群体感应系统
微生物生理学(王海洪)9细菌的群体感应调节PPT课件
通过药物或其他小分子抑制与信号转 导相关的蛋白活性,可以阻断信号转 导途径,从而干扰群体感应的调控。
05 群体感应的研究前景与展 望
群体感应与其他微生物的相互作用
群体感应细菌与病原菌的相互作用
群体感应细菌通过群体感应系统调节其行为,与病原菌相互作用,影响病原菌的感染和 传播。
群体感应细菌与益生菌的相互作用
群体感应的信号转导
信号转导
群体感应的信号转导是指信号分子与受体结合后,通过一系列生化反应,将信号传递至细胞内,影响细菌的生理和行 为。
信号转导途径
群体感应的信号转导途径通常涉及多个蛋白和反应,如激酶、磷酸酶、转录因子等。这些蛋白和反应共同作用,将信 号分子传递的信息转化为细菌可识别的信号,进而影响其行为。
益生菌通过与群体感应细菌的相互作用,可以调节肠道微生物群落的结构和功能,维护 肠道健康。
群体感应与环境因素的关系
要点一
温度、湿度等环境因素对群体感 应细菌的影响
环境因素可以影响群体感应细菌的生理和行为,进而影响 其在生态系统中的作用。
要点二
抗生素对群体感应的影响
抗生素的使用可以影响群体感应细菌的耐药性和致病性, 因此需要深入研究抗生素对群体感应的影响。
AI-2
又称作LuxS代谢产物,是一种由多种革兰氏阴性菌和阳性菌分泌的信号分子。AI-2通过 与 LuxP 受体结合,影响细菌的群体行为。
群体感应的受体
LuxQ
是一种膜蛋白,作为AI-1的受体,能够识别并响应AI-1信号 分子。LuxQ受体的活化可以影响细菌的群体行为。
LuxP
是一种膜蛋白,作为AI-2的受体,能够识别并响应AI-2信号 分子。LuxP受体的活化可以影响细菌的群体行为。
群体感应
费氏弧菌Vibrio fischeri 群体感应系统首先是在海洋细菌费氏弧菌,费氏弧菌定殖于夏威夷鱿鱼的发光器官内,当细菌达到一定的密度后,就会诱导发光基因的表达。
细菌的生物发光为鱿鱼提供光源,掩盖其影子来保护自身。
同时,细菌也获得一个合适的栖息场所。
Nealson等在1970 年首次报道了该菌菌体密度与生物发光呈正相关,该发光现象受细菌本身的群体感应调节系统(Quorum-Sensing System ,简称QS 系统) 所控制。
通用语言呋喃硼酸二酯Peptides呋喃硼酸二酯高丝氨酸内酯γ-丁酸内酯synthesizesautoinducer homoserine Autoinducer diffuses into the medium where it accumulates. At thresholdconcentration AI diffuses back into the cell and binds to activator protein LuxR.酰基高丝氨酸内酯(AHL)的结构AHL 由LuxI 类蛋白酶催化脂肪酸代谢途径中的酰基-酰基载体蛋白(acyl-ACP)的酰基侧链与S-腺苷甲硫氨酸中高丝氨酸部分的接合, 并进一步内酯化而生成的不同的细菌产生不同的AHLs ,差异只在于酰基侧链的长度与结构,高丝氨酸内酯部分是相同的。
以及与启动子DNA的结合The genesencoding the AHL synthaseregulatory protein, respectively. In thepresence of sufficient AHL signal, the Rregulatory protein is activated, possiblyby dimerization. The activated Rregulatory protein binds to a specificbinding site and stimulates (orrepresses) transcription initiation byRNA Polymerase holoenzyme•LuxR型蛋白也有特殊的酰基结合框,在有多种细菌存在的环境下,存在许多种AHL分子,每一种细菌都能对其自身的群体感应信号识别、监控、作出反应除了链霉菌中调控抗生素合成的γ黄色粘球菌肺炎链球菌枯草芽孢杆菌金黄色葡萄球菌Staphylococcus aureus uses a two -component response system (TCRS) to mediate quorum