)T ,4α=(2,2,2,-1)T ,5α=(5,5,2,0)T .(3)1α=(1,2,-1,1)T ,2α=(2,0,k ,0)T ,3α=(0,-4,5,-2)T ,4α=(2,2,2,-1).(4)1α=(1,0,1,2)T ,2α=(0,1,1,2)T ,3α=(-1,1,0,k )T ,4α=(1,2,k ,6)T ,5α=(1,1,2,4)T .14.设12{,,,}m R ααα =12{,,,}t R βββ ,且12,,,m ααα 可由12,,,t βββ 线性表示,则向量组12,,,m ααα 与向量组12,,,t βββ 等价.15.设有两个向量组1α=(1,2,-1,3)T ,2α=(2,5,a ,8)T ,3α=(-1,0,3,1)T ;1β=(1,a ,2a -5,7)T ,2β=(3,3+a ,3,11)T ,3β=(0,1,6,2)T ,若1β可由123,,ααα线性表示,试判断这两个向量组是否等价?16.已知向量组1β=(0,1,-1)T ,2β=(a ,3,1)T ,3β=(b ,1,0)T 与向量组1α=(1,2,-3)T ,2α=(2,1,-1)T ,3α=(3,0,1)T 具有相同的秩,且3β可由123,,ααα线性表示,求,a b .17.判断下列集合是否是向量空间?为什么?若是向量空间,求出其维数及一个基. (1)V 1={(x 1,x 2,…,x n )T ∈R n |a 1x 1+a 2x 2 + … +a n x n =0},其中a i (i = 1,2,…,n )为R 中固定的数.(2)V 2={(x 1,x 2,…,x n )T ∈R n |a 1x 1+a 2x 2 + … +a n x n =1},其中a i (i = 1,2,…,n )为R 中固定的数.18.设123,,n R ααα∈.证明,若1122330k k k ααα++=且k 1k 2 ≠ 0,则L(α1,α3)=L(α2,α3).19.求下列向量生成子空间的维数与一个基.(1)1α=(-1,3,4,7)T ,2α=(2,1,-1,0)T ,3α=(1,2,1,3)T ,4α=(-4,1,5,6)T .(2)1α=(2,1,3,-1)T ,2α=(1,-1,3,-1)T ,3α=(4,5,3,-1)T ,4α=(1,5,3,-1)T .20.设1α=(1,0,-1)T ,2α=(2,1,1)T ,3α=(1,1,1)T ;1β=(3,1,4)T ,2β=(5,2,1)T ,3β=(1,1,-6)T .(1)证明123,,ααα与123,,βββ都是R 3的基; (2)求由基123,,ααα到基123,,βββ的过渡矩阵;(3)求坐标变换公式;(4)求α=(8,3,0)分别在基123,,ααα与基123,,βββ下的坐标.21.设α=(1,0,-1,0,1)T ,β=(0,1,0,2,0)T . (1)求αβ与的内积 [αβ,]; (2)求αβ与的长度||α||,||β||; (3)求αβ与的夹角θ.22.用施密特正交化方法将下列向量组标准正交化.(1)1α=(1,1,1,1)T ,2α=(3,3,-1,-1)T ,3α=(-2,0,6,8)T ; (2)1α=(1,1,1,0)T ,2α=(1,0,1,0)T ,3α=(-1,2,3,0)T . 23.求与向量1α=(1,0,-1,2)T ,2α=(0,1,1,0)T 都正交的向量. 24.判别下列矩阵是否为正交矩阵?并说明理由.(1)1100221100221111222211112222⎛⎫ ⎪⎪⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪-- ⎪⎝⎭,(2)11133311022211666⎛⎫⎪⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭25.设,n R αβ∈,A 是n 阶正交矩阵,证明:(1)[,A A αβ]=[,αβ]; (2)||A α||=||α||;(3)A α与A β的夹角等于α与β的夹角. 26.证明,若12,,,n ααα 是R n 的一组标准正交基,A 是n 阶正交矩阵,则12,,,n A A A ααα 也是R n 的一组标准正交基.解答习题31.(0,-8,0,2)T2.α=(10,-6,-10,2)T ,β=(-7,4,7,-1)T 3.X =12(14,-10,11,27)T 4.(1)能,β=α1+α3.(2)能,β=14(5α1+α 2 - α3 - α4) 5.k =3,β=13(2α2+α3) 6.(1)1,0a b =-≠,(2)12311,(2(1))1a b a b b a βααα≠-=-+++++ (3)2131,0.2a b βαβαα=-===-或8.(1)线性无关.(2)线性相关.9.k =3或k =-2时线性相关;k ≠3且k ≠ -2时线性无关. 10.线性无关.11.m 是奇数时线性无关,m 是偶数时线性相关.13.(1)秩=2;α1,α2是极大线性无关组;α3=2α1-α2,α4=-α1+2α2. (2)秩=3;α1,α2,α3是极大线性无关组;α4=121122αα+,α5=α2+α3. (3)k ≠3时:秩=4.k =3时:秩=3;α1,α2,α4是极大线性无关组;α3=-2α1+α2.(4)k ≠ 0且k ≠ 3时:秩=4;α1,α2,α3,α4是极大线性无关组;α5=α1+α2. k =3时:秩=3;α1,α2,α3是极大线性无关组;α4=α1+2α2,α5=α1+α2. k =0时:秩=3;α1,α2,α4是极大线性无关组;α3=-α1+α2,α5=α1+α2. 15.a =4,β1,β2,β3可由α1,α2,α3线性表示,但β1,β2,β3与α1,α2,α3不等价. 16.a =20,b = 5.17.(1)V 1是向量空间.当a i = 0 (i = 1,2,…,n)时:V 1=R n ;dimV 1 = n ;坐标单位向量ε1,ε2,…,εn 是V 1的基.当a i = 0 (i = 1,2,…,n)不全零时:dimV 1 = n -1;不妨设a 1≠0,则e 1 = (-a 2,a 1,0,…,0)T ,e 2 = (-a 3,0,a 1,…,0),…,e n -1 = (-a n ,0,…,a 1)是V 1的基.(2)V 2不是向量空间.19.(1)dimL(α1,α2,α3,α4) = 2;基是α1,α2. (2)dimL(α1,α2,α3,α4) = 3;基是α1,α2,α4.20.(2)317527408-⎛⎫⎪- ⎪ ⎪-⎝⎭;(3)112233317527408x y x y x y -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭;(4)3,2,1与11145,,444--. 21.(1)0;(2)3,5;(3)2π.22.(1)123111(1,1,1,1),(2,2,2,2),(11,1,1)242T TT e e e ==--=--,. (2)123111(1,1,1,0),(1,2,1,0),(1,0,1,0)362T T T e e e ==-=-. 23.(-4,-2,2,3).24.(1)是正交矩阵;(2)是正交矩阵.习题41. 用消元法解下列线性方程组:(1)123412341234 2 0,3 630,51050;x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩ (4)23y z 4,2y 4z 5,38y 2z 13,4 y 9z 6;x x x x ++=⎧⎪-+=-⎪⎨+-=⎪⎪-+=-⎩2.三个工厂分别有3吨、2吨和1吨的产品要送到两个仓库储藏,两个仓库各储藏产品4吨和2吨,用ij x 表示从第i 个工厂送到第j 个仓库的产品数(1,2,3;1,2i j ==),试列出ij x 所满足的关系式,并求解由此得到的线性方程组.3.写出一个以x 1222341001c c -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(12,c c ∈ )为全部解的齐次线性方程组.4.确定,a b 的值使下列齐次线性方程组有非零解,并在有非零解时,求其全部解:(1)1231231232 30,3470, 20;x x x x x x x x ax -+=⎧⎪-+=⎨⎪-+=⎩ (2)123123123 0,0, 20.ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩5.λ取何值时,下列非齐次线性方程组有唯一解、无解或有无限多个解?并在有无限多个解时求解:(1)1231232123 1, , ;x x x x x x x x x λλλλλ⎧++=⎪++=⎨⎪++=⎩ (2)123123123(2) 2 21, 2(5) 42, 2 4(5) 1.x x x x x x x x x λλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩6.设A 是实矩阵,证明()()T R A A R A =.7.求下列齐次线性方程组的基础解系:(1)123412341234 81020,24 5 0,38 620;x x x x x x x x x x x x -++=⎧⎪++-=⎨⎪++-=⎩ (2)123412341234232 0,35420,87630;x x x x x x x x x x x x --+=⎧⎪++-=⎨⎪++-=⎩8.设12,αα是某个齐次线性方程组的基础解系,证明:1212,2αααα+-也是该线性方程组的基础解系.9.设A 是n 阶方阵,0Ax =只有零解,求证:对任意的正整数k ,0kA x =也只有 零解.10.设A 22139528-⎛⎫=⎪-⎝⎭,求一个42⨯矩阵B ,使AB =0,且R (B )2=.11.求一个齐次线性方程组,使它的基础解系由下列向量组成:1ξ0123⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,2ξ3210⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭. 12.求下列非齐次线性方程组的通解:(1)1212341234 5,2 21,53220;x x x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩ (2)123412341234 52311,536 1,242 6.x x x x x x x x x x x x -+-=⎧⎪++-=-⎨⎪+++=-⎩13.证明:线性方程组121232343454515,,,,x x a x x a x x a x x a x x a -=-=-=-=-=.有解的充分必要条件是123450a a a a a ++++=.14.设四元非齐次线性方程组Ax b =的系数矩阵A 的秩为2,已知它的三个解向量为1η,2η,3η,其中1η4321⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,2η1351⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,3η2632-⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,求该方程组的通解.15.