风管风速、风口风速与设计用法、风管压力损失、局部阻力损失计算大全

合集下载

风管阻力计算公式方法

风管阻力计算公式方法

风管阻力计算方法送风机静压Ps(Pa)按下式计算PS = PD + PA式中:PD——风管阻力(Pa),PD = RL(1 + K)说明:R——风管的单位磨擦阻力,Pa/m;L ——到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K——局部阻力与磨擦阻力损失的比值。

推荐的风管压力损失分配(按局部阻力和磨擦阻力之比)风管系统弯头、三通较少弯头、三通较多K 1.0~2.0 2.0~4.0PD= R(L + Le)式中Le为所有局部阻力的当量长度。

PA——空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)系统特征风机单一回风在设备附近单一回风有回风管的单一回风在中等回风管系统的多样回风有大规模回风管系统的多样回风送风%9080706050回风%1020304050☆低速风管系统的推荐和最大流速m/s应用场所(空调风管中功能段)住宅公共建筑工厂推荐最大推荐最大推荐最大室外空气入口 2.5 4.0 2.5 4.5 2.58.0空气过滤器 1.3 1.5 1.5 1.8 1.8 1.8加热排管 2.3 2.5 2.5 3.0 3.0 3.5冷却排管2.32.32.52.53.03.0风机出口6.08.59.011.010.014.0主风管4.06.06.08.09.011.0支风管(水平) 3.0 5.0 4.0 6.5 5.0 9.0支风管(垂直) 2.5 4.0 3.5 6.0 4.0 8.0☆低速风管系统的最大允许流速m/s应用场所以噪声控制 以磨擦阻力控制主风管 送风主管 回风主管 送风支管回风支管住宅 3.0 5.0 4.0 3.0 3.0 公寓、饭店房间 5.0 7.5 6.5 6.0 5.0 办公室、图书馆 6.0 10.0 7.5 8.0 6.1 大礼堂、戏院 4.0 6.5 5.5 5.0 4.0 银行、高级餐厅 7.5 10.0 7.5 8.0 6.0 百货店、自助餐厅9.0 12.0 7.5 8.0 6.0工厂 12.5 (上限)15.0 9.0 11.0 7.5☆推荐的送风口流速m/s应用场所 流速m/s播音室 1.5~2.5戏院 2.5~3.5住宅、公寓、饭店房间、教室 2.5~3.8一般办公室 2.5~4.0电影院 5.0~6.0百货店、上层 5.0百货店、下层7.510.0☆以噪声标准控制的允许送风流速m/s应用场所流速m/s 图书馆、广播室 1.75~2.5住宅、公寓、私人办公室、医院房间2.5~4.0银行、戏院、教室、一般办公室、商店、餐厅4.0~5.0工厂、百货店、厨房 5.0~7.5☆回风格栅的推荐流速m/s位置近座位逗留区以上门下部门上部工业用流速m/s2~33~443≥4布袋风管的压力损失:布袋送风不只只是传递气流,同时在进行径向送风,所以管道内风速是不断减少的,管道平均风速比传统风管小的多,铁皮风管有个经验数据1pa/m,布袋风管由于管径的不同阻力变化较大,但一般可以近似的认为0.3-0.5pa/m通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

谈通风管道局部阻力计算方法

谈通风管道局部阻力计算方法

谈通风管道局部阻力计算方法谈通风管道局部阻力计算方法胡宝林在通风除尘与气力输送系统中,管道的局部阻力主要在弯头、变径管、三通、阀门等管件和重杂物分离器、供料器、卸料器、除尘器等设备上产生。

由于管件形状和设备结构的不确定性以及局部阻力的复杂性,目前许多局部阻力系数还不能用公式进行计算,只能通过大量的实验测试阻力再推算阻力系数,并制成表格供设计者查询。

例如在棉花加工生产线上,常规的漏斗形重杂物分离器压损为300R左右, 离心式籽棉卸料器压损为400匕左右,这些都是实测数据,由于规格结构不同差异也会很大,所以仅供参考。

只有一些常见的形状或结构比较确定的管件及设备可通过公式计算阻力系数,例如弯头、旋风除尘器等。

局部阻力是管道阻力的重要组成部分,一个R=4D 90°弯头的阻力相当于2.5?6.5m的直管沿程阻力。

由于涉及到局部阻力的管件种类繁多,不便一一列举,因此,本文以弯头等常用管件为例重点讨论在纯空气下和带料运行时的局部阻力系数的变化及局部阻力计算方法。

一、纯空气输送时局部阻力和系数1、局部阻力当固体边界的形状、大小或者两者之一沿流程急剧变化,流体的流动速度分布就会发生变化,阻力大大增加,形成输送能量的损失,这种阻力称为局部阻力。

在产生局部损失的地方,由于主流与边界分离和漩涡的存在,质点间的摩擦和撞击加剧,因而产生的输送能量损失比同样长的直管道要大得多,局部阻力与物料的密度及速度的平方成正比,局部阻力计算公式:::.2式中:出一局部阻力,F a;—局部阻力系数,实验取得或公式计算;H d —动压,巳;‘一空气密度,1.205kg/m3(20°C);-—空气流速,m/s2、阻力系数阻力系数的确定有两种方法,一是查表法,二是公式法。

查表法:许多管件或设备都具有特殊的形状或结构,阻力系数难以用理论公式计算,只能通过测试阻力后再反推阻力系数。

为了便于查询和参考,通过大量的实验已经制成了查询表。

风管阻力计算方法

风管阻力计算方法

风管阻力计算方法送风机静压Ps(Pa)按下式计算:PS=PD+PA式中:PD—风管阻力(Pa),PD= RL(1+K)说明:R—风管的单位磨擦阻力,Pa/m;L—到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K—局部阻力与磨擦阻力损失的比值。

