假设检验作业及答案
假设检验习题答案【范本模板】
1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0。
01与α=0。
05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量nx t /0σμ-=。
查出α=0.05和0.01两个水平下的临界值(df=n —1=15)为2。
131和2.947。
334.116/60800820=-=t 。
因为t <2。
131〈2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z .因为z=3>2.34(>2。
32),所以拒绝原假设,无故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637.问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,当0.05,α=26,n =96.1579.02/1==-z z α,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600。
假设检验习题及答案
第三章 假设检验3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
{}0100001:1000, H :1000X u=950 100 n=25 1000950-1000u= 2.510025 V=u 0.05H nx u αμμμσσμα-≥<-====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为01011020: 3.25 H :t X t=13.252, S=0.0117, n=53.252-3.25t= 0.34190.011751H S n x μμμμσμ==≠--==-提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴ 本题中,接受认为这批矿砂的镍含量为。
3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}00.95()10.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t S n X n ασμα--==-==1-构造统计量:本文中未知,可用检验。
(完整版)假设检验习题及答案
第三章 假设检验3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为0101102: 3.25 H :t X 3.252, S=0.0117, n=50.3419H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴Q 本题中,接受认为这批矿砂的镍含量为。
3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}0.95()0.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t X n ασα==-==1-构造统计量:本文中未知,可用检验。
取检验统计量为X 本题中,代入上式得: 0.452%-0.5%拒绝域为:V=t >t 本题中,01 4.1143H <=∴t 拒绝{}22200222212210.952()nS S 0.035% n=10 0.04%100.035%7.65630.04% V=(1)(1)(9)16.919ii n n ααμχσσχχχχχχ--===*==>--==Q 2构造统计量:未知,可选择统计量本题中,代入上式得:()()否定域为:本题中, 210(1)n H αχ-<-∴接受3.9设总体116(,4),,,X N X X μ:K 为样本,考虑如下检验问题:{}{}01123:0 H :1() =0.05 V ={2X -1.645}V = 1.502X 2.125V =2X 1.962X 1.96(ii)H i μμα==-≤≤≤≤-≥试证下述三个检验(否定域)犯第一类错误的概率同为或通过计算他们犯第二类错误的概率,说明哪个检验最好?解:{}{}{}{}00.97512012()0.050.05:02*1.960.052 1.64502 1.645 1.645( 1.645)1(1.645)=1-0.95=0.05V 1.502 2.i P x V H X U U H X V X X P X P X ααμσμσ-=∈=⎧⎫-⎪⎪=>==⎨⎬⎪⎪⎩⎭=∴>==≤-⎧⎫⎪⎪-⎪⎪≤-=≤-=Φ-=-Φ⎨⎬⎪⎪⎪⎪⎩⎭=≤≤即,P U 这里P {}{}{}{}{}{}203301110125 1.50 2.120(2.215)(1.50)0.980.930.052 1.962 1.962 1.96 1.96P(V H )=1-P 2 1.962(1(1.96))0.05ii :2 1.645X P V H V X X X X H V X σββ⎧⎫⎪⎪-⎪⎪=≤≤⎨⎬⎪⎪⎪⎪⎩⎭=Φ-Φ=-=⎫⎪⎪=≤-≥=≥=≥⎬⎪⎪⎭<=-Φ=X ≥-或()犯第二类错误的概率 =P -V =P {}1μ=-{}{}223310.3551(0.355)0.36:1 1.502 2.12511 4.125:2 1.96110.04 3.96V P X V P X σβμσβμσ⎧⎫⎪⎪+⎪⎪≥=-Φ=⎨⎬⎪⎪⎪⎪⎩⎭=-≤≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎪⎩⎭ΦΦ=≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎩⎭X =P X =1-P 3.50 =1-(4.125)+(3.50)=1X =P ⎪ΦΦ∴11 =(3.96)-(0.04)=0.99996092-0.516=0.48396092V 出现第二类错误的概率最小,即V 最好。
作业题07 假设检验
第七章 假设检验 作业习题答案7.1 设总体2(,)N ξμσ~,其中参数μ,2σ为未知,试指出下面统计假设中哪些是简单假设,哪些是复合假设:(1)0:0,1H μσ==; (2)0:0,1H μσ=>; (3)0:3,1H μσ<=; (4)0:03H μ<<; (5)0:0H μ=.7.2 设1225,,,ξξξ 取自正态总体(,9)N μ,其中参数μ未知,x 是子样均值,如对检验问题001:,:H H μμμμ=≠取检验的拒绝域:12250{(,,,):||}c xx x x c μ=-≥ ,试决定常数c,使检验的显著性水平为0.057.3 设子样1225,,,ξξξ 取自正态总体20(,)N μσ,20σ已知,对假设检验0010:,:H H μμμμ=>,取临界域12n 0{(,,,):|}c x x x c ξ=> ,(1)求此检验犯第一类错误概率为α时,犯第二类错误的概率β,并讨论它们之间的关系;(2)设0μ=0.05,20σ=0.004,α=0.05,n=9,求μ=0.65时不犯第二类错误的概率。
