高数定积分讲解ppt

合集下载

《高数》定积分课件

《高数》定积分课件
《高数》定积分ppt 课件
目录
• 定积分的概念 • 定积分的计算 • 微积分的应用 • 定积分的物理应用 • 定积分的进一步理解
01
CATALOGUE
定积分的概念
定积分的定义
01
定积分是积分的一种,是函数在区间上积分和的极 限。
02
定积分常用于计算平面图形的面积、体积等。
03
定积分的定义基于极限思想,通过分割、近似、求 和、取极限等步骤来定义。
物体在重力作用下的功与能
总结词
通过定积分计算重力做功和能量变化
详细描述
在重力作用下,物体运动过程中重力所做的功和能量变化可以用定积分表示。 通过定积分计算,可以得出重力做功和能量变化的具体数值。
05
CATALOGUE
定积分的进一步理解
定积分的极限思想
定积分是通过对曲线下的面积进行极限分割,再求和得到的结果,这个过 程体现了极限的思想。
可加性
对于任意分割的两个区间上的定积分,其和等于两区间上定积分的和 。
区间区间上定积分的值 之和。
比较性质
如果函数在不同区间上单调增加或减少,则其定积分的值也相应增加 或减少。
02
CATALOGUE
定积分的计算
微积分基本定理
总结词
微积分基本定理是定积分计算的基础, 它建立了积分与微分的联系,为解决定 积分问题提供了重要的思路和方法。
另一个函数的定积分进行计算。这些方法在实际应用中具有广泛的应用价值。
积分中值定理
总结词
积分中值定理揭示了定积分与被积函数之间 的关系,它是解决定积分问题的一个重要工 具。
详细描述
积分中值定理指出,对于连续函数f(x)在闭 区间[a,b]上的定积分∫baf(x)dx=f(ξ)(b−a) ,其中ξ∈[a,b]。这个定理说明了定积分的 结果等于被积函数在一个子区间上的取值与 该区间长度的乘积。这个定理在解决定积分 问题时非常有用,特别是当我们需要找到被

《定积分的概念》ppt课件

《定积分的概念》ppt课件

f
()(ba)
(ab).
性质7的几何意义:
在[a,b]上至少有 ,一使得 [a,以 b]为底边,以曲
y f (x)为曲边的曲A边a梯 B的 b形 面积等于同一
而高f为 ()的矩形的. 面积
假如函数f〔x〕在闭区间[a,b]上连续,我们
称b1aabf (x)dx
如已知某为地函某数时f自〔0x至〕2在4时[a,天b]上气的温平度均曲值线.为f(t),
曲线 f(x)f((x)0 )、x轴及两条直线x=a,x=b所围 成的曲边梯形面积A等于函数f(x)在区间[a,b]上的定积 分,即
Aabf(x)dx.
质点在变力F(s)作用下作直线运动,由起始位置a 移动到b,变力对质点所做之功等于函数F(s)在[a,b] 上的定积分,即
WabF(s)ds
假如函数f〔x〕在区间[a,b]上的定积分存在, 那么称函数f〔x〕在区间[a,b]上可积.
如果在[a,b]上 f(x)0,此时由曲线y=f(x),直线 x=a,x=b及x轴所围成的曲边梯形位于x轴的下方,则
定积分ab f (x)dx在几何上表示上述曲边梯形的面积A的
相反数.
假如在[a,b]上f〔x〕既可取正值又可取负值,那
么定积ab分f (x)dx 在几何上表示介于曲线y=f〔x〕,
直线x=a,x=b及x轴之间的各部分面积的代数和.
[x0,x1],[x1,x2],,[xi1,xi],,[xn1,xn]
各个小区间的长度为
xi xi xi1
在每一个小[x区 i1,x间 i]上任取一i(点 xi 1ixi),
n
作和 (简式 称积 ) 分 f和 (i)x式 i
i1
记max{xi,x2,...,xn},如果对[a区 ,b]间 任一分法 和小区[x间 i1,xi]上点 i任意取法,只 要0时 当,上