推荐的风管压力损失分配(按局部阻力和磨擦阻力之比)风管系统弯头、三通较少弯头、三通较多K 1.0~2.0 2.0~4.0PD=R(L+Le)式中Le为所有局部阻力的当量长度。

PA——空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)系统特征风机单一回风在设备附近单一回风有回风管的单一回风在中等回风管系统的多样回风有大规模回风管系统的多样回风送风% 90 80 70 60 50回风% 10 20 30 40 50 ☆低速风管系统的推荐和最大流速m/s应用场所(空调风管中功能段)住宅公共建筑工厂推荐最大推荐最大推荐最大室外空气入口 2.5 4.0 2.5 4.5 2.5 8.0空气过滤器 1.3 1.5 1.5 1.8 1.8 1.8加热排管 2.3 2.5 2.5 3.0 3.0 3.5冷却排管 2.3 2.3 2.5 2.5 3.0 3.0风机出口 6.0 8.5 9.0 11.0 10.0 14.0主风管 4.0 6.0 6.0 8.0 9.0 11.0支风管(水平) 3.0 5.0 4.0 6.5 5.0 9.0支风管(垂直) 2.5 4.0 3.5 6.0 4.0 8.0 ☆低速风管系统的最大允许流速m/s应用场所以噪声控制以磨擦阻力控制主风管送风主管回风主管送风支管回风支管住宅 3.0 5.0 4.0 3.0 3.0 公寓、饭店房间 5.0 7.5 6.5 6.0 5.0 办公室、图书馆 6.0 10.0 7.5 8.0 6.1 大礼堂、戏院 4.0 6.5 5.5 5.0 4.0 银行、高级餐厅7.5 10.0 7.5 8.0 6.0 百货店、自助餐厅9.0 12.0 7.5 8.0 6.0 工厂12.5(上限) 15.0 9.0 11.0 7.5 ☆推荐的送风口流速m/s应用场所流速m/s播音室 1.5~2.5戏院 2.5~3.5住宅、公寓、饭店房间、教室2.5~3.8一般办公室 2.5~4.0电影院 5.0~6.0百货店、上层 5.0百货店、下层7.510.0☆以噪声标准控制的允许送风流速m/s应用场所流速m/s图书馆、广播室 1.75~2.5住宅、公寓、私人办公室、医院房间 2.5~4.0银行、戏院、教室、一般办公室、商店、餐厅4.0~5.0工厂、百货店、厨房 5.0~7.5☆回风格栅的推荐流速m/s位置近座位逗留区以上门下部门上部工业用流速m/s 2~3 3~4 4 3 ≥4布袋风管的压力损失:布袋送风不只只是传递气流,同时在进行径向送风,所以管道内风速是不断减少的,管道平均风速比传统风管小的多,铁皮风管有个经验数据1pa/m,布袋风管由于管径的不同阻力变化较大,但一般可以近似的认为0.3-0.5pa/m。

风管阻力计算方法介绍

风管阻力计算方法介绍

风管阻力计算方法介绍☆风管阻力计算方法送风机静压Ps〔Pa〕按下式计算P S = P D + P A式中:P D——风管阻力〔Pa〕,P D = RL〔1 + K〕说明:R——风管的单位磨擦阻力,Pa/m;L ——到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K——局部阻力与磨擦阻力损失的比值。