设矩阵A 121201101t t t ⎛⎫⎪= ⎪ ⎪⎝⎭,齐次线性方程组0Ax =的基础解系含有两个线性无关的解向量,试求方程组0Ax =的全部解.16.设A 21120131,11λμ⎛⎫ ⎪= ⎪ ⎪⎝⎭b 010⎛⎫ ⎪= ⎪ ⎪⎝⎭,η1111⎛⎫ ⎪- ⎪= ⎪ ⎪-⎝⎭,如果η是方程组Ax b =的一个解,试求方程组Ax b =的全部解.17.设η*是非齐次线性方程组Ax b =的一个解,1ξ,2ξ,…,n r ξ-是对应的齐次线性方程组的一个基础解系,证明:(1)η*,1ξ,2ξ,…,n r ξ-线性无关;(2) η*,η*+1ξ,…,η*+n r ξ-线性无关.18.若1η,2η,…,s η为非齐次线性方程组Ax b =的s 个解,12,,,s k k k 为常数,且121s k k k +++= ,证明:1k 1η+2k 2η+…+s k s η也是非齐次线性方程组Ax b =的解. 19.设非齐次线性方程组Ax b =的系数矩阵A 的秩为r ,1η,2η,…,1n r η-+是它的1n r -+个线性无关的解,试证:它的任一解可表示为x =1k 1η+2k 2η+…+1n r k -+1n r η-+,其中1211n r k k k -++++= .20.用克拉默(Cramer )法则解下列方程组:(1)1234123412341234 5, 2 42,23 52,3 2110;x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩ (2)12342345123234345 0,0,23 2, 23 2,23 2.x x x x x x x x x x x x x x x x x +++=⎧⎪+++=⎪⎪++=⎨⎪++=-⎪⎪++=⎩21.判断齐次线性方程组12312312322 0,240,5820;x x x x x x x x x +-=⎧⎪-+=⎨⎪+-=⎩ 是否仅有零解.22.问,λμ取何值时,齐次线性方程组123123123 0,0, 20;x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩ 有非零解?23.问λ取何值时,齐次线性方程组123123123(1) 2 40,2(3) 0, (1)0;x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解?24.证明:平面上三条不同的直线0,0,0ax by c bx cy a cx ay b ++=++=++=相交于一点的充分必要条件是 0a b c ++=.解答习题41.(1)11221121234222110,(,)00001x c c x c c c c c x x c -+-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ . (2)212121210x c y c c z c ----⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,(c ∈ ).2.ij x (1,2,3;1,2i j ==)所满足的关系式为:111221223132112131122232 3,2,1,4, x x x x x x x x x x x x +=+=+=++=++=1112212231322,6;x x x x x x ⎧⎪⎪⎪⎪⎨⎪⎪⎪+++++=⎪⎩ 11121212211122213123221111221122100101101001x c c x c c x c c c x c x c x c ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(12,c c ∈ ). 3.134234220,340.x x x x x x -+=⎧⎨+-=⎩4.(1)123111x c x c c x c --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(c ∈ ).(2)当0b =或10a -=时,即0b =或1a =时,齐次线性方程组有非零解.当1a =时,有1231001x c x c x c --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(c ∈ ).当0b =时,有1231(1)11x c x a c c a x c --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(c ∈ ).5.(1)当1,2λ≠-时,非齐次线性方程组有唯一解;当2λ=-时,非齐次线性方程组无解;当1λ=时,非齐次线性方程组有无限多个解,有1122112321111010001x c c x c c c x c ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(12,c c ∈ ). (2)当1λ≠且10λ≠时,非齐次线性方程组有唯一解; 当10λ=时,非齐次线性方程组无解;当1λ=时,非齐次线性方程组有无数多个解,有112211232122122010001x c c x c c c x c -+-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(12,c c ∈ ).7.(1)1ξ43410-⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭,2ξ01401⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭, (2)1ξ11971901⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,2ξ219141910⎛⎫- ⎪ ⎪ ⎪-= ⎪ ⎪⎪ ⎪⎝⎭.10.115118008B -⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭11.12312420,230.x x x x x x -+=⎧⎨-+=⎩12.(1)x 111161,01702c -⎛⎫-⎛⎫ ⎪ ⎪⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(c ∈ ).(2)x 1291172211,72001010c c ⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎪ ⎪ ⎪- ⎪ ⎪ ⎪-=++ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭⎝⎭(12,c c ∈ ).14.x 1131221()(),c c ηηηηη=+-+-(12,c c ∈ ).15.x 121011,1001c c ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(12,c c ∈ ).16.λμ=,当12λ=,非齐次线性方程组有无限多个解,x 1211122311,100001c c ⎛⎫⎛⎫--⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪-=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(12,c c ∈ ). 当12λ≠,非齐次线性方程组有无限多个解,有x 011122,112201c -⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(c ∈ ).20.(1)12341231x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, (2)1234511111x x x x x ⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪ ⎪ ⎪= ⎪ ⎪-⎪ ⎪ ⎪⎪⎝⎭⎝⎭.21.齐次线性方程组仅有零解.22.当0μ=或1λ=时,齐次线性方程组有非零解. 23.当0,23λ=或时,齐次线性方程组有非零解.习题51.求下列矩阵的特征值和特征向量.(1)3151⎛⎫ ⎪-⎝⎭;(2)200202311-⎛⎫ ⎪ ⎪ ⎪⎝⎭;(3)122212221⎛⎫ ⎪ ⎪ ⎪⎝⎭,(4)1111111111111111⎛⎫⎪-- ⎪ ⎪-- ⎪--⎝⎭. 2.证明下列各题:(1)设A 是幂等矩阵(即满足2A A =),则A 的特征值只能0是或1;. (2)设A 是正交矩阵,则A 的实特征值的绝对值为1.3.已知3阶矩阵A 的特征值为1,0,2-,计算行列式2A A E -+.4.已知3阶矩阵A 的特征值为1,2,3-,计算行列式*|32|A A E ++.5.设,A B 都是n 阶方阵,且A 可逆,证明AB 与BA 相似.6.判断矩阵⎪⎪⎪⎭⎫ ⎝⎛----=201335212A 可否对角化,若能的话,将它化为标准形.7.设矩阵20022311A a -⎛⎫ ⎪= ⎪ ⎪⎝⎭与10002000b -⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭相似,求,a b ;并求一个可逆矩阵P ,使1P AP -=Λ.8.设20131405A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,问a 为何值时,矩阵A 可对角化?9.试求一个正交的相似变换矩阵,将下列实对称矩阵化为对角矩阵:(1)120222023-⎛⎫ ⎪-- ⎪ ⎪-⎝⎭;(2)400031013⎛⎫ ⎪ ⎪ ⎪⎝⎭;(3)222254245-⎛⎫ ⎪- ⎪ ⎪--⎝⎭;(4)0111101111011110-⎛⎫ ⎪- ⎪ ⎪- ⎪-⎝⎭. 10.将矩阵102012220A -⎛⎫⎪= ⎪ ⎪⎝⎭用两种方法对角化:(1)求一个可逆矩阵P ,使1P AP -为对角阵;(2)求一个正交矩阵T ,使1T AT -为对角矩阵.11.设3阶矩阵A 的特征值为1232,1,2λλλ=-==;对应的特征向量依次为1231101,1,1101ξξξ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求矩阵A .12.设3阶实对称矩阵A 的特征值1231,0,1λλλ=-==;属于12,λλ的特征向量依次为12221,221ξξ⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求一个正交矩阵T ,使1T AT -为对角矩阵.13.设3阶实对称矩阵A 的特征值1231,1λλλ=-==;属于特征值11λ=-的特征向量为1011ξ⎛⎫⎪= ⎪ ⎪⎝⎭,求矩阵A .14.设120020211⎛⎫ ⎪= ⎪ ⎪---⎝⎭A ,求100A . 15.在某国,每年有比例为p 的农村居民移居城镇,有比例为q 的城镇居民移居农村.假设该国总人数不变,且上述人口迁移的规律也不变.把n 年后农村人口和城镇人口占总人数的比例依次记为n x 和n y (1)n n x y +=.(1)求11n n x y ++⎛⎫⎪⎝⎭与n n x y ⎛⎫⎪⎝⎭的关系式并写成矩阵形式:11++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭n n n n x x A y y ; (2)设目前农村人口与城镇人口相等,即001212x y ⎛⎫ ⎪⎛⎫= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭,求n n x y ⎛⎫⎪⎝⎭.