定积分的概念课件

定积分的概念课件

y f ( x)
a
b
x
积分上限
a f ( x )dx I
积分下限
b
lim f (i )xi
n i 1
n
被 积 函 数
被 积 表 达 式
积 分 变 量
说明:
(1) 定积分是一个数值, 它只与被积函数及积分区间有关, 而与积分变量的记法无关,即
a f(x)dx a f (t)dt a
(3)
b
b
b
f(u)du。
(2)定义中区间的分法和 i 的取法是任意的.
a f(x)dx - b f (x)dx
b
a
(二)、定积分的几何意义:
当 f(x)0 时,积分 f ( x)dx 在几何上表示由 y=f (x)、 a xa、xb与 x轴所围成的曲边梯形的面积。
y y f ( x)
高中数学选修2-2第一章《定 积分》
温故知新 * 曲边梯形的定义:
我们把由直线 x = a,x = b (a ≠ b), y = 0和曲 线 y = f (x) 所围成的图形叫作曲边梯形。 * 求曲边梯形面积的步骤: 分割区间 过剩估计值 不足估计值
逼近所求面积
(一)、定积分的定义
从求曲边梯形面积S的过程中可以看出,通过“四步曲”:
1
梯形 的面积。 成的图形的面积,即_______
2
容易知道,梯形的面积是 3 ,所以 y y 2 y=2
1
3 1 yxdx x 2
2
o
x
1
o
1
x
2
由图可知, y 1 x 2 表示的是单位圆在 x 轴上
方的半圆。 所以 1
积。

《高等数学教学课件》07定积分

《高等数学教学课件》07定积分
n
Ak f (k ) xk A Ak f (k ) xk
k 1
k 1
(1) 划分区间,求近似值
在[a, b]区 间 任 意 插 入 分 点:
a x0 x1 xi1 xi xn b
将[a, b]分成n个子 区间[ xk1, xk ] (k 1, 2, , n) 将 曲 边 梯 形 分 成n 个 小 曲 边 梯 形
n
n
f (k )xk Cxk
k 1
k 1
n
C xk C(b a)
n
k 1
lim
0 k 1
f (k )xk
C(b a)

b
b
f ( x)dx C dx C(b a)
a
a
(常数)
[例2] 证 明Dirichlet函 数
1 D( x) 0
x为 有 理 数 x为 无 理 数
n
lim
0
[c1
i1 n
fHale Waihona Puke (i)c2 g(i
)]xi
n
=c1 lim 0 i1
f (i )xi
c2
lim
0
i 1
g(i )xi
性质二:关于区间的可加性
设c (a, b), 若 f R[a, c], f R[c, b],
则 f R[a, b],并且有
b
c
b
a f ( x)dx a f ( x)dx c f ( x)dx
积分上限
记作:
b
n
a
f
( x)dx
lim
0 k1
f (k ) xk
积分下限 定积分是 :
[a, b] 称为积分区间 积分和式的极限

高中数学 定积分的概念课件PPT课件

高中数学 定积分的概念课件PPT课件
5
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
6
7
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
8
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
9
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
14
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
15
求由连续曲线y=f(x)对应的曲边梯形面积的方法
(1)分割:在区间[0,1]上等间隔地插入n-1个点,将它等分成
n个小区间:a, x1,x1, x2,L xi1, xi ,L ,xn1,b,
每个小区间宽度⊿x b a
yf (x)
24
探究:
根据定积分的几何意义,如何用定积分表示图中阴影部分的
面积?
y
yf (x)
b
b
S S1 S2
a
f (x)dx
g(x)dx
a
b
S1
ya
fg((x))dx
b
S2
g ( x)dx
a
O aa
bx
25
三: 定积分的基本性质
性质1.
b
b
a kf ( x )dx ka f ( x )dx
1.5.3 定积分的概念
1
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
2
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
3
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
4
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.