sensing (QS). The regulation of QS involves the productio increase in its concentration, expression of RNAIII and the subs genes. S. aureus produces an autoinducing and activates the TCRS. The TCRS involves signal recognition by (1), followed by histidine phosphorylation Regulation of the two quorum-sensing systems of Staph. aureusThe first quorum-sensing system, consisting of the peptide autoinducer protein, TRAP, is regulated by the accessory gene regulator (agr comprises two units (RNAII and RNAIII) that are divergently transcribed, whose transcription is under control of the P2 and P3 promoters respectively. A threshold concentration of RAP triggers the activation of TRAP, which activates the transcription of RNAII. The RNAII unit encloses four genes: agrB , agrD , agrC and agrA . AgrB and AgrD 呋喃硼酸二酯AI-2细菌可以利用这类信号分子感知其它细菌数量来调控自身的行为。
细菌群体感应系统功能
细菌群体感应系统功能
细菌群体感应系统是一种细菌激发细胞间相互作用的机制,通过该系统细菌能够感知并响应外界刺激,调节自身生长和行为,实现一种集体行为。
细菌群体感应系统包含以下功能:
1. 信息传递:细菌通过释放化学信号物质(自动诱导物质、群体感应激素等),使周围细菌感知到外界环境的变化。
这些信号物质可以通过扩散或分泌到周围环境中,也可以直接通过细胞间连接的纤毛或细胞间通道传递。
2. 群体行为:细菌感知到外界环境的变化后,能够通过群体行为来响应和适应。
例如,一些细菌在感知到相对高密度的环境后会进行群体聚集,形成生物膜或菌落。
这种群体行为可以提供保护、资源共享和传递信号等功能。
3. 调控基因表达:细菌群体感应系统能够影响细菌内部的基因表达,通过调节特定基因的转录和翻译过程来实现对环境的适应。
这些基因可能与细菌的生长、生存、毒力等相关。
4. 抗生素生产和耐药性:一些细菌群体感应系统能够诱导或抑制细菌对抗生素的产生。
此外,一些感应系统还能够调节细菌对抗生素的敏感性,从而实现对抗生素的耐药性。
细菌群体感应系统的功能使细菌能够在群体中实现一种高效的信息传递、协作和适应性,为它们在复杂的生态环境中生存和繁衍提供了竞争优势。
这种系统在医药、环境保护、生物工程等领域都有重要的应用潜力。
群体感应
群体感应1.群体感应概念细菌分泌一种或者几种小分子量的化学信号分子促进细菌个体间相互交流,协调群体行为,该现象称为群体感应( quorum sensing ,QS)。
细菌利用信号分子感知周围环境中自身或其他细菌的细胞群体密度的变化,并且信号分子随着群体密度的增加而增加,当群体密度达到一定阈值时,信号分子将启动菌体中特定基因的表达,改变和协调细胞之间的行为,呈现某种生理特性,从而实现单个细菌无法完成的某些生理功能和调节机制。
20世纪70年代,QS系统首先是在海洋细菌费氏弧菌(Vibrio fiscberi)中发现的,V. fiscberi 可以与某些海生动物共生,宿主利用其发出的光捕获食物、躲避天敌以及寻觅配偶,而V.fiscberi也获得了一个营养丰富的生存环境。