7.4 设一个单一观测的ξ子样取自分布密度函数为()f x 的母体,对()f x 考虑统计假设:0011101201:():()00x x x H f x H f x ≤≤≤≤⎧⎧==⎨⎨⎩⎩其他其他试求一个检验函数使犯第一,二类错误的概率满足2min αβ+=,并求其最小值。
7.5 设某产品指标服从正态分布,它的根方差σ已知为150小时。
今由一批产品中随机抽取了26个,测得指标的平均值为1637小时,问在5%的显著性水平下,能否认为该批产品指标为1600小时?7.6 某电器零件的平均电阻一直保持在2.64Ω,根方差保持在0.06Ω,改变加工工艺后,测得100个零件,其平均电阻为2.62Ω,根方差不变,问新工艺对此零件的电阻有无显著差异?去显著性水平α=0.01。
第8章假设检验含答案
第8章假设检验含答案第8章假设检验一、单项选择题1.设样本是来自正态总体,其中未知,那么大样本时检验假设时,用的是()。
A 、 Z 检验法B 、检验法C 、检验法D 、检验法答案:A2.在假设检验中,由于抽样的偶然性,拒绝了实际上成立的H 0假设,则()。
A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:A3.在假设检验中,由于抽样偶然性,接受了实际上不成立的H 0假设,则()。
A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:B4.在假设检验中,接受了实际上成立的H 0假设,则()。
A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:C5.在假设检验中,拒绝实际上不成立的H 0假设是()。
A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:C6.α=0.05, t>t 0.05,ν,统计上可认为( )。
A 、两总体均数差别无显著意义B 、两样本均数差别无显著意义C 、两总体均数差别有显著意义D 、两样本均数差别有显著意义答案:C7.假设检验时,是否拒绝H 。
,取决于( )。
A 、被研究总体有无本质差别B 、选用α的大小C 、抽样误差的大小D 、以上都是答案:D8.设总体服从N(μ,σ2)分布,σ2已知,若样本容量n 和置信度1-α均保持不变,则对于不同的样本观测值,总体均值μ的置信区间长度()。
A 、变长B 、变短C 、不变D 、不能确定答案:C9.假设检验中,显著性水平α表示()。
A 、P{接受0H |0H 为假}B 、P{拒绝0H |0H 为真}C 、置信度为αD 、无具体含义答案:B11.在对总体参数的假设检验中,若给定显著性水平α(0<α<1),则犯第一类错误的概率为()。
A .1-αB 、αC 、α/2D 、不能确定答案:B12.对某批产品的合格率进行假设检验,如果在显著性水平α=0.05下接受了零假设,则在显著性水平α=0.01下()。
统计学假设检验习题答案
1。
假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量n x t /0σμ-=。
查出α=0。
05和0。
01两个水平下的临界值(d f=n-1=15)为2.131和2。
947。
667.116/60800820=-=t .因为t 〈2。
131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=.查出α=0.01水平下的反查正态概率表得到临界值2。
32到2。
34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z =3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3。
设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600。
假设检验测试答案
第八章假设检验1.A2.A3.B4.D5.C6.A1.某厂生产的化纤纤度服从正态分布,纤维的纤度的标准均值为;某天测得25根纤维的纤度的均值39x,检验与原来设计的标准均值相比是.1=否有所变化,要求的显着性水平为05α,则下列正确的假设形式=.0是;A.H:μ=,1H:μ≠B.0H:μ≤,1H:μ>C.H:μ<,1H:μ≥D.0H:μ≥,1H:μ<2.某一贫困地区估计营养不良人数高达20%,然而有人认为这个比例实际上还要高,要检验该说法是否正确,则假设形式为;A.H:π≤,1H:π>B.0H:π=,1H:π≠C.H:π≥,1H:π<D.0H:π≥,1H:π<3.一项新的减肥计划声称:在计划实施的第一周内,参加者的体重平均至少可以减轻8磅;随机抽取40位参加该项计划的样本,结果显示:样本的体重平均减少7磅,标准差为磅,则其原假设和备择假设是; A.H:μ≤8,1H:μ>8B.0H:μ≥8,1H:μ<8C.H:μ≤7,1H:μ>7D.0H:μ≥7,1H:μ<74.在假设检验中,不拒绝原假设意味着;A.原假设肯定是正确的B.原假设肯定是错误的C.没有证据证明原假设是正确的D.没有证据证明原假设是错误的5.在假设检验中,原假设和备择假设;A.都有可能成立B.都有可能不成立C.只有一个成立而且必有一个成立D.原假设一定成立,备择假设不一定成立6.在假设检验中,第一类错误是指;A.当原假设正确时拒绝原假设B.当原假设错误时拒绝原假设C.当备择假设正确时拒绝备择假设D.当备择假设不正确时未拒绝备择假设7.B8.C9.B10.A11.D12.C7.在假设检验中,第二类错误是指;A.当原假设正确时拒绝原假设B.当原假设错误时未拒绝原假设C.当备择假设正确时未拒绝备择假设D.当备择假设不正确时拒绝备择假设8.指出下列假设检验哪一个属于右侧检验;A.H:μ=0μ,1H:μ≠0μB.0H:μ≥0μ,1H:μ<0μC.H:μ≤0μ,1H:μ>0μD.0H:μ>0μ,1H:μ≤0μ9.指出下列假设检验哪一个属于左侧检验;A.H:μ=0μ,1H:μ≠0μB.0H:μ≥0μ,1H:μ<0μC.H:μ≤0μ,1H:μ>0μD.0H:μ>0μ,1H:μ≤0μ10.指出下列假设检验哪一个属于双侧检验;A.H:μ=0μ,1H:μ≠0μB.0H:μ≥0μ,1H:μ<0μC.H:μ≤0μ,1H:μ>0μD.0H:μ>0μ,1H:μ≤0μ11.指出下列假设检验形式的写法哪一个是错误的;A.H:μ=0μ,1H:μ≠0μB.0H:μ≥0μ,1H:μ<0μC.H:μ≤0μ,1H:μ>0μD.0H:μ>0μ,1H:μ≤0μ12.如果原假设H为真,所得到的样本结果会像实际观测结果那么极端0或更极端的概率称为;A.临界值B.统计量C.P值D.事先给定的显着性水平13.B14.B15.A16.D17.C18.A13.P值越小;A.拒绝原假设的可能性越小B.拒绝原假设的可能性越大C.拒绝备择假设的可能性越大D.不拒绝备择假设的可能性越小14.