(完整版)新人教版八年级数学下二次根式练习题
新人教版八年级数学下二次根式练习题及答案
![新人教版八年级数学下二次根式练习题及答案](https://img.taocdn.com/s3/m/fa16c179fab069dc502201fe.png)
人教版八年级数学下二次根式练习题一、单项选择题(每小题2分,共20分) 1.下列各式是二次根式的是( )A.2--xB.xC.22+x D.22-x 2.x 的取值范围是( )A.1x >B.1x ≥C.1x ≤D.1x <)A.C.2-D.24.下列根式中属于最简二次根式的是( )5.下列计算错误..的是( )A.B.=C.=D.3= 6.估计202132+⨯的运算结果应在( ) A.6到7之间 B.7到8之间 C.8到9之间 D.9到10之间 7.最简二次根式x 26-与2是同类二次根式,则x 的值为( ) A.-2 B.2 C.-4 D.4 8.n 的最小值是( )A.2B.3C.4D.5 9.x ,小数部分为yy -的值是( )A.310.已知△ABC 的三边分别为2,x ,5,则化简22)7()3(-+-x x 的值是( )A.102-xB.4C.x 210-D.4- 二、填空题(每小题2分,共20分)1.已知2=a ,则代数式12-a 的值是.2.__________==.3.计算:825-=.4.比较大小:--). 5.若实数y x ,2(0y =,则xy 的值为.6.已知x y ==33_________x y xy +=7.三角形的一边长是cm 42,这边上的高是cm 30,则这个三角形的面积是2cm8.已知a ,b 为两个连续的整数,且a b <,则a b +=.9.如果101=+a a ,则221aa +的值是. 10.观察下列各式:①312311=+,②413412=+③514513=+,……请用含n (n ≥1)的式子写出你猜想的规律:.三、计算题(每小题5分,共20分);2.÷3.)632)(63(2-+;4.6)273482(÷-.四、求值题(每小题5分,共10分) 1.当1x =时,求代数式652--x x 的值.2.先化简,再求值:1212143222-+÷⎪⎭⎫ ⎝⎛---+x x x x x x,其中x =五、解答题(每小题7分,共14分) 1.若实数,x y满足1y <,求11y y --的值.2.解方程组⎩⎨⎧=+=+8361063y x y x ,并求xy 的值.六、解答题(每小题8分,共16分)1.已知正方形纸片的面积是232cm ,如果将这个正方形做一个圆柱的侧面,请问这个圆柱底面半径是多少?(精确到0.1,π取3.14)2.已知a 、b 、c 满足0235)8(2=-+-+-c b a .求:(1)a 、b 、c 的值;(2)试问:以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.3、已知,a b 为等腰三角形的两条边长,且,a b满足4b =,求此三角形的周长.4、阅读下面问题:12)12)(12()12(1211-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+;……仿上的规律计算10099199981431321211++++++++++ .参考答案第Ⅰ卷一、选择题:二、填空题:1.1;2.6,18;3.23;4.<;5.32;6.10;7.353;8.11;9.8;10.21)1(++n n . 三、1.334;2.223;3.6;4.22-. 四、1.575-;2.22. 五、1.-1;2.232. 六、1.0.7.2.(1)22=a ,5=b ,23=c ;(2)能构成三角形(525=>=+b c a ),其周长为525+.第Ⅱ卷一、10或11. 二、9.。
新人教版八年级下册二次根式(全章)习题及答案
![新人教版八年级下册二次根式(全章)习题及答案](https://img.taocdn.com/s3/m/6effcb7ff18583d048645933.png)
二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+互为相反数,则()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a ,则)A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a≤)A. (1a-B. (1a-C. (1a-D. (1a-18.=x的取值范围是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.)A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()23123224==-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421.2440y y-+=,求xy的值。
22. 当a取什么值时,代数式1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
16.2 二次根式的乘除1. 当0a ≤,0b__________=。
人教版八年级下册数学第十六章《二次根式》测试题及答案
![人教版八年级下册数学第十六章《二次根式》测试题及答案](https://img.taocdn.com/s3/m/96b6e174a31614791711cc7931b765ce05087abe.png)
八年级下册数学《二次根式》单元测试卷评卷人得分一、单选题1.下列各式中,不属于二次根式的是()A B C D .2x 的取值范围是()A .x >15B .x≥15C .x≤15D .x≤53a 的取值范围是()A .﹣3≤a≤0B .a≤0C .a <0D .a≥﹣34.下列二次根式中,是最简二次根式的是()AB C D .5.下列运算结果正确的是()A =﹣9B .2(=2C 3=D .5=±6.若a、b ,则a 和b 互为()A .倒数B .相反数C .负倒数D .有理化因式7是同类二次根式的是()A B C D .8.下列计算正确的是()AB C =6D .=49.下列计算正确的是()A B .C .D .10.如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为()A.78cm2B.(2cm2C.cm2D.cm2评卷人得分二、填空题11中,x的取值范围是____________.12.若a、b为实数,且b=117a++4,则a+b=_____.13.计算:232⎛⎫⎪⎪⎝⎭=_____.14.观察下列等式:=1+11﹣111+=112,1+12﹣121+=116,1+13﹣131+=1112,…请你根据以上规律,写出第n个等式_____.15.若a<11=________;16.计算(5﹣2)2018(5+2)2019=_____.17.计算:)2=_____.18.不等式x﹣2x的解集是_____.评卷人得分三、解答题19.化简:(1(2+(10+|﹣2|﹣(1 2)﹣120.已知x、y是实数,且x+1,求9x﹣2y的值.21.已知实数a、b、c.22解:设x222x=++2334x=+-,x2=10∴x=.+0.+的值.23.(1)计算9(2)解不等式组()1318312x xx x ⎧--<-⎪⎨-≥+⎪⎩24.(1+(2)如图,数轴上点A 和点B 表示的数分别是1和.若点A 是BC 的中点.求点C 所表示的数.25.在解决问题“已知a =,求2281a a -+的值”时,小明是这样分析与解答的:∵2a ===∴2a -=∴()223a -=,即2443a a -+=∴241a a -=-∴()()222812412111a a a a -+=-+=⨯-+=-.请你根据小明的分析过程,解决如下问题:(1);(2)若a =,求2361a a --的值.参考答案1.B 【解析】【分析】根据二次根式的定义(当a ≥0叫二次根式)进行判断即可.【详解】解:当a ≥0叫二次根式.A 、它属于二次根式,故本选项错误;B 、﹣2<0,不属于二次根式,故本选项正确;C 、它属于二次根式,故本选项错误;D 、x 2+1>0,属于二次根式,故本选项错误;故选B .【点睛】本题主要考查了二次根式的定义,当a≥0握二次根式的定义.2.B【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,5x﹣1≥0,解得,x≥1 5,故选B.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.A【解析】【分析】根据二次根式的性质列出不等式,解不等式即可解答.【详解】==﹣∴a≤0,a+3≥0,∴﹣3≤a≤0.故选A.【点睛】本题考查二次根式的性质,根据二次根式的性质列出不等式是解题的关键.4.B【解析】【分析】根据最简二次根式概念即可解题.【详解】解:A.=22,错误,B.是最简二次根式,正确,C.错误,D.错误,故选B.