对细菌的QS 研究始于20 世纪90 年代初. 从已有的研究成果看: 其一, 大部分细菌一般均有两套群体感应系统, 一套用于种内信息交流, 一套用于种间信息交流; 其二, QS 对细菌的许多生理功能都有调节作用, 如生物发光、毒素的产生、质粒的转移、根瘤菌的结瘤、抗生素的合成, 等等.群体感应参与调控细菌的多种生活习性以及各种生理过程,如生物发光、质粒的接合转移、生物膜与孢子形成、细胞分化、运动性、胞外多糖形成等[ 1 , 3],尤其致病菌的毒力因子的诱导、细菌与真核生物的共生、抗生素与细菌素合成等与人类关系密切的细菌生理特性相关。
因此, 细菌QS系统研究,深受医学、生物工程、农业和环境工程、食品科学等领域研究者广泛关注。
当前, 对致病菌的QS系统及以其为靶点的新型疗法和抗菌药物研究、根瘤菌QS系统及其在根瘤菌与植物互作中的作用研究、植物病原菌QS系统及寻找生物技术防治细菌病害的新靶点研究较为深入意义:一方面有助于人们了解单细胞微生物的信息交流与行为特性的关系,建立起化学信号物质和生理行为之间的联系;另一方面则可通过人为地干扰或促进微生物的群体感应系统从而调控其某种功能,以达成其在实际意义上的应用。
细菌群体感应系统及其应用课件
群体感应在细菌耐药性中的作用
群体感应在细菌耐药性中的作用
群体感应在细菌生物被膜形成中的作用
01
02
03
04
05
05
总结与展望
总结
细菌群体感应系统的基本概念
01
细菌群体感应系统的研究进展
02
细菌群体感应系统的应用领域
03
展望
未来研究方向
随着基因组学、蛋白质组学和代 谢组学等技术的发展,未来将进 一步揭示细菌群体感应系统的分 子机制,为相关应用提供更多可
菌群体感系及
• 细菌群体感应系统概述 • 细菌群体感应系统的组成 • 细菌群体感应系统的应用 • 细菌群体感应系统研究的前景与挑
战
01
细菌群体感应系统概述
群体感应的定义
群体感应 群体感应系统
群体感应的发现与历史
01
1950年代
02
1980年代
03
1990年代
04
2000年代至今
群体感应的机制
AI-1信号分子
AI-2信号分子
群体感应受体蛋白
LuxQ受体蛋白
LuxP受体蛋白
结合AI-2信号分子,影响细菌的生物 膜形成和毒力。
群体感应调控基因
lux操纵子
包含一系列受群体感应调控的基因,如luxCDABE基因编码生物发光所需的酶。
AI-2合成酶基因
如luxS基因,编码AI-2信号分子合成酶。
能性。
应用前景
随着对细菌群体感应系统认识的 深入,其在农业、工业和医疗等 领域的应用将更加广泛,有望为
人类带来更多的益处。
面临的挑战与问题
尽管细菌群体感应系统具有广泛 的应用前景,但仍面临许多挑战 和问题,如如何提高应用的效率 和安全性等,需要进一步研究和
细菌群体感应系统与应用
群体感应
毒力因子的产生:
肠球菌的主要毒力因子是溶
细胞素,由 2 个亚单位CylLL 和CylLS组成,在胞外以具有 毒性的CylLL ″和CylLS″形式 存在。研究表明,CylLS″担 任了QS系统机制中信号分子
的作用。Coburn等发现,
CylLL ″优先与靶细胞结合, 导致游离 CylLS″的积累并超 过诱导阈值,然后激活CylLS 表达,产生高水平的溶细胞
海洋红藻(Delisea pulchra)产生的卤化呋喃酮结构和AHL相似,用
该卤化呋喃酮处理V. fiscberi后,其QS系统被竞争性的抑制。另外吡
咯酮类化合物、某些取代的HSL化合物、二酮哌嗪类化合物等也能够起 到相类似的作用。在G+菌中,尽管AIP分子调控许多致病基因的表达, 但目前还没有专门针对其QS系统的防病策略。仅在金黄色葡萄球菌发现 其产生不同种类的AIP之间可以相互抑制。因此可以通过设计与病菌AIP 分子相似的物质来破坏其QS统,从而增强植物等的抗病性
种内交流:G- 的QS系统
费氏弧菌的AHL-LuxI/LuxR 型系统:
LuxI产生AHL,自由通过 细胞膜,分泌到胞外
AHL随菌体浓度上升在胞 外积累到阈值
AHL扩散入胞内与LuxR蛋 白结合,形成AI/LuxR
复 合体,并结合到 DNA上, 激活发光基因的启动子
转 录
种内交流:G- 的QS系统
谢 谢!
让我们共同进步
群体感应的抑制
1.产生可以使AHL分子灭活的AHL降解酶,使病原菌QS系统不 能启动它所调控的基因
内酯酶(AHL-1actonase) 和酰基转移酶(AHL-acylase) 目前都已经 在一些细菌中被发现。内酯酶可以水解AHL的内酯键,生成的N-酰基高 丝氨酸内酯的生物活性大大降低
群体感应.