对于给定的显着性水平α,根据P值拒绝原假设的准则是;A.P=αB.P<αC.P>αD.P=α=015.在假设检验中,如果所计算出的P值越小,说明检验的结果 ; A.越显着B.越不显着C.越真实D.越不真实16.在大样本情况下,总体方差未知时,检验总体均值所使用的统计量是 ; A.z=nx σμ0-B.z=nx 2σμ-C.t=n s x 0μ-D.z=ns x 0μ- 17.在小样本情况下,当总体方差未知时,检验总体均值所使用的统计量是 ; A.z=nx σμ0-B.z=nx 2σμ-C.t=n s x 0μ-D.z=ns x 0μ- 18.在小样本情况下,当总体方差已知时,检验总体均值所使用的统计量是 ; A.z=nx σμ0-B.z=nx 2σμ-C.t=n s x 0μ-D.z=ns x 0μ- 19.C20.A21.B22.D23.D24.C19.检验一个正态总体的方差时所使用的分布为 ; A.正态分布B.t分布C.2χ分布D.F分布20.一种零件的标准长度5cm,要检验某天生产的零件是否符合标准要求,建立的原假设和备择假设应为 ;A.0H :μ=5,1H :μ≠5B.0H :μ≠5,1H :μ=5 C.0H :μ≤5,1H :μ>5D.0H :μ≥5,1H :μ<5 21.一项研究表明,中学生中吸烟的比例高达30%,为检验这一说法是否属实,建立的原假设和备择假设应为 ;A.H:μ=30%,1H:μ≠30%B.0Hπ=30%,1H:π≠30% 0C.H:π≥30%,1H:π<30%D.0Hπ≤30%,1H:π>30% 022.一项研究表明,司机驾车时因接打手机而发生事故的比例超过20%,用来检验这一结论的原假设和备择假设应为;A.H:π=20%,1H:π≠20%B.0H:π≠20%,1H:π=20% 0C.H:π≥20%,1H:π<20%D.0H:π≤20%,1H:π>20% 023.某企业每月发生事故的平均次数为5次,企业准备制定一项新的安全生产计划,希望新计划能减少事故次数;用来检验这一计划有效性的原假设和备择假设应为;A.H:μ=5,1H:μ≠5B.0H:μ≠5,1H:μ=5C.H:μ≤5,1H:μ>5D.0H:μ≥5,1H:μ<524.环保部门想检验餐馆一天所用的快餐盒平均是否超过600个,建立的原假设和备择假设应为;A.H:μ=600,1H:μ≠600B.0H:μ≠600,1H:μ=600 0C.H:μ≤600,1H:μ>600D.0H:μ≥600,1H:μ<600 025.A26.C27.C28.B29.A30.B25.随机抽取一个n=100的样本,计算得到x=60,s=15,要检验假设H:μ=65,H:μ≠65,检验的统计量为;1A.B.C.D.26.随机抽取一个n=50的样本,计算得到x=60,s=15,要检验假设H:μ=65,1H :μ≠65,检验的统计量为 ;A.B.C.D.27.若检验的假设为0H :μ=0μ,1H :μ≠0μ,则拒绝域为 ; A.z >αz B.z <-αzC.z >2αz 或z <-2αz D.z >αz 或z <-αz28.若检验的假设为0H :μ≥0μ,1H :μ<0μ,则拒绝域为 ; A.z >αz B.z <-αzC.z >2αz 或z <-2αz D.z >αz 或z <-αz29.若检验的假设为0H :μ≤0μ,1H :μ>0μ,则拒绝域为 ; A.z >αz B.z <-αzC.z >2αz 或z <-2αz D.z >αz 或z <-αz30.设c z 为检验统计量的计算值,检验的假设为0H :μ≤0μ,1H :μ>0μ,当c z =时,计算出的P值为 ;A. 0.025B.C.D.31.C32.A33.A34.B35.A36.B31.设c z 为检验统计量的计算值,检验的假设为0H :μ≤0μ,1H :μ>0μ,当c z =时,计算出的P值为 ;A. 0.025B.C.D.32.一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里;假定这位经销商要检验假设0H :μ≤24000,1H :μ>24000,取显着性水平为α=,并假设为大样本,则此项检验的拒绝域为 ;A.z>B.z<C.|z|>D.z=33.一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里;假定这位经销商要检验假设H:μ≤24000,1H:μ>24000,抽取容量n=32个车主的一个随机样本,计算出两年行驶里程的平均值x=24517公里,标准差为s=1866公里,计算出的检验统计量为;A.z=B.z=-C.z=D.z=-34.由49个观测数据组成的随机样本得到的计算结果为x∑=68,∑=,2x取显着性水平α=,检验假设H:μ≥,1H:μ<,得到的检验结论是;A.拒绝原假设B.不拒绝原假设C.可以拒绝也可以不拒绝原假设D.可能拒绝也可能不拒绝原假设35.一项研究发现,2000年新购买小汽车的人中有40%是女性,在2005年所作的一项调查中,随机抽取120个新车主中有57人为女性,在α=的显着性水平下,检验2005年新车主中女性的比例是否有显着增加,建立的原假设和备择假设为H:π≤40%,1H:π>40%,检验的结论是;A.拒绝原假设B.不拒绝原假设C.可以拒绝也可以不拒绝原假设D.可能拒绝也可能不拒绝原假设36.从一个二项总体中随机抽出一个n=125的样本,得到p=,在α=的显着性水平下,检验假设H:π=,1H:π≠,所得的结论是;A.拒绝原假设B.不拒绝原假设C.可以拒绝也可以不拒绝原假设D.可能拒绝也可能不拒绝原假设37.A38.B39.A40.D41.B42.A37.从正态总体中随机抽取一个n=25的随机样本,计算得到x =17,2s =8,假定20σ=10,要检验假设0H :2σ=20σ,则检验统计量的值为 ; A.2χ=B.2χ=C.2χ=D.2χ=38.从正态总体中随机抽取一个n=10的随机样本,计算得到x =,s=,假定20σ=50,在α=的显着性水平下,检验假设0H :2σ≥20,1H :2σ<20,得到的结论是 ; A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H 39.一个制造商所生产的零件直径的方差本来是;后来为削减成本,就采用一种费用较低的生产方法;从新方法制造的零件中随机抽取100个作样本,测得零件直径的方差为;在α=的显着性水平下,检验假设0H :2σ≤,1H :2σ>,得到的结论是 ;A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H 40.容量为3升的橙汁容器上的标签标明,该种橙汁的脂肪含量的均值不超过1克,在对标签上的说明进行检验时,建立的原假设和备择假设为0H :μ≤1,1H :μ>1,该检验所犯的第一类错误是 ;A.实际情况是μ≥1,检验认为μ>1B.实际情况是μ≤1,检验认为μ<1C.实际情况是μ≥1,检验认为μ<1D.实际情况是μ≤1,检验认为μ>141.随机抽取一个n=40的样本,得到x=,s=7;在α=的显着性水平下,检验假设H:μ≤15,1H:μ>15,统计量的临界值为;A.z=-B.z=C.z=D.z=-42.