《定积分的性质》课件

《定积分的性质》课件
详细描述
设函数f(x)在区间[a,b]上可积,任意c∈[a,b],则∫(a→b)f(x)dx=∫(a→c)f(x)dx+∫(c→b)f(x)dx。
函数可加性
总结词
函数可加性是指定积分具有函数可加性,即对于任意分割的两个子区间[a,c]和 [c,b],其上的定积分之和等于整个区间[a,b]上的定积分。
定积分的几何意义
面积
01
定积分表示曲线与x轴所夹的面积,即曲线下方的区域面积。
体积
02
对于二维平面上的曲线,定积分表示的是面积;对于三维空间
中的曲面,定积分则表示的是体积。
物理应用
03
定积分在物理中有广泛的应用,如计算力矩、功、速度等物理量。Βιβλιοθήκη 定积分的性质线性性质
定积分具有线性性质,即对于两个函数的和或差的积分,可以分别对 每个函数进行积分后再求和或求差。
详细描述
积分第二中值定理说明了一个函数在两个闭 区间上的定积分值相等时,该函数在这两个 区间上必须满足的条件。这个定理在解决一 些等式问题时非常有用,因为它提供了一种 将两个区间的积分等式转化为函数性质的途 径。
积分第三中值定理
总结词
该定理表明如果一个函数在一个闭区间上的定积分值为零,那么该函数在该区间内至少 存在两个点,使得在这些点的函数值等于零。
详细描述
设函数f(x)在区间[a,b]上可积,任意c∈[a,b],则 ∫(a→b)f(x)dx=∫(a→c)f(x)dx+∫(c→b)f(x)dx。
03
定积分的比较性质
无穷区间上的比较性质
总结词
定积分在无穷区间上的比较性质是指,如果函数在无穷区间上的积分值与其在有限区间上的积分值相 等,则函数在无穷区间上的积分值也相等。

《定积分课件》课件

《定积分课件》课件

03 定积分的应用
CHAPTER
面积与体积的计算
总结词
定积分在计算平面图形的面积和三维物体的体积方面具有广 泛应用。
详细描述
利用定积分,可以计算出由曲线围成的平面图形的面积,例 如由y=sinx和y=cosx围成的图形面积。此外,定积分还可以 用于计算三维物体的体积,例如球体、圆柱体和旋转体的体 积。
详细描述
在静水压力问题中,压力分布是深度的函数。通过定积分,我们可以计算任意 深度的压力分布,从而了解水下物体的受力情况。
引力场的强度
总结词
通过定积分计算引力场的强度,理解引 力场的分布规律。
VS
详细描述
在引力场中,场强是位置的函数。通过定 积分,我们可以计算任意位置的场强,从 而了解物体在引力场中的运动规律。
符号表示
02
定积分的符号为∫,读作“拉姆达”。
计算方法
03
定积分的计算方法是通过微积分基本定理,将定积分转化为求
原函数在某点的值。
定积分的几何意义
平面区域面积
定积分可以用来计算平面图形的面积,特别是 当面积元素与坐标轴平行时。
体积
定积分还可以用来计算三维物体的体积,例如 旋转体的体积。
曲线下面积
定积分可以用来计算曲线下在某一区间内的面积。
定积分的计算方法
要点一
总结词
定积分的计算方法包括直接法、换元法和分部积分法等。
要点二
详细描述
定积分的计算可以通过多种方法进行。直接法是根据微积 分基本定理,通过求原函数并计算其差值来得到定积分的 结果。换元法是在积分变量进行换元,使得积分简化。分 部积分法则是通过将两个函数的乘积进行积分,将一个积 分转化为另一个积分,从而简化计算。这些方法在计算定 积分时常常需要结合使用。

《高数定积分》课件

《高数定积分》课件

05
广义积分及其收敛性判别法
广义积分的概念及分类
广义积分的定义
广义积分是相对于正常积分而言的一种特殊积分,其积分区间可能包含无穷大或者无界 函数。
广义积分的分类
根据被积函数和积分区间的不同,广义积分可分为无穷限广分的收敛性判别法
比较判别法
通过比较被积函数与已知收敛或发散的函数,来判断广义积分的收敛性。
换元法求解定积分
01
换元法的基本思想
通过变量代换简化定积分的计算 。
02
常见的换元方法
03
换元法的注意事项
三角函数代换、倒代换、根式代 换等。
代换后需调整积分上下限,并验 证代换的可行性。
分部积分法求解定积分
分部积分法的基本思想
将复杂函数拆分为简单函数 进行积分。
常见的分部积分公式
幂函数与三角函数、幂函数 与指数函数、幂函数与对数 函数等。
06
定积分在经济学等领域的应用
由边际函数求原经济函数
边际函数与定积分的关系
边际函数描述的是经济量变化的瞬时速率,而定积分则可用于求取原经济函数,即总量 函数。
求原经济函数的步骤
首先确定边际函数的表达式,然后根据定积分的定义,对边际函数进行积分,得到原经 济函数的表达式。
示例
已知某产品的边际收益函数为MR(q),通过对其进行定积分,可以得到总收益函数 TR(q)。
曲线的长度、图形的面积等。
THANKS
感谢观看
原函数与不定积分概念
原函数定义
原函数是指一个函数的导数等于给定函数的函数。根据微积分基本定理,不定积分就是求原函数的过 程。
不定积分性质
不定积分具有线性性质、常数倍性质和积分区间可加性。这些性质在求解复杂函数的定积分时非常有 用。