解答习题51.(1)1212112,4;,15λλξξ⎛⎫⎛⎫=-=== ⎪ ⎪-⎝⎭⎝⎭;(2)1231230011,2,2;(,,)210111λλλξξξ-⎛⎫ ⎪=-==-=- ⎪ ⎪⎝⎭;(3)1231231011,5;(,,)011111λλλξξξ⎛⎫ ⎪==-== ⎪ ⎪--⎝⎭; (4)12341234111111002,2;(,,,)10101001λλλλξξξξ-⎛⎫ ⎪⎪=-==== ⎪ ⎪⎝⎭. 3.9. 4.-25.6.A 不可对角化.7.100110,2;210,21112---⎛⎫⎛⎫ ⎪ ⎪==-=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭a b P P AP .8.3=a .9.(1)12213332122,13335212333-⎛⎫ ⎪⎛⎫ ⎪ ⎪ ⎪=--=- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭T T AT ; (2)10102110,422411022-⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭ ⎪-⎪⎝⎭T T AT ;(3)12251153511452,115351052033-⎛⎫-- ⎪ ⎪⎛⎫ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭T T AT ;(4)111112261211111122612,1211026123310212-⎛⎫-⎪ ⎪⎛⎫ ⎪-- ⎪⎪ ⎪⎪== ⎪ ⎪- ⎪ ⎪-⎝⎭ ⎪ ⎪ ⎪⎝⎭T T AT . 10.(1)11223221,02123-⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭P P AP ;(2)11223333221,03333212333-⎛⎫ ⎪⎛⎫ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪- ⎪⎝⎭ ⎪- ⎪⎝⎭T T AT . 11.233453442--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A .12.12213331122,03331212333-⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭T T AT . 13.100001010⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .14.101100100100122002050(12)13⎛⎫⎪- ⎪= ⎪ ⎪- ⎪⎝⎭A. 15.(1)1111++-⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭n n n n x x p q y y p q ;(2)2()(1)12()2()(1)⎛⎫⎛⎫+---= ⎪⎪++---⎝⎭⎝⎭n n n n x q p q p q y p q p q p p q .习题61.证明:123000000a a a ⎛⎫⎪ ⎪ ⎪⎝⎭与23100000a a a ⎛⎫ ⎪⎪ ⎪⎝⎭合同. 2.写出下列二次型的矩阵表示: (1)121323422f x x x x x x =-++;(2)2224424f x xy y xz z yz =+++++;(3)22221234121314232424264f x x x x x x x x x x x x x x =+++-+-+-.3.设A 是一个n 阶对称矩阵.如果对任一个n 维列向量x ,都有0Tx Ax =,试证0A =. 4.用拉格朗日配方法化下列二次型为标准形. (1)123422x x x x -;(2)22121213222x x x x x x ++-.*5.用初等变换法化下列二次型为标准形.(1)12132346x x x x x x -+;(2)222123232334x x x x x +++.6.用正交变换法化下列二次型为标准形.(1)22212312132325228x x x x x x x x x +++++;(2)121314232434 222222x x x x x x x x x x x x +--++. 7.求一个正交变换把二次曲面的方程22234545101x xy y xz z yz ++-+-=化成标准方程.8.化下列二次型为规范形.(1)22212312133524x x x x x x x +++-;(2)22212312232422x x x x x x x +++-.9.证明:秩等于r 的对称矩阵可以表成r 个秩等于1的对称矩阵之和. 10.判别下列二次型是否正定:(1)2221231231223(,,)2342f x x x x x x x x x x =+-++;(2)2222123412341213142434(,,,)3919242612f x x x x x x x x x x x x x x x x x x =+++-++--.11.t 满足什么条件时,下列二次型是正定的:(1)222123123121323(,,)5224f x x x x x x tx x x x x x =+++-+; (2)2221231231223(,,)2322f x x x x x x tx x x x =++-+.12.试证:如果A 是正定矩阵,那么A 的主子式全大于零. 13.试证:如果A 是正定矩阵,那么 (1)(0)kA k >是正定矩阵; (2)1A -是正定矩阵.14.试证:如果,A B 是同阶正定矩阵,那么A B +也是正定矩阵.*15.试证:实二次型12(,,,)n f x x x 是半正定的充分必要条件是12(,,,)n f x x x 的正惯性指数等于它的秩.*16.试证:实二次型12(,,,)T n f x x x x Ax = 是半正定的充分必要条件是A 的特征值全大于或等于零.解答习题62.(1)112323021(,,)201110x f x x x x x -⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪⎝⎭⎝⎭;(2)121(,,)242121x f x y z y z ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭;(3)1212343411211132(,,,)23101201x x f x x x x x x --⎛⎫⎛⎫ ⎪⎪-- ⎪⎪= ⎪⎪ ⎪⎪--⎝⎭⎝⎭.4.(1)1132133244242222222222222222x y yx y yx y yx y y⎧=+⎪⎪⎪=-⎪⎪⎨⎪=+⎪⎪⎪=-+⎪⎩,22221234f y y y y=+--;(2)112322323x y y yx yx y y=+-⎧⎪=⎨⎪=-+⎩,222123f y y y=--.5.(1)112321233233626526x y y yx y y yx y y⎧=--⎪⎪⎪=--⎨⎪⎪=+⎪⎩,222123f y y y=+-;(2)1122332311221122x yx y yx y y⎧⎪=⎪⎪=+⎨⎪⎪=-⎪⎩,22212325f y y y=++.6.(1)11232233323x y y yx y yx y=-+⎧⎪=-⎨⎪=⎩,2221235f y y y=+-;(2)1124212431344134111222111222111222111222x y y yx y y yx y y yx y y y⎧=++⎪⎪⎪=-+-⎪⎪⎨⎪=-++⎪⎪⎪=+-⎪⎩,222212343f y y y y=-+++.7.4133212133221213322x u v y u v w z u v w ⎧=+⎪⎪⎪=-++⎨⎪⎪=-+⎪⎩,222111u v +=.8.(1)112322323522122x y y y x y x y y ⎧=-+⎪⎪⎪=⎨⎪⎪=-+⎪⎩,222123f y y y =-+; (2)112322333111222222212x y y y x y y x y ⎧=--⎪⎪⎪=+⎨⎪⎪=⎪⎩222123f y y y =++. 10.(1)负定;(2)正定. 11.(1)0.80t -<<;(2)151533t -<<.。
线性代数课后习题答案全)习题详解
线性代数课后习题答案全)习题详解前言因能力有限,资源有限,现粗略整理了《工程数学线性代数》课后习题,希望对您的了解和学习线性代数有参考价值。
第一章行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---;(2)b a c a c b c b a ; (3)222111c b a c b a ;(4)y x y x x y x yyx y x +++. 解(1)=---381141102811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??-=416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4;(2)4 1 3 2;(3)3 4 2 1;(4)2 4 1 3;(5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2.解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2)1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)7110025*********4;(2)-265232112131412;(3)---ef cf bf de cd bd ae ac ab ;(4)---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-?---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=1 11111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(3 3+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-?;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22) 1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(+++++++++++++++ +=d d d d d c c c c c b b b b b a a a a a 左边964412964412964412964412241312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+dd d c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a a d a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)11))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =?---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =?-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xa a ax aa a x D n =; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) n nn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 000100000000 00001000 =按最后一行展开)1()1(1000000000010000)1(-?-+-n n n aa a)1)(1(2)1(--?-+n n n a a a(再按第一行展开)n n n nn a a a+-?-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nnn n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-?-?-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即∏=-=ni i i iin D c b d22)(而 111111112c b d a d c b a D -==得∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0 432111111111111111111111 --------------n n n n ,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n (6)nn a a D a +++=11111111121 ,,433221c c c c c c ---n n n n a a a a a a a a a a +-------100 00100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------000 00000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=--- )11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x=+=++=++=++=+.15,065,065,065,165)2(545434323212 1x x x x x x x x x x x x x上一页下一页。
【复旦版线代】线性代数第二章课后习题及详细解答
习题 二1. 计算下列矩阵的乘积.(1)[]11321023⎡⎤⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦=; (2)500103120213⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (3) []32123410⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (4)()111213112321222323132333a a a x x x x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (5) 111213212223313233100011001a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (6) 1210131010101210021002300030003⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦. 【解】(1) 32103210;64209630-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥-⎣⎦(2)531⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (3) (10);(4) 3322211122233312211213311323322311()()()ij iji j a x a x a x a a x x a a x x a a x x a x x==++++++++=∑∑(5)111212132122222331323233a a a a a a a a a a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦; (6) 1252012400430009⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 2. 设111111111⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,121131214⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦B , 求(1)2-AB A ;(2) -AB BA ;(3) 22()()-=-A+B A B A B 吗?【解】(1) 2422;400024⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦AB A (2) 440;531311⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦AB BA (3) 由于AB ≠BA ,故(A +B )(A -B )≠A 2-B 2.3. 举例说明下列命题是错误的.(1) 若2=A O , 则=A O ; (2) 若2=A A , 则=A O 或=A E ; (3) 若AX =AY ,≠A O , 则X =Y . 【解】(1) 以三阶矩阵为例,取2001,000000⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦0A A ,但A ≠0(2) 令110000001-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,则A 2=A ,但A ≠0且A ≠E (3) 令11021,=,0111210110⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=≠=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A Y X 0 则AX =AY ,但X ≠Y .4. 设101A λ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦, 求A 2,A 3,…,A k .【解】2312131,,,.010101kk λλλ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A A A L 5. 100100λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A =, 求23A ,A 并证明:121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =.【解】2322233223213302,03.0000λλλλλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =A = 今归纳假设121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =那么11211111(1)1020100000(1)(1)2,0(1)00k k k k k k k k k kk k kk k k k k k k k k λλλλλλλλλλλλλλλ+---+-++=-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦+⎡⎤+⎢⎥⎢⎥=+⎢⎥⎢⎥⎣⎦A A A= 所以,对于一切自然数k ,都有121(1)2.000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =6. 已知AP =PB ,其中100100000210001211⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B =,P =求A 及5A .【解】因为|P |= -1≠0,故由AP =PB ,得1100200,611-⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦A PBP而51551()()100100100100210000210200.211001411611--==⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦A PBP PB P A7. 设a b c d ba dc cd a b dcb a ⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦A =,求|A |. 解:由已知条件,A 的伴随矩阵为22222222()()a b c d b a dc a b cd a b c d c d a b dcba *⎡⎤⎢⎥--⎢⎥-+++=-+++⎢⎥--⎢⎥--⎣⎦A =A 又因为*A A =A E ,所以有22222()a b c d -+++A =A E ,且0<A ,即 42222222224()()a b c d a b c d -++++++A =A A =A E 于是有22222()a b c d ==-+++A . 8. 已知线性变换112112212321331233232,3,232,2,45;3,x y y y z z x y y y y z z x y y y y z z =+=-+⎧⎧⎪⎪=-++=+⎨⎨⎪⎪=++=-+⎩⎩ 利用矩阵乘法求从123,,z z z 到123,,x x x 的线性变换. 【解】已知112233112233210,232415310,201013421124910116x y x y x y y z y z y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦-⎡⎤⎢⎥==-⎢⎥⎢⎥--⎣⎦X AY Y Bz X AY ABz z,从而由123,,z z z 到123,,x x x 的线性变换为11232123312342,1249,1016.x z z z x z z z x z z z =-++⎧⎪=-+⎨⎪=--+⎩ 9. 设A ,B 为n 阶方阵,且A 为对称阵,证明:'B AB 也是对称阵.【证明】因为n 阶方阵A 为对称阵,即A ′=A ,所以 (B ′AB )′=B ′A ′B =B ′AB , 故'B AB 也为对称阵.10. 设A ,B 为n 阶对称方阵,证明:AB 为对称阵的充分必要条件是AB =BA . 【证明】已知A ′=A ,B ′=B ,若AB 是对称阵,即(AB )′=AB .