一项调查表明,5年前每个家庭每天看电视的平均时间为小时;而最近对200个家庭的调查结果是:每个家庭每天看电视的平均时间为小时,标准差为小时;在α=的显着性水平下,检验假设H:μ≤,1H:μ>,得到的结论为;A.拒绝HB.不拒绝0HC.可以拒绝也可以不拒绝HD.可能拒绝也可能不拒绝0H43.B44.B45.A46.B47.D48.D43.检验假设H:μ≤50,1H:μ>50,随机抽取一个n=16的样本,得0到的统计量的值为t=,在α=的显着性水平下,得到的结论是;A.拒绝HB.不拒绝0HC.可以拒绝也可以不拒绝HD.可能拒绝也可能不拒绝0H44.在某个城市,家庭每天的平均消费额为90元,从该城市中随机抽取15个家庭组成一个随机样本,得到样本均值为元,标准差为元;在α=的显着性水平下,检验假设H:μ=90,1H:μ≠90,得到的结论是;A.拒绝HB.不拒绝0HC.可以拒绝也可以不拒绝HD.可能拒绝也可能不拒绝0H45.航空服务公司规定,销售一张机票的平均时间为2分钟;由10名顾客购买机票所用的时间组成的一个随机样本,结果为:,,,,,,,,,;在α=的显着性水平下,检验平均售票时间是否超过2分钟,得到的结论是 ;A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H 46.检验假设0H :π=,1H :π≠,由n=200组成的一个随机样本,得到样本比例为p=;用于检验的P值为,在α=的显着性水平下,得到的结论是 ;A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H 47.如果能够证明某一电视剧在播出的头13周其观众收视率超过了25%,则可以断定它获得了成功;假定由400个家庭组成的一个随机样本中,有112个家庭看过该电视剧,在α=的显着性水平下,检验结果的P值为 ; A.B.C.D.48.检验两个总体的方差比时所使用的分布为 ; A.正态分布B.t分布C.2χ分布D.F分布49.A50.A51.B52.A53.A54.A49.从均值为1μ和2μ的两个总体中,随机抽取两个大样本n>30,在α=的显着性水平下,要检验假设0H :1μ-2μ=0,1H :1μ-2μ≠0,则拒绝域为 ;A.|z|>B.z>C.z<-D.|z|>50.从均值为1μ和2μ的两个总体中,抽取两个独立的随机样本,有关结果如下表:在α=的显着性水平下,要检验假设0H :1μ-2μ=0,1H :1μ-2μ≠0,得到的结论是 ; A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H 51.从均值为1μ和2μ的两个总体中,抽取两个独立的随机样本,有关结果如下表:在α=的显着性水平下,要检验假设0H :1μ-2μ=,1H :1μ-2μ≠,得到的结论是 ;A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H52.根据两个随机样本,计算得到21s =,22s =,要检验假设0H :2221σσ≤1,1H :2221σσ>1,则检验统计量的F值为 ; A. 1.42B.C.D.53.一项研究表明,男人和女人对产品质量的评估角度有所不同;在对某一产品的质量评估中,被调查的500个女人中有58%对该产品的评分等级是“高”,而被调查的500个男人中给同样评分的却只有43%;要检验对该产品的质量评估中,女人评高分的比例是否超过男人1π为女人的比例,2π为男人的比例;用来检验的原假设和备择假设为 ;A.0H :1π-2π≤0,1H :1π-2π>0B.0H :1π-2π≥0,1H :1π-2π<0C.0H :1π-2π=0,1H :1π-2π≠0D.0H :1π-2π≠0,1H :1π-2π=054.一项研究表明,男人和女人对产品质量的评估角度有所不同;在对某一产品的质量评估中,被调查的500个女人中有58%对该产品的评分等级是“高”,而被调查的500个男人中给同样评分的却只有43%;要检验对该产品的质量评估中,女人评高分的比例是否超过男人1π为女人的比例,2π为男人的比例;在α=的显着性水平下,检验假设0H :1π-2π≤0,:1H 1π-2π>0,得到的结论是 ; A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H55.B56.B57.A58.A59.B60.A55.抽自两个总体的独立随机样本提供的信息如下表:在α=的显着性水平下,要检验假设H:1μ-2μ=0,1H:1μ-2μ≠0,得到的结论是;A.拒绝HB.不拒绝0HC.可以拒绝也可以不拒绝HD.可能拒绝也可能不拒绝0H56.抽自两个超市的顾客独立随机样本,得到他们对超市服务质量的评分结果如下表:在α=的显着性水平下,要检验假设H:1μ-2μ≥0,1H:1μ-2μ<0,得到的结论是;A.拒绝HB.不拒绝0HC.可以拒绝也可以不拒绝HD.可能拒绝也可能不拒绝0H57.在对两个广告效果的电视评比中,每个广告在一周的时间内播放6次,然后要求看过广告的人陈述广告的内容,记录的资料如下表:在α=的显着性水平下,检验对两个广告的回想比例没有差别,即检验假设H:1π-2π=0,1H:1π-2π≠0,得到的结论是;A.拒绝HB.不拒绝0HC.可以拒绝也可以不拒绝HD.可能拒绝也可能不拒绝0H58.在一项涉及1602名儿童的流感疫苗试验中,接受疫苗的1070人中只有14人患了流感,而接受安慰剂的532名儿童中有98人患了流感;在α=的显着性水平下,检验“疫苗减少了儿童患流感的可能性”,即检验假设H:1π-2π≥0,1H:1π-2π<0,得到的结论是;A.拒绝HB.不拒绝0HC.可以拒绝也可以不拒绝HD.可能拒绝也可能不拒绝0H59.在一项犯罪研究中,收集到2000年的犯罪数据;在那些被判纵火罪的罪犯中,有50人是酗酒者,43人不喝酒;在那些被判诈骗罪的罪犯中,有63人是酗酒者,144人是戒酒者;在α=的显着性水平下,检验“纵火犯中酗酒者的比例高于诈骗犯中酗酒者的比例”,建立的原假设和备择假设是;A.H:1π-2π≥0,1H:1π-2π<0B.H:1π-2π≤0,1H:1π-2π>0C.H:1π-2π=0,1H:1π-2π≠0D.H:1π-2π<0,1H:1π-2π≥060.来自总体1的一个容量为16的样本的方差21s =,来自总体2的一个容量为20的样本的方差22s =;在α=的显着性水平下,检验假设0H :2221σσ≤,1H :2221σσ>,得到的结论是 ;A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H 61.一个研究的假设是:湿路上汽车刹车距离的方差显着大于干路上汽车刹车距离的方差;在调查中,以同样速度行驶的16辆汽车分别在湿路上和干路上检测刹车距离;在湿路上刹车距离的标准差为32米,在干路上的标准差是16米;用于检验的原假设和备择假设是 ;A.0H :2221σσ≤1,1H :2221σσ>1B.0H :2221σσ≥1,1H :2221σσ<1C.0H :2221σσ=1,1H :2221σσ≠1D.0H :2221σσ<1,1H :2221σσ≥162.一个研究的假设是:湿路上汽车刹车距离的方差显着大于干路上汽车刹车距离的方差;在调查中,以同样速度行驶的16辆汽车分别在湿路上和干路上检测刹车距离;在湿路上刹车距离的标准差为32米,在干路上的标准差是16米;在σ=的显着性水平下,检验假设0H :2221σσ≤1,1H :2221σσ>1,得到的结论是 ; A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H。