2.另外,群体感应系统也在于真菌中,比如白色 念珠菌、新生隐球菌等,但人们是对真菌中的群体 感应系统研究还比较浅,尤其是对真菌群体感应系 统的效应分子、效应分子受体、靶蛋白、相关信号 转导通路以及靶基因的调控等方面的研究有待进一 步深入。
3.最近,一种被称为LED209的分子被发现能够抑制 QseC介导的致病基因激活及诸如EHEC、鼠伤寒沙门 菌和土拉弗朗西斯菌等细菌在活体哺乳动物体内所产 生的不良反应,而且其对哺乳动物的不良反应很小, 对这种分子的研究也许会有一个很好的前景。总之, 不久的将来,随着研究人员的不断探索,人们将可能 通过各种渠道来抑制群体感应系统中的各个环节,从 而达到治疗一些细菌性疾病的目的。
感谢您的关注
3. QS系统的特点 多样性
(1)信号分子的多样性 (2)分布的多样性
细菌种内、 种间,细菌与植物、 动物间
(3)信号分子产生机制的多样性
G-菌——信号分子合成酶,G+菌——前体,经蛋白酶切割
(4)信号分子运输的多样性
G+菌——ABC转运系统,G-菌——直接透过细胞膜
(5)信号响应的多样性
G+菌——双组分信号转导系统; G-菌——受体蛋白
群体感应概述
目录
1 群体感应的发现及其概念
2
群体感应的分类及机制
3
群体反应的特点
4 群体反应的应用与研究前景
1.1 发现
20世纪70年代
海洋细菌费氏弧菌(Vibrio fiscberi)和哈氏弧菌(V . harveyi) 生物发光现象
与海生动物共生,宿主利用其发出的光捕获食物、 躲避天敌以及寻觅配偶,而 V. fiscberi也获得了一个 营养丰富的生存环境
(3)不同 QS系统之间关系的复杂性
最新:群体感应调控细菌耐药的机制(全文)
最新:群体感应调控细菌耐药的机制(全文)细菌的抗菌素耐药已成为威胁人类健康的重大问题,亟需新策略阻控细菌耐药。
群体感应是微生物细胞间交流的一种机制,当环境中群体密度达到阈值后群体感应即被激活,调控下游基因转录。
群体感应已被证实可调控生物膜、外排泵、细菌分泌系统等抗菌素耐药机制,有望成为耐药调控靶点。
目前已有多种群体感应抑制剂通过降解信号分子、干扰信号分子与受体蛋白的识别和结合、阻断群体感应信号的合成等方式干扰群体感应。
群体感应抑制剂有望成为阻控微生物耐药的新方法。
近年来,随着抗菌素的广泛使用,细菌的抗菌素耐药已成为威胁人类健康的重大问题。
研究者们试图通过研究微生物耐药靶点、研发新型药物等方法攻克抗菌素耐药这一世纪难题,但细菌耐药率仍逐年攀升。
因此,迫切需要从新的角度研究抗菌素耐药问题。
最近,一些研究揭示了群体感应(quorumsensing)系统在细菌耐药中的作用,并深入探索了群体感应调控细菌耐药的机制,这些研究成果有望为阻控抗菌素耐药提供新的方法和靶点。
本文围绕群体感应对细菌抗菌素耐药的调控机制及干预手段进行综述。
一.细菌耐药机制目前,抗菌素的作用机制主要包括以下4个方面:(1)阻碍细胞膜合成;(2)增强细胞膜通透性;(3)影响蛋白质合成;(4)干扰DNA的复制和转录〔】】。
相应地,细菌发展出以下5种主要抗菌素耐药机制:(1)降低细胞膜对抗菌素的通透性;(2)利用外排泵排出抗菌素;(3)基因突变或修饰抗菌素靶向基因;(4)对抗菌素的直接修饰或降解;(5)形成生物膜1W。
为克服细菌耐药,新药研发、药物联用已成为常见手段,但罕有从细菌群体角度出发制定的策略。
基于此,深入研究细菌群体感应系统,从中寻找新的耐药阻控手段已刻不容缓。
二、群体感应简介20世纪70年代,Nea1son和Eberhard等【2,3]发现费氏弧菌(Vibiofischeri)和哈维弧菌(Vibioharveyi)的发光现象可由菌群密度所调控,这是最早关于群体感应现象的文献报道。
群体感应系统
