微积分期末模拟试题
微积分模拟试题及答案
三、计算题
1.求f(x)=x/x,phi(x)=|x|/x当x->0时的左、右极限,并说明它们在x->0时的极限是否存在。
2.求微分方程(dy)/(dx)+2xy=xe^(-x^2)的通解
3.设z=lntan(y/x),求dz
3.设y=2arctan(sqrt(x/(1-x))),求y’
五、应用题
1.设某商品日产量是x个单位时,总费用F(x)的变化率为f(x)=0.2x+5(元/单位),且已知F(0)=0,求
(1)总费用F(x)
(2)若销售单价是25元,求总利润
(3)日产量为多少时,才能获得最大利润
六、证明题
A.x^2-6x+5
B.x^2-5x+6
C.x^2-5x+2
D.x^2-x
答案:b
二、填空题
1.lim_(n->oo)sqrt(n)(sqrt(n+1)-sqrt(n))=___
答案:1/2
2.f(x)={(ax+b,x<=1),(x^2,x>1):}在x=1处可导,则a=___,b=___
1.设z=arctan(x/y),求证x(delz)/(delx)+y(delz)/(dely)=0
试卷答案
一、单选题
1.已知函数f(x)=(x-1)(x-2)(x-3)(x-4),则方程f’(x)=0有
A.三个根,分别位于区间(1,2)、(2,3)、(3,4)内
B.四个根,分别为x_1=1,x_2=2,x_3=3,x_4=4
微积分II期末模拟试卷3套含答案.docx
17、求曲线x3-xy+y3=l(x>0,y>0)±的点到坐标原点的最长距离和最短距离。
微积分II期末模拟试卷3(满分:100分;测试时间:100分钟) 三、填空题(3X5=15)
『1-/_“2
1、曲线<X=Joe du在(0, 0)处的切线方程为
y = t2ln(2-r2)
”=i2”=]n
(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与入有关
7、曲线y=y(x)经过点(0,-1),且满足微分方程y'+2y = 4兀,则当兀=1时,y=()
(A)0;(B)l;(C)2;(D)4
8、设q,是圆域D = {(x,y)|/+y2 si}的第£象限的部分,记Ik=^{y-x)dxdy.则
(A)/, >/2>1.(B) l>/j >/2.(C)I2>/j >1.(D)l>/2>/,.
五、计算题(5X10=50)
12、计算下列定积分
1
(1)j2|ycsi:兀力.(2)求y=cos x - sin x, y = 0(0 < x < —) ^ x轴旋转的旋转体体积
12、计算下列多元微积分
(1)设z=f[x2-y.(p{xy)],其中f(〃,0具有二阶连续偏导数,(p(u)二阶可导,求
y = Jo ln(l + u)du
dx cf
2te= 0< dt
x —o = °
16、设非负函数y = y(x)(xnO)满足微分方程尢y"-y+2 = 0,当曲线y = y(x)过原点
时,其与直线x = \&y =0围成平面区域Q的面积为2,求D绕y轴旋转所得旋转体体积。
微积分考试题及答案
微积分初步期末模拟试题及答案一、填空题(每小题4分,本题共20分) ⒈函数241)(xx f -=的定义域是 .⒉若24sin lim=→kxx x ,则=k .⒊已知x x f ln )(=,则)(x f ''= . ⒋若⎰=x x s d in .⒌微分方程y x e x y y x +='+'''sin )(4的阶数是 . 二、单项选择题(每小题4分,本题共20分) ⒈设函数x x y sin =,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数⒉当k =( )时,函数⎩⎨⎧=≠+=00,,1)(2x kx x x f ,在0=x 处连续.A .1B .2C .1-D .0 ⒊满足方程0)(='x f 的点一定是函数)(x f 的( )。
A .极值点 B .最值点 C .驻点 D . 间断点 ⒋设)(x f 是连续的奇函数,则定积分=⎰aa x x f -d )(( )A .⎰0-d )(2ax x f B .⎰0-d )(ax x f C .⎰ax x f 0d )( D . 0⒌微分方程1+='y y 的通解是( )A. 1e -=Cx y ;B. 1e -=x C y ;C. C x y +=;D. Cx y +=221三、计算题(本题共44分,每小题11分) ⒈计算极限423lim222-+-→x x x x .⒉设x x y 3cos 5sin +=,求y '. ⒊计算不定积分x x x d )1(2⎰+⒋计算定积分⎰πd sin 2x x x四、应用题(本题16分)欲用围墙围成面积为216平方米的一成矩形的土地,并在正中用一堵墙将其隔成两块,问这块土地的长和宽选取多大尺寸,才能使所用建筑材料最省?