高等数学第五章第一节定积分的概念及性质课件.ppt

高等数学第五章第一节定积分的概念及性质课件.ppt

二、定积分定义
a x0 x1 x2 xn b ,
任一种分法 任取
总趋于确定的极限 I ,则称此极限 I 为函数
上的定积分,
记作
b
a
f
( x) dx

b a
f
(
x)
dx
lim
0
n
i1
f
(
i
)
xi
o
a x1
此时称 f ( x ) 在 [ a , b ] 上可积 .
在区间
i
x xi1xi b
证: f (i ) xi 0
i1
b
n
a
f
( x) d
x
lim
0 i1
f
(i ) xi
0
推论1. 若在 [a , b] 上

推论2.
(a b)
证: f (x) f (x) f (x)
b
b
b
a f (x) dx a f (x) dx a f (x) dx

b
b
a f (x) dx a f (x) dx
使
因此定理成立.
说明:
• 积分中值定理对
• 可把
b
a f (x) dx f ( )
ba

y f (x) y
oa bx
故它是有限个数的平均值概念的推广.
例4. 计算从 0 秒到 T 秒这段时间内自由落体的平均 速度.
解: 已知自由落体速度为
v gt
故所求平均速度
1 1 g T 2 gT
第一节
第五章
定积分的概念及性质
一、定积分问题举例 二、 定积分的定义 三、 定积分的性质

《定积分计算》课件

《定积分计算》课件

02
微积分基本定理
微积分基本定理的表述
微积分基本定理
定积分等于被积函数的一个原函数在 积分上限与积分下限之差的代数和。
公式表示
∫baf(x)dx=F(b)-F(a),其中F(x)是f(x) 的一个原函数,a和b分别为定积分的 下限和上限。
微积分基本定理的应用
解决定积分计算问题
通过微积分基本定理,可以直接计算定积分的值,只需找到被积函 数的一个原函数,并计算其在上下限的函数值之差。
详细描述
分部积分法是将复合函数进行分解,将原定 积分转化为两个或多个更简单的定积分的和 或差。这种方法的关键是选择合适的函数进 行分解,以便简化计算过程。
04
定积分的几何应用
平面图形的面积
总结词
定积分在计算平面图形面积方面具有广泛应用。
详细描述
通过定积分,我们可以计算各种平面图形的面积,如矩形、圆形、三角形等。定积分的基本思想是将图形分割成若干 个小部分,然后求和这些小部分的面积,最后取极限得到整个图形的面积。
公式示例
对于矩形,其面积为 (A = l times w),其中 (l) 为长度,(w) 为宽度;对于圆形,其面积为 (A = pi r^2) ,其中 (r) 为半径。
体积的计算
01
总结词
定积分在计算三维空间中物体的体积方面具有重要作用。
02 03
详细描述
通过定积分,我们可以计算各种三维物体的体积,如长方 体、圆柱体、球体等。同样地,定积分的基本思想是将物 体分割成若干个小部分,然后求和这些小部分的体积,最 后取极限得到整个物体的体积。
05
定积分的物理应用
变速直线运动的路程
总结词
通过定积分计算变速直线运动的路程