细菌能自发产生、释放一些特定的信号分子,并能感知其浓度变化,调节微生物的群体行为,这一调控系统称为群体感应。
细茵群体感应参与包括人类、动植物病原茵致病力在内的多种生物学功能的调节。
简介群体感应(Quorum-Sensing):近年来的研究证明细菌之间存在信息交流,许多细菌都能合成并释放一种被称为自诱导物质(autoinducer,AI)的信号分子,胞外的AI 浓度能随细菌密度的增加而增加,达到一个临界浓度时,AI能启动菌体中相关基因的表达,调控细菌的生物行为。
如产生毒素、形成生物膜、产生抗生素、生成孢子、产生荧光等,以适应环境的变化,我们将这一现象称为群体感应调节(quorum sensing.QS)。
这一感应现象只有在细菌密度达到一定阈值后才会发生,所以也有人将这一现象称为细胞密度依赖的基因表达(cell density de- pendent control of gene expression)。
[1]自身诱导物质AI细菌可以合成一种被称为自身诱导物质( auto-inducer .AI ) 的信号分子,细菌根据特定的信号分子的浓度可以监测周围环境中自身或其它细菌的数量变化,当信号达到一定的浓度阈值时,能启动菌体中相关基因的表达来适应环境的变化,如芽胞杆菌中感受态与芽胞形成、病原细菌胞外酶与毒素产生、生物膜形成、菌体发光、色素产生、抗生素形成等等。
根据细菌合成的信号分子和感应机制不同,QS系统基本可分为三个代表性的类型:革兰氏阴性细菌一般利用酰基高丝氨酸内酯( AHL) 类分子作为AI ,革兰氏阳性细菌—般利用寡肽类分子(Al P) 作为信号因子,另外许多革兰氏阴性和阳性细菌都可以产生一种AI - 2的信号因子,一般认为AI - 2是种间细胞交流的通用信号分子,另外最近研究发现,有些细菌利用两种甚至三种不同信号分子调节自身群体行为,这说明群体感应机制是极为复杂的。
细菌信息素的特点1,分子量小:细菌信息素都是一些小分子物质,如酰基-高丝氨酸内酯(AHL)衍生物、寡肽、伽马一丁内酯等,能自由进出细胞或通过寡肽通透酶分泌到环境中,在环境中积累。
细菌群感应系统名词解释
细菌群感应系统名词解释细菌群感应系统(bacterial quorum sensing system)指的是细菌通过分泌、感应和响应特定的信号分子来实现细菌之间的群体通讯和协作的一种机制。
以下是与细菌群感应系统相关的一些重要名词解释:1.信号分子(Signaling Molecules):也称为自动感应物质(autoinducers),是由细菌分泌的低分子量化合物,用于在细菌群体中传递信息和触发特定的细胞响应。
2.信号接收器(Signaling Receptors):指细菌细胞上的膜受体或细胞内的受体蛋白,用于感知和结合外源性信号分子,从而激活特定的信号传导路径。
3.感应子基因(Inducer Genes):是受到细菌群感应系统的调控的基因,其表达在细菌接收到特定的信号分子后被激活或抑制。
4.强度阈值(Threshold Level):指在细菌群体中信号分子的积累达到一定浓度,触发特定的细胞响应。
这个浓度被定义为感应子浓度阈值,用于区分单独细菌与群体感应响应之间的差异。
5.协同行为(Cooperative Behavior):指在细菌群感应系统的调控下,细菌群体内的个体之间通过相互协作和协调来实现集体行为,如生物膜形成、生物降解、生物攻击等。
6.信号瓶颈(Signal Quenching):指细菌内生产的酶或其他分子机制,用于降解或破坏外源性信号分子,从而调控群体通讯的频率和强度。
细菌群感应系统在细菌生物学中具有重要的意义,它们在维持细菌种群动态平衡、环境适应和感染病原性方面发挥着重要作用。
对细菌群感应系统的研究有助于理解细菌社会行为以及开发新型抗菌治疗方法。