则 AB =(AB )′=B ′A ′=BA , 反之,因AB =BA ,则(AB )′=B ′A ′=BA =AB ,所以,AB 为对称阵.11. A 为n 阶对称矩阵,B 为n 阶反对称矩阵,证明: (1) B 2是对称矩阵.(2) AB -BA 是对称矩阵,AB +BA 是反对称矩阵. 【证明】因A ′=A ,B ′= -B ,故(B 2)′=B ′·B ′= -B ·(-B )=B 2;(AB -BA )′=(AB )′-(BA )′=B ′A ′-A ′B ′= -BA -A ·(-B )=AB -BA ;(AB +BA )′=(AB )′+(BA )′=B ′A ′+A ′B ′= -BA +A ·(-B )= -(AB +BA ).所以B 2是对称矩阵,AB -BA 是对称矩阵,AB+BA 是反对称矩阵. 12. 求与A =1101⎡⎤⎢⎥⎣⎦可交换的全体二阶矩阵. 【解】设与A 可交换的方阵为a b c d ⎡⎤⎢⎥⎣⎦,则由1101⎡⎤⎢⎥⎣⎦a b c d ⎡⎤⎢⎥⎣⎦=a b c d ⎡⎤⎢⎥⎣⎦1101⎡⎤⎢⎥⎣⎦, 得a cb d a a bcd c c d +++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦.由对应元素相等得c =0,d =a ,即与A 可交换的方阵为一切形如0a b a ⎡⎤⎢⎥⎣⎦的方阵,其中a,b 为任意数.13. 求与A =100012012⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦可交换的全体三阶矩阵. 【解】由于A =E +000002013⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦, 而且由111111222222333333000000,002002013013a b c a b c a b c a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦可得11122233333323232302300023222.023333c b c cb c a b c c b c a a b b c c -⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦由此又可得1113232332322333230,230,20,30,2,3,232,233,c b c a a a c b c b b b c c b c c c =-==-===--=-=-所以2311233230,2,3.a a b c c b c b b ======-即与A 可交换的一切方阵为12332300203a b b b b b ⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦其中123,,a b b 为任意数. 14. 求下列矩阵的逆矩阵.(1) 1225⎡⎤⎢⎥⎣⎦; (2) 123012001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3)121342541-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦; (4) 1000120021301214⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (5) 5200210000830052⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (6) ()1212,,,0nn a a a a a a ⎡⎤⎢⎥⎢⎥≠⎢⎥⎢⎥⎣⎦L O ,未写出的元素都是0(以下均同,不另注). 【解】(1) 5221-⎡⎤⎢⎥-⎣⎦; (2)121012001-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;(3) 12601741632142-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (4) 100011002211102631511824124⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦; (5) 1200250000230058-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦; (6) 12111n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦O. 15. 利用逆矩阵,解线性方程组12323121,221,2.x x x x x x x ++=⎧⎪+=⎨⎪-=⎩ 【解】因123111102211102x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,而1110022110≠- 故112311101111122.02211130122*********x x x -⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦16. 证明下列命题:(1) 若A ,B 是同阶可逆矩阵,则(AB )*=B *A *. (2) 若A 可逆,则A *可逆且(A *)-1=(A -1)*. (3) 若AA ′=E ,则(A *)′=(A *)-1. 【证明】(1) 因对任意方阵c ,均有c *c =cc *=|c |E ,而A ,B 均可逆且同阶,故可得|A |·|B |·B *A *=|AB |E (B *A *)=(AB ) *AB (B *A *)=(AB ) *A (BB *)A * =(AB ) *A |B |EA *=|A |·|B |(AB ) *.∵ |A |≠0,|B |≠0, ∴ (AB ) *=B *A *.(2) 由于AA *=|A |E ,故A *=|A |A -1,从而(A -1) *=|A -1|(A -1)-1=|A |-1A . 于是A * (A -1) *=|A |A -1·|A |-1A =E ,所以(A -1) *=(A *)-1. (3) 因AA ′=E ,故A 可逆且A -1=A ′. 由(2)(A *)-1=(A -1) *,得(A *)-1=(A ′) *=(A *)′.17. 已知线性变换11232123312322,35,323,x y y y x y y y x y y y =++⎧⎪=++⎨⎪=++⎩ 求从变量123,,x x x 到变量123,,y y y 的线性变换. 【解】已知112233221,315323x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦X AY且|A |=1≠0,故A 可逆,因而1749,637324---⎡⎤⎢⎥==-⎢⎥⎢⎥-⎣⎦Y A X X所以从变量123,,x x x 到变量123,,y y y 的线性变换为112321233123749,637,324,y x x x y x x x y x x x =--+⎧⎪=+-⎨⎪=+-⎩ 18. 解下列矩阵方程.(1) 12461321-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦X =; (2)211211************--⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦X ;(3) 142031121101⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦X =; (4) 010100043100001201001010120-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦X .【解】(1) 令A =1213⎡⎤⎢⎥⎣⎦;B =4621-⎡⎤⎢⎥⎣⎦.由于13211--⎡⎤=⎢⎥-⎣⎦A 故原方程的惟一解为13246820.112127----⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦X A B同理(2) X =100010001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3) X =11104⎡⎤⎢⎥⎢⎥⎣⎦; (4) X =210.034102-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦19. 若kA =O (k 为正整数),证明:121()k ---L E A =E +A+A ++A .【证明】作乘法212121()()k k k k k ----=-----=-=E A E +A+A ++A E +A+A ++A A A A A E A E,L L L 从而E -A 可逆,且121()k ---L E A =E +A+A ++A20.设方阵A 满足A 2-A -2E =O ,证明A 及A +2E 都可逆,并求A -1及(A +2E )-1.【证】因为A 2-A -2E =0, 故212().2-=⇒-=A A E A E A E由此可知,A 可逆,且11().2-=-A A E同样地2220,64(3)(2)41(3)(2)4--=--=--+=---+=A A E A A E E,A E A E E,A E A E E. 由此知,A +2E 可逆,且1211(2)(3)().44-+=--=-A E A E A E21. 设423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦A =,2AB =A+B ,求B . 【解】由AB =A +2B 得(A -2E )B =A .而22310,1102121==-≠---A E即A -2E 可逆,故11223423(2)110110121123143423386.1531102961641232129--⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦B A E A 22. 设1-P AP =Λ. 其中1411--⎡⎤⎢⎥⎣⎦P =,1002-⎡⎤⎢⎥⎣⎦=Λ, 求10A . 【解】因1-P 可逆,且1141,113-⎡⎤=⎢⎥--⎣⎦P 故由1Λ-A =P P 得10110101101012121010()()141410331102113314141033110211331365136412421.34134031242--==⎡⎤⎢⎥---⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤⎢⎥--⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤-+-+⎡⎤==⎢⎥⎢⎥----⎣⎦⎣⎦A P P P P ΛΛ 23. 设m 次多项式01()m m f x a a x a x =+++L ,记01()mm f a a a =+++L A E A A ,()f A 称为方阵A 的m 次多项式.(1)12λλ⎡⎤⎢⎥⎣⎦A =, 证明12kk k λλ⎡⎤⎢⎥⎣⎦A =,12()()()f f f λλ⎡⎤=⎢⎥⎣⎦A ; (2) 设1-A =P BP , 证明1k k -B =PA P ,1()()f f -=B P A P . 