【点睛】本题考查了最简二次根式的概念,属于简单题,熟悉概念是解题关键.5.B【解析】=9,所以A错误,因为(22=,所以B正确,=所以C错误,5=,所以D错误,故选B.6.D【解析】【分析】根据二次根式的运算法则即可求出答案【详解】a+b≠0,ab≠±1∴a与b不是互为相反数,倒数,负倒数故选D【点睛】本题考查二次根式,解题的关键是正确理解相反数,倒数,负倒数的概念.7.A【解析】【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【详解】解:A是同类二次根式,故本选项正确;B=不是同类二次根式,故本选项错误;C 、=不是同类二次根式,故本选项错误;D=与不是同类二次根式,故本选项错误;故选A .【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数8.B 【解析】【分析】根据同类二次根式才能合并可对A 进行判断;根据二次根式的乘法对B 进行判断;先把化为最简二次根式,然后进行合并,即可对C 进行判断;根据二次根式的除法对D 进行判断.【详解】解:A 与不能合并,所以A 选项不正确;B 、=2B 选项正确;C 、×,所以C 选项不正确;D÷=2,所以D 选项不正确.故选B .【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.9.D 【解析】【分析】根据二次根式加减运算法则,判断是否是同类二次根式即可求解.【详解】解:A.,不是同类根式无法进行加减,B.2+已经是最简形式,不是同类根式无法进行加减,C.已经是最简形式,不是同类根式无法进行加减,D.=正确.故选D.【点睛】本题考查了根式的加减,属于简单题,熟悉同类根式的概念,根式加减法则是解题关键. 10.D【解析】【分析】首先根据题意求出大正方形的边长,然后求出面积,用大正方形的面积减去两个小正方形的面积,即可求得.【详解】解:从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,大正方形的边长是留下部分(即阴影部分)的面积是:2-30-48=cm2故选D.【点睛】本题主要考查的是二次根式的加减法运算,属于基础题目.解决本题的关键是:首先求出大正方形的边长,然后求出面积,再减去两个小正方形的面积,即可求得.11.x≥-1.【解析】【分析】根据二次根式有意义的条件可得x+1≥0,再解不等式即可.【详解】由题意得:x+1≥0,解得:x≥−1,故答案为x≥−1.【点睛】考查二次根式有意义的条件,被开方数大于等于0.12.5或3【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩,解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.13.34【解析】【分析】直接利用二次根式的乘法运算法则求出即可.【详解】解:(2)2=34.故答案是:34.【点睛】主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键.14()()211111n n n n n n ++=+=++【解析】【分析】根据已知算式得出规律,根据规律求出即可.【详解】解:∵观察下列等式:111111112=+-=+111112216=++=+1111133112=+-=+…∴第n 1n -11n +=1+()11n n +.=1+1n -11n +=1+()11n n +.【点睛】本题考查了二次根式的性质的应用,关键是能根据题意得出规律.15.-a【解析】分析:根据二次根式的性质:a 2=|a |,再根据负数的绝对值等于它的相反数,非负数的绝对值等于它本身,进行化简即可.详解::∵a <1,∴10a -<,1-=11a --,11a =--,=a--.故答案为 a点睛:本题考查了二次根式的性质与化简.解题的关键是注意被开方数与开方的结果都是一个非负数.16.5+2【解析】【分析】把(5−2)2018(5+2)2019变形为(5−2)2018(5+2)2018(5+2),逆用积的乘方运算即可.【详解】(5−2)2018(5+2)2019=(5−2)2018(5+2)2018(5+2)=[(5−2)(5+2)]2018(5+2)=(5−4)2018(5+2)=5+2.故答案为:5+2.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.171+【解析】【分析】利用多项式乘法展开,然后合并即可.【详解】解:原式=﹣6+7﹣+1.+1.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.2x>-【解析】【分析】不等式移项合并,把x系数化为1,即可求出解集.【详解】x-2x,-1)x>-2,x>,x>-2.故答案为x>-2.【点睛】此题考查了解一元一次不等式和分母有理化,熟练掌握运算法则是解本题的关键.19.(1),(2)4.【解析】【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)根据二次根式的乘法法则和零指数幂的意义计算.【详解】解:(1)原式=﹣;++-(2122=3+1=4.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.-1.【解析】【分析】根据被开方数大于等于0列式求出x的值,再求出y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,y﹣5≥0,5﹣y≥0∴y=5x=1∴9x﹣2y=9×1﹣2×5=﹣1∴9x﹣2y的值为﹣1【点睛】a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.21.2a+b−2c【解析】【分析】根据数轴上点的位置判断出绝对值和根号里边式子的正负,利用绝对值和二次根式的代数意义化简,去括号合并即可得到结果.【详解】由数轴可知:a>0,a+b=0,c−a<0,b−c>0∴原式=a−0−(c−a)+b−c=a−c+a+b−c=2a+b−2c【点睛】本题考查的是实数与数轴,熟练掌握绝对值和二次根式的概念是解题的关键.22【解析】【分析】根据题意给出的解法即可求出答案即可.【详解】设x两边平方得:x 2=()2+2,即x 2+4,x 2=14∴x.0,∴x.【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.23.(1),(2)原不等式组无解.【解析】【分析】(1)按二次根式的乘除法法则,从左往右依次算起;(2)分别解组中的两个方程,再得到不等式组的解集.【详解】解:(1)原式=÷=5273⨯⨯=(2)()1318312x x x x ⎧--<-⎪⎨-+⎪⎩①② ,解①,得x >﹣2,解②,得x ≤﹣5∴原不等式组无解.【点睛】本题考查了二次根式的乘除运算和一元一次不等式组的解法.掌握二次根式的乘除法法则和不等式组的解法是解决本题的关键.24.(1(2)【解析】【分析】(1)根据二次根式的乘除法法则和平方差公式计算.(2)设点C所表示的数是x,根据AC=AB列出方程,解方程即可.【详解】+-,(1)原式253.(2)设点C所表示的数是x,∵点A是线段BC的中点,∴AC=AB,∴,∴即点C所表示的数是.故答案为【点睛】本题考查了实数与数轴,用到的知识点为:数轴上两点间的距离公式,线段中点的定义.掌握公式与定义是解题的关键.同时也考查了二次根式的混合运算.25.(1(2)2.【解析】【分析】(1)根据分母有理化的方法可以解答本题;(2)根据题目中的例子可以灵活变形解答本题.【详解】解:(12+=2,2==+(2)∵1.a ===+∴1a -=∴2212a a -+=,∴221a a -=∴2363,a a -=∴23612a a --=.【点睛】二次根式的化简求值,熟练掌握分母有理化的方法是解题的关键.。
人教版八年级数学下学期 第16章 二次根式 单元练习 含答案
![人教版八年级数学下学期 第16章 二次根式 单元练习 含答案](https://img.taocdn.com/s3/m/d546d86d1a37f111f1855bfa.png)
21.解:如图 1,由题意得:
正方形空地的边长为
= (米),儿童游乐场的边长为 = (米)
∵﹣=
∴休息区东西向和南北向的边长分别为 米, 米
∵2.25<8<9
∴1.5< <3 ∴休闲椅只能东西方向摆放,且只能摆放一排.
∵36<72<81
∴2×3< <3×3
∴休闲椅在东西方向上可并列摆放 2 张. 答:休息区只能摆放 2 张这样的休闲椅.
18.计算:
﹣2a
+2ab2 (b>0)
19.求值: (1)已知 a=3+2 ,b=3﹣2 ,求 a2+ab+b2 的值;
(2)已知:y>
+
+2,求
+5﹣3x 的值.
20.已知实数 a、b、c,满足 =1,ab<0,bc>0,|c|>|b|, (1)在数轴上标出表示实数 a、b、c 的点的大致位置; (2)化简|c﹣a|﹣|b﹣c+a|﹣ .
A.1
ቤተ መጻሕፍቲ ባይዱ
B.1﹣2b﹣2a
C.2a﹣2b+1
D.2a+2b﹣1
10.若实数 m 满足|m﹣4|=|m﹣3|+1,那么下列四个式子中与(m﹣4)
相等
1/6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
的是( )
A.
B.
C.
D.
二.填空题(共 6 小题)
11.计算:
=
.