群体感应系统在病原菌中的作用
综述Sum m ar i ze群体感应系统在病原菌巾的作用李杨(综述)李苏利(审校)(解放军二五二医院检验科河北保定071000)长久以来,人们一直认为细胞与细胞间的信息交流一般只在多细胞生物中发生。
20世纪90年代以来,大量的研究工作表明,单细胞的细菌中普遍存在着细菌与细菌之间的信息交流,并介导着一系列生理行为的调节。
这种信息交流就是细菌的群体感应。
1群体感应系统的概念及组成细菌可以合成一种被称为自身诱导物质(autoi nducer.A I)的信号分子,细荫根据特定的信号分子的浓度可以监测周围环境中自身或其它细菌的数量变化,当信号达到一定的浓度阈值时,能启动菌体中相关基因的表达来适应环境的变化,如芽胞杆菌中感受态与芽胞形成、病原细菌胞外酶与毒素产生、生物膜形成、菌体发光、色素产生、抗生素形成等等。
这一调控系统被称为群体感应系统(Q uonan-Sensi ng Sys t em Q S系统)…。
根据细菌合成的信号分子和感应机制不同,Q S系统基本可分为三个代表性的类型:革兰氏阴性细菌一般利用酰基高丝氨酸内酯(A H L)类分子作为A I,革兰氏阳性细菌—般利用寡肽类分子(A l P)作为信号因子,另外许多革兰氏阴性和阳性细菌都可以产生一种A I-2的信号因子,一般认为A I-2是种问细胞交流的通用信号分子,另外最近研究发现,有些细菌利用两种甚至三种不同信号分子调节自身群体行为吲,这说明群体感应机制是极为复杂的。
2病原菌中的群体感应系统2.1革兰氏阴性病原菌中的群体感应系统革兰氏阴性细菌最常用的A I信号分子是A H L,A H L可在环境中浓集,达到一定浓度阈值时,能与受体蛋白的氨基残端结合,形成特定构象,从而调节某些功能基因的表达。
以A H L为信号分子的Q S系统在革兰氏阴性菌中,控制着多种细菌功能,如铜绿假单胞菌中的生物膜形成和毒力因子的产生;欧文菌和假单胞菌的抗生素合成,假结核耶尔森菌的细胞聚集及运动掣”。
金黄色葡萄球菌群体感应、双组分系统与第二信使的调控互作研究进展
金黄色葡萄球菌群体感应、双组分系统与第二信使的调控互作研究进展第一篇范文金黄色葡萄球菌是一种广泛存在于自然界和人身上的细菌,它对人类健康构成了严重威胁。
金黄色葡萄球菌的致病性与其群体感应、双组分系统和第二信使的调控互作密切相关。
本文将对这一领域的研究进展进行综述。
一、群体感应与金黄色葡萄球菌的致病性群体感应(Quorum Sensing, QS)是细菌通过检测细胞间信号分子的浓度来感知细胞密度的一种机制。
在金黄色葡萄球菌中,群体感应系统调控着多种致病因子的表达,如毒力因子、抗生素抗性基因等。
研究显示,通过干扰群体感应系统,可以有效抑制金黄色葡萄球菌的致病性。
二、双组分系统与金黄色葡萄球菌的调控互作双组分系统(Two-Component Signaling System, TCS)是细菌细胞中一种重要的信号传导机制,通过感受环境变化来调控基因表达。
在金黄色葡萄球菌中,双组分系统与群体感应系统相互关联,共同调控细菌的致病性。
研究发现,双组分系统的突变会导致群体感应信号分子的产生减少,从而影响金黄色葡萄球菌的致病能力。
三、第二信使与金黄色葡萄球菌的调控互作第二信使是细菌细胞内一种重要的信号分子,它能够将外部的信号传递到细胞内部,调控基因表达。
在金黄色葡萄球菌中,第二信使与群体感应系统和双组分系统相互作用,共同调控细菌的致病性。
研究发现,第二信使的异常会导致金黄色葡萄球菌的致病能力下降。
第二篇范文想象一下,你身处一个熙熙攘攘的都市,每个人都在忙碌地传递着信息,交流着,影响着周围的人。
这个都市就是金黄色葡萄球菌的世界,而它们的信息传递方式,正是我们今天要探讨的群体感应、双组分系统和第二信使的调控互作。