引荐的风管压力损失分配〔按局部阻力和磨擦阻力之比〕P D = R〔L + Le〕式中Le为一切局部阻力的当量长度。

PA——空气过滤器、冷热盘管等空调装置的阻力之和〔Pa〕☆引荐的风管压力损失分配〔按送风与回风管之阻力〕☆低速风管系统的引荐和最大流速m/s☆低速风管系统的最大允许流速m/s☆引荐的送风口流速m/s☆以噪声规范控制的允许送风流速m/s☆回作风栅的引荐流速m/s依据YORK公司产品手册整理2004年4月3日常用单位换算公式集合大全常用单位换算公式集合大全换算公式面积换算1平方公里〔km2〕=100公顷〔ha〕=247.1英亩〔acre〕=0.386平方英里〔mile2〕1平方米〔m2〕=10.764平方英尺〔ft2〕1平方英寸〔in2〕=6.452平方厘米〔cm2〕1公顷〔ha〕=10000平方米〔m2〕=2.471英亩〔acre〕1英亩〔acre〕=0.4047公顷〔ha〕=4.047×10-3平方公里〔km2〕=4047平方米〔m2〕1英亩〔acre〕=0.4047公顷〔ha〕=4.047×10-3平方公里〔km2〕=4047平方米〔m2〕1平方英尺〔ft2〕=0.093平方米(m2)1平方米〔m2〕=10.764平方英尺〔ft2〕1平方码〔yd2〕=0.8361平方米〔m2〕1平方英里〔mile2〕=2.590平方公里〔km2〕体积换算1美吉耳〔gi〕=0.118升〔1〕1美品脱〔pt〕=0.473升〔1〕1美夸脱〔qt〕=0.946升〔1〕1美加仑〔gal〕=3.785升〔1〕1桶〔bbl〕=0.159立方米〔m3〕=42美加仑〔gal〕1英亩·英尺=1234立方米〔m3〕1立方英寸〔in3〕=16.3871立方厘米〔cm3〕1英加仑〔gal〕=4.546升〔1〕10亿立方英尺〔bcf〕=2831.7万立方米〔m3〕1万亿立方英尺〔tcf〕=283.17亿立方米〔m3〕1百万立方英尺〔MMcf〕=2.8317万立方米〔m3〕1千立方英尺〔mcf〕=28.317立方米〔m3〕1立方英尺〔ft3〕=0.0283立方米〔m3〕=28.317升〔liter〕1立方米〔m3〕=1000升〔liter〕=35.315立方英尺〔ft3〕=6.29桶〔bbl〕长度换算1千米〔km〕=0.621英里〔mile〕1米〔m〕=3.281英尺〔ft〕=1.094码〔yd〕1厘米〔cm〕=0.394英寸〔in〕1英寸〔in〕=2.54厘米〔cm〕1海里〔n mile〕=1.852千米〔km〕1英寻〔fm〕=1.829〔m〕1码〔yd〕=3英尺〔ft〕1杆〔rad〕=16.5英尺〔ft〕1英里〔mile〕=1.609千米〔km〕1英尺〔ft〕=12英寸〔in〕1英里〔mile〕=5280英尺〔ft〕1海里〔n mile〕=1.1516英里〔mile〕质量换算1长吨〔long ton〕=1.016吨〔t〕1千克〔kg〕=2.205磅〔lb〕1磅〔lb〕=0.454千克〔kg〕[常衡] 1盎司〔oz〕=28.350克(g)1短吨〔sh.ton〕=0.907吨〔t〕=2000磅〔lb〕1吨〔t〕=1000千克〔kg〕=2205磅〔lb〕=1.102短吨〔sh.ton〕=0.984长吨〔long ton〕密度换算1磅/英尺3〔lb/ft3〕=16.02千克/米3〔kg/m3〕API度=141.5/15.5℃时的比重-131.51磅/英加仑〔lb/gal〕=99.776千克/米3〔kg/m3〕1波美密度〔B〕=140/15.5℃时的比重-1301磅/英寸3〔lb/in3〕=27679.9千克/米3〔kg/m3〕1磅/美加仑〔lb/gal〕=119.826千克/米3〔kg/m3〕1磅/〔石油〕桶〔lb/bbl〕=2.853千克/米3〔kg/m3〕1千克/米3〔kg/m3〕=0.001克/厘米3〔g/cm3〕=0.0624磅/英尺3〔lb/ft3〕运动粘度换算1斯〔St〕=10-4米2/秒〔m2/s〕=1厘米2/秒〔cm2/s〕1英尺2/秒〔ft2/s〕=9.29030×10-2米2/秒〔m2/s〕1厘斯〔cSt〕=10-6米2/秒〔m2/s〕=1毫米2/秒〔mm2/s〕动力粘度换算动力粘度1泊〔P〕=0.1帕·秒〔Pa·s〕1厘泊〔cP〕=10-3帕·秒〔Pa·s〕1磅力秒/英尺2〔lbf·s/ft2〕=47.8803帕·秒〔Pa·s〕1千克力秒/米2〔kgf·s、m2〕=9.80665帕·秒〔Pa·s〕力换算1牛顿〔N〕=0.225磅力〔lbf〕=0.102千克力〔kgf〕1千克力〔kgf〕=9.81牛〔N〕1磅力〔lbf〕=4.45牛顿〔N〕1达因〔dyn〕=10-5牛顿〔N〕温度换算K=5/9〔°F+459.67〕K=℃+273.15n℃=(5/9·n+32) °F n°F=[(n-32)×5/9]℃1°F=5/9℃〔温度差〕压力换算压力1巴〔bar〕=105帕〔Pa〕1达因/厘米2〔dyn/cm2〕=0.1帕〔Pa〕1托〔Torr〕=133.322帕〔Pa〕1毫米汞柱〔mmHg〕=133.322帕〔Pa〕1毫米水柱〔mmH2O〕=9.80665帕〔Pa〕1工程大气压=98.0665千帕〔kPa〕1千帕〔kPa〕=0.145磅力/英寸2〔psi〕=0.0102千克力/厘米2〔kgf/cm2〕=0.0098大气压〔atm〕1磅力/英寸2〔psi〕=6.895千帕〔kPa〕=0.0703千克力/厘米2〔kg/cm2〕=0.0689巴〔bar〕=0.068大气压〔atm〕1物理大气压〔atm〕=101.325千帕〔kPa〕=14.696磅/英寸2〔psi〕=1.0333巴〔bar〕传热系数换算1千卡/米2·时〔kcal/m2·h〕=1.16279瓦/米2〔w/m2〕1千卡/〔米2·时·℃〕〔1kcal/(m2·h·℃)〕=1.16279瓦/〔米2·开尔文〕〔w/(m2·K)〕1英热单位/〔英尺2·时·°F〕〔Btu/(ft2·h·°F)〕=5.67826瓦/〔米2·开尔文〕〔〔w/m2·K〕〕1米2·时·℃/千卡〔m2·h·℃/kcal〕=0.86000米2·开尔文/瓦〔m2·K/W〕热导率换算1千卡〔米·时·℃〕〔kcal/(m·h·℃)〕=1.16279瓦/〔米·开尔文〕〔W/(m·K)〕1英热单位/〔英尺·时·°F〕〔But/(ft·h·°F) =1.7303瓦/〔米·开尔文〕〔W/(m·K)〕比容热换算1千卡/〔千克·℃〕〔kcal/(kg·℃)〕=1英热单位/〔磅·°F〕〔Btu/(lb·°F)〕=4186.8焦耳/〔千克·开尔文〕〔J/〔kg·K〕〕热功换算1卡〔cal〕=4.1868焦耳〔J〕1大卡=4186.75焦耳〔J〕1千克力米〔kgf·m〕=9.80665焦耳〔J〕1英热单位〔Btu〕=1055.06焦耳〔J〕1千瓦小时〔kW·h〕=3.6×106焦耳〔J〕1英尺磅力〔ft·lbf〕=1.35582焦耳〔J〕1米制马力小时〔hp·h〕=2.64779×106焦耳〔J〕1英马力小时〔UKHp·h〕=2.68452×106焦耳1焦耳=0.10204千克·米=2.778×10-7千瓦·小时=3.777×10-7公制马力小时=3.723×10-7英制马力小时=2.389×10-4千卡=9.48×10-4英热单位功率换算1英热单位/时〔Btu/h〕=0.293071瓦〔W〕1千克力·米/秒〔kgf·m/s〕=9.80665瓦〔w〕1卡/秒〔cal/s〕=4.1868瓦〔W〕1米制马力〔hp〕=735.499瓦〔W〕速度换算1英里/时〔mile/h〕=0.44704米/秒〔m/s〕1英尺/秒〔ft/s〕=0.3048米/秒〔m/s〕渗透率换算1达西=1000毫达西1平方厘米〔cm2〕=9.81×107达西地温梯度换算1°F/100英尺=1.8℃/100米〔℃/m〕1℃/公里=2.9°F/英里〔°F/mile〕=0.055°F/100英尺〔°F/ft〕油气产量换算1桶〔bbl〕=0.14吨〔t〕〔原油,全球平均〕1万亿立方英尺/日〔tcfd〕=283.2亿立方米/日〔m3/d〕=10.336万亿立方米/年〔m3/a〕10亿立方英尺/日〔bcfd〕=0.2832亿立方米/日〔m3/d〕=103.36亿立方米/年〔m3/a〕1百万立方英尺/日〔MMcfd〕=2.832万立方米/日〔m3/d〕=1033.55万立方米/年〔m3/a〕1千立方英尺/日〔Mcfd〕=28.32立方米/日〔m3/d〕=1.0336万立米/年〔m3/a〕1桶/日〔bpd〕=50吨/年〔t/a〕〔原油,全球平均〕1吨〔t〕=7.3桶〔bbl〕(原油,全球平均)气油比换算1立方英尺/桶〔cuft/bbl〕=0.2067立方米/吨〔m3/t〕热值换算1桶原油=5.8×106英热单位〔Btu〕1吨煤=2.406×107英热单位〔Btu〕1立方米湿气=3.909×104英热单位〔Btu〕1千瓦小时水电=1.0235×104英热〔Btu〕1立方米干气=3.577×104英热单位〔Btu〕〔以上为1990年美国平均热值〕〔资料来源:美国国度规范局〕热当量换算1桶原油=5800立方英尺自然气〔按平均热值计算〕1立方米自然气=1.3300千克规范煤1千克原油=1.4286千克规范煤。