12.已知实数 m、n 满足|4﹣2m|+(n﹣2)2+
6/6
=2. 20.解:(1)∵
=1,
∴a>0, ∵ab<0, ∴b<0,
5/6
新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(含答案解析)(3)
![新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(含答案解析)(3)](https://img.taocdn.com/s3/m/153671c36bd97f192379e91d.png)
一、选择题1.下列是最简二次根式的是( )ABCD2.下列计算正确的是( )A =±B .=C =D 2=3.下列二次根式中是最简二次根式的是( )A BC D4.2a =-,那么下列叙述正确的是( ) A .2aB .2a <C .2a >D .2a5.( ) A .1个B .2个C .3个D .4个6.下列计算中正确的是( ).A =B 5=-C 4=D =7.下列式子中无意义的是( )A .B .C .D .8.下列算式中,正确的是( )A .3=B =C =D 4=9.1=-,则a 与b 的大小关系是( ). A .a b ≤ B .a b <C .a b ≥D .a>b 10.下列各式计算正确的是( )A +=B .26=(C 4=D =11.估计- ) A .0到1之间B .1到2之间C .2到3之间D .3到4之间12.下列二次根式中,不能..合并的是( )ABCD二、填空题13.若2<x <3|3|x -的正确结果是_____. 14.已知3y =,则xy 的值为__________.15.23()a -=______(a≠0),2-=______,1-=______. 16._____. 17=_______. 18.比较大小:19.在实数范围内有意义,则x 的取值范围是______. 20.已知2160x x-=,则x 的值为________.三、解答题21.(10|12021-; (2)已知:3(4)64x +=-,求x 的值. 22.0111()2π--+.23.(1(2)解方程组321456x y x y +=⎧⎨-=⎩①②.24.011(3)()3π---+. 25.我们规定用(a ,b)表示一对数对.给出如下定义:记m =,n = a > 0,b > 0),将(m ,n )与(n ,m )称为数对(a ,b )的一对“对称数对”. 例如:(4,1)的一对“对称数对”为(12,1)和(1,12); (1)数对(9,3)的一对“对称数对”是 ;(2)若数对(3,y )的一对“对称数对”相同,则y 的值为 ; (3)若数对(x ,2)的一个“对称数对”1),则x 的值为 ; (4)若数对(a ,b )的一个“对称数对”ab 的值.26.(1)计算:))2221-.(2)先化简,再求值:221193x x x +⎛⎫÷- ⎪-+⎝⎭,其中3x =+.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据最简二次根式的定义逐项分析即可. 【详解】,是最简二次根式;=2,故不是最简二次根式,不符合题意;=,故不是最简二次根式,不符合题意;D.3=,故不是最简二次根式,不符合题意; 故选A. 【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.2.B解析:B 【分析】根据二次根式的性质进行化简和计算,然后进行判断即可. 【详解】解:A =,所以此选项错误;B ,33==⨯=C -D ,故选:B . 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.3.A解析:A 【分析】利用最简二次根式定义判断即可. 【详解】2=,故本选项不合题意;=2=,故本选项不合题意. 故选:A . 【点睛】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.4.A解析:A 【分析】根据二次根式的性质可得a-2≤0,求出a 的取值范围,即可得出答案. 【详解】解:|2|2=-=-a a ,20a ∴-, 2a ∴,故选:A . 【点睛】本题考查了二次根式的性质,掌握二次根式的性质是解题的关键.5.B解析:B 【分析】根据最简二次根式的定义进行求解即可. 【详解】=2==2个,故选:B.【点睛】本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6.D解析:D【分析】根据二次根式的性质,对各个选项逐一分析,即可得到答案.【详解】不可直接相加运算,故选项A错误;5=,故选项B错误;2==,故选项C错误;==D正确;故选:D.【点睛】本题考查了二次根式的整式;解题的关键是熟练掌握二次根式混合运算的性质,从而完成求解.7.A解析:A【分析】先分别将各式化简,再根据二次根式的非负性解答.【详解】A、-3,由被开放数不能为负数得此式无意义;B、=3>0,故有意义;C、=-3,有意义;D、=13-,有意义,故选:A.【点睛】此题考查二次根式的化简,二次根式的非负性,二次根式具有双重非负性,被开方数为非负数,二次根式的值为非负数.8.C解析:C【分析】根据二次根式的除法与加减法法则逐项判断即可得. 【详解】A 、=B 235=+=,此项错误;C ==D 2==,此项错误;故选:C . 【点睛】本题考查了二次根式的除法与加减法,熟练掌握运算法则是解题关键.9.B解析:B 【分析】根据二次根式非负性质,得a b ≤;再根据分式的定义,得0a b -≠;即可得到答案. 【详解】∵1=-∴()a b =--∵∴0a b -≤ ∴a b ≤又∵1=- ∴0a b -≠ ∴a b < 故选:B . 【点睛】本题考查了二次根式、分式的知识;解题的关键是熟练掌握二次根式、分式的性质,从而完成求解.10.D解析:D 【分析】根据二次根式的运算法则一一判断即可. 【详解】AB 、错误,212=(;C ==D ==故选:D . 【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.11.B解析:B 【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案. 【详解】解:2, ∵34<<,∴.122<<, 故选:B . 【点睛】此题主要考查了估算无理数的大小,正确估算无理数是解题关键.12.B解析:B 【分析】并的二次根式. 【详解】解:AB 被开方数不相同,不是同类二次根式,不能进行合并,故本选项正确;C 被开方数相同,是同类二次根式,能进行合并,故本选项错误;D 故选B . 【点睛】本题主要考查二次根式的化简,同类二次根式的定义,关键在于熟练掌握同类二次根式的定义,正确的对每一选项中的二次根式进行化简.二、填空题13.【分析】根据二次根式的性质绝对值的性质先化简代数式再合并【详解】解:∵2<x <3∴|x ﹣2|=x ﹣2|3﹣x|=3﹣x 原式=|x ﹣2|+3﹣x =x ﹣2+3﹣x =1故答案为:1【点睛】此题考查化简求值解析:【分析】根据二次根式的性质,绝对值的性质,先化简代数式,再合并. 【详解】 解:∵2<x <3,∴|x ﹣2|=x ﹣2,|3﹣x |=3﹣x , 原式=|x ﹣2|+3﹣x =x ﹣2+3﹣x =1. 故答案为:1. 【点睛】此题考查化简求值,整式的加法法则,正确掌握二次根式的性质,绝对值的性质是解题的关键.14.6【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:6【点睛】本题考查了二次根式有意义的条解析:6 【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可. 【详解】由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2,当x=2时,y=3, 所以236xy =⨯=.故答案为:6. 【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.15.【分析】根据负整数指数幂的运算法则计算即可【详解】=;;【点睛】此题考查了负整数指数幂:a-n=也考查了分母有理化解析:61a 13+ 【分析】根据负整数指数幂的运算法则计算即可. 【详解】23()a -=661a a-==;2-==13;1-===【点睛】此题考查了负整数指数幂:a-n=1(0)naa≠.也考查了分母有理化.16.【分析】先分母有理化然后化简后合并即可【详解】解:=2﹣=故答案为:【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后合并同类二次根式即可在二次根式的混合运算中如能结合题目特点灵.【分析】先分母有理化,然后化简后合并即可.【详解】=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.