在这个都市中,每个人都有自己的“语言”,金黄色葡萄球菌也不例外。
它们通过一种叫做群体感应的机制,来交流和调控自己的行为。
这种机制就像是一种秘密的信号系统,当细菌的数量达到一定程度时,就会释放出特定的信号分子,这些分子可以告诉周围的细菌何时开始生产抗生素、何时开始组装形成生物膜等等。
微生物群体感应系统
(3)阻断信号分子的合成
acyl-ACP 和SAM的类似物可以有效抑制 AHL的合成
三、防治生物污染
• 生物污染指细菌在有水的管道或界面,生长形成生物被膜 后,污染或腐蚀这些装置。
群体感应 (quorum sensing, QS)
群体感应系统
自诱导分子 (autoinduc
er, AI)
概念
第一节 群体感应的分子机制
群体感应
种内QS系统 种间QS系统
G-菌QS系统 G+菌QS系统
一、G-菌QS系统—LuxI-AHL型QS系统
细胞达到一定密度,信号分子接近浓度阈值 信号分子通过细胞膜的方式:自由扩散
• AIP通过细胞膜的方式: ABC 转ቤተ መጻሕፍቲ ባይዱ系统
金黄色葡萄球菌的群体感应系统
三、种间QS系统—AI-2介导的通信
• 信号分子 :AI-2 (呋喃酰硼酸二酯类化合物) • 此类信号分子在G+菌和 G-菌中均可存在; • 费氏弧菌的AI-2受体是周质结合蛋白LuxP • AI-2的产生依赖于一种LuxS蛋白质 • 细菌识别AI- 2 分子的方式与革兰氏阳性菌中双组分识别
群体感应对铜绿假单胞菌生物被膜形成的调控
突变体所形成的生物膜比较薄,并且对生物灭菌剂十二烷 基磺酸钠(SDS)的抵抗作用显著降低
四、细菌群集运动
• 群集运动是指细菌以群体方式在培养基表面由接 种点向周围进行的依赖鞭毛的迁移运动。
• QS通过调控鞭毛操纵子flhdc而调节细胞群集运动 • 细胞群集决定了FIHDC蛋白的活化,是全面调节
第章群体感应系统_图文
孢子形成 不同种属竞争
细菌运动
群体感应的生物效应
生物发光(例1:海洋细菌用光引诱浮游动物和鱼)
细菌发光吸引浮游生物(摄食细菌但不能消化细菌),继续在 浮游动物肠道内发光,透露了浮游动物的存在
夜行鱼容易检测到发光浮游动物并吃掉它们,发光细菌继续存 活在鱼肠道
浮游动物被细菌光辉吸引并食用发光物质与它们的生存本能矛 盾,增加了被鱼攻击与吞食的机会,调节细菌生物发光的群体 感应现象能解释这项发现
研究者测定了群体感应系统调节基因的编码特征和细菌分离的生 态环境之间的关系,结果表明,群体感应系统在细菌进行栖息地 延伸的过程中扮演着重要角色
为理解细菌的致病性以及难根除的感染性疾病机制提供了新思路
PNAS, /cgi/doi/10.1073/pnas.1214128109 ,2012
系统组成复杂性:在V.harveryi中发现与众不同的QS系统,该 信号分子系统与G-菌相似,而信号分子的识别与G+菌相似
QS系统之间关系复杂性:多种QS系统构成复杂的调控网络,
如P.aeruginosa中含有3个QS系统
群体感应的生物效应
生物发光
生物膜形成
致病因子产生
抗生素 合成
毒力因子诱导 细菌宿主侵袭
依赖生长期和细胞密度:对数期或稳定期在环境中积累达到较高浓 度,其所调节的基因表达量最大
细菌感染调控:许多信息素产生菌是动植物致病菌或共生菌,它在 细菌和宿主之间的相互作用中起着重要的调控作用
兼具抗生素活性:Lactococcus lastis产生的乳链球菌素nisin,既作为 信息调节细胞生物合成和免疫基因的表达,也拮抗其他微生物;植 物乳球菌 (L. plantarum) 产生的植物乳杆菌素A也有信息素和抗生素 的双重活性
第6章群体感应系统
细菌和宿主之间的相互作用中起着重要的调控作用