通风管道设计基本知识与计算

通风管道设计基本知识与计算
通风管道设计基本知识和计算
1
目录
风管设计基本知识 风管的沿程压力损失 风管的局部压力损失 风管内的压力分布 风管的设计方法
2
风管设计基本知识
风管设计的基本任务:确定风管形状、选择风管 的尺寸 ,计算风管的压力损失。
风管压力损失= 沿程损失 + 局部损失 风管有圆形风管与矩形风管。
36
风管内的压力分布(单风机系统)
单风机系统风管内压力的变化
37
风管内的压力分布(单风机系统)
风管断面不变时,全压和静压的损失是相等的 风管扩张时,动压减小,全压减小,静压可能增大
所增加的静压值就是静压复得。 风管收缩时,动压加大,全压和静压都减小
但它们减小得值是不相等的。 风管出口处,全压损失取决于出风口的形状和流动特性
标准状态:大气压力为101325Pa,温度为20ºC, 密度为1.2Kg/m³,运动粘度
24
目录
风管设计基本知识 风管的沿程压力损失 风管的局部压力损失 风管内的压力分布 风管的设计方法
25
风管的局部压力损失
局部压力损失按下式计算:
局部阻力系数通常由查表获得
26
风管的局部压力损失
19
风管的沿程压力损失
风量:通过圆形风管的风量(m³/h)按下式计算 通过矩形风管的风量按下式计算
20
风管的沿程压力损失
长度为l(m)的风管的沿程压力损失按下式计算 单位管长的沿程压力损失按下式计算
21
风管的沿程压力损失
摩擦阻力系数按下式计算
沿程压力损失可以按上式计算,也可以查表计算
Δ Pj = 0.3× 6²×1.2 / 2 = 6.48Pa
Δ Pj = 0.3× 12²×1.2 / 2 = 25.92Pa