模拟试题答案及评分标准一、填空题(每小题4分,本题共20分) ⒈)2,2(- ⒉2 ⒊21x-⒋C x +-cos ⒌3二、单项选择题(每小题4分,本题共20分) ⒈B ⒉A ⒊C ⒋D ⒌B三、(本题共44分,每小题11分) ⒈解:原式41)2)(2()2)(1(lim2=+---=→x x x x x 11分⒉解:)sin (cos 35cos 52x x x y -+=' 9分x x x 2c o s s i n 35c o s 5-= 11分⒊解:x xx d )1(2⎰+= Cx x x ++=++⎰32)(132)d(1)1(211分⒌解:⎰πd sin 2x x x 2sin 212d cos 21cos 210πππππ=+=+-=⎰xx x xx 11分四、应用题(本题16分) 解:设土地一边长为x ,另一边长为x216,共用材料为y于是 y =3xx xx 43232162+=+24323xy -='令0='y 得唯一驻点12=x (12-=x 舍去) 10分 因为本问题存在最小值,且函数的驻点唯一,所以,当土地一边长为12,另一边长为18时,所用材料最省. 16分。
微积分期末试卷(考试必做)
一、填空题(每小题2分,共16分)1、=+⎰-22d )cos e(4ππx x x x.2、=⎰∞+12d ln x xx .3、设x y y x z +=,则函数在)1,1(处的全微分为 .4、D 是由0,1,0,e ====y x x y x 所围成区域,则⎰⎰=Dσd .5、当a 满足 时,∑∞=--121)1(n ann条件收敛.6、幂级数∑∞=⋅-14)1(n nnn x 的收敛域为 .7、交换积分次序后 =⎰⎰-y yx y x f y d ),(d 10.8、微分方程1d d -=-xy xy 的通解为 .二、单项选择题(每小题3分,共15分)1、下列广义积分收敛的是( ).(A )⎰∞+ 1d ln x x (B )⎰∞+ 12d 1x x(C )⎰∞+ 1d 1x x(D )⎰∞+ 1d e x x2、设f 是连续函数,积分区域01:22≥≤+y y x D 且,则⎰⎰+Dy x y x f d d )(22可化为( ).(A )⎰10d )(r r f r π (B )⎰1d )(2r r f r π(C )⎰10d )(2r r f π (D )⎰1d )(r r f π3、设)sin(2y x z +=, 则=∂∂22xz ( ).(A ))sin(2y x +- (B ))cos(2y x +- (C ))sin(2y x + (D ))cos(2y x +4、极限xt x x cos 1dt)1ln(lim2sin 0-+⎰→等于( ).(A )1 (B )2 (C )4(D )85、微分方程0=+''y y 的通解是( ).(A )x C x C y sin cos 21+= (B )x x C C y -+=e e 21 (C )x x C C y e )(21+=(D )21e C C y x +=三、计算题(一)(每小题5分,共20分)1、已知⎰+=203d )()(x x f x x f , 求)(x f .2、设),(y x f z =是由方程0121e 2=-++z xyz z x 确定的隐函数,求yzx z∂∂∂∂,.3、判断∑∞=+-1)11ln()1(n n n的敛散性;若收敛,指出是绝对收敛还是条件收敛.4、求微分方程 5d d tan =-y xy x的通解.四、计算题(二)(每小题7分,共28分) 1、求 ⎰++30d 1ln)1(x x x .2、计算 ⎰⎰-=110d ed 12xyy x xI .3、求幂级数 ∑∞=⋅13n nn n x的收敛域及和函数.4、求微分方程 x y y y sin 1034=+'-'' 的通解.五、应用题(每小题8分,共16分)1、设某厂生产甲、乙两种产品,其销售单价分别为10万元、9万元。
微积分模拟考试试题及答案
微积分模拟考试试题及答案一、选择题(每题2分,共10分)1. 函数f(x) = 2x^3 - 5x^2 + 7x - 3的导数是:A. 6x^2 - 10x + 7B. 6x^2 - 10x + 6C. 6x^2 - 8x + 7D. 6x^3 - 10x^2 + 72. 曲线y = x^2 + 3x - 2在x = 1处的切线斜率是:A. 4B. 5C. 6D. 73. 定积分∫[0,1] x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 2/34. 函数f(x) = sin(x) + cos(x)的原函数是:A. -cos(x) + sin(x) + CB. -cos(x) - sin(x) + CC. cos(x) - sin(x) + CD. cos(x) + sin(x) + C5. 函数y = ln(x)的反函数是:A. e^xB. x^eC. 1/xD. √x二、填空题(每空1分,共10分)6. 函数f(x) = 3x^4 - 2x^3 + x^2 - 5的二阶导数是______。
7. 函数y = x^3 - 2x^2 + x - 3在x = 2处的切线方程是______。
8. 定积分∫[1,2] (3x + 1) dx的结果是______。