【分析】先化简二次根式再进行计算即可【详解】解:=故答案为:【点睛】此题主要考查了二次根式加减法关键是灵活运用二次根式的性质时行化简解析:【分析】先化简二次根式,再进行计算即可.【详解】2===故答案为:【点睛】此题主要考查了二次根式加减法,关键是灵活运用二次根式的性质时行化简.18.>【分析】根式比较大小:通常先转化成分数指数幂寻找分母的最小公倍数作为新的指数从而进行解题【详解】解:分母2和3的最小公倍数为6;∴由于即故所以故答案为:>【点睛】本题考查了实数的比较大小解题的关键解析:> 【分析】根式比较大小:通常先转化成分数指数幂,寻找分母的最小公倍数作为新的指数.从而进行解题. 【详解】1310=125=,分母2和3的最小公倍数为6; ∴16623(10)10100===,16632(5)5125===,由于100125<,即66<,,所以>. 故答案为:>. 【点睛】本题考查了实数的比较大小,解题的关键是掌握比较大小的法则进行计算.19.【分析】根据二次根式的被开方数大于或等于0分式的分母不能为0即可得【详解】由二次根式的被开方数大于或等于0得:解得由分式的分母不能为0得:解得则x 的取值范围是故答案为:【点睛】本题考查了分式有意义的 解析:1x >【分析】根据二次根式的被开方数大于或等于0、分式的分母不能为0即可得. 【详解】由二次根式的被开方数大于或等于0得:10x -≥, 解得1≥x ,由分式的分母不能为0得:10x -≠, 解得1x ≠,则x 的取值范围是1x >, 故答案为:1x >. 【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式和二次根式的概念是解题关键.20.4或2【分析】先求出x 的取值范围然后分或求解即可;【详解】解:由题意得x≠0且x-2≥0∴x≥2且x≠0∵∴或当时则x2-16=0解得x=4或x=-4(舍去);当时则x-2=0解得x=2;∴x 的值是解析:4或2【分析】先求出x 的取值范围,然后分2160x x-=0=求解即可; 【详解】解:由题意得x≠0,且x-2≥0,∴x≥2,且x≠0,∵2160x x-=, ∴2160x x-=0=, 当2160x x-=时, 则x 2-16=0,解得x=4,或x=-4(舍去);0=时,则x-2=0,解得x=2;∴x 的值是4或2,故答案为:4或2.【点睛】本题考查了二次根式有意义的条件,分式的值为零的条件,以及分类讨论的数学思想,分类讨论是解答本题的关键.三、解答题21.(12)8-【分析】(1)根据立方根、绝对值、零指数幂、二次根式的性质计算,即可得到答案; (2)根据立方根的性质,计算得44x +=-,再通过求解方程,即可得到答案.【详解】(10|12021-211=+-=(2)∵3(4)64x +=- ∴44x +==-∴8x=-.【点睛】本题考查了立方根、绝对值、零指数幂、二次根式、一元一次方程的知识;解题的关键是熟练掌握了立方根、绝对值、零指数幂、二次根式、一元一次方程的性质,从而完成求解.22.【分析】根据二次根式、绝对值、零指数幂、负整数指数幂的性质计算,即可得到答案.【详解】0111()2π--+=112-+=【点睛】本题考查了二次根式、绝对值、零指数幂、负整数指数幂的知识,解题的关键是熟练掌握二次根式、绝对值、零指数幂、负整数指数幂的性质,然后根据实数的运算法则计算,即可完成求解.23.(12+;(2)24xy=⎧⎨=⎩【分析】(1)先化简二次根式,再进行加减运算;(2)①+②×2得到x的值,再把x的值代入② 求出y的值即可.【详解】解:(1+-=+-2=+-2=.(2)321456x yx y+=⎧⎨-=⎩①②①+②×2得,13x=26解得,x=2把x=2代入②得,10-y=6解得,y=4∴原方程组的解为24xy=⎧⎨=⎩.【点睛】此题主要考查了二次根式的加减运算和解二元一次方程组,熟练掌握运算法则是解答此题的关键.24.2【分析】直接利用二次根式的性质以及零指数幂的性质、负整数指数幂的性质分别化简得出答案.【详解】解:原式=13+=2+【点睛】此题主要考查了二次根式的性质以及零指数幂的性质、负整数指数幂的性质,正确化简各数是解题关键.25.(1)1(3与1)3, ;(2)13 ;(3)1 ;(4)16ab =或6ab = 【分析】(1)根据“对称数对”的定义代入计算即可;(2)先将数对(3,y)的一对“对称数对”表示出来,根据“数对(3,y)的一对“对称数对”相同”,可得y 的值;(3)先将数对(x ,2)的一对“对称数对”表示出来,根据“数对(x ,2)的一个“对称数对”是1)”,即可得出x 的值;(4)先将数对(a ,b)的一对“对称数对”表示出来,根据“数对(a ,b)的一个“对称数对”是分两种情况进行讨论,分别得出a ,b 的值,然后得出ab 的值.【详解】解:(1)由题意得13=,∴数对(9,3)的一对“对称数对”是1(3与1)3,;(2)由题意得,∴数对(3,y )的一对“对称数对”为3⎛ ⎝与3⎭, ∵数对(3,y )的一对“对称数对”相同,∴= ∴13y =;(3)∵数对(x ,2)的一对“对称数对”是与而数对(x ,2)的一个“对称数对”,1),∴1=, ∴x=1;(4)∵数对(a ,b)的一对“对称数对”是与,而数对(a ,b)的一个“对称数对”是,∴==1,183a b == ∴11863ab =⨯=;==1,318a b ==, ∴113186ab =⨯=, 综上所述,16ab =或6ab =. 【点睛】 本题考查了实数的运算,“对称数对”的定义.理解题意是解题的关键.26.(1)7-+;(2)13x -,2. 【分析】(1)利用平方差公式和完全平方式展开,再进行根式的加减运算即可求出答案. (2)先将进行因式分解和括号内的通分运算,再将除法变为乘法即可化简,将3x =【详解】(1)原式()22)51=---.3451=--+.7=-+(2)原式()()2313333x x x x x x ++⎛⎫=÷- ⎪+-++⎝⎭. ()()22333x x x x x ++=÷+-+. ()()23332x x x x x ++=⋅+-+.13x =-.===.当3x=+【点睛】本题考查二次根式的混合运算和分式的化简求值,掌握各运算的运算顺序和方法是解答本题的关键.。
新人教版初中数学八年级数学下册第一单元《二次根式》测试题(包含答案解析)(1)
![新人教版初中数学八年级数学下册第一单元《二次根式》测试题(包含答案解析)(1)](https://img.taocdn.com/s3/m/e59cf3375ef7ba0d4a733be2.png)
一、选择题1.下列式子中正确的是( )A =B .a b =-C .(a b =-D .22==2.若2a 3<<( )A .52a -B .12a -C .2a 1-D .2a 5- 3.下列计算正确的是( )A .236a a a +=B .22(3)6a a -=C .-=D .()222x y x y -=-4.下列二次根式的运算:===,2=-;其中运算正确的有( ).A .1个B .2个C .3个D .4个 5.下列计算正确的是( )A . 3 BC .3=D 36. ) A .1个B .2个C .3个D .4个 7.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .8.估计-⨯) A .0到1之间B .1到2之间C .2到3之间D .3到4之间9.=x 可取的整数值有( ).A .1个B .2个C .3个D .4个 10.下列计算正确的是( )A .3236362⨯==B 4=±C .()()15242⎛⎫-÷-⨯-=± ⎪⎝⎭D .(223410-⨯++= 11.下列根式是最简二次根式的是( )A B C D 12.函数y =x 的取值范围是( ). A .2x > B .2x ≠ C .2x < D .0x ≠二、填空题13.在y =中,x 的取值范围是:______________.14.已知m =m a =_____________.15.若a 的倒数是的相反数是0,c 是-1的立方根,则c a b a b b c c a++---=____________.16.若a 的小数部分,则()6a a +=_____.17.2=_____=______.18.若1<x <4=___________19.2|11|(12)0b c -++=,则a b c ++的平方根是______.20.使式子2x +有意义的x 的取值范围是______. 三、解答题21.化简(1)+(222.已知a ,b ,c 满足2|(0a c =.试问以a ,b ,c 为边能否构成三角形?若能,求出其周长;若不能,请说明理由.23.计算:(1(2)2;(3)21)2)+;(4(1101|3|(2)2π-⎛⎫--+ ⎪⎝⎭;(2)22)++.25.先化简,再求值:211(1)a a a -++,其中1a =.26.已知1x =,x 的整数部分为a ,小数部分为b ,求a b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的运算法则分别计算,再作判断.