《风管压力损失计算》课件

《风管压力损失计算》课件

01
评估通风 system的性能
通过计算压力损失,可以评估通风 system的性能,判断其是否满足设计要求。
02
优化设计
通过对压力损失的计算,可以优化通风 system的设计,减少不必要的能量损失。
02
风管压力损失计算方法
摩擦阻力损失是指空气在风管内部流动时,由于管壁的摩擦而产生的阻力。
可以通过实验测定或查表获取λ值。
总结词
圆形风管的压力损失计算与矩形风管类似,但需要考虑风管的直径和圆周率等因素。
总结词
圆形风管的压力损失与风速的平方成正比,与风管长度的平方根成正比,与圆周率π和直径D有关。
详细描述
根据计算公式,圆形风管的压力损失与风速的平方成正比,与风管长度的平方根成正比,同时受到圆周率π和直径D的影响。因此,在设计圆形风管时,需要综合考虑这些因素,以减小压力损失。
摩擦阻力损失与风管长度、直径、粗糙度和流速等因素有关。
计算公式为:ΔP_friction = λ * (l/d) * (v^2/2) * (ρ/2),其中λ为摩擦阻力系数,l为风管长度,d为风管直径,v为风速,ρ为空气密度。
局部阻力损失是指由于风管内部结构、阀门、弯头等部件的阻碍而产生的阻力。
计算公式为:ΔP_local = (ζ * v^2/2) * (ρ/2),其中ζ为局部阻力系数,可以通过实验测定或查表获取。
总结词:复杂风管系统包括多个分支、弯头、变径等部件,其压力损失计算需要考虑各部件对总压损的影响。
04
风管压力损失的优化设计
尽量缩短风管的长度,减少不必要的弯曲和转折,以降低沿程阻力。
减少风管长度
避免急转弯
保持风管平直
在风管布局时,应尽量避免急转弯,以减少局部阻力。

通风管道阻力的计算与公式

通风管道阻力的计算与公式

风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。

矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。

局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1. 弯头布置管道时,应尽量取直线,减少弯头。

风管阻力计算方法

风管阻力计算方法

风管阻力计算方法送风机静压Ps(Pa)按下式计算:PS=PD+PA式中:PD—风管阻力(Pa),PD= RL(1+K)说明:R—风管的单位磨擦阻力,Pa/m;L—到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K—局部阻力与磨擦阻力损失的比值。

PD=R(L+Le)式中Le为所有局部阻力的当量长度。

PA——空气过滤器、冷热盘管等空调装置的阻力之和(Pa)布袋风管的压力损失:布袋送风不只只是传递气流,同时在进行径向送风,所以管道内风速是不断减少的,管道平均风速比传统风管小的多,铁皮风管有个经验数据1pa/m,布袋风管由于管径的不同阻力变化较大,但一般可以近似的认为0.3-0.5pa/m。

通风管道阻力计算:风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ———摩擦阻力系数ν———风管内空气的平均流速,m/s;ρ———空气的密度,Kg/m3;l———风管长度,mRs———风管的水力半径,m;Rs=f/Pf———管道中充满流体部分的横断面积,m2;P———湿周,在通风、空调系统中既为风管的周长,m;D———圆形风管直径,m。

矩形风管的摩擦阻力计算:我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种:流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形 中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

风管阻力计算简介(doc 7页)

风管阻力计算简介(doc 7页)

风管阻力计算简介(doc 7页)风管阻力计算☆风管阻力计算方法送风机静压Ps(Pa)按下式计算P S = P D + P A式中:P D——风管阻力(Pa),P D = RL(1 + K)说明:R——风管的单位磨擦阻力,Pa/m;L ——到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K——局部阻力与磨擦阻力损失的比值。