9. 函数f(x) = 2e^x的原函数是______。
10. 函数y = x^2的反函数是______。
三、简答题(每题5分,共15分)11. 求函数f(x) = x^2 + 2x + 1在区间[0, 2]上的定积分。
12. 求函数f(x) = x^3 - 6x^2 + 9x的极值点。
13. 证明函数f(x) = x^3在R上的单调性。
四、解答题(每题10分,共20分)14. 已知函数f(x) = x^3 - 3x^2 + 2x,求其在x = 1处的泰勒展开式。
15. 利用定积分求曲线y = 2x - 1与x轴围成的面积。
五、综合题(每题15分,共15分)16. 一个物体从静止开始,以初速度0,加速度a = 3t^2(m/s^2)加速运动。
微积分复习试题及答案10套(大学期末复习资料)
微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。
微积分期末试题及答案
微积分期末试题及答案一、选择题(每题4分,共20分)1. 函数y=x^3-3x+2的导数是()。
A. 3x^2 - 3B. x^3 - 3xC. 3x^2 - 3xD. 3x^2 + 3x答案:A2. 极限lim(x→0) (sin x/x)的值是()。
A. 0B. 1C. 2D. -1答案:B3. 曲线y=x^2在点(1,1)处的切线方程是()。
A. y=2x-1B. y=2x+1C. y=x+1D. y=x-1答案:A4. 若f(x)=x^2+3x-2,则f'(-1)的值是()。
A. 0B. 2C. -2D. 4答案:C5. 定积分∫(0 to 1) (2x-1)dx的值是()。
A. 1/2B. 1C. 3/2D. 2答案:B二、填空题(每题4分,共20分)1. 若f(x)=ln(x),则f'(x)=______。
答案:1/x2. 函数y=e^x的原函数是______。
答案:e^x3. 曲线y=x^3与直线y=2x+1在x=1处的交点坐标是______。
答案:(1,3)4. 函数y=x^2-4x+4的极小值点是______。
答案:x=25. 定积分∫(0 to 2) x dx的值是______。
答案:4三、计算题(每题10分,共30分)1. 求函数y=x^2-6x+8的极值点。
答案:函数y=x^2-6x+8的导数为y'=2x-6,令y'=0,解得x=3。
将x=3代入原函数,得到极小值点为(3,-1)。
2. 求定积分∫(0 to 3) (x^2-2x+1)dx。
答案:首先求出原函数F(x)=1/3x^3-x^2+x,然后计算F(3)-F(0)=1/3*27-9+3-0=6。
3. 求曲线y=x^3在点(1,1)处的切线方程。
答案:首先求导得到y'=3x^2,将x=1代入得到y'|_(x=1)=3,切线方程为y-1=3(x-1),即y=3x-2。
四、证明题(每题10分,共30分)1. 证明:若f(x)在[a,b]上连续,则∫(a to b) f(x)dx存在。
《微积分》期末考试试卷(含ABC三套)
四、计算题 1、求极限 lim
x 。 (6 分) x 0 2 4 x
B、 lim f (0 x) f (0)
x 0
f (x) f (0) x
)
D、 lim
x 0
f ( x x) f ( x) x
4、 (ln x)dx =( A、 ln x
2
B、 ln x C )
C、
2
1 x
1 D、 C x
5、定积分为零的是( A、 ( x 3 x 5 )dx
四、计算题 1、求极限 lim
1 cos x 。 (6 分) x 0 x2
2、 y ln( x x 2 a 2 ), 求y 。 (8 分)
3、 y cos x , 求dy 。 (8 分)
4、求 arctan xdx 。 (10 分)
2 sin 3 xdx 。 5、求 (10 分) 2
sin x A、 lim 1 x x
2
sin
B、 lim
x 0
1 x
1 x 1
C、 lim
x
2
tan x 1 x
D、 lim x sin
x
1 1 x
)
3、若函数 y f ( x) 在点 x=0 处可导,则 f (0) =( A、 f (0) C、 lim
x 0
2 2
B、 ( x 3 x 5 1)dx
2 2
C、 x sin xdx
2
D、 x 2 cos xdx
2
二、填空题(每空 3 分,共 18 分) 1、若函数 y f ( x) 在点 x。连续,则 lim f ( x) f ( x0 ) =
微积分——期末考试模拟试卷以及答案
《微积分II 》练习题一、 填空题1.函数()y x z +=ln 1的定义域是_______________ 。
2.函数(,)f x y =,则定义域为 。
3. 。
4.设(,)(1)arcsin f x y xy y =+-(,1)x f x = _______ 。
5.设222lny x e z x +=,则=)1,1(dz 。
6.函数yx z =在(2,1)点处的全微分为_______________。
7.22()Dxyf x y dxdy +=⎰⎰。
(其中D :由曲线221y x y ==与所围成)。