高等数学 课件 PPT 第五章 定积分

高等数学 课件 PPT 第五章  定积分
[a,b]上有界并不是可积的充分条件.例如,
在[0,1]上是有界函数,但不可积.因为不论对[0,1]怎样分 割,在任意被分割的小区间[xi-1,xi]上,总能取到ξi为有理数, 这时f(ξi)=1,也总能取到ξi为无理数,这时f(ξi)=0.所以对[0,1] 的任何一种分法,我们总可以得到
一、定积分的概念
思考
一个函数在什么条件下可积?什么条件下不可积?
一、定积分的概念
3. 定积分存在的充分条件
若f(x)在[a,b]上无界,则f(x)在[a,b]上一定是不可积 的.这是因为,若f(x)在[a,b]上无界,那么无论对[a,b] 怎样分割,都至少有一个区间[xi-1,xi],函数f(x)在其上无 界.因此,在[xi-1,xi]上一定可以取一点ξi,使得f(ξi)大于任 意一个正数M,因而也就使得和式 ∑ =1f(ξi)Δxi可以任意的 大.当λ→0时,这个和就不可能趋向于任何极限.由此可知, f(x)在[a,b]上可积的必要条件是f(x)在[a,b]上有界.
一、变速直线运动中位置函数与速度函数之间的联系
为了讨论质点在变速直线运动中位置函数与速度函数间的 联系,有必要沿质点的运动方向建立坐标轴.设时刻t时质点所 在位置st,速度vtvt≥0. 已知质点在时间间隔T1,T2内经过的路程可以用速度函数vt在 T1,T2上的定积分
一、定积分的概念
在区间[a,b]上,f(x)既有正值又有负值时,函数y=f(x) 的图形某些部分在x轴的上方,而其他部分在x轴的下方.如果 规定在x轴的上方的图形的面积为正,在x下方的图形面积为负, 那么∫baf(x) 的几何意义就是介于曲线y=f(x)、x轴及两条直线 x=a,x=b之间的各部分面积的代数和,如图5-2所示.
把区间[a,b]分成个n小区间 [x0,x1],[x1,x2],…,[xn-1,xn],

高等数学ppt课件:定积分的概念及性质

高等数学ppt课件:定积分的概念及性质
第 5 章 定积分与不定积分
32-1
2018/6/6
在数学发展史上, 定积分的概念早于微分, 直到 17 世纪, 出现了微积分基本定理后,使得定积分与不定积分, 以及微 分学构成一个完整的体系,这就是微积分学. 因此本章首先介绍定积分,导出微积分基本定理,再由 此引出原函数和不定积分的概念,建立了牛顿 -莱布尼茨公 式,最后解决积分计算问题.
i 个小区间[ xi1, xi ] 上的小曲边梯形的面积,则有
A A1 A2 An Ai .
i 1 n
32-8
2018/6/6
⑵ 近似:在每个[ xi1, xi ] 上任取一点 i ( xi1 i xi ) ,并以 高为 f (i ) ,底为 xi 的小矩形的面积作为 Ai 的近似值,即
a
b
变速直线运动的路程 s v(t )dt .
T1
T2
关于定积分定义的几点说明:
⑴ 当 0 时,意味着将区间 [a, b] 无限细分, 此时分点 的个数无限增多,从而有 n .但反之未必,即当分点的 个数无限增多时,未必能将区间无限细分,因此, 0 与 特别地, 如果将区间 [a, b] 进行等分, 则 0 n 不等价. 与 n 是等价的.
32-15
2018/6/6
⑵ 由定义 2.1.1 知, f ( x) 为[a, b] 上的有界函数是 f ( x) 在 [a, b] 上可积的必要条件.因此,暂不考虑 f ( x) 为 [a, b] 上 的无界函数的情形. 如果 f ( x) 在 [a, b] 上无界, 我们将在反常积分中介绍有关 理论.
a b
分 f ( x)dx 是曲边梯形面积的相反值(见图 5-1-6) .

第五章定积分的概念45页PPT

第五章定积分的概念45页PPT

b
b
b
a f (x)dxa f(t)dt a f(u)du
( 2 ) 定 义 中 区 间 的 分 法 和 i的 取 法 是 任 意 的 .
( 3 ) 当 函 数 f ( x ) 在 区 间 [ a , b ] 上 的 定 积 分 存 在 时 称 f(x )在 区 间 [ 期课程安排 作业问题 答疑时间 本期期中考试
定积分的概念
前一章我们从导数的逆运算引出了不定积 分,系统地介绍了积分法,这是积分学的第一类 基本问题。本章先从实例出发,引出积分学的第 二类基本问题——定积分,它是微分(求局部量 )的逆运算(微分的无限求和——求总量),然 后着重介绍定积分的计算方法,它在科学技术领 域中有着极其广泛的应用。
y
yf(x)(f(x)0)、
yf(x)
x轴 与 两 条 直 线 xa、
A?
xb所 围 成 .
oa
bx
用矩形面积近似取代曲边梯形面积
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
重点 定积分的概念和性质,微积分基本公
式,定积分的换元法和分部积分法
难点 定义及换元法和分部法的运用
基本要求
①正确理解定积分的概念及其实际背景 ②记住定积分的性质并能正确地运用 ③掌握变上限定积分概念,微积分基本定理,
并会用N-L公式计算定积分, ④能正确熟练地运用换元法和分部积分法
计 算定积分 ⑤正确理解两类广义积分概念,
量(总面积或总路程)
解决方法:
通过局部取近似(求微分),求和取极限 (微分的无限求和)的方法,把总量归结为 求一种特定和式的极限