推荐的风管压力损失分配(按局部阻力和磨擦阻力之比)风管系统弯头、三通较少弯头、三通较多K 1.0 ~ 2.0 2.0 ~ 4.0推荐最大推荐最大推荐最大室外空2.5 4.0 2.5 4.5 2.5 8.0 气入口空气过1.3 1.5 1.5 1.8 1.8 1.8 滤器加热排2.3 2.5 2.53.0 3.0 3.5管冷却排2.3 2.3 2.5 2.53.0 3.0管风机出6.0 8.5 9.0 11.0 10.0 14.0口主风管 4.0 6.0 6.0 8.0 9.0 11.0支风管3.0 5.04.0 6.55.0 9.0 (水平)支风管 2.5 4.0 3.5 6.0 4.0 8.0(垂直)☆低速风管系统的最大允许流速m/s应用场所以噪声控制以磨擦阻力控制主风管送风主管回风主管送风支管回风支管住宅 3.0 5.0 4.0 3.0 3.0 公寓、饭店房间5.0 7.5 6.5 6.05.0办公室、图书馆6.0 10.0 7.5 8.06.1大礼堂、戏院4.0 6.5 5.5 5.04.0银行、高7.5 10.0 7.5 8.0 6.0级餐厅百货店、自助餐厅9.0 12.0 7.5 8.06.0工厂12.5(上限)15.0 9.0 11.07.5☆推荐的送风口流速m/s应用场所流速m/s播音室 1.5~2.5戏院 2.5~3.5 住宅、公寓、饭店房间、教室2.5~3.8一般办公室 2.5~4.0电影院 5.0~6.0 百货店、上层 5.0百货店、下层7.510.0☆以噪声标准控制的允许送风流速m/s应用场所流速m/s 图书馆、广播室 1.75~2.5 住宅、公寓、私人办公室、医院2.5~4.0房间银行、戏院、教室、一般办公室、4.0~5.0商店、餐厅工厂、百货店、5.0~7.5厨房☆回风格栅的推荐流速m/s位置近座位逗留区以上门下部门上部工业用流速m/s2~3 3~4 4 3 ≥4根据YORK公司产品手册整理2004年4月3日常用单位换算公式集合大全常用单位换算公式集合大全换算公式面积换算1平方公里(km2)=100公顷(ha)=247.1英亩(acre)=0.386平方英里(mile2)1平方米(m2)=10.764平方英尺(ft2)1平方英寸(in2)=6.452平方厘米(cm2)1公顷(ha)=10000平方米(m2)=2.471英亩(acre)1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2)1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2)1平方英尺(ft2)=0.093平方米(m2)1平方米(m2)=10.764平方英尺(ft2)1平方码(yd2)=0.8361平方米(m2)1平方英里(mile2)=2.590平方公里(km2)体积换算1美吉耳(gi)=0.118升(1)1美品脱(pt)=0.473升(1)1美夸脱(qt)=0.946升(1)1美加仑(gal)=3.785升(1)1桶(bbl)=0.159立方米(m3)=42美加仑(gal)1英亩·英尺=1234立方米(m3)1立方英寸(in3)=16.3871立方厘米(cm3)1英加仑(gal)=4.546升(1)10亿立方英尺(bcf)=2831.7万立方米(m3)1万亿立方英尺(tcf)=283.17亿立方米(m3)1百万立方英尺(MMcf)=2.8317万立方米(m3)1千立方英尺(mcf)=28.317立方米(m3)1立方英尺(ft3)=0.0283立方米(m3)=28.317升(liter)1立方米(m3)=1000升(liter)=35.315立方英尺(ft3)=6.29桶(bbl)长度换算1千米(km)=0.621英里(mile)1米(m)=3.281英尺(ft)=1.094码(yd)1厘米(cm)=0.394英寸(in)1英寸(in)=2.54厘米(cm)1海里(n mile)=1.852千米(km)1英寻(fm)=1.829(m)1码(yd)=3英尺(ft)1杆(rad)=16.5英尺(ft)1英里(mile)=1.609千米(km)1英尺(ft)=12英寸(in)1英里(mile)=5280英尺(ft)1海里(n mile)=1.1516英里(mile)质量换算1长吨(long ton)=1.016吨(t)1千克(kg)=2.205磅(lb)1磅(lb)=0.454千克(kg)[常衡] 1盎司(oz)=28.350克(g)1短吨(sh.ton)=0.907吨(t)=2000磅(lb)1吨(t)=1000千克(kg)=2205磅(lb)=1.102短吨(sh.ton)=0.984长吨(long ton)密度换算1磅/英尺3(lb/ft3)=16.02千克/米3(kg/m3)API度=141.5/15.5℃时的比重-131.51磅/英加仑(lb/gal)=99.776千克/米3(kg/m3)1波美密度(B)=140/15.5℃时的比重-1301磅/英寸3(lb/in3)=27679.9千克/米3(kg/m3)1磅/美加仑(lb/gal)=119.826千克/米3(kg/m3)1磅/(石油)桶(lb/bbl)=2.853千克/米3(kg/m3)1千克/米3(kg/m3)=0.001克/厘米3(g/cm3)=0.0624磅/英尺3(lb/ft3)运动粘度换算1斯(St)=10-4米2/秒(m2/s)=1厘米2/秒(cm2/s)1英尺2/秒(ft2/s)=9.29030×10-2米2/秒(m2/s)1厘斯(cSt)=10-6米2/秒(m2/s)=1毫米2/秒(mm2/s)动力粘度换算动力粘度1泊(P)=0.1帕·秒(Pa·s)1厘泊(cP)=10-3帕·秒(Pa·s)1磅力秒/英尺2(lbf·s/ft2)=47.8803帕·秒(Pa·s)1千克力秒/米2(kgf·s、m2)=9.80665帕·秒(Pa·s)力换算1牛顿(N)=0.225磅力(lbf)=0.102千克力(kgf)1千克力(kgf)=9.81牛(N)1磅力(lbf)=4.45牛顿(N)1达因(dyn)=10-5牛顿(N)温度换算K=5/9(°F+459.67)K=℃+273.15n℃=(5/9·n+32) °F n°F=[(n-32)×5/9]℃1°F=5/9℃(温度差)压力换算压力1巴(bar)=105帕(Pa)1达因/厘米2(dyn/cm2)=0.1帕(Pa)1托(Torr)=133.322帕(Pa)1毫米汞柱(mmHg)=133.322帕(Pa)1毫米水柱(mmH2O)=9.80665帕(Pa)1工程大气压=98.0665千帕(kPa)1千帕(kPa)=0.145磅力/英寸2(psi)=0.0102千克力/厘米2(kgf/cm2)=0.0098大气压(atm)1磅力/英寸2(psi)=6.895千帕(kPa)=0.0703千克力/厘米2(kg/cm2)=0.0689巴(bar)=0.068大气压(atm)1物理大气压(atm)=101.325千帕(kPa)=14.696磅/英寸2(psi)=1.0333巴(bar)传热系数换算1千卡/米2·时(kcal/m2·h)=1.16279瓦/米2(w/m2)1千卡/(米2·时·℃)〔1kcal/(m2·h·℃)〕=1.16279瓦/(米2·开尔文)〔w/(m2·K)〕1英热单位/(英尺2·时·°F)〔Btu/(ft2·h·°F)〕=5.67826瓦/(米2·开尔文)〔(w/m2·K)〕1米2·时·℃/千卡(m2·h·℃/kcal)=0.86000米2·开尔文/瓦(m2·K/W)热导率换算1千卡(米·时·℃)〔kcal/(m·h·℃)〕=1.16279瓦/(米·开尔文)〔W/(m·K)〕1英热单位/(英尺·时·°F)〔But/(ft·h·°F) =1.7303瓦/(米·开尔文)〔W/(m·K)〕比容热换算1千卡/(千克·℃)〔kcal/(kg·℃)〕=1英热单位/(磅·°F)〔Btu/(lb·°F)〕=4186.8焦耳/(千克·开尔文)〔J/(kg·K)〕热功换算1卡(cal)=4.1868焦耳(J)1大卡=4186.75焦耳(J)1千克力米(kgf·m)=9.80665焦耳(J)1英热单位(Btu)=1055.06焦耳(J)1千瓦小时(kW·h)=3.6×106焦耳(J)1英尺磅力(ft·lbf)=1.35582焦耳(J)1米制马力小时(hp·h)=2.64779×106焦耳(J)1英马力小时(UKHp·h)=2.68452×106焦耳1焦耳=0.10204千克·米=2.778×10-7千瓦·小时=3.777×10-7公制马力小时=3.723×10-7英制马力小时=2.389×10-4千卡=9.48×10-4英热单位功率换算1英热单位/时(Btu/h)=0.293071瓦(W)1千克力·米/秒(kgf·m/s)=9.80665瓦(w)1卡/秒(cal/s)=4.1868瓦(W)1米制马力(hp)=735.499瓦(W)速度换算1英里/时(mile/h)=0.44704米/秒(m/s)1英尺/秒(ft/s)=0.3048米/秒(m/s)渗透率换算1达西=1000毫达西1平方厘米(cm2)=9.81×107达西地温梯度换算1°F/100英尺=1.8℃/100米(℃/m)1℃/公里=2.9°F/英里(°F/mile)=0.055°F/100英尺(°F/ft)油气产量换算1桶(bbl)=0.14吨(t)(原油,全球平均)1万亿立方英尺/日(tcfd)=283.2亿立方米/日(m3/d)=10.336万亿立方米/年(m3/a)10亿立方英尺/日(bcfd)=0.2832亿立方米/日(m3/d)=103.36亿立方米/年(m3/a)1百万立方英尺/日(MMcfd)=2.832万立方米/日(m3/d)=1033.55万立方米/年(m3/a)1千立方英尺/日(Mcfd)=28.32立方米/日(m3/d)=1.0336万立米/年(m3/a)1桶/日(bpd)=50吨/年(t/a)(原油,全球平均)1吨(t)=7.3桶(bbl)(原油,全球平均)气油比换算1立方英尺/桶(cuft/bbl)=0.2067立方米/吨(m3/t)热值换算1桶原油=5.8×106英热单位(Btu)1吨煤=2.406×107英热单位(Btu)1立方米湿气=3.909×104英热单位(Btu)1千瓦小时水电=1.0235×104英热(Btu)1立方米干气=3.577×104英热单位(Btu)(以上为1990年美国平均热值)(资料来源:美国国家标准局)热当量换算1桶原油=5800立方英尺天然气(按平均热值计算)1立方米天然气=1.3300千克标准煤1千克原油=1.4286千克标准煤。