概率统计第八章假设检验参考答案
概率论与数理统计作业班级 姓名 学号 任课教师第八章 假设检验教学要求:一、理解假设检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误;二、了解一个正态总体均值与方差的假设检验,了解两个正态总体均值差与方差比的假设检验;三、了解总体分布假设的2χ检验法,会应用该方法进行分布拟合优度检验(选学).重点:假设检验的基本思想、假设检验的基本步骤、单个正态总体均值和方差的假设检验. 难点:正态总体均值和方差的假设检验.一、基本计算题1.某灯泡厂生产一种节能灯泡,其使用寿命(单位:小时)长期以来服从正态分布)(2150,1600N .现从一批灯泡中随意抽取25只,测得它们的平均寿命为1636小时.假定灯泡寿命的标准差稳定不变,问这批灯泡的平均寿命是否等于1600小时(取显著性水平05.0=α)?解:(1) 依题意,检验假设1600:00==μμH ,(1600:01=≠μμH ); (2) 由于标准差σ已知,在0H 成立时,采用U 检验法.选择统计量:nX U σμ0-=~()1,0N(3) 对于给定的显著性水平05.0=α,当25=n 时,查正态分布表得临界点96.1025.02==z z α(4)由25=n ,,1636=x ,150=σ,计算统计值:2.125150160016360=-=-=nx u σμ(5) 由于96.12.1025.02==<=z z u α落在拒绝域⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥-==20ασμz n x u W之外,所以在显著性水平05.0=α下,接受1600:0=μH .即认为这批灯泡的平均寿命等于1600.2.正常人的脉搏平均为72(次/min ),检查10例四乙基铅中毒患者,测的他们的脉搏(次/min )为: 54 67 68 78 70 66 67 70 65 69已知脉搏服从正态分布,在显著性水平05.0=α下,问四乙基铅中毒患者与正常人的脉搏有无显著差异?解:(1) 依题意,检验假设72:00==μμH ,(72:01=≠μμH ); (2) 由于标准差σ未知,在0H 成立时,采用T 检验法.选择统计量:nS X T 0μ-=~()1-n t (3) 对于给定的显著性水平05.0=α,当10=n 时,查t 分布表得临界点 :()2622.2)9(1025.02==-t n t α,(4) 由10=n ,,4.67=x ,9292.5=s 计算统计值:4534.2109292.5724.670=-=-=n s x t μ (5) 由于>=4534.2t ()2622.2)9(1025.02==-t n t α,t 落在拒绝域 :)}1(/{2-≥-==n t ns x t W αμ之内,故拒绝72:00==μμH ,即四乙基铅中毒患者与正常人的脉搏有显著差异.3.某食品厂生产一种食品罐头,每罐食品的标准重量为500克.今从刚生产的一批罐头中随机抽取10罐,称得其重量为(单位:克)495 510 505 498 503 492 502 512 497 506假定罐头重量服从正态分布,问这批罐头的平均重量是否合乎标准(取05.0=α)?解:(1) 依题意,检验假设500:00==μμH ,(500:01=≠μμH ); (2) 由于标准差σ未知,在0H 成立时,T 检验法.选择统计量:nS X T 0μ-=~()1-n t (3) 对于给定的显著性水平05.0=α,当10=n 时,查t 分布表得临界点 :()2622.2)9(1025.02==-t n t α,(4) 由10=n ,,502101101==∑=i ix x ,∑==--=1012225.6)(1101i i x x s ,计算统计值: 9730.0105.65005020=-=-=n s x t μ (5) 由于<=9730.0t ()2622.2)9(1025.02==-t n t α,t 落在拒绝域 :)}1(/{2-≥-==n t ns x t W αμ之外,故接受500:00==μμH ,即认为这批罐头的平均重量合乎标准.4.在10块田地上同时试种,A B 两种谷物,根据亩产量(单位:kg )算得30.97A x =,79.21=B y ,26.7As =,21.1B s =.问这两种谷物的平均亩产量有无显著差异(05.0=α)? 假定两种谷物的亩产量都服从正态分布,且方差相等.解:(1)设A X ~()211,σμN ,BY~()222,σμN,依题意,检验假设210:μμ=H,(211:μμ≠H );(2)由于2221,σσ未知但2221σσ=,在0H 成立时,选择统计量:2111n n S Y X T w+-=~()221-+n n t其中 ()()2112122212-+-+-=n n S n S n S BA w;(3) 对于给定的显著性水平05.0=α,当1021==n n 时,查t 分布表得临界点()1009.2)18(2025.0212==-+t n n t α,(4)由1021==n n , 97.30=x ,7.26=A s ,79.21=B y ,1.21=B s 计算统计值:8465.01011010635.2479.2197.301121=+-=+-=n n s y x t wB A其中 ()()05.5792112122212=-+-+-=n n s n s n s BA w,0635.24=w s ;(5)由于<=8465.0t ()1009.2)18(2025.0212==-+t n n t α,t 没有落在接受域中,故应接受210:μμ=H ,即这两种谷物的平均亩产没有明显差异.5.按两种不同配方生产橡胶,测的伸长率(%)如下:配方Ⅰ: 540 533 525 520 544 531 536 529 534配方Ⅱ: 565 577 580 575 556 542 560 532 570 561 设橡胶伸长率服从正态分布,检验按两种配方生产的橡胶伸长率的方差是否相同(取05.0=α)?解:(1) 设Y X ,分别表示配方Ⅰ、配方Ⅱ的总体,则X ~()211,σμN,Y ~()222,σμN . 依题意,检验假设22210:σσ=H ,22211:σσ≠H ;(2)在0H 成立时,选择统计量:222122212221S S S S F ==σσ~()1,121--n n F (3)对于给定的显著性水平05.0=α,当10,921==n n 时,查F 分布的双侧临界值: ()()10.49,82,1025.0212==--F n n F α,()()()2294.036.418,919,81,1025.0975.02121≈===---F F n n Fα (4) 由于4444.5329191==∑=i i x x ,()778.5319129121=--=∑=i i x x s ,8.561101101∑-==i i y y ,()8444.2381101101222∑==--=i i y y s ;得统计值:2271.08444.2367778.532221≈==s s F(5) 由于()2294.09,82271.0975.0=<≈F F .则F 落在拒绝域中,故应拒绝22210:σσ=H (或接受22211:σσ≠H )。
