高数定积分讲解ppt
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (i )x
Nanjing College of Information and Technology
第五章 定积分及其应用
第一节 定积分及其计算
解决步骤 : 1) 分割 在区间 [a , b] 中任意插入 n –1 个分点
用直线
将曲边梯形分成 n 个小曲边梯形;
2) 取近似 在第i 个窄曲边梯形上任取
积 分 和
式
Nanjing College of Information and Technology
第五章 定积分及其应用
第一节 定积分及其计算
1. 闭区间上的连续函数是可积的; 闭区间上只有有 限个间断点的有界函数也是可积的.
2. 定积分是一个确定的常数,它取决于被积函数f(x) 和积分区间[a,b],而与积分变量使用的字母的选取 无关,即有
第五章 定积分及其应用
第一节 定积分及其计算
2. 变速直线运动的路程
设某物体作直线运动, 已知速度
在 [T1 , T2 ]
上连续,
求在运动时间 [T1 , T2 ] 内物体所经过
的路程 s .
解决步骤:
1) 分割
将它分成
n 个小段
在每个小段上物体经
过的路程为
2) 近似
得
Nanjing College of Information and Technology
Nanjing College of Information and Technology
第五章 定积分及其应用
一.积分的概念与性质
(一)定积分问题举例
1. 曲边梯形的面积 设曲边梯形是由连续曲线
以及两直线 所围成 , 求其面积 A .
第一节 定积分及ຫໍສະໝຸດ Baidu计算
Nanjing College of Information and Technology
为
,记
.
近似: 在每个小区间[xi-1, xi]上任取一点 i (i=1, 2 … n)
求和:作和式
Nanjing College of Information and Technology
第五章 定积分及其应用
第一节 定积分及其计算
取极限:当0时, 若极限
存在(这
个极限值与区间 [a, b] 的分法及点 i 的取法无关 ) ,
3. 在定积分的定义中, 有a<b , 为了今后计算方便, 我们规定:
Nanjing College of Information and Technology
第五章 定积分及其应用
(三) 定积分的几何意义
第一节 定积分及其计算
: 介于曲线f(x) , x轴及两条直线x=a,x=b之
间的各部分面积的代数和
Nanjing College of Information and Technology
设A为曲边梯形面积, 则
Nanjing College of Information and Technology
各部分面积的代数和
第五章 定积分及其应用
第一节 定积分及其计算
例1 利用定积分的几何意义, 证明 1 1 x2 dx
1
2
令
,显然
则由
和直线x=-1,x=1,y=0所围成的曲边
梯形是单位圆位于x轴上方的半圆. 因为单位圆的面积,所以半圆 的面积为/2 .
则称函数 f(x) 在[a, b] 上可积, 并称这个极限为函数
f(x) 在区间[a,b]上的定积分,记作
,即
Nanjing College of Information and Technology
第五章 定积分及其应用
积分上限
第一节 定积分及其计算
积分下限 被 积 函 数
被积 积分 表变 达量
Nanjing College of Information and Technology
第五章 定积分及其应用
(二) 定积分的概念
第一节 定积分及其计算
定义5.1.1 设函数 f(x)在区间[a,b]上有定义, 分割:
任取分点
把区间
[a,b] 分割成 n个小区间 [xi-1, xi] , 第i个小区间的长度
第五章 定积分及其应用
第一节 定积分及其计算
第五章 定积分及其应用
第一节 定积分及其计算 第二节 定积分在几何上的应用 第三节 定积分在物理上的应用
第五章 定积分及其应用
第一节 定积分及其计算
第一节 定积分及其计算
本节主要内容:
一.定积分的概念与性质 二.微积分基本公式 三.定积分的积分法 四.反常积分
第五章 定积分及其应用
第一节 定积分及其计算
显然,小矩形越多,矩形总面积越接近曲边梯形面积. 观察下列演示过程, 注意当分割加细时, 矩形
面积和与曲边梯形面积的关系 .
Nanjing College of Information and Technology
第五章 定积分及其应用
第一节 定积分及其计算
作以
为底 ,
为高的小矩形, 并以此小
梯形面积近似代替相应
窄曲边梯形面积
得
Nanjing College of Information and Technology
第五章 定积分及其应用
3) 求和
4) 取极限 令
第一节 定积分及其计算
则曲边梯形面积
n
A lim 0 i1
f (i )x
Nanjing College of Information and Technology
第五章 定积分及其应用
3) 求和 4) 取极限
第一节 定积分及其计算
Nanjing College of Information and Technology
第五章 定积分及其应用
第一节 定积分及其计算
上述两个问题的共性: • 解决问题的方法步骤相同 :
“分割 , 近似 , 求和 , 取极限 ” • 所求量极限结构式相同: 特殊乘积和式的极限
观察下列演示过程, 注意当分割加细时, 矩形面 积和与曲边梯形面积的关系.
Nanjing College of Information and Technology
播幻灯片 75放
第五章 定积分及其应用
解决步骤: 1) 分割 2) 取近似
第一节 定积分及其计算
3) 求和 4) 取极限
n
A lim 0 i1
第五章 定积分及其应用
第一节 定积分及其计算
2. 变速直线运动的路程
设某物体作直线运动, 已知速度
在 [T1 , T2 ]
上连续,
求在运动时间 [T1 , T2 ] 内物体所经过
的路程 s .
解决步骤:
1) 分割 2) 取近似 3) 求和 4) 取极限
Nanjing College of Information and Technology