8. 改变积分次序210(,)xx dx f x y dy ⎰⎰= _________ 。
9.微分方程'sin cos x y y x e -+=的通解是 。
10.微分方程0=+'y y 满足初始条件10==x y的特解 。
11.计算_________________sin 21231=⎰⎰-dy y dx x12.微分方程02'"=+-y y 的通解是 。
13.差分方程02312=+-++t t t y y y 的通解是 。
14.计算极限.______________________)sin(42lim 00=+-→→xy xy y x二、选择题),(,),( 22=-=-y x f y x yxy x f 则1.极限).(2lim22)0,0(),(=+→yx xyy x(A );0 (B );1 (C );2 (D )不存在。
2.二元函数z=f(x,y)在点),(00y x 处各偏导数存在是全微分存在的( ) (A )充分条件 (B )必要条件 (C )无关条件 (D )充要条件 3.设 f(x,y) 在点(a,b )处的偏导数存在,则=--+→xb x a f b x a f x ),(),(lim 0( )(A) 0 (B) ),2(b a f x ' (C) ),(b a f x ' (D) ),(2b a f x ' 4.若)y , (x f z =在点P (x ,y )处x z ∂∂,yz ∂∂都存在,则下列结论正确的是( )。
微积分下学期末试卷及答案
微积分下学期末试卷及答案Document number:NOCG-YUNOO-BUYTT-UU986-1986UT微积分下期末试题(一)一、填空题(每小题3分,共15分)1、已知22(,)y f x y x yx +=-,则=),(y x f ___2(1)1x y y -+__________.2、已知, π=⎰∞+∞--dx ex 2则=⎰∞+--dx e x x21.3、函数22(,)1f x y x xy y y =++-+在 点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f __1______.5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________."6'0y y y -+= 二、选择题(每小题3分,共15分 6 知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛,则常数p 的取值范围是( C ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( B ).(A) 在原点无定义 (B) 在原点二重极限不存在(C) 在原点有二重极限,但无定义 (D) 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是( A). (A)123I I I >> (B)213I I I >> (C)123I I I <<(D)213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( D ).(A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( D ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x =的函数为23,0x y y =>。
微积分II期末模拟试卷三套及答案
微积分II 期末模拟试卷1(满分:100分;测试时间:100分钟) 一、填空题(3X5=15)1、幂级数∑∞=-112n n n n x 的收敛区间为__________2、由曲线23x y -=及直线x y 2=所围成平面区域的面积是____________ 3、改变⎰⎰--21222x x xfdy dx 的积分次序_______________________4、微分方程02=-'+''y y y 的通解=y5、设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于____________ 二、选择题(3X5=15) 6、定积分()dx ex x x⎰-+22的值是( )。
(A ) 0 ; (B ) 2 ; (C ) 2e 2+2; (D ) 26e7、一曲线在其上任意一点),(y x 处的切线斜率等于yx2-,这曲线是( ) (A)直线; (B)抛物线; (C)圆; (D)椭圆 8、设函数()xy f xyz =,其中f 可微,则=∂∂+∂∂y z x z y x ( ) (A ))('2xy yf (B ))('2xy yf -(C ))(2xy f x (D ))(2xy f x- 9、设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点.()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点10、设级数10nn na∞==∑,且()11n n n n a a ∞-=-∑收敛,则级数1n n a ∞=∑( )(A )收敛 (B ) 发散 (C )不定 (D ) 与n a 有关 三、计算题(5X10=50)11、计算下列定积分 (1)⎰-2234dx x x ;(2)求抛物线342-+-=x x y 及其在)3,0(-和)0,3(处的切线所围成图形的面积。