【详解】解:A 、不是同类二次根式,不能合并,故错误,不符合题意;B 、计算错误,不符合题意;C 、符合合并同类二次根式的法则,正确,符合题意.D 、计算错误,不符合题意;故选:C .【点睛】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并. 2.D解析:D【分析】先根据23<<a 给二次根式开方,得到()a 23a ---,再计算结果就容易了.【详解】解:∵23<<a ,∴=|2||3|a a ---()a 23a =---a 23a =--+故选:D【点睛】本题考查了化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.3.C解析:C【分析】根据合并同类项、幂的乘方与积的乘方、二次根式的加减及完全平方公式逐个进行判断即可.【详解】解:A.2a+3a=5a,因此选项A不符合题意;B.(-3a)2=9a2,因此选项B不符合题意;=-=C符合题意;C.(3D.(x-y)2=x2-2xy+y2,因此选项D不符合题意;故选:C.【点睛】本题考查合并同类项、幂的乘方与积的乘方、二次根式的加减及完全平方公式,依据法则或运算性质逐个进行计算才能得出正确答案.4.C解析:C【分析】由二次根式的性质、二次根式的混合运算进行计算,再进行判断,即可得到答案.【详解】=,故①正确;==②正确;=,故③正确;2,故④错误;∴正确的3个;故选:C.【点睛】本题考查了二次根式的性质、二次根式的混合运算,解题的关键是熟练掌握运算法则进行计算.5.C解析:C根据二次根式的加减法对A 、B 进行判断;根据平方差公式对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】解:A 、原式=A 选项的计算错误;B B 选项的计算错误;C 、原式=5﹣2=3,所以C 选项的计算正确;D D 选项的计算错误.故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,是解题的关键.6.B解析:B【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分母),判断即可.【详解】解:∵2==|x =,∴、,共2个,故选:B .【点睛】本题考查了对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键. 7.D解析:D【分析】由2240a b ab +-=可得2()6a b ab +=,2()2a b ab -=,然后根据0a b >>求得a b +和a b -的值,代入即可求解.【详解】∵2240a b ab +-=,即224a b ab +=,∴2()6a b ab +=,2()2a b ab -=,∵0a b >>,∴a b +=a b -=,∴a b a b b a a b ++=---== 故选:D .【点睛】本题考查了求分式的值以及二次根式的除法运算,正确运用完全平方公式是解题的关键. 8.B解析:B【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【详解】解:2, ∵34<<, ∴.122<<,故选:B .【点睛】此题主要考查了估算无理数的大小,正确估算无理数是解题关键. 9.B解析:B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.10.D解析:D【分析】根据乘方运算,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算进行判断.【详解】A 、32322754⨯=⨯=,故A 错误;B4=,故B 错误;C 、()()()11155252224⎛⎫⎛⎫⎛⎫-÷-⨯-=-⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 错误; D、(22346410-⨯+=-+=,故D 正确.故选:D .【点睛】本题考查了有理数的乘方,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算,熟记运算法则是解题的关键. 11.D解析:D【分析】根据最简二次根式的定义即可求出答案.【详解】A,故A 不是最简二次根式;B=,故B 不是最简二次根式;CC 不是最简二次根式, 故选:D .【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.12.C解析:C【分析】0≠;根据二次根式的性质,得20x -≥,从而得到自变量x 的取值范围.【详解】结合题意,得:200x -≥⎧⎪≠ ∴22x x ≤⎧⎨≠⎩∴2x <故选:C .【点睛】本题考查了分式、二次根式的知识;解题的关键是熟练掌握分式、二次根式的性质,从而完成求解.二、填空题13.x≥1且x≠2【分析】根据二次根式有意义的条件可得x-1≥0再根据分式有意义的条件可得x-2≠0再解出x的值【详解】解:由题意得:x-1≥0且x-2≠0解得:x≥1且x≠2故答案为:x≥1且x≠2【解析:x≥1且x≠2【分析】根据二次根式有意义的条件可得x-1≥0,再根据分式有意义的条件可得x-2≠0,再解出x的值.【详解】解:由题意得:x-1≥0,且x-2≠0,解得:x≥1且x≠2,故答案为:x≥1且x≠2.【点睛】此题主要考查了二次根式有意义的条件,以及分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.14.1【分析】根据二次根式有意义的条件列出不等式求出am根据指数为0得到答案【详解】解:根据题意得2020﹣a≥0a﹣2020≥0解得a=2020则m=0∴am=20200=1故答案为:1【点睛】本题考解析:1【分析】根据二次根式有意义的条件列出不等式,求出a、m,根据指数为0,得到答案.【详解】解:根据题意得, 2020﹣a≥0,a﹣2020≥0,解得,a=2020,则m=0,∴a m=20200=1,故答案为: 1.【点睛】本题考查的是二次根式有意义的条件和0指数幂,掌握二次根式的被开方数是非负数是解题的关键.15.【分析】由倒数相反数及立方根的定义求出ab及c的值代入所求式子中计算即可求出值【详解】由题意得:∴故答案为:【点睛】本题考查了分式的求值根据倒数相反数立方根的定义求出abc的值是解题的关键解析:2-【分析】 由倒数,相反数及立方根的定义求出a ,b 及c 的值代入所求式子中计算即可求出值.【详解】由题意得:11a ==0b =,1c ==-, ∴c a b a b b c c a++---===故答案为: 【点睛】 本题考查了分式的求值,根据倒数,相反数,立方根的定义求出a ,b ,c 的值是解题的关键.16.2【分析】根据<<可得的整数部分是3则小数部分a =﹣3代入计算即可【详解】解:∵9<11<16∴3<<4∴的整数部分是3∴小数部分是a =﹣3∴a (a+6)=(﹣3)(+3)=11﹣9=2【点睛】本题解析:2【分析】的整数部分是3,则小数部分a﹣3,代入计算即可.【详解】解:∵9<11<16,∴3<4,∴3,∴小数部分是a﹣3,∴a (a +6﹣3)=11﹣9=2.【点睛】本题考查了无理数的估算,注意在相乘的时候,运用平方差公式简便计算.17.-5【分析】(1)直接利用二次根式的性质化简求出即可;(2)首先化简二次根式进而合并求出即可;【详解】故答案为:【点睛】此题主要考查了二次根式的运算正确掌握二次根式的性质是解题关键解析:-5【分析】(1)直接利用二次根式的性质化简求出即可;(2)首先化简二次根式,进而合并求出即可;【详解】210155=-=-故答案为:-【点睛】此题主要考查了二次根式的运算,正确掌握二次根式的性质是解题关键.18.【分析】原式利用二次根式的性质得到然后利用的范围去绝对值后合并即可【详解】∵原式故答案为:【点睛】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质是解决此类问题的关键解析:52x -【分析】 原式利用二次根式的性质得到41x x ---,然后利用x 的范围去绝对值后合并即可.【详解】∵14x <<, 原式41x x =---()()41x x =----4152x x x =-+-+=-.故答案为:52x -.【点睛】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质是解决此类问题的关键. 19.【分析】根据绝对值二次根式和偶次方的非负性得到abc 的值利用平方根的定义即可求解【详解】解:∵∴即∴∴的平方根是故答案为:【点睛】本题考查绝对值二次根式和偶次方的非负性以及平方根的定义掌握平方根的定 解析:3±【分析】根据绝对值、二次根式和偶次方的非负性得到a 、b 、c 的值,利用平方根的定义即可求解.【详解】解:∵2|11|(12)0b c -++=,∴100a -=,110b -=,120c +=,即10a =,11b =,12c =-,∴()1011129a b c ++=++-=,∴a b c ++的平方根是3±,故答案为:3±.