同济版高数课件-PPT

同济版高数课件-PPT

2
2 cos xdx
0
;
2
五、水利工程中要计算拦水闸门所受的水压力,已知 闸门上水的压强 P 是水深 h 的 函数,且有
p 9.8h(千米 米2 ),若闸门高H 3米 ,宽 L 2米 ,求水面与闸门顶相齐时闸门所受的水
压力P (见教材图 5-3).
练习题答案
n
一、1、lim 0 i1
f ( i )xi ;
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
播放
曲边梯形如图所示, 在区间[a,b]内插入若干
个分点,a x0 x1 x2 xn1 xn b, 把区间[a,b] 分成 n y
0
0
解 令 f ( x) e x x, x [2, 0]
f ( x) 0,
0 (e x x)dx 0, 2
0 e xdx
0
xdx,
2
2
于是
2 e xdx
2
xdx.
0
0
性质5的推论:
(1)如果在区间[a, b]上 f ( x) g( x),

b
a
f
(
x
)dx
b
a
g(
x)dx
i 1
(3)取极限 max{t1,t2 ,,tn }
n
路程的精确值
s
lim
0
i 1
v(
i
)ti
二、定积分的定义
定义 设函数 f ( x) 在[a, b]上有界,在[a, b]中任意插入

定积分及其应用(高数) PPT课件

定积分及其应用(高数) PPT课件

定理2 设 u( x),v( x)在区间[a,b]上有连续的导数,

aabbuuddvvu[uvvba]ba
bb
vvdduu
aa
定积分的分部积分公式
由不定积分的分部积分法 及N--L公式.
类似于不定积分的分部积分法:“反、对、幂、指、三”
(3)重要公式
奇、偶函数在对称区间上的定积分性质 三角函数的定积分公式 周期函数的定积分公式
方的面积取正号; 在 x 轴下方的面积取负号.
A1 A2
A3 A4
b
a f ( x)dx
A1 A2
A3
A4
2.定积分的性质
性质1
b
a [
f
(
x)
g(
x)]dx
b
a
f
(
x)dx
b
a g(
x)dx
性质2
b
a kf
(
x)dx
k
b
a
f
(
x)dx
( k 为常数)
性质3 (区间可加性)
b
c
b
a f ( x)dx a f ( x)dx c f ( x)dx
区间上的定积分都相等.
例1 设
f
(
x)
2 5
x
0
x
1
,

1 x2
2
0
f
( x)dx.

2
0
f
( x)dx
1 0
f
( x)dx
2
1
f
( x)dx
1
2xdx
2
5dx
6.
0
1
例2 求
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 在定积分的定义中, 有a<b , 为了今后计算方便, 我们规定:
Nanjing College of Information and Technology
第五章 定积分及其应用
(三) 定积分的几何意义
第一节 定积分及其计算
: 介于曲线f(x) , x轴及两条直线x=a,x=b之
间的各部分面积的代数和
作以
为底 ,
为高的小矩形, 并以此小
梯形面积近似代替相应
窄曲边梯形面积

Nanjing College of Information and Technology
第五章 定积分及其应用
3) 求和
4) 取极限 令
第一节 定积分及其计算
则曲边梯形面积
n
A lim 0 i1
f (i )x
Nanjing College of Information and Technology
第五章 定积分及其应用
第一节 定积分及其计算
显然,小矩形越多,矩形总面积越接近曲边梯形面积. 观察下列演示过程, 注意当分割加细时, 矩形
面积和与曲边梯形面积的关系 .
Nanjing College of Information and Technology
第五章 定积分及其应用
第一节 定积分及其计算
积 分 和