习题八假设检验答案
习题八假设检验答案(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题八 假设检验一、填空题1.设12,,...,n X X X 是来自正态总体的样本,其中参数2,μσ未知,则 检验假设0:0H μ=的t -t -检验使用统计量tX2.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,2σ已知。
要检验假设0μμ=应用 U 检验法,检验的统计量是X U =0H 成立时该统计量服从N (0,1) 。
3.要使犯两类错误的概率同时减小,只有 增加样本容量 ;4 . 设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X X X N μσ和2~(,)Y Y Y N μσ,两总体相互独立。
(1)当X σ和Y σ已知时,检验假设0:X Y H μμ=所用的统计量为X YU =0H 成立时该统计量服从 N (0,1) 。
(2)若X σ和Y σ未知,但X Y σσ= ,检验假设0:X Y H μμ=所用的统计量 为X YT =0H 成立时该统计量服从(2)t m n +- 。
5.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,要检验假设 2200:H σσ=,应用 2χ 检验法,检验的统计量是 2220(1)n S χσ-=;当0H 成立时,该统计量服从 2(1)n χ- 。
6.设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X X X N μσ和2~(,)Y Y Y N μσ,两总体相互独立。
要检验假设220:X YH σσ=,应用 F 检验法,检验的统计量为 22XYS F S = 。
7.设总体22~(,),,X N μσμσ 都是未知参数,把从X 中抽取的容量为n 的 样本均值记为X ,样本标准差记为S (修正),在显著性水平α下,检验假设 01:80;:80;H H μμ=≠的拒绝域为 2||(1)T t n α≥- 在显著性水平α下,检验假设22220010:;:;H H σσσσ=≠的拒绝域为 222(1)n αχχ≥-或222(1)n αχχ≤- ;8.设总体22~(,),,X N μσμσ都是未知参数,把从X 中抽取的容量为n 的样本均值记为X ,样本标准差记为S (修正),当2σ已知时,在显著性水平α下,检验假设0010:;:H H μμμμ≥<的统计量为 X U ={}U u α≤- 。
假设检验习题及答案
假设检验习题及答案第8章假设检验一、填空题1、对正态总体的数学期望μ进行假设检验,如果在显著性水平0.05下,接受假设00:μμ=H ,那么在显著性水平0.01下,必然接受0H 。
2、在对总体参数的假设检验中,若给定显著性水平为α,则犯第一类错误的概率是α。
3、设总体),(N ~X 2σμ,样本n 21X ,X ,X Λ,2σ未知,则00:H μ=μ,01:H μ<μ的拒绝域为 )}1(/{0--<-n t nS X αμ,其中显著性水平为α。
4、设n 21X ,X ,X Λ是来自正态总体),(N 2σμ的简单随机样本,其中2,σμ未知,记∑==n 1i i X n 1X ,则假设0:H 0=μ的t 检验使用统计量=T Q n n X )1(- .二、计算题1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常?解:设重量),(~2σμN X 05.016==αn 4252==S X(1)检验假设250:0=μH 250:1≠μH ,因为2σ未知,在0H 成立下,)15(~/250t n S X T -=拒绝域为)}15(|{|025.0t T >,查表得1315.2)5(025.0=≠t由样本值算得1315.22<=T ,故接受0H(2)检验假设9:20=σH 9:201>σH 因为μ未知,选统计量2022)1(σS n x -= 在0H 成立条件下,2x 服从)15(2x 分布,拒绝域为)}15({205.02x x >,查表得996.24)15(205.0=x ,现算得966.24667.26916152>=?=x ?拒绝0H ,综合(1)和(2)得,以为机器工作不正常2、一种电子元件,要求其使用寿命不得低于1000小时,现在从一批这种元件中随机抽取25 件,测得其寿命平均值为950小时,已知该种元件寿命服从标准差100=σ小时正态分布,试在显著性水平0.05下确定这批产品是否合格.解:设元件寿命),(~2σμN X ,2σ已知10002=σ,05.0,950,25===αX n检验假设1000:0=μH 1000:1<μH在2σ已知条件下,设统计量)1,0(~/1000N n X σμ-=拒绝域为}{05.0μμ<,查表得645.195.005.0-=-=μμ 而645.15.2205025/1001000950-<-=-=-=μ 拒绝假设0H 选择备择假设1H ,所以以为这批产品不合格.3. 对显著水平 a ,检验假设 H 0 ; m = m 0,H 1 ; m ≠ m 0,问当 m 0, m , a一定时,增大样本量 n 必能使犯第二类错误概率 b 减少对吗?并说明理由。
《应用数理统计》第三章假设检验课后作业参考答案
第三章 假设检验课后作业参考答案3.1 某电器元件平均电阻值一直保持2.64Ω,今测得采用新工艺生产36个元件的平均电阻值为2.61Ω。
假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。
已知改变工艺前的标准差为0.06Ω,问新工艺对产品的电阻值是否有显著影响?(01.0=α)解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u uu u u V (4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。
3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
解:{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.3某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。