【点睛】本题考查绝对值、二次根式和偶次方的非负性,以及平方根的定义,掌握平方根的定义是解题的关键.20.且【分析】根据分式的分母不能为0二次根式的被开方数大于或等于0列出式子求解即可得【详解】由题意得:解得且故答案为:且【点睛】本题考查了分式和二次根式有意义的条件熟练掌握分式和二次根式的定义是解题关键 解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.三、解答题21.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.22.能构成三角形,其周长为【分析】利用已知条件以及绝对值的性质确定a,b,c的值即可,根据三角形的三边关系判断能构成三角形,然后再求周长即可.【详解】解:能构成三角形,理由:∵2|(0a c=,∴=0,(b-5)2=0,,∴a,b=5,c;∵5,∴能构成三角形,周长为:+5.【点睛】本题主要考查了绝对值;二次根式;非负数的性质,关键是掌握绝对值、算术平方根和偶次幂具有非负性.23.(12)-1;(3)12﹣4)14【分析】(1)先化简二次根式,再利用二次根式的加减法法则计算即可;(2)先化简二次根式,再利用二次根式的运算法则计算即可;(3)利用完全平方公式和平方差公式计算即可;(4)利用二次根式的混合运算法则计算即可.【详解】解:(1﹣=﹣5×10=﹣2;(2)2=2 =2﹣3=﹣1;(3)21)2)+=12﹣﹣4=12﹣(4+4 =10+4=14.【点睛】本题考查二次根式的混合运算,熟练掌握二次根式运算法则是解题的关键.24.(14;(2)10-【分析】(1)先化简二次根式,化去绝对值,零次幂,负指数运算,再合并同类项与同类二次根式即可(2)利用平方差公式与完全平方公式展开,再计算平方,合并同类项即可.【详解】(1101|3|(2)2π-⎛⎫--+ ⎪⎝⎭,=312+,4.(2)22)++,=2222-+,=523-+-,=10-【点睛】本题考查二次根式的混合计算,掌握二次根式化简方法,绝对值,零次幂,负指数,乘法公式等知识,并会用它们解决问题是关键.25.21(1)a +;12【分析】先进行分式的减法,化简后,代入求值即可.【详解】解: 211(1)a a a -++, 221(1)(1)a a a a +=-++, 21(1)a =+,当1a =时,原式12==. 【点睛】本题考查了分式的化简求值,熟练按照分式减法进行化简,代入后准确计算是解题关键. 26【分析】由2<31的整数部分与小数部分,即,a b 的值,再代入a b进行分母有理化,从而可得答案.【详解】解:2<3, 3∴<4,x 的整数部分为a ,小数部分为b ,3a ∴=,132b =-=,)3232 2.74a b ∴====-【点睛】 本题考查的是无理数的估算,整数部分与小数部分的含义,二次根式的除法运算,平方差公式的应用,掌握分母有理化是解题的关键.。
新人教版八年级下册二次根式练习及答案
![新人教版八年级下册二次根式练习及答案](https://img.taocdn.com/s3/m/1da02f4587c24028915fc3a0.png)
二次根式(A卷)一、填空题(每题2分,共28分)1.4的平方根是_____________.2.的平方根是_____________.7.在实数范围内分解因式:a4-4 =____________.二、选择题(每题4分,共20分)15.下列说法正确的是( ).(A) x≥1 (B)x>1且x≠-2 (C) x≠-2 (D) x≥1且x≠-2(A)2x-4 (B)-2 (C)4-2x (D)2三、计算题(各小题6分,共30分)四、化简求值(各小题5分,共10分)五、解答题(各小题8分,共24分)29. 有一块面积为(2a+ b)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a - b)2π,问所挖去的圆的半径多少?30.已知正方形纸片的面积是32cm2,如果将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是多少(保留3个有效数字)?二次根式(B卷)一、填空题(每题3分,共54分)2.-27的立方根= .二、选择题(每题4分,共20分)15.下列式子成立的是( ).17.下列计算正确的是( ).三、计算题(各小题6分,共30分)四、化简求值(各小题8分,共16分)五、解答题(各小题8分,共24分)二次根式(A卷)答案1.±22. ±23. –ab4. –25. 0或46. m≥112. -x-y13. x≤414.15. B 16. A 17. D 18. A 19. A 20. D23. 2430. 1.80二次根式(B卷)答案2. -33. -a-66. 07. 18. ≤012. 200315. D 16. C 17. C 18. C 19. B 20. A。
人教版八年级下册数学第十六章《二次根式》测试题有答案
![人教版八年级下册数学第十六章《二次根式》测试题有答案](https://img.taocdn.com/s3/m/aa276a01f4335a8102d276a20029bd64783e623e.png)
八年级下册数学《二次根式》单元测试卷评卷人得分一、单选题1.已知01x <<,那么在21,x x x中,最大的数是()A .xB .1xC D .2x2.若a ﹥0,则a的值为()A .1B .-1C .±1D .-a3.下列各式属于最简二次根式的有()A B CD .4.下列运算中,错误..的是().A .2×3=6B 2=2C .22+32=52D .(2−3)2=2−35.化简16x ).A .-B .-C .2D .06.下列命题正确的是().A a =B .是最简二次根式C .化成最简二次根式后被开方数相同D 7.如图,在山坡上种树,已知∠A=30°,AC=3m ,则相邻两株树的坡面距离AB=().A .6mB 3C .3mD .2m82a a =-则实数a 在数轴上的对应点一定在()A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧92244123x x x -+-得()A .2B .44x -+C .-2D .44x -10.若a=7+433-7,则a 、b 的关系为()A .互为相反数B .互为倒数C .互为负倒数D .绝对值相等评卷人得分二、填空题11.24的倒数的相反数是_________________.12.已知最简二次根式3b -与3ab a=_________________.13.在二次根式13x x -+中,x 的取值范围是__________________.14225328-=_________021821)(2)-+++-=___________.15.计算:1123xy x -;3463xx ÷=________.16x y+_________________.17.若a b c 、、为△ABC 的三边,化简22()()a b c a b c --+-+.18.若20062007a a a -+-=22006a -=__________.19.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.评卷人得分三、解答题20.已知+1,y=-1,求x 2+xy+y 2的值.21.直角三角形两直角边长分别为1,1b =.求斜边c 的长及直角三角形的面积.22.已知:实数x y 、满足4310280x y x y ++=⎧⎨--=⎩的值.23.已知:210250b b +++=24.已知a =,求2212211a a a a a-+---的值.25.有一道题“先化简,再求值:22241244x x x x x -+÷+--(+x 2-3,其中x =.”小玲做题时把“x =错抄成了“x =,但她的计算结果也是正确的,请你解释这是怎么回事?26.如果记()1xy f x x==+,并且f 表示当x=时,y 的值,即12f ==;f表示当x=时,y的值,即f =f 表示当时,y 的值,即f ==;求f+f+f+f+f+…+f+f 的值.参考答案1.B 【解析】【分析】根据0<x <1,可设x=12,从而得出x ,1x x 2分别为12,2,22,14,再找出最小值即可.【详解】∵0<x <1,∴设x=12,∴x ,1x x 2分别为12,2,22,14,故2的值最大,故选B .【点睛】本题考查了实数的大小比较,解本题的关键是特殊值法.2.B【解析】【分析】化简,然后代入数式计算求值.【详解】a>0,∴a=.a a =aa-=-1.所以B选项正确.【点睛】||a=化简,然后代入数式计算求值是本题解题的关键.3.B【解析】【分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【详解】A=A选项错误;B是最简二次根式,故B选项正确;C=,故不是最简二次根式,故本选项错误;D=D选项错误;故选:B.【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.4.D【解析】试题分析:根据2=|U 可得:(2−3)2=|2−3|=3−2.