微积分下学期末试卷及答案
微积分下学期末试卷及答案一、填空题(每小题3分;共15分)1、 已知22(,)y f x y x yx +=-;则=),(y x f ___2(1)1x y y -+__________.2、 已知; π=⎰∞+∞--dx e x 2则=⎰∞+--dx e x x21______π_____.3、函数22(,)1f x y x xy y y =++-+在 点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=;则=')0,1(x f __1______.5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________."6'0y y y -+= 二、选择题(每小题3分;共15分 6知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛;则常数p 的取值范围是( C ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断;是因为该函数( B ).(A) 在原点无定义 (B) 在原点二重极限不存在(C) 在原点有二重极限;但无定义 (D) 在原点二重极限存在;但不等于函数)32,31(-值8、若22223111x y I x y dxdy+≤=--⎰⎰;222232121x y I x y dxdy≤+≤=--⎰⎰;222233241x y I x y dxdy≤+≤=--⎰⎰;则下列关系式成立的是( A).(A) 123I I I >> (B) 213I I I >> (C)123I I I <<(D)213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( D ). (A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+=10、设∑∞=12n na收敛;则∑∞=-1)1(n nna ( D ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 11、求由23x y =;4=x ;0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x=的函数为23,0x y y =>。
微积分期末试题及答案
微积分期末试题及答案(正文开始)第一部分:选择题(共20题,每题5分,共100分)1. 设函数 f(x) = x^3 - 2x + 1,求 f'(x)。
2. 求函数 f(x) = e^x 的不定积分。
3. 将函数 f(x) = sin(x) 在区间[0, π] 上进行定积分,求结果。
4. 设函数 f(x) = ln(x),求 f'(x)。
5. 求函数 f(x) = 2x^2 + 3x + 1 的定积分,其中积分区间为 [-1, 2]。
6. 设函数f(x) = √(x^2 + 1),求 f'(x)。
7. 求函数 f(x) = 3x^2 - 6 的不定积分。
8. 计算定积分∫(0 to π/2) cos(x) dx 的值。
9. 设函数 f(x) = e^(2x),求 f'(x)。
10. 求函数 f(x) = x^3 - 4x^2 + 5x - 2 的不定积分。
11. 计算定积分∫(0 to 1) x^2 dx 的值。
12. 设函数 f(x) = (sinx + cosx)^2,求 f'(x)。
13. 求函数 f(x) = 2e^x 的不定积分。
14. 计算定积分∫(1 to e) ln(x) dx 的值。
15. 设函数 f(x) = x^2e^x,求 f'(x)。
16. 求函数 f(x) = ln(2x + 1) 的不定积分。
17. 求函数 f(x) = sin^2(x) 在区间[0, π/2] 上的定积分。
18. 设函数 f(x) = e^(3x),求 f'(x)。
19. 求函数f(x) = ∫(1 to x) t^2 dt 的不定积分。
20. 计算定积分∫(0 to π) sin^2(x) dx 的值。
第二部分:计算题(共4题,每题25分,共100分)1. 计算函数f(x) = ∫(0 to x^2) (2t + 1) dt 在区间 [-1, 1] 上的定积分。
微积分期末试题及答案
微积分期末试题及答案一、选择题1.微积分的概念是由谁提出的?A.牛顿B.莱布尼茨C.高斯D.欧拉答案:B2.一个物体在 t 秒后的位移函数为 s(t) = 4t^3 - 2t^2 + 5t + 1。