【证明】(1)232311232200,00λλλλ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A 即k =2和k =3时,结论成立. 今假设120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 那么111111222000,000kk k k k k λλλλλλ+++⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA A = 所以,对一切自然数k ,都有120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 而011101220111012212()1100().()mm mm m m m m m f a a a a a a a a a a a a f f λλλλλλλλλλ=⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤+=⎢⎥+⎣⎦⎡⎤=⎢⎥⎣⎦L L L L A E +A++A ++++++ (2) 由(1)与A =P -1BP ,得B =PAP -1.且B k =( PAP -1)k = PA k P -1,又0111011011()()().mm m m mm f a a a a a a a a a f ----=+++=+++=++=B E B B E PAP PA P P E A+A P P A P L L L24. a b c d ⎡⎤⎢⎥⎣⎦A =,证明矩阵满足方程2()0x a d x ad bc -++-=.【证明】将A 代入式子2()x a d x ad bc -++-得222222()()10()()010000.00a d ad bc a b a b a d ad bc c d c d ad bca bc ab bd a ad ab bd ad bc ac cd cb d ac cd ad d -++-⎡⎤⎡⎤⎡⎤=-++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤++++⎡⎤=-+⎢⎥⎢⎥⎢⎥-++++⎣⎦⎣⎦⎣⎦⎡⎤==⎢⎥⎣⎦A A E0 故A 满足方程2()0x a d x ad bc -++-=. 25. 设n 阶方阵A 的伴随矩阵为*A ,证明:(1) 若|A |=0,则|*A |=0;(2) 1n *-=A A .【证明】(1) 若|A |=0,则必有|A *|=0,因若| A *|≠0,则有A *( A *)-1=E ,由此又得 A =AE =AA *( A *)-1=|A |( A *)-1=0,这与| A *|≠0是矛盾的,故当|A | =0,则必有| A *|=0. (2) 由A A *=|A |E ,两边取行列式,得|A || A *|=|A |n ,若|A |≠0,则| A *|=|A |n -1 若|A |=0,由(1)知也有| A *|=|A |n -1.26. 设52003200210045000073004100520062⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =,B . 求(1) AB ; (2)BA ; (3) 1-A ;(4)|A |k (k 为正整数). 【解】(1)2320001090000461300329⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦AB =; (2) 19800301300003314005222⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦BA =;(3) 11200250000230057--⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦A =; (4)(1)k k =-A . 27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.(1)1200025000003000001000001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)00310021********-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦; (3)20102020130010*******0001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.【解】(1) 对A 做如下分块 12⎡⎤=⎢⎥⎣⎦A A A 00其中1230012;,01025001⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A A12,A A 的逆矩阵分别为1112100523;,01021001--⎡⎤⎢⎥-⎡⎤⎢⎥==⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦A A 所以A 可逆,且1111252000210001.000030001000001----⎡⎤⎢⎥-⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦A A A同理(2)11112121310088110044.110055230055----⎡⎤-⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦A A A A A (3)1110012211300222.001000001001-⎡⎤--⎢⎥⎢⎥⎢⎥--⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A。
线性代数第五章课后习题与解答
第五章课后习题及解答1. 求下列矩阵的特征值和特征向量:2 3(1);3 12 3 2解:I A3 7 0,313373 37 ,12221I A 37 2 3 1 1 3 372 1 0 1 37 6, T所以, ( 1I A)x 0 的基础解系为: (6,1 37) .T因此, A 的属于 1 的所有特征向量为: k 1( 6,1 37) (k 1 0).2I A1 337 211 3731 6372,T所以, ( 2 I A)x 0 的基础解系为: (6,1 37) .T A的属于 2 的所有特征向量为:k2 (6,1 37) (k2 0).因此,3 1 1(2) 2 0 1 ;1 1 23 1 1解:I A 2 1 ( 1)( 22)1 1 2所以,特征值为: 1 1(单根), 2 2 (二重根)2 1 1 1 0 01I A 2 1 1 0 1 11 1 1 0 0 0T 所以,( 1I A)x 0 的基础解系为:( 0,1,1) .TA的属于 1 的所有特征向量为:k1( 0,1,1) (k1 0).因此,1 1 1 1 1 02 I A 2 2 1 0 0 11 1 0 0 0 0T 所以,( ) 02 I A x 的基础解系为:(1,1,0 ).T 因此,A的属于 2 的所有特征向量为:k2(1,1,0) (k2 0).20 0 (3) 111 ;1 1 320 0 解: IA 1 1 1 (32)113所以,特征值为:12 (三重根 )0 0 1 1 11I A 1 1 1 0 0 0 1 11T T所以, ( 1I A)x 0 的基础解系为: (1,1, 0) ,( 1,0 ,1) .因此, A 的属于 1 的所有特征向量为:Tk Tk 1(1,1, 0 )2( 1,0,1) ( k 1, k 2 为不全为零的任 意常数 )。
1 2 3 4 0 1 2 3 (4);0 0 1 2 0 0 0 112 3 4解: I A0 0 0 1 2 1 3 2 ( 1)40 0 0 1所以,特征值为:11(四重根 )0 2 3 41I A 02320 0 0 0T所以,( 1I A) x 0的基础解系为:(1, 0, 0,0) .因此,A的属于1的所有特征向量为:Tk1(1, 0, 0,0 )( k1 0 ) 4 5 2(5) 2 2 1 ;1 1 14 5 2解:I A 2 2 1 ( 31)1 1 1所以,特征值为: 1 1(三重根)3 5 2 1 0 11I A 2 3 1 0 1 11 1 0 0 0 0T 所以,( 1I A)x 0 的基础解系为:( 1,1,1) .因此,A的属于 1 的所有特征向量为:Tk1( 1,1,1) ( k1 0 )2 2 0 (6) 2 1 2 ;0 2 02 2 0解:( 1)( 4)( 2)I A 2 1 20 2所以,特征值为: 1 1(单根), 2 4 (单根), 3 2(单根),1 2 0 1 0 11I A 20 2 0 2 10 2 1 0 0 0T所以,( 1I A)x 0 的基础解系为:( 2, 1,2 ).因此,A的属于 1 的所有特征向量为:Tk1( 2, 1,2) ( k1 0 )2 2 0 1 0 22I A 2 3 2 0 1 20 2 4 0 0 0T 所以,( 2 I A)x 0的基础解系为:(2, 2 ,1) .因此,A的属于 2 的所有特征向量为:Tk2(2, 2,1) ( k2 0 )4 2 0 2 0 12 3 2 0 1 13 I A0 2 2 0 0 0T 所以,( 3I A) x 0的基础解系为:(1,2,2) .因此,A的属于 3 的所有特征向量为:Tk3(1,2,2) ( k3 0 )7 4 12. 已知矩阵A 4 7 1的特征值 1 3 (二重), 2 12 , 求x的值,并求其特征4 4 x向量。
线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx
A 组1.判别Q (厉)二{0 +勿亦|0,处0}是否为数域?解是.2.设/(x) = x3 4-x2 4-x+l, g(兀)=兀2+3兀+ 2,求 /(兀)+ g(x),/(x)-g(x), f(x)g(x). 解/(x) + g (x) = x3 4- 2x2 + 4x + 3 ,/(兀)-g(x)"-2x-l,f(x)g(x) = x5 +4x4 +6兀'+6兀$ +5x + 2 .3.设/(%) = (5x-4),993(4x2 -2x-l),994 (8x3 -1 lx+2)'995,求 /(%)的展开式中各项系数的和.解由于/(兀)的各项系数的和等于/⑴,所以/(I) = (5-4严3(4-2- 1尸94(8-11 + 2)1995 =-1.4.求g(兀)除以/(兀)的商q(x)与余式心).(1)f (x) —— 3%2— x — 1, g(兀)=3F - 2兀+1 ;(2)/(x) = x4 -2x4-5, g(x) = x2 -x + 2 .解(1)用多项式除法得到x 73x~ — 2x +13_93X + 3—x —x-i3 37 ° 14 7-- 无_+ —x --3 9 926 2-- X ---9 9所以'恥)十岭心)W(2)用多项式除法得到x4— 2x + 5兀4 —”丫" + 2 兀2— 2x~ — 2 兀+5 jy?—兀~ + 2 兀-x2-4x4-5-兀? + X - 2—5x + 7所以,q(x) = x2 +x-l, r(x) = -5x + 7 .5.设是两个不相等的常数,证明多项式/(兀)除以(x-a)(x-b)所得余式为af(b)_bg)a-b a-h证明依题意可设/(x) = (x - a)(x - b)q(x) + cx+d,则”(a) = ca + d,[f(b) = cb + d.解得F=(/a) --,\d = (af(b)-bf(a))/(a-b).故所得余式为a-b a-b6.问m,p,q适合什么条件时,/(兀)能被g(x)整除?(1) /(x) = x3 + px + q , g(x) = x2 + nvc-1;(2) f(x) = x4 + px2 +q , g(兀)=x2 + mx+l.解(1)由整除的定义知,要求余式r(x) = 0 .所以先做多项式除法,3x2 + mx -1x-in“+ “X + q3 2x + mx^ - x-mx1 +(〃 + l)x + g2 2一 mx_ — m^x + m°(# +1 + 加〜)兀 + (g —m)要求厂(x) = (/? + l +加2)兀+ (§ —加)=0 ,所以(“ + 1 +加2) = 0, q-m = 0.即p = -l-m2, q - m时, 可以整除.(2)方法同上.先做多项式除法,所得余式为厂(兀)=加(2 — ”一nr )兀+ (1 + @ —卩一加〜),所以 m (2-p-/772) = 0, 1 + ^ - p - m 2= 0 ,即 m = 0, p = q + \ 或“二 2— 加[q = l 时,可以整除.7. 求/(兀)与gCr )的最大公因式:(1) f (x) — x 4 + — 3%2 — 4x — 1, g (x)=兀彳 + — x — 1 ; (2) f(x) = x 4— 4x 3+ 1, g(x) = x 3— 3x 2+1 ;(3) /(x) = x 4 -10x 2 +1, g(x) = x 4 -4A /2X 3 +6X 2 +4A /2X +1 .解(1)用辗转相除法得到用等式写出來,就是所以(/(x),g(x)) = x + l ・(2)同样地,<8 4 / 3 3= -X + — — -X-—(3 344-2x 2-3x-l1 1 --- X 4——2 -- 4 X 3+ X 2- X - 1 x 4 + x 3- 3x 2- 4x- 11 2 3 , -2x 2 — 3兀—12 21 2 3 1 -- X ----- X ---—2兀~ — 2兀2 4 433-- X ----X -144一丄 184—X H - 3 3 0心宀丄兀2 24 3 2牙+牙-X - Xf(x) = xg(x)^(-2x 2-3x-l),g(x) =所以(/⑴,g (兀)) = 1.⑶ 同样用辗转相除法,可得(/(x),g(x)) = F —2血兀一1.8.求 w(x),仄兀)使 w(x) f\x) + v(x)g(ji) = (/(x), g(%)):(1) f (x) = %4 4- 2x^ — %2 — 4x — 2, (x) = %4 + x — x~ — 2x — 2 : (2) /(x) = 4x 4-2x 3-16x 2+5x4-9, g(x) = 2兀3-x 2-5x+4:(3) /(x) = x A-x 3-4x 2 +4x + l, g (兀)=x 2 -x-l.解(1)利用辗转相除法,可以得到/(x) = g (A :) + (x 3-2x)'g (兀)=(x+l)(x 3 - 2x) + (x 2 -2),x — 2兀=x(^x~ — 2).因而,(/(x),g(x)) = x 2-2,并且(/(兀),g (兀))=/ 一 2 = g (兀)_ (兀+1)(疋 _ 2兀) =g (兀)一(X +1) (f(x) -g (兀))=(一兀 一 1)/(兀)+ (兀+2)g(x),所以 u(x) = -x-\, v(x) = x + 21 10 -- X H --- 3 9x 3 - 3x 2x-13 1 2 2X H —X X 3 3 10 2 2~~'- ---- X H 兀+ 13 -- 3 10 ° 10 20 X --- 兀 3 9 916~~1T —X ------ 9 927 441 --------- X ---------------16 256-3x 2+—x1649一一539 兀+ --- 27 256(2)利用辗转相除法,可以得到/(x) = 2xg(x)-(6x 2 +3兀-9),(\ 1Ag(x) = —(6x_ + 3兀一9) ——% + — — (% — 1), —(6x - + 3x — 9) = —(x —1)(6% + 9).因而,(/⑴,g(Q) = x-1,并且(1 1 …厶— —X + _ f (x) + _兀_—x~\ I 3 3丿 (3 3丿] 1 2 7 2fi/f 以 W (X )= X H —, V (X )= — --- X — \ •3 3 3 3(3) 利用辗转相除法,可以得到fM = X —3)g(x) + (x — 2),g(x) = (x+l)(x-2) + l ・因而( f(x), g(x)) = 1 ,并且(/(兀),g(x)) = 1 = g(x) - (x+1)(兀一 2)=g (兀)-(兀+1)(/(兀)-(x 2 一3)gCr))—(—兀―1) f (x) + (兀'+ 兀2 — 3兀—2)g(x),所以u (兀)= -x-l, v(x) = x 3 +x 2 -3x-2.9.设/(x) = %3+ (14-t)x 2+ 2x + 2w, g(x)二F+zx + u 的最大公因式是一个二次多项式,求/,凤的值.解利用辗转相除法,可以得到/(%) = g(x) + (l + /)兀2 +(2-/)兀 + « ,(/(x), g(x)) = x-l = -(6x 2+ 3x-9)+ | _g(x)I d J J(I ] \= (/(x)-2xg(x)) --x+- -g(x)\ 3丿 <2 o 2 d ,、 U 3 广—---- 兀+ (1 + r t-2(l +r)2(尸 + r—w)(i+r) + (t— 2)~u[(l + t)2 — (r —2)]由题意,/(x)与g(Q的最大公因式是一个二次多项式,所以(广 + / —w)(l + /) + (f— 2)~(T H?皿(l + r)2-(r-2)] A ;=0,(l + O2解得u = o^t = -4.10.设(x —I)[(A/+ B F+I),求A和B.由题意要求知解用(兀一1)2 去除f\x) = Ar4 + Bx2 +1 ,得余式”(x) = (4A + 2B)兀+1 -3人一B,斤(兀)=0,即4A + 2B = 0,1-3A-B = O,解得A = l,B = -2.11.证明:如果(/(x),g(x)) = l, (/(x),/z(x)) = l,那么(/(x), g(x)/z(x)) = l. 证明由条件可知,存在络(兀)和片⑴ 使得旳(兀)/(兀)+岭⑴g(x) = l,存在如(兀)和卩2(兀)使得u2(x)f(x) + v2(x)h(x) = 1.用/?(兀)乘以第一式得坷(x)f(x)h(x) + V, (x)g(x)h(x) = h(x),代入第二式得u2(x)f(x) + v2 (x) [u t (x)f(x)h(x) 4-Vj (x)g(x)/z(x)] = 1, 即[w2(兀)+ u\ (x)v2(x)h(x)]f(x) + [v, (x)v2(x)]g(x)h(x) = 1,所以(/(x),g(x)/z(x)) = l.12.证明:如果/(x)与g(x)不全为零,且/心)/(兀)+ 咻)g(兀)=(/(%), g(Q),证明由于w(x)/(x) + v(x)g(x) = (/(x),g(x)), /(X )与 g(x)不全为零,所以(/(x),g(x))HO.两 边同时除以(/(Hg(Q)HO,有所以(弘(兀),咻)) = 1 .13.证明:如果〃(兀)|/(兀),〃(兀)|g(x),且〃(兀)为/(兀)与g(x)的一个组合,那么〃(兀)是/G)与 g(x)的一个最大公因式.证明由题意知d(x)是/(X )与g(x)的公因式.再由条件设d(x) = w(x)/(x) + v(x)^(x) •又设h(x) 为/(x)与g(x)的任一公因式,即/z(x)|/(x), h(x)\g(x),则由上式有h(x)\d(x).故而”(兀)是/(兀)与 g(x)的一个最大公因式.14.证明:(.fO)/2(X ), gO)/2(X )) = (.f(X ), g(x))〃(x),其中力(兀)的首项系数为 1.证明显然(/(x), g(x))/?(x)是f{x)h{x)与g(x)h(x)的一个公因式.下面來证明它是最大公因式. 设 /心),v(x)满足 w(x)/(x) + v(x)g(x) = (/(x), g(X>),贝iJu(x)f(x)h(x) + v(x)g(x)h(x) = (/(x),g(x))/z(x).由上题结果知,(/(兀),g(X ))/7(X )是/(X )/?(X )与g(JC”7(X )的一个最大公因式,又首项系数为1,所以(/(x)A(x), ^(%)/?(%)) = (/(x), ^(x))/i(x)・/⑴ g (兀)、(/(兀),g (兀))’(f(x),g(x))丿证明设〃(兀)=(/(兀),g(x)),则存在多项式M (x), v(x),使d(x) = u(x)f(x) + v(x)g(x)・因为/(X )与g (尢)不全为零,所以d(x)HO.上式两边同时除以〃(兀),有故 /(兀) _____________ g (x)l (/(x),g(x))‘(/(x),g(x))‘u(x) /(X ) (/(%), g(x)) + v(x) g(x) (y (x ),^(x ))15.设多项式/(x)与gS)不全为零,证明1 = u(x)/(兀)(/(兀),g(x))+咻)g(x) (/(兀),g(x))=1成立.16. 分别在复数域、实数域和有理数域上分解兀4+ 1为不可约因式之积.在有理数域上兀°+1是不可约多项式.否则,若+ +1可约,有以下两种可能.(1) 兀4+1有一次因式,从而它有有理根,但/(±1)工0,所以卍+1无有理根.(2) x 4+ 1 无一次因式,设x 4+1 = (x 2+处 +方)(F +cx + d),其中 a,b y c,cl 为整数.于是a + c = O, b+ 〃 + ac = O, cut + be = 0 , bd = \,又分两种情况:① b = d = \,又 a = —c,从而由 b + 〃 + ac = O,得 a 2=2,矛盾; ② b = d = — \,则 a 2= —2 ,矛盾.综合以上情况,即证.17. 求下列多项式的有理根: (1) /(x) = x 3-6x 2+15兀一 14 ;(2) ^(X ) = 4X 4-7X 2-5X -1;(3) /z(x) = x 5+ %4— 6x^ — 14x~ — 1 lx — 3 ・解(1)由于/(x)是首项系数为1的整系数多项式,所以有理根必为整数根,且为-14的因数.-14的 因数有:±1, ±2, ±7, ±14,计算得到:/(D = -4, /(-1) = -36, /(2) = 0, /(-2) = -72,/(7) = 140, /(-7) = -756, /(14) = 1764, /(一 14) = —4144,故x = 2是/(兀)的有理根.再由多项式除法可知,x = 2是于(兀)的单根.⑵ 类似(1)的讨论可知,g(x)的可能的有理根为:故x = --是巩兀)的有理根.