考点:二次根式的计算5.D 【解析】【分析】根据二次根式的加减运算法则进行计算.【详解】原式=216x x -2x 2x=1122=0.所以D 选项正确.【点睛】本题考查的是二次根式的加减法运算法则,化简二次根式是本题解题的关键.6.C 【解析】【分析】根据二次根式的性质、二次根式的化简法则、二次根式的开方法则、二次根式的乘法法则进行判断.【详解】A 、当a<0时,算式不成立,所以A 选项错误;B 的最简二次根式是22,所以B 选项错误;C 化成最简二次根式后为,所以C 选项正确;D =,所以D 选项错误.【点睛】本题考查的是二次根式的性质、二次根式的化简法则、二次根式的开方法则、二次根式的乘法法则,熟练掌握法则是本题的解题关键.7.C【分析】根据坡度角的余弦值=水平距离:坡面距离即可解答.【详解】cos30°=3 AB,∴AB=2.故选C.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是坡度角的余弦值=水平距离:坡面距离.8.C【解析】试题分析:一个数开方后等于它的相反数,说明这个数是负数或者等于零.故非正数在数轴上对应点都在原点或者原点的左侧.选C.考点:实数点评:本题难度较低,主要考查学生对实数和平方根等概念的掌握.9.A【解析】【分析】-2,可得2x-3>0,由于2x-1>2x-3,所以2x-1>0,再进行开方运算即可.【详解】原式-2=2x-1-2x+3=2.故选A.【点睛】本题考查二次根式的性质与化简,熟练掌握性质是解题的关键.【解析】【分析】根据互为负倒数的性质进行计算.【详解】(-7)=48-49=-1ab=7+所以C选项正确.【点睛】本题考查的是互为负倒数的性质,熟练掌握性质是本题的解题关键.11.-【解析】【分析】根据倒数相反数的定义、性质进行运算.【详解】24的倒数为,2.4的倒数的相反数是化简的结果为-.又故答案为-.【点睛】本题考查的是倒数相反数的定义、性质,熟练掌握定义、性质是本题的解题关键. 12.3【解析】【分析】根据最简二次根式的定义以及同类二次根式的性质,列方程求解.【详解】由题意可知与∴3b=ab ,解得a=3.故答案为:3.【点睛】本题考查的知识点是最简二次根式,解题的关键是熟练的掌握最简二次根式.13.1x ≥【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:x-10x+30≥⎧⎨≠⎩,解得:x≥1.故答案为x≥1.【点睛】本题考查的知识点是函数自变量的取值范围,解题的关键是熟练的掌握函数自变量的取值范围.14.45114+【解析】【分析】分别应用平方差公式以及根式和次方即可得到答案.【详解】=)()0212-+-+1+14=114.故答案为45,114.【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算.15.【解析】【分析】直接进行二次根式的乘除运算即可,然后再化简.【详解】-=÷=.故答案为.【点睛】本题考查的知识点是二次根式乘除法,解题的关键是熟练的掌握二次根式乘除法.16【解析】【分析】将分子x-y化成,再约分即可.【详解】..【点睛】本题考查的知识点是分式的化简,解题的关键是熟练的掌握分式的化简.17.2c【解析】【分析】根据三角形两边之和大于第三边,可得a、b、c的关系,根据二次根式的性质,可得答案.【详解】∵a,b,c是三角形的三边,两边之和大于第三边∴b+c a,a-(b+c)0,即a-b-c0同理a-b+c0=b+c-a+a+c-b=2c.故答案为2c.【点睛】本题考查的知识点是二次根式的性质与化简,解题的关键是熟练的掌握二次根式的性质与化简.18.【解析】【分析】根据被开方数大于等于0可以求出a≥2007,然后去掉绝对值号整理,再两边平方整理即可得解.【详解】根据题意得,a−2007≥0,解得a≥2007,∴原式可化为:,,两边平方得,a−2007=20062,=..故答案为.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.19.(1)a2,a3=2,a4=;(2)a n(n为正整数).【解析】(1)∵四边形ABCD是正方形,∴AB=BC=1,∠B=90°.∴在Rt△ABC中,AC.同理:AE=2,EH=,…,即a 2,a 3=2,a 4=.(2)a n n 为正整数).20.7【解析】【分析】根据二次根式的加减法法则、平方差公式求出x+y 、xy ,利用完全平方公式把所求的代数式变形,代入计算即可.【详解】∵+1,-1,∴x+y=+1)+-1),xy=+1)-1)=1,∴x 2+xy+y 2=x 2+2xy+2y -xy=2x y ()+-xy=2(-1=7.故答案为:7.【点睛】本题考查二次根式的化简求值,灵活运用平方差公式是解题的关键.21.112c S ==【解析】【分析】根据勾股定理即可得到斜边长,直角边相乘即直角三角形的面积.再化简即可.【详解】∵直角三角形两直角边长分别为a=2-1∴斜边=.直角三角形面积为:12ab=121)+1)=12(12-1)=112.【点睛】本题考查的知识点是勾股定理以及有理数的混合运算,解题的关键是熟练的掌握勾股定理以及有理数的混合运算.22.-6【解析】【分析】先将方程组解得x ,y ,再直接带入即可.【详解】∵实数x ,y 满足4310280x y x y ++=⎧⎨--=⎩∴解得23x y =⎧⎨=-⎩-=-6.【点睛】本题考查的知识点是解一元二次方程组,解题的关键是熟练的掌握解一元二次方程组.23.12【解析】【分析】先根据非负数之和求得a ,b ,带入式中即可求得答案.【详解】∵210250b b +++=∴(b+5)2=0∴50210b a +=⎧⎨-=⎩,即a=12,b=-5=12.【点睛】本题考查的知识点是非负数的性质:算术平方根,偶次方,解题的关键是熟练的掌握非负数的性质:算术平方根,偶次方.24.212-【解析】【分析】这道求代数式值的题目,不应考虑把x 的值直接代入,通常做法是先把代数式化简,然后将a 的值代入求解.【详解】原式=()()211111112a a a a a a a ---=--=---【点睛】本题考查的知识点是二次根式的化简求值,解题的关键是熟练的掌握二次根式的化简求值.25.7【解析】【分析】先根据分式混合运算的法则把原式进行化简,结果是22x +1,不论x=−,x 2的值均为3,原式的计算结果都是7,所以把”错抄成了”,计算结果也是正确的.【详解】22241244x x x x x -+÷+--(+2x -3=224444x x x x -++-(2x -4)+2x -3=2x +4+2x -3=22x +1.因为化简原式的结果是22x +1,不论x=或,x 2的值均为3,原式的计算结果都是7,所以把错抄成了,计算结果也是正确的.【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则是解题的关键.26.991 2【解析】【分析】根据f(x)+f(1x)=1xx++111xx+=11xx++=1,原式结合后,计算即可得到结果.【详解】由题意可知:1 f f+=,所以化简,原式= f+99=991 2【点睛】本题考查的知识点是二次根式的化简求值,解题的关键是熟练的掌握二次根式的化简求值.。
初中数学八下《二次根式》常考练习题及参考答案与解析(人教版)
![初中数学八下《二次根式》常考练习题及参考答案与解析(人教版)](https://img.taocdn.com/s3/m/5c7f197aba0d4a7303763a18.png)
《二次根式》常考练习题及参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+43.(2019春•徐州期末)下列计算正确的是()A.B.C.D.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3 5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±46.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.37.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4 10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.211.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4 12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣515.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.025.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣227.