求该物体在 t = 2 秒时的速度。
A.10B.23C.35D.49答案:C3.定义在[a,b]上的函数 f(x) 满足f(x) ≥ 0,对于任意 x ∈ [a,b] 都有∫[a,b] f(x) dx = 0,则 f(x) =A.常数函数B.0C.连续函数D.不满足条件,不存在这样的函数答案:B4.若函数 f 在区间 [a,b] 上连续,则在区间内至少存在一个数 c,使得A.∫[a,b] f(x) dx = 0B.∫[a,b] f(x) dx = f(c)C.∫[a,b] f'(x) dx = f(b) - f(a)D.∫[a,b] f(x) dx = F(b) - F(a),其中 F 为 f 的不定积分答案:D5.已知函数 f(x) = x^2,求在点 x = 2 处的切线方程。
A.y = 2x - 2B.y = 2x + 2C.y = -2x + 2D.y = -2x - 2答案:A二、计算题1.计算∫(2x - 1) dx。
解:∫(2x - 1) dx = x^2 - x + C。
2.计算极限lim(x→∞) (3x^2 - 4x + 2)。
解:lim(x→∞) (3x^2 - 4x + 2) = ∞。
3.计算导数 dy/dx,其中 y = 5x^3 - 2x^2 + 7x - 1。
解:dy/dx = 15x^2 - 4x + 7。
4.计算函数 f(x) = x^3 + 2x^2 - 5x + 3 的驻点。
解:驻点为 f'(x) = 0 的解。
f'(x) = 3x^2 + 4x - 5 = 0,解得 x = -1 或 x = 5/3。
5.计算定积分∫[0,π/2] sin(x) dx。
微积分下学期末试卷及答案
微积分下学期末试卷及答案一、填空题(每小题3分,共15分)1、 已知22(,)y f x y x yx +=-,则=),(y x f ___2(1)1x y y -+__________.2、 已知, π=⎰∞+∞--dx ex 2则=⎰∞+--dx e x x21______π_____.3、函数22(,)1f x y x xy y y =++-+在 点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f __1______.5、以xe x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________."6'0y y y -+= 二、选择题(每小题3分,共15分 6知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛,则常数p 的取值范围是( C ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( B ).(A) 在原点无定义 (B) 在原点二重极限不存在(C) 在原点有二重极限,但无定义 (D) 在原点二重极限存在,但不等于函数值)32,31(-8、若22223111x y I x y dxdy +≤=--⎰⎰,222232121x y I x y dxdy≤+≤=--⎰⎰,222233241x y I x y dxdy≤+≤=--⎰⎰,则下列关系式成立的是( A).(A) 123I I I >> (B) 213I I I >> (C)123I I I <<(D)213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( D ). (A) b ax y += (B) xe b ax y 3)(+= (C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( D ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x=的函数为23,0x y y =>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分期末模拟试题
分)4一、填空题(每小题分,本题共2012.⒈函数的定义域是x?f(x)??4
)?2ln(x
3??0x?sin?1,x?x)f(.⒉若函数在处连续,则 ,?x?0k?x?0x?k,?
⒊曲线在点处的切线方程是.xy?)1(1,
??⒋.?)xd(sinx35?????的阶数为⒌微分
方程.xysinx(yy?)?4
分)4分,本题共20二、单项选择题(每小题21x?x?1)?f((⒈设),则?)f(x2
B. A.x)x?1x( D.C.)1)(x?)(x?2x(x?2⒉若函数f (x)在点x处可导,则
( )是错误的.0A?f(x)A?limf(x)但.,在点函数f (x)x处有定义 B
A.00x?x0
C.函数f (x)在点x处连续D.函数f (x)在点x处可微00
2)1(x?y?在区间是()⒊函数)(?2,2.单调减少 BA.单调增加 D.先
减后增C.先增后减
???)(⒋?xfxd(x)?? B. A. c?(x(x)?c)xfxf)(x?f12??c?(xxf) C.