设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高? 解:(1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。
(完整版)统计学假设检验习题答案
1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量nx t /0σμ-=。
查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。
667.116/60800820=-=t 。
因为t <2.131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
假设检验作业及答案
x 194 190 t 2 s 8 n 16
T ~ t (n 1)
在0.05的下拒绝H 0而接受H 1
接受域
0
1.7531
《假设检验》作业
STAT
5.[习题集P134第24题]某停车场管理人员估计周末汽车平均停 靠时间不超过90分钟。现抽查100辆汽车,平均停车时间为96分 钟,标准差为30分钟。试问这些数据能否说明管理人员估计的正 确性(能否说明平均停车时间超过90分钟)?给定显著性水平 0.05。 解:H0:μ90 H1:μ90 查表:Z0.05=1.645
Z
x 96 90 2 s 30 n 100
Z ~ N(0, 1)
在0.05的下拒绝H 0而接受H 1
接受域
0
1.645
《假设检验》作业
STAT
1、某食品厂生产果酱。标准规格是每罐净重250克,根据 以往经验,标准差是3克。现在该厂生产一批这样的果酱, 从中抽取100罐检验,其平均净重是251克。按规定,显著 性水平=0.05,问这批果酱是否符合标准? 解:H0:=250 H1: 250
Z Z 0.025 1.96
146 ˆ p 0.73,nP 5, n(1 P) 5 200
查表:Z / 2 Z 0.025 1.96,Z 0.005 2.575
Z ˆ pP P(1 P) n 0.73 - 0.8 0.8 0.2 200 -2.47Z ~ N (0,1)
接受域
t (n 1) t 0.05 (5) 2.015
x 20 21.5 T 1.16 s 3.16 n 6
-t
接受域
完整版假设检验习题及答案
第二章假设检验3.2 —种元件,要求其使用寿命不低于1000 (小时),现在从一批这种元件中随机 抽取25件,测得其寿命平均值为950 (小时)。
已知这种元件寿命服从标准差100(小时)的正态分布,试在显著水平 0.05下确定这批元件是否合格。
提出假设:H 0: 1000, H 1: 1000构造统计量:此问题情形属于u 检验,故用统计量:V= u U 1本题中:0.05 u 0.95 1.64即, u u 0.95拒绝原假设H 0认为在置信水平0.05下这批元件不合格。
3.4某批矿砂的五个样品中镍含量经测定为(%):3.25 3.27 3.24 3.26 3.24 设测定值服从正态分布,问在 0.01下能否接受假设,这批矿砂的镍含量为提出假设: H° :13.25 H 1 :1 0构造统计量:本题属于 2未知的情形,可用t 检验,即取检验统计量为:t=—S .n 1本题中,x 3.252, S=0.0117, n=5代入上式得:t =3.252-3.25 0.0117 .5 1否定域为:V= t>^_(n 1)2本题中, 0.01,t 0.995(4) 4.6041Qt t12接受H 0,认为这批矿砂的镍含量为 3.25。
Xu=—— 00 此题中:x 950 代入上式得:950-1000 u= 2.5 100 25拒绝域:0 100 n=25 0 10000.34193.5确定某种溶液中的水分,它的10个测定值X 0.452%, S 0.035%,0.452%-0.5% t= -4.1143 0.035%拒绝域为: V 二t >t i. (n 1)本题中, 0.05 n=10t °.95(9)1.8331 t 4.1143拒绝H 0 (ii)构造统计量: 未知,可选择统计量2nS 22"本题中,S 0.035% n=100.04%代入上式得:否定域为:接受H 。
假设检验例题
选择题在进行假设检验时,原假设(H₀)通常表述为:A. 总体参数等于某特定值(正确答案)B. 总体参数不等于某特定值C. 样本参数等于某特定值D. 样本参数不等于某特定值下列哪一项不是假设检验的基本步骤?A. 确定显著性水平B. 计算检验统计量C. 无限次重复实验(正确答案)D. 作出决策当样本量较大时,哪种分布常用于构造假设检验的统计量?A. 二项分布B. 正态分布(正确答案)C. 泊松分布D. 超几何分布在单侧检验中,拒绝域的位置取决于:A. 样本均值的大小B. 备择假设的方向(正确答案)C. 总体标准差D. 显著性水平的大小与方向无关第一类错误是指:A. 原假设为真时拒绝原假设(正确答案)B. 原假设为假时接受原假设C. 备择假设为真时拒绝备择假设D. 备择假设为假时接受备择假设在进行t检验前,需要满足的前提条件是:A. 总体方差已知B. 样本量必须大于30C. 样本数据来自正态分布总体(正确答案)D. 以上都不是假设检验中,P值的意义是:A. 原假设为真的概率B. 在原假设成立条件下,观测到当前或更极端结果出现的概率(正确答案)C. 备择假设为真的概率D. 以上都不是若显著性水平α=0.05,则拒绝域的面积占整个分布曲线的比例为:A. 0.05(正确答案)B. 0.95C. 0.025D. 依赖于具体分布形态在进行方差分析(ANOVA)时,若F统计量的值较大,则:A. 说明各组均值无显著差异B. 说明至少有一组均值与其他组有显著差异(正确答案)C. 一定存在误差项方差为零的情况D. 以上都不是必然结论。
假设检验例题及解析
选择题在进行假设检验时,如果原假设为真,而样本数据却导致我们拒绝了原假设,这种情况被称为:A. 第一类错误(正确答案)B. 第二类错误C. 第三类错误D. 无错误假设我们要检验某种药物是否能有效降低血压,原假设应为:A. 药物能降低血压B. 药物不能降低血压(正确答案)C. 药物对血压无影响D. 药物可能升高血压在单样本t检验中,如果计算出的t值大于临界t值,我们应该:A. 接受原假设B. 拒绝原假设(正确答案)C. 无法判断D. 重新进行试验假设检验中的P值表示的是:A. 原假设为真的概率B. 备择假设为真的概率C. 在原假设为真的条件下,观察到当前或更极端结果的概率(正确答案)D. 犯第二类错误的概率在进行两个独立样本的均值比较时,如果两个样本的方差未知且不相等,我们应使用:A. 单样本t检验B. 配对t检验C. Welch's t检验(正确答案)D. 方差分析假设检验中的显著性水平α通常设定为:A. 0.01B. 0.05(正确答案)C. 0.10D. 0.20在进行卡方检验时,如果计算出的卡方值小于临界卡方值,我们应该:A. 接受原假设(正确答案)B. 拒绝原假设C. 无法判断D. 需要更多数据假设我们要检验某种食品中是否含有某种有害物质,原假设应为:A. 食品中含有有害物质B. 食品中不含有害物质(正确答案)C. 食品中可能含有有害物质D. 食品中一定不含有害物质在进行假设检验时,如果犯第二类错误的成本远高于犯第一类错误的成本,我们应该:A. 提高显著性水平αB. 降低显著性水平α(正确答案)C. 保持显著性水平α不变D. 无法确定如何调整显著性水平α。