风管风速参数

风管风速参数

风管与风速的确定风管计算三种方法:静压复得法假定风速法等摩阻法空调风系统的管道设计(一)风管机在设计管道时首先必须从产品资料上了解三个参数:风量、风压、噪声。

1.风量:为了确定送风管道大小。

2.风压:也叫机外静压。

为了计算在送风过程中克服阻力所需的参数。

简单不确切地说,就是能将风送多大距离的动力。

3.噪声:其产品技术资料所标的噪声只是相对的,因为噪声是随不同条件而相应的变动的。

可能产生噪声的渠道有:机器本身的风机、机器运行振动、送风风压过大等。

(二)风系统设计包括的主要内容有:合理采用管内的空气流速以确定风管截面尺寸,计算风系统的阻力及选择风机,平衡各支风路的阻力以保证各支风路的风量达到设计值。

那么管内风速如何选择?风管尺寸如何来确定呢?※管内风速的选取决定了风管截面的尺寸,两者之间的关系如下:F=a×b=L/(3600•V) (公式1-1)式中:F:风管断面积(㎡)a、b:风管断面长、宽(m)L:风管风量(m³/h)V:风速(m/s)以上各取值受到以下几个方面的影响:①建筑空间:在现代的建筑中,无论是多层建筑或高层建筑,还是高档别墅,建筑空间都是相当紧张的,因此要求我们尽可能提高风速以减少风管的截面。

(管内风速与风管截面积成反比,即是风速越高,则风管截面积越小,反之,风速越低,则风管截面积越大。

)②风机压力及能耗:风速越高,则风阻力越大,风机的能耗也就越大,从此点来说又要求降低风速。

③噪音要求:风速对噪音的影响表现在三个方面:首先,随着风速的提高,风机风压的要求较高而引起风机的运行噪声加大;第二,风速加大至一定程度时,在通过风管部件时将产生气流噪声;第三,随着风速的提高,风管消声的消声能力下降。

总的来说,风管内的风速越高,则所产生的噪声就越大。

因此,管内风速的选取是综合平衡各种因素的一个结果.通过查阅相关资料和有关手册以及根据实际工程的体会,建议空调通风系统中的各种风道内的推荐风速见下表所示:(表1)场合以合宜噪声为主导主风管的风速V(m/s)以合宜风管阻力为主导的风速V(m/s)送风风速标准逗留区之最大允许流速m/s送风口之最大允许流速m/s逗留区流速与人体感觉的关系空调房间允许之最大送风温差℃不同送风方式的送风量指标和室内平均流速低速风管系统的最大允许流速m/s推荐的送风口流速m/s低速风管系统的推荐和最大流速m/s以噪音标准控制的允许送风流速m/s回风格棚的推荐流速m/s通风系统之流速m/s百叶窗的推荐流速m/s打印本页 || 关闭窗口规范中干管,支管等风速的范围是多少?(1)采用金属风道时,不应大于20m/s;(2)采用内表面光滑的混凝土等非金属材料风管时不应大于15 m/s;(3)送风口的风速不宜大于7 m/s;排烟口的风速不宜大于10 m/s。