D. cx)?x1)f?(( 2 )⒌下列微分方程中为可分离变量方程的是(yddy;
B. ;A. y?x??y?xy xxddyddy
C.
D. ;)yx?(?xsinxy??x xxdd
三、计算题(本题共44分,每小题11分)
?⒊计算
28?6xx?lim⒈计算极限.24xx?5?4?xx,求⒉设.xy?23?sinyd
不定积分xxdxcos1?5lnx e?⒋计算定积分dx x1四、应用题(本题16分)欲做一个底为正方形,容积为32立方米的长方体开口容器,怎样做法用料
最省?微积分期末模拟试题参考答案
2(供参考)
一、填空题(每小题4分,本题共20分)
11⒈⒉1⒊⒋⒌??xy],2?,1)?(?1(?23?csinx22二、单项选择题(每小
题4分,本题共20分)
⒈C⒉B⒊D⒋A⒌B
三、(本题共44分,每小题11分)
(x?4)(x?2)x?22?lim??lim⒈解:原式11分
(x?4)(x?1)x?134xx?4?
x?x33cos2ln2?y?分9 ⒉解:
x ln2?3cos3xdy?(2)dx11分
??= ⒊解:sinxdx?xsinxx?xsinx?cosx?cxxcosd 11分1?5lnx11eee 2??.解:4)x5lnx)?(1?5lndx?(1?5lnx)d(1?105x111
71?1)?(36?分11 210
四、应用题(本题16分)322由已知用材料为,,高为,解:设底边的边长为xh?32,hx?yh2x
32128222?x??y?x4?xh?x?4x2xx 128?,解得是惟一驻点,易知令是函数的极小值点,此时0?y?2x?4?4xx?2x32有,所以当,时用料最省.16分2h??2x?h?424(2009.06.12)微积分初步课程答疑与期末复习指导(文本)
赵坚:各位老师,各位同学,大家好!现在是微积分初步教学活动时间,欢迎大家的加入。
今天活动的主题是:课程教学答疑和期末复习指导。
刘涌泉:赵老师,早上好!深圳电大报到。
赵坚:刘老师好!欢迎参加教学活动
考核形式与考核成绩确定
考核形式:作业考核和期末考试相结合.
考核成绩:满分为100分,60分为及格,其中平时作业成绩占考核成绩的30%,期末
考试成绩占考核成绩的70%.
与往年不同的是,从这个学期开始,在考题中为学生提供导数与积分的基本公式微积分初步课程考核内容与考试要求
一、函数、极限与连续
1.了解常量和变量的概念;理解函数的概念;了解初等函数和分段函数的概念.熟练掌握求函数的定义域、函数值的方法;掌握将复合函数分解成较简单函数的方法.
2.了解极限概念,会求简单极限.
3.了解函数连续的概念,会判断函数的连续性,并会求函数的间断点.
导数与微分部分考核要求二、.
.1.了解导数概念,会求曲线的切线方程导数基本公式、导数的四则运算法则、复合函数(2.熟练掌握求导数的方法.求导法则),会求简单的隐函数的导数.3.了解微分的概念,掌握求微分的方法.4.了解高阶导数的概念,掌握求显函数的二阶导数的方法三、导数应用考核要求.1.掌握函数单调性的判别方法.了解极值概念和极值存在的必要条件,掌握极值判别的方法2.
.3.掌握求函数最大值和最小值的方法四、一元函数积分考核要求理解原函数与不定积分的概念、性质,掌握积分基本公式,掌握用直接积1. .分法、第一换元积分法和分部积分法求不定积分的方法 2.了解定积分的概念、性质,会计算一
些简单的定积分.
3. 了解广义积分的概念,会计算简单的无穷限积分。
五、积分应用考核要求
会用定积分计算简单的平面曲线围成图形的面积(直角坐标系)和绕坐1.
标轴旋转生成的旋转体体积.掌握变量可分离的微分方程和一阶线性微分方2.
了解微分方程的几个概念,程的解法.