兼具抗生素活性:Lactococcus lastis产生的乳链球菌素nisin,既作为 信息调节细胞生物合成和免疫基因的表达,也拮抗其他微生物;植
物乳球菌 (L. plantarum) 产生的植物乳杆菌素A也有信息素和抗生素
的双重活性
群体感应的定义
QS信号分子分类
化,
监测菌群密度、调控菌群生理功能,从而适应环境条
件的一种信号交流机制,又称细胞交流或自诱导 (Auto-induce)
群体感应调节
细菌释放自诱导物质 (Auto-inducer, AI) 的信号分子
临界浓度时,AI能启动菌体相关基因的表达,调控细菌的生 物行为(产生毒素、生物膜、抗生素、孢子、荧光等),使
为理解细菌的致病性以及难根除的感染性疾病机制提供了新思路
PNAS, /cgi/doi/10.1073/pnas.1214128109 ,2012
群体感应的生物效应
生物膜形成调控(例2:帮助细菌扩大地盘)
P.Aeruginosa 和生态环境分离菌的群感基因相互 关系韦恩图
QS参与致病菌的毒力因子诱导、细菌与真核生物的共生、 抗生素与细菌素合成等与人类关系密切的细菌生理特性
群体感应的研究意义
了解单细胞微生物的信息交流与行为特性关系,建立化学 信号物质和生理行为的联系,例如:
龋齿周围生物膜形成参与的菌种,所有细菌均参与群体感应
Nature Reviews, Biotechnology
且很快被降解掉
群体感应的分子机制
革兰氏阴性菌QS系统—LuxI-AHL型
AHL可自由出入细胞体内外 细胞达到一定密度,信号分子接近浓度阈值 信号分子通过细胞膜的方式:自由扩散
革兰氏阴性菌群体感应系统研究进展
革兰氏阴性菌群体感应系统研究进展摘要:群体感应(quorum sensing,QS),又称为自体诱导(autoinduction),是一种调节细菌群居行为及特殊基因表达的有效机制,描述细菌之间保持细胞密度变化的化学信号,是一种细菌与细菌间的通讯系统。
通常将群体感应系统分为革兰氏革兰氏阴性菌的LuxI/LuxR型QS系统、革兰氏阳性菌的寡肽类群体感应系统和感知种间信号的群体感应系统。
植物病原细菌中常见的致病菌是革兰氏阴性菌,所以对革兰氏阴性菌群体感应系统的研究很有必要。
关键词:群体感应;革兰氏阴性;LuxI/LuxR群体感应(quorum sensing,QS),又称为自体诱导(autoinduction),是一种调节细菌群居行为及特殊基因表达的有效机制,描述细菌之间保持细胞密度变化的化学信号,是一种细菌与细菌间的通讯系统。
这种通讯系统依赖于一种小的可扩散的信号分子,这种小的信号分子称为自体诱导素(autonicers,AI),由细菌产生并向细胞外扩散,在周围环境中积累。
随着种群密度的增加,环境中积累的AI信号分子的浓度也成比例地增高,当达到一定阈值水平时细菌通过细胞内受体对这些信号分子进行检测,进而子与一种转录激活因子结合,诱导有关基因的协调表达[1]。
自体诱导物与转录活性蛋白相互作用,启动基因表达,调节相关群落活动和独立过程。
目前已经在细菌中发现了129个与群体感应相关的基因,包括群体感应调节基因和信号合成基因。
通常将群体感应系统分为革兰氏革兰氏阴性菌的LuxI/LuxR型QS系统、革兰氏阳性菌的寡肽类群体感应系统和感知种间信号的群体感应系统。
植物病原细菌中常见的致病菌是革兰氏阴性菌,所以对革兰氏阴性菌群体感应系统的研究很有必要。
在革兰氏阴性细菌中存在自身常见的LuxI/LuxR型QS系统和感知种间信号的AI-2信号系统。
1 革兰氏阴性菌的LuxI/LuxR型QS系统革兰氏阴性菌中感知种内数量的QS系统一般利用酰基高丝氨酸内酯(N-acyl-homoserinelactones,简称acyl-HSL或AHLs,这类分子一般称为AI-1。