Nanjing College of Information and Technology
第五章 定积分及其应用
第一节 定积分及其计算
1. 闭区间上的连续函数是可积的; 闭区间上只有有 限个间断点的有界函数也是可积的.
2. 定积分是一个确定的常数,它取决于被积函数f(x) 和积分区间[a,b],而与积分变量使用的字母的选取 无关,即有
则称函数 f(x) 在[a, b] 上可积, 并称这个极限为函数
f(x) 在区间[a,b]上的定积分,记作
,即
Nanjing College of Information and Technology
第五章 定积分及其应用
积分上限
第一节 定积分及其计算
积分下限 被 积 函 数
被积 积分 表变 达量
Nanjing College of Information and Technology
第五章 定积分及其应用
(二) 定积分的概念
第一节 定积分及其计算
定义5.1.1 设函数 f(x)在区间[a,b]上有定义, 分割:
任取分点
把区间
[a,b] 分割成 n个小区间 [xi-1, xi] , 第i个小区间的长度
观察下列演示过程, 注意当分割加细时, 矩形面 积和与曲边梯形面积的关系.
Nanjing College of Information and Technology
播幻灯片 75放
第五章 定积分及其应用
解决步骤: 1) 分割 2) 取近似
第一节 定积分及其计算
3) 求和 4) 取极限
n
A lim 0 i1
Nanjing College of Information and Technology
Nanjing College of Information and Technology
第五章 定积分及其应用
一.积分的概念与性质
(一)定积分问题举例
1. 曲边梯形的面积 设曲边梯形是由连续曲线
以及两直线 所围成 , 求其面积 A .
第一节 定积分及其计算
Nanjing College of Information and Technology
设A为曲边梯形面积, 则
Nanjing College of Information and Technology
各部分面积的代数和
第五章 定积分及其应用
第一节 定积分及其计算
例1 利用定积分的几何意义, 证明 1 1 x2 dx
1
2

,显然
则由
和直线x=-1,x=1,y=0所围成的曲边
梯形是单位圆位于x轴上方的半圆. 因为单位圆的面积,所以半圆 的面积为/2 .
第五章 定积分及其应用
第一节 定积分及其计算
2. 变速直线运动的路程
设某物体作直线运动, 已知速度
在 [T1 , T2 ]
上连续,
求在运动时间 [T1 , T2 ] 内物体所经过
的路程 s .
解决步骤:
1) 分割
将它分成
n 个小段
在每个小段上物体经
过的路程为
2) 近似

Nanjing College of Information and Technology
第五章 定积分及其应用
3) 求和 4) 取极限
第一节 定积分及其计算
Nanjing College of Information and Technology
第五章 定积分及其应用
第一节 定积分及其计算
上述两个问题的共性: • 解决问题的方法步骤相同 :
“分割 , 近似 , 求和 , 取极限 ” • 所求量极限结构式相同: 特殊乘积和式的极限

,记.Βιβλιοθήκη 近似: 在每个小区间[xi-1, xi]上任取一点 i (i=1, 2 … n)
求和:作和式
Nanjing College of Information and Technology
第五章 定积分及其应用
第一节 定积分及其计算
取极限:当0时, 若极限
存在(这
个极限值与区间 [a, b] 的分法及点 i 的取法无关 ) ,
第五章 定积分及其应用
第一节 定积分及其计算
2. 变速直线运动的路程
设某物体作直线运动, 已知速度
在 [T1 , T2 ]
上连续,
求在运动时间 [T1 , T2 ] 内物体所经过
的路程 s .
解决步骤:
1) 分割 2) 取近似 3) 求和 4) 取极限
Nanjing College of Information and Technology
f (i )x
Nanjing College of Information and Technology
第五章 定积分及其应用
第一节 定积分及其计算
解决步骤 : 1) 分割 在区间 [a , b] 中任意插入 n –1 个分点
用直线
将曲边梯形分成 n 个小曲边梯形;
2) 取近似 在第i 个窄曲边梯形上任取
第五章 定积分及其应用
第一节 定积分及其计算
第五章 定积分及其应用
第一节 定积分及其计算 第二节 定积分在几何上的应用 第三节 定积分在物理上的应用
第五章 定积分及其应用
第一节 定积分及其计算
第一节 定积分及其计算
本节主要内容:
一.定积分的概念与性质 二.微积分基本公式 三.定积分的积分法 四.反常积分
相关文档
最新文档