微积分初步(09春)期末模拟试题及参考答案
月2009年6
20分)一、填空题(每小题4分,本题共12x?4??xf().⒈函数的定义
域是)?2ln(x
3??0x??1,sinx?x)f(.则处连续,,在⒉若函数?kx?0?x?0?k,x?
y?x在点处的切线方程是⒊曲线.)(1,1
??⒋.?dxx(sin)35?????sinx)x?4y?y(y的阶数为
⒌微分方程.
答案:
11⒋⒌⒈⒉1⒊?x?y],2?(?1(?2,?1)3cx?sin22二、单项选择题(每小
题4分,本题共20分)
2,则(⒈设)1?(x?1)?xf?)(xf2
B.A.x)(x?1x C. D.)?12)(x(xx(x?2)?答案:C
⒉若函数f (x)在点x处可导,则( )是错误的.0但,B.A.函
数f (x)在点x处有定义)x?f(A A?(limfx)00x?x0
处可微在点x函数f (x) D.处连续C.函数f (x)在点x 00
答案:B2⒊函数)在区间是()xy?(?1),2(?2.单调减少 BA.单调增加
.先减后增 DC.先增后减答案:D???)(⒋?xfdx(x)?? A.
B. cx))?cxf?xf((x)?f(x12??
C.
D. cf?x(x)c)??1)f(x(x2 A答案:)⒌
下列微分方程中为可分离变量方程的是(
yddy; A. B. ;y????xyxy xddxyydd D.
C. ;)y?xx?x(?xy?sin xxdd答案:B分,每小题11分)三、计算题(本题
共4428xx??6lim⒈计算极限.24??5xx4x?2)?2xx(?4)(x?2??lim?lim11 分
解:原式3x()1?x4?)(1?x4?x4?x
x,求. ⒉设x?sin3y?2yd x?解:9分
x?23ycos?23ln
x11分ln2?3cy?(2o3xsx)dd
?⒊计算不定积分xcosxdx??= 解:sinxdx?xsinxdx?xsinx?cosx?cxcosx
11分1?5lnx e?⒋计算定积分dx x11?5lnx11eee2??
解:)x?5lnx)?(1(1?5lnx)d(1?5ln?dx x51011117
11分?)?1(?36102
四、应用题(本题16分)
欲做一个底为正方形,容积为32立方米的长方体开口容器,怎样做法用料最省?
322由已知,,用材料为解:设底边的边长为,高为y xh?32,xh?h2x
32128222???yx4?xh?x?4xx?2xx 128?,解得是惟一驻点,易知令是函数的极小值点,此时0x?y??24??4xx2x32有,所以当,时用料最省.16分2h??2h?4x?24
余梦涛:赵老师好,四川电大报到,刚才有学生找我。
你好,余老师欢迎参加教学活动。
赵坚:
赵坚:建议――在期末复习中要先梳理教学内容,在做练习,练习的题目以作业模拟试题是为大家复习提供考试试卷题和期末复习指导中综合练习的题目为主,型,分数及难易程度的参考。
这样就好了。
余梦涛:
赵坚:建议――这次考试在试卷中为大家提供了导数和积分的基本公式,所以在复习中,大家要把功夫用到如何运用公式求解问题上。
余梦涛:知道了。
余梦涛:提问――试卷中为大家提供了导数和积分的基本公式?其他课程如经济数学基础有吗?
赵坚:都有的,从这个学期开始。
何清红:不定积分与定积分的区别?
赵坚:定积分有积分限,不定积分没有积分限,定积分是一个数值,不定积分是无穷多函数;定积分是被积函数的一个原函数在积分上下限函数值之差
何清红:导数与微分如何区分?
赵坚:微分=导数×dx
如何掌握函数?何清红:赵坚:掌握函数的两个要素:定义域与对应关系
杨海燕:今年考试题要在试卷上写公式?怎样的写法啊?
赵坚:把教材中导数和积分的基本公式放到试卷上。
杨海燕:微积分初步教材有录象资料吗(除IP课件外)?
赵坚:杨老师好,欢迎参加教学活动,微积分初步的录像教材已经制作完成,下学期就可以下发了。
赵坚:活动就要结束了,祝各位老师工作顺利,身体健康!祝各位同学考试取得
好成绩!。