假设检验作业参考答案
(4)计算检测统计量的值
2
n 1 S 2 30 1 2 103.11
02
0.752
(5)作出决策
2 103.11 42.557 ,落入拒绝域,故在 0.05 的显著性水平上拒绝 H 0 。
结论:有证据表明电视的使用寿命的方差显著大于视频录像设备的使用寿命的方差。
2
n=30, S =2, s0 = 0.75 = 0.5625 (1)提出假设
2 2 H0 : 2 0 ; H1 : 2 0
2
2
2
(2)构造检测统计量
n 1 S 2 2 n 1 2
2
0
(3)给定显著性水平 0.05 29 42.557 ,其拒绝域为 42.557, 。
(3)给定显著性水平 0.01 ,确定拒绝域。
0.01 , z0.01 2.33 ,其拒绝域为 2.33, 。
(4)计算检测统计量的值
z
x 0 7.25 6.70 3.11 s / n 2.5 / 200
(5)作出决策
z 3.11 2.33 ,落入拒绝域,故在 0.01 的显著性水平上拒绝 H 0 。
np 356 0.879 313 5 , np 1 p 356 0.879 1 0.879 37.81 5 。
本题为大样本下总体比例的双侧检验问题,应采取 Z 检验法。 (1)已知本题假设为
H 0 : 0.75; H1 : 0.75
n
p 0
0.879 0.75 0.75 1 0.75 356
5.63
(5)作出决策
假设检验练习题 -答案
假设检验练习题1. 简单回答下列问题:1)假设检验的基本步骤?答:第一步建立假设(通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论)有三类假设第二步选择检验统计量给出拒绝域的形式。
根据原假设的参数检验统计量:对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A拒绝域的形式由备择假设的形式决定H1:W为双边H1:W为单边H1:W为单边第三步:给出假设检验的显著水平第四步给出零界值C,确定拒绝域W有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。
例如:对于=0.05有的双边W为的右单边W为的右单边W为第五步根据样本观测值,计算和判断计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝,否则接受(计算P值227页p值由统计软件直接得出时拒绝,否则接受计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)2)假设检验的两类错误及其发生的概率?答:第一类错误:当为真时拒绝,发生的概率为第二类错误:当为假时,接受发生的概率为3)假设检验结果判定的3种方式?答:1.计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝,否则接受2.计算P值227页p值由统计软件直接得出时拒绝,否则接受3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受4)在六西格玛A阶段常用的假设检验有那几种?应用的对象是什么?答:连续型(测量的数据):单样本t检验-----比较目标均值双样本t检验-----比较两个均值方差分析-----比较两个以上均值等方差检验-----比较多个方差离散型(区分或数的数据):卡方检验-----比较离散数2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
STAT
1、某食品厂生产果酱。标准规格是每罐净重250克,根据 以往经验,标准差是3克。现在该厂生产一批这样的果酱, 从中抽取100罐检验,其平均净重是251克。按规定,显著 性水平=0.05,问这批果酱是否符合标准? 解:H0:=250 H1: 250
Z Z 0.025 1.96
t (n 1) t 0.05 (5) 2.015
x 20 21.5 T 1.16 s 3.16 n 6
-t
接受域
0
《假设检验》作业
STAT
3.一种以休闲和娱乐为主题的杂志,声称其读者群中有80%为 女性。为验证这一说法是否属实,某研究部门抽取了由200人组 成的一个随机样本,发现有146个女性经常阅读该杂志。分别取α 为0.05和0.01,检验该杂志读者群中女性的比率是否为80%。 解: H0:P=80% H1: P≠80%
-Z
/2
Z
在0.05的下拒绝H 0。
0
《假设检验》作业
STAT
4.[习题集P134第23题]某制造厂生产某装置的平均工作温度是 190度。今从一个由16台装置构成的随机样本求得的工作温度的 均值和S分别是194度和8度,能否说明平均工作温度比制造厂规 定的要高呢?给定α为0.05,并假定工作温度服从正态分布。 解:H0:μ190 H1: μ190 查表:t0.05(16-1)=1.7531
146 ˆ p 0.73,nP 5, n(1 P) 5 200
查表:Z / 2 Z 0.025 1.96,Z 0.005 2.575
Z ˆ pP P(1 P) n 0.73 - 0.8 0.8 0.2 200 -2.47
Z ~ N (0,1)
接受域
x 194 190 t 2 s 8 n 16
T ~ t (n 1)
在0.05的下拒绝H 0而接受H 1
接受域
0
1.7531
《假设检验》作业
STAT
5.[习题集P134第24题]某停车场管理人员估计周末汽车平均停 靠时间不超过90分钟。现抽查100辆汽车,平均停车时间为96分 钟,标准差为30分钟。试问这些数据能否说明管理人员估计的正 确性(能否说明平均停车时间超过90分钟)?给定显著性水平 0.05。 解:H0:μ90 H1:μ90 查表:Z0.05=1.645
Z
x 96 90 2 s 30 n 100
Z ~ N(0, 1)
在0.05的下拒绝H 0而接受H 1
接受域
0
1.645
2
250 251 Z 3Βιβλιοθήκη 33 1.96 3 n 100
x
Z ~ N (0,1)
以95%的把握拒绝H 0 接受H 1
2
-1.96
接受域
0 1.96
2
《假设检验》作业
STAT
2、某公司生产电池,其寿命近似服从正态分布。该公司声称: 某种型号的电池的平均寿命为21.5小时。在实验室测验了该公 司生产的电池6只,得它们的寿命分别为:19、18、22、20、 16、25小时,问这些结果是否表明这种电池的寿命比该公司 宣布的更短?(=0.05) 以95 %的把握接 解:H0: 21.5 H1: <21.5 受H 0 拒绝H 1 ( x x ) 2 x 20 s 3.16 T ~ t (n 1) n 1