风管阻力计算公式方法

风管阻力计算公式方法

风管阻力计算公式方法风管阻力计算方法送风机静压Ps(Pa)按下式计算 PS = PD + PA式中:PD――风管阻力(Pa),PD = RL(1 + K)说明:R――风管的单位磨擦阻力,Pa/m;L ――到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K――局部阻力与磨擦阻力损失的比值。

推荐的风管压力损失分配(按局部阻力和磨擦阻力之比)风管系统弯头、三通较少弯头、三通较多K 1.0~2.0 2.0~4.0PD= R(L + Le)式中Le为所有局部阻力的当量长度。

PA――空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)在中等回有大规模在设备附有回风管风机单一风管系统回风管系系统特征近单一回的单一回回风的多样回统的多样风风风回风送风% 90 80 70 60 50 回风% 10 20 30 40 50☆低速风管系统的推荐和最大流速m/s住宅公共建筑工厂应用场所(空调风管中功能段)推荐最大推荐最大推荐最大室外空气入口 2.5 4.0 2.5 4.5 2.5 8.0 空气过滤器 1.3 1.5 1.5 1.8 1.8 1.8加热排管 2.3 2.5 2.5 3.0 3.0 3.5冷却排管风机出口主风管2.36.04.02.38.56.02.59.06.02.511.08.03.0 10.0 9.03.014.011.09.08.0 支风管(水平) 3.0 5.0 4.0 6.5 5.0 支风管(垂直) 2.5 4.0 3.5 6.0 4.0☆低速风管系统的最大允许流速m/s以噪声控制应用场所主风管送风主管住宅 3.0 5.0 公寓、饭店房间 5.0 7.5 办公室、图书馆6.0 10.0 大礼堂、戏院 4.0 6.5 银行、高级餐厅 7.5 10.0 百货店、自助餐厅9.0 12.0工厂 12.5 (上限)15.0☆推荐的送风口流速m/s应用场所播音室戏院以磨擦阻力控制回风主送风支管管4.0 3.0 6.5 6.0 7.5 8.05.5 5.0 7.5 8.0 7.5 8.0 9.0 11.0 流速m/s1.5~2.52.5~3.5回风支管3.0 5.0 6.14.0 6.0 6.07.5住宅、公寓、饭店房间、教室一般办公室电影院百货店、上层百货店、下层2.5~3.8 2.5~4.05.0~6.0 5.07.510.0☆以噪声标准控制的允许送风流速m/s应用场所流速m/s图书馆、广播室 1.75~2.5住宅、公寓、私人办公室、医2.5~4.0院房间银行、戏院、教室、一般办公4.0~5.0室、商店、餐厅工厂、百货店、厨房 5.0~7.5☆回风格栅的推荐流速m/s逗留区以位置近座位门下部门上部工业用上流速m/s 2~3 3~4 4 3≥4布袋风管的压力损失:布袋送风不只只是传递气流,同时在进行径向送风,所以管道内风速是不断减少的,管道平均风速比传统风管小的多,铁皮风管有个经验数据1pa/m,布袋风管由于管径的不同阻力变化较大,但一般可以近似的认为0.3-0.5pa/m通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

管道风力阻力损失计算公式

管道风力阻力损失计算公式

管道风力阻力损失计算公式在工程设计和实际应用中,管道输送流体时会受到各种阻力的影响,其中包括管道内部的摩擦阻力和管道外部的风力阻力。

本文将重点讨论管道风力阻力损失的计算公式及其应用。

管道风力阻力损失是指管道输送流体时,由于空气对管道的阻力而造成的能量损失。

在管道输送流体的过程中,管道表面会受到风力的作用,从而产生阻力,这种阻力会导致管道输送流体时产生额外的能量损失。

因此,对于需要考虑风力阻力的管道系统,我们需要对其进行风力阻力损失的计算和分析。

风力阻力损失的计算公式可以通过流体力学的理论和实验数据进行推导和确定。

一般来说,管道风力阻力损失可以用以下公式进行计算:ΔP = 0.5 ρ V^2 C A。

其中,ΔP表示管道风力阻力损失,单位为帕斯卡(Pa);ρ表示空气密度,单位为千克/立方米;V表示风速,单位为米/秒;C表示风力阻力系数;A表示管道横截面积,单位为平方米。

在这个公式中,风力阻力损失与空气密度、风速的平方、风力阻力系数和管道横截面积有关。

其中,空气密度和风速是外部环境条件因素,风力阻力系数和管道横截面积则是与管道本身的特性有关。

通过这个公式,我们可以清晰地了解到风力阻力损失与这些因素之间的关系,从而进行合理的风力阻力损失计算和分析。

在实际应用中,我们需要根据具体的工程情况和要求来确定风力阻力系数和管道横截面积。

风力阻力系数是描述管道在风力作用下产生阻力的参数,它受到管道表面粗糙度、形状和风向等因素的影响。

通常情况下,我们可以通过实验或者参考相关文献来确定风力阻力系数的数值。

而管道横截面积则是由管道的尺寸和形状确定的,通过对管道的几何参数进行测量和计算,我们可以得到管道横截面积的数值。

在进行风力阻力损失计算时,我们需要将上述参数代入到风力阻力损失的计算公式中,从而得到具体的风力阻力损失数值。

通过对不同参数的变化和影响进行分析,我们可以进一步优化管道系统的设计和运行,降低风力阻力损失,提高系统的输送效率和经济性。

风机计算_通风管道阻力计算

风机计算_通风管道阻力计算

通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。

矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。

局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1. 弯头布置管道时,应尽量取直线,减少弯头。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档