再由多项式除法可知,兀二-丄是/(劝的2重根.2 2⑶ 类似地,加兀)的可能的有理根为:±1,±3,计算得到解在实数域上的分解式为X4+ 1 = (X 2 + 1)2-2X 2 =(X 2+V2X + 1)(X 2-V2X +1).在复数域上的分解式为x + ----------1 2 2%4+ 1 = f亠迈亠近、X ---------- 12 2/±1, ±1 ±?计算得到g(l) = -9,g(-1) = 1, g(]、r 、171=-5, g —=0, g — 一 —‘ g —〔2< 264 ,4丿11A(l) = -28, /?(-l) = 0,(3) = 0,加一3) = -96.故x = -l, x = 3是//(兀)的有理根.再由多项式除法可知,x = -\是/z(x)的4重根,兀=3是//(兀)的单根.18.若实系数方程x34- px + q = 0有一根a + bi (a,b为实数,/?工0),则方程x3 + px-q = 0有实根2—证明设原方程有三个根不失一般性,令=a + bi,从而有a2 =a-bi,由根与系数的关系可知0 = $ + 冬 + 他=(° + 勿)+ (a - bi) + ,所以冬二-2d,即(-2a)‘ + /?(-2a) + g = 0,故(2a)' + p(2a)-q = 0.这说明x3 + /zr-g = 0有实根2a .19.证明:如果(%-i)|/(r),那么证明因为u-i)|/(z),所以/(r)= /(i)= 0.因此,令y(x)=(x-i)g(x),则有E =(*-i)g(;),即(伙-1)|/(疋).20.下列多项式在有理数域上是否可约?(1)土 (%) = F+1;(2)/;(X)= X4-8?+12X2+2;(3)人(x) = x" +『+1 ;(4)厶(无)=* + "; + 1,门为奇素数;(5)厶(兀)=兀°+4尬+ 1, A为整数.解(1) ./;(兀)的可能的有理根为:±1,而/(±1) = 2,所以它在有理数域上不可约.(2)由Eisenstein判别法,取素数p = 2,则2不能整除1,而2|(-8), 2|12, 2|2,但是2?不能整除2,所以该多项式在有理数域上不可约.(3)令x=y + l,代入厶(x) = P+x'+l有^(y) = ^(y + l) = / + 6/+15/+21/+18y24-9y4-3.取素数0 = 3,由Eisenstein判别法知,g(y)在有理数域上不可约,所以/(兀)在有理数域上不可约.(4)令兀= y_l,代入f4(x) = x p 4-px + 1,得g(y)=厶(y j) = -+ cy~2——C;-2y2 + (Cf* + p)y-p,取素数p,由Eisenstein判别法知,g(y)在有理数域上不可约,所以£(兀)在有理数域上不可约.(5)令x=y + l,代入农(兀)=兀4+4Ax+l,得g(.y)=厶(y +1) = y" + 4y‘ + 6y2 + (4k + 4)y + 4R + 2 ,収素数p = 2,由Eisenstein判别法知,g(y)在有理数域上不可约,所以点(兀)在有理数域上不可约.1•设/(X),g(X),加兀)是实数域上的多项式,(1)若/2U) = xg2(x) + x/z2(x),则/(x) = g(x) = h{x) = 0 .(2)在复数域上,上述命题是否成立?证明(1)当g(兀)=/2(兀)=0时,有严⑴=0,所以/(%) = 0 ,命题成立.如果g(x), /z(x)不全为零,不妨设g(x)H0・当h(x) = 0时,a(xg2(x) + x/i2U)) = l + 2a^(x)为奇数;当加兀)工0时,因为g(x),瓜兀)都是实系数多项式,所以Xg2(x)与兀胪(兀)都是首项系数为正实数的奇次多项式,于是也有d(xg2(x) + x/『(x))为奇数.而这时均有/2(x)^0 ,且df\x) = 2df(x)为偶数,矛盾.因此有g(兀)=力(兀) = 0,从而有f(x) = 0 .(2)在复数域上,上述命题不成立.例如,设f(x) = 0 , g(x) = x\ h(x) = ix,1,其中斤为自然数, 有/2 (x) = xg2 (x)xh2 (x),但g(x) / 0 ,力(兀)工0.2.设/(x), g(x)9 h(x)e P[x],满足(x2 4-l)h(x)4-(x-l)/(x) + (x+2)g(x) = 0,(x2 + l)/?(x) + (x+ l)/(x) + (x - 2)^(%) = 0.证明(X2+1)|(/U), g(X))・证明两式相加得到2(x2 + l)h(x) + 2x(/(x) + g(兀))=0.由(x2+l,兀)=1可知(x2 + l)|(/(x) + g(x)).两式相减得到-2f(x) + 4g(x) = 0, f(x) = 2g(x).故(x2 + l)|/(x), (x2+l)|g(x), BP(X2+1)|(/(X),g(x)).3・设gi(x)g2(x)\f{(x)f2(x),证明(1)若/(x)|g](x),/(X)H0,则g2(x)\f2(x);(2)若g2(x)|/;(x)/;(x),是否有g2(x)\f2(x)?解(1)因为gi(兀)g2(兀)庞(兀)£(兀),/O)|gi(X),故存在多项式h(x), h}(x)使得fl(x)f 2(x) = g](x)g 2(x)h(x\ g](兀)=Z (x)h }(x).于是/;(兀)£(兀)=/(兀)人(兀)g2(x)力(兀)•由于 土(兀)工0,故有 f 2(x) = h l (x)g 2(x)h(x),即g 2(x)\f 2(x).(2)否•例如取 g {(x) = x-2 , ^2(X ) = X 2-1 , (x) = (x-l)(x-2), (x) = (x + l)(x4-2).虽 然 gSx)g 2(x)\f^x)f 2(x)且 g 2(x)\f {(x)f 2(x),但 g 2(x)不能整除 f 2(x).4.当R 为何值时,/(x) = X 2 +伙+ 6)x + 4k + 2和g(x) = F+(£ + 2)x + 2R 的最大公因式是一次 的?并求出此吋的最大公因式.解 显然 g(x) = (x + £)(x+2).当(/(x),g(Q) = x + 2时'/(一2) = 4 — 2伙+ 6) + 4£ + 2 = 0‘ 则k = 3.当(于(兀),g(Q )=兀 + £ 时’/(一灯=k 2 - k(k + 6) + 4Z: + 2 = 0 ‘ 则 k = l.这时(/(x), g(x))=兀+1. 5.证明:对于任意正整数斤,都有(/(x),g(Q)"=(/"(x),g"(x))・证明 由题意可知/(%)与&(兀)不全为零.令(/(x), g(x)) = d(x),Z 、” g(x) 、d(x)丿/心)/"(兀)+ 咚)g"(兀)=d\x).又由 d(x)\f(x), d(x)|g(x),有 d n (x) f l \x), d"(x) g"(x),因此 d"(x)是厂(x)与 g"(x)的首项系数为1的最大公因式,从而有(广(x),g"(x))= 〃"(兀)=(/(x),g(x))" •6.设 / (x) = af(x) + bg(x), g[ (x) = c/(x) + dg(x),且 ad - be H 0 ,证明(/(x),g(x)) = (/](x), g](X ))・证明设(/(x), g(x)) = d(x),则 d(x)\f(x\d(x)\g(x).由于 “所以对任意正整如,有爲J 寫〕"卜 于是有u{x) +咻) 则〃(兀)工0,从而fi (兀)=妙(x) + bg(x) , g] (x) = (x) + dg (x),故d (x)| (x), d (x)|g t (x).又设h(x)\ (x), /z(x)|(x),由上式及ad-bc^O ,可得从而/?(x)|/(x), h(x)\g(x),于是h(x)\d(x),即〃(兀)也是/;(兀)和g|(x)的最大公因式,即(/(x), g(x)) = (/;(x),&(兀))・7.设 /(x) = t/(x)/(x), g(Q 二 dCr)g](x),且/O)与 gd)不全为零,证明〃(兀)是/O)与 gCO的一个最大公因式的充分必要条件是(/(劝,g|(x)) = 1.证明必要性.若〃(x)是/(兀)与g (兀)的一个最大公因式,则存在多项式w(x),v(x)使W (x)/(x) +v(x)g(x) = d(x),于是u(x)d(x)f t (x) + v(x)d(x)g l (x) = d(x).由/(力与g (兀)不全为零知如工0,因此有u(x)f l (x) + v(x)g l (x) = l f 即(土(兀),g©))i •充分性.若(f l (x),g l (x)) = l ,则存在多项式u(x),v(x),使 u(x)f l (x)+ v(x)g l (x) = l. 两边同吋乘〃(兀)有u(x)f(x) + v(x)g(x) = d(x)・由d(x)是/(x)与g(x)的一个公因式知,d(x)是f(x)与g(x)的一个最大公因式.8.设于(兀)和g(x)是两个多项式,证明(f(x), g(x)) = l 当且仅当(f(x)-l-g(x), f(x)g(x)) = l. 证明 必要性.设(f(x)9g(x)) = l,若f(x) + g(x)与/⑴g(x)不互素,则有不可约公因式p(x), 使p(x)lf(x)g(x)f所以 p(x)| /(X )或 0(x)|g(x).不妨设 p(x)\ /(x),由 P (x)|(/(x) + g (兀))可知 p(x)|g(x),因此 P (兀)是 /(兀)和g“)的公因式,与/(%), g (x)互素矛盾,故 蚀+g (兀)与蚀g (兀)互素.充分性.设(/(兀)+ gO) J(x)g (兀)) = 1,则存在w(x), v(x)使(/(兀)+ g (兀))心)+ /(x)g(x)v(x) = 1 , f(x)u(x) + g (兀)(臥兀)+d ad-be zw- h ad 一gi (兀), g(x) -c ad -be a ad -be g](x),/(x)v(x)) = 1, 上式说明(/(兀),g(兀)) = 1.9.如果(x2 +x + l)|/j(x3) + x/^(x3),那么(x-l)|/;(x), 0 — 1)|/;(兀)・T;®所以,^3=£23 = 1.证明X2+X + l的两个根为£\= 士护和£2=因为U2+x+l)|(/;(^3) + x/;(^3)),所以(兀一£|)(x - £2)|/;(X')+/(F),故有y 窗)+ £/(郃)=0,[爪哥)+ £2£(哥)=0,即解得/(l) = /;(l) = o,从而(兀—1)|久(兀),(x-1)|/;(%).10.若f(x)\f(x H),则/(x)的根只能是零或单位根.证明因为f(x)\f(x n),故存在多项式g(x),使/(x n) = /(x)^(x).设。
线性代数(含全部课后题详细答案5-1.
称为通解。
4. 解的结构
AX 0 的通解是 x k11 k22 knr n。
4 7
4 7
0 0
0 0
0 0
0 0
0 0
x1
13 7
3 7
x3
13 7
x4
x2
4 7
2 7
x3
4 7
x4
25
13 7
令 x3 x4 0,
得
4 7
0
0
又原方程组对应的齐次方程组的通解是
x1 x3
2x2 3
10 x4
1 5
x4
令
x2 x4
1
0
得
1
1 0 0
1
5
令
x2
x4
0
1
得
2
0 3
10 1
2
举例说明消元法具体步骤:
例1:解线性方程组
2 4
x1 x1
2 x1
2 1 3
解:(
A,
b)
4 2