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣128.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=330.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±1131.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.2033.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.234.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.1535.(2019春•许昌期末)已知x=+1,y=﹣1,则x2+xy+y2的值为()A.10 B.8 C.6 D.436.(2014•张家港市模拟)已知实数x,y满足x+y=﹣2a,xy=a(a≥1),则的值为()A.a B.2a C.a D.237.(2012秋•富顺县校级月考)若实数x、y满足x2+y2﹣4x﹣2y+5=0,则的值是()A.1 B.+C.3+2D.3﹣238.(2013•宁波自主招生)设等式在实数范围内成立,其中a、x、y是三个不同的实数,则的值是()A.3 B.C.2 D.39.(2019春•西湖区校级月考)如果f(x)=并且f()表示当x=时的值,即f()==,f()表示当x=时的值,即f()=,那么f()+f()+f()+f()+的值是()A.n B.n C.n D.n+40.(2019秋•天心区校级期末)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)二、填空题(共30小题)41.(2019春•曲靖期末)若是一个正整数,则正整数m的最小值是.42.(2018秋•杨浦区期中)计算:=.43.(2019•聊城二模)计算﹣的结果是.44.(2019春•东至县期末)与最简二次根式是同类二次根式,则m=.45.(2017秋•南开区期末)二次根式与的和是一个二次根式,则正整数a的最小值为;其和为.46.(2016春•寿光市期末)若最简二次根式与是同类二次根式,则a =.47.(2013秋•罗平县校级期中)等式=成立的条件是.48.(2012•山西模拟)若规定符号“*”的意义是a*b=ab﹣b2,则2*()的值是.49.(2015秋•达州校级月考)设的整数部分为a,小数部分为b,则的值等于.50.(2015•鄂州)若使二次根式有意义,则x的取值范围是.51.(2019•岳池县模拟)要使代数式有意义,x的取值范围是.52.(2018秋•松桃县期末)若代数式有意义,则实数x的取值范围是.53.(2018•陇南)使得代数式有意义的x的取值范围是.54.(2019春•西湖区校级月考)已知y=+8x,则的算术平方根为.55.(2014•吴江市模拟)设a=,b=2+,c=,则a、b、c从小到大的顺序是.56.(2013秋•南通月考)在下列二次根式,中,最简二次根式的个数有个.57.(2013春•阳谷县期末)若和都是最简二次根式,则m=,n=.58.(2012秋•集贤县期中)若两个最简二次根式与可以合并,则x=.59.(2018•皇姑区二模)化简的结果是.60.(2014秋•慈利县校级期末)若m<0,化简2n=.61.(2015春•崆峒区期末)已知a,b,c为三角形的三边,则=.62.(2018春•襄城区期中)化简的结果为.63.(2019春•睢县期中)已知a,b,c为三个整数,若,,,则a,b,c的大小关系是.64.(2013•江都市一模)若二次根式=4﹣x,则x.65.(2018秋•牡丹区期末)若的整数部分是a,小数部分是b,则a2+(1+)ab=.66.(2019春•江汉区期末)已知xy=2,x+y=4,则+=.67.(2019秋•兰考县期中)当a<﹣b<1时,化简÷的结果为.68.(2013•沙市区一模)已知m=1+,n=1﹣,则代数式的值为.69.(2011•内江)若m=,则m5﹣2m4﹣2011m3的值是.70.(2019春•成武县期末)如图,在矩形ABCD中,不重叠地放上两张面积分别是5cm2和3cm2的正方形纸片BCHE和AEFG.矩形ABCD没被这两个正方形盖住的面积是.三、解答题(共30小题)71.(2019春•伊通县期末)计算:×﹣(+)(﹣)72.(2016•夏津县自主招生)计算:.73.(2015春•赵县期末)化简:(1);(2).74.(2018春•新泰市期末)计算(1)(2﹣1)2+(+2)(﹣2)(2)(﹣2)×﹣6.75.(2019秋•浦东新区校级月考)已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.76.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?77.(2014秋•石鼓区校级期中)若3,m,5为三角形三边,化简:﹣.78.(2012秋•罗田县期中)化简求值:已知:x=,求x2﹣x+1的值.79.(2013秋•崇阳县期末)阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.80.(2018秋•新华区校级月考)阅读下列解题过程:;请回答下列问题:(1)观察上面的解题过程,化简:①②(2)利用上面提供的解法,请计算:.81.(2019秋•长宁区期中)计算:2÷•.82.(2014春•巢湖市月考)已知x为奇数,且,求的值.83.(2013秋•婺城区校级月考)若代数式有意义,则x的取值范围是什么?84.(2019秋•景县期末)已知y=+﹣4,计算x﹣y2的值.85.(2018春•黄冈期中)若a,b为实数,a=+3,求.86.(2013秋•仪征市期末)某同学作业本上做了这么一道题:“当a=时,试求a+的值”,其中是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是否正确,说出你的道理.87.(2019秋•兰考县期中)若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.88.(2018春•罗平县期末)已知实数a,b,c在数轴上的位置如图所示,化简|a|﹣+﹣.89.(2019春•黄石期中)已知a,b,c为实数且c=,求代数式c2﹣ab的值.90.(2011秋•东台市校级期中)(1)化简:•(﹣4)÷(2)已知x=﹣1,求x2+3x﹣1的值.91.(2013•金湾区一模)观察下列各式及证明过程:(1);(2);(3).验证:;.a.按照上述等式及验证过程的基本思想,猜想的变形结果并进行验证;b.针对上述各式反映的规律,写出用n(n≥1的自然数)表示的等式,并验证.92.(2014春•陕县校级月考)已知:x=,求x2+的值.93.(2017春•江津区期中)已知x=﹣2,y=+2,求:(1)x2y+xy2;(2)+的值.94.(2019春•潮南区期末)已知a=,求的值.95.(2019春•鞍山期末)已知:,,求代数式x2﹣xy+y2值.96.(2015春•饶平县期末)先化简,再求值:•,其中.97.(2017春•黄冈期中)化简求值:,求的值.98.(2014春•霸州市期末)先化简,后求值:,其中.99.(2019春•襄州区期末)先化简,再求值:(+b),其中a+b=2.100.(2015春•重庆校级期末)先化简,再求值.,其中.参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.【知识考点】二次根式的定义.【思路分析】根据二次根式的定义作出选择:式子(a≥0)叫做二次根式.【解答过程】解:A、是三次根式;故本选项符合题意;B、被开方数﹣10<0,不是二次根式;故本选项不符合题意;C、被开方数a2+1>0,符合二次根式的定义;故本选项符合题意;D、被开方数a<0时,不是二次根式;故本选项不符合题意;故选:C.【总结归纳】本题主要考查了二次根式的定义.式子(a≥0)叫做二次根式,特别注意a≥0,a是一个非负数.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+4【知识考点】二次根式的定义.【思路分析】直接利用二次根式的定义分别分析得出答案.【解答过程】解:A、3﹣π<0,则3﹣π不能作为二次根式被开方数,故本选项不符合题意;B、a的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;C、a2+1一定大于0,能作为二次根式被开方数,故本选项符合题意;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;故选:C.【总结归纳】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.3.(2019春•徐州期末)下列计算正确的是()A.B.C.D.【知识考点】二次根式的加减法.【思路分析】结合选项根据二次根式的加减法的运算法则求解即可.【解答过程】解:A、﹣=2﹣=,故本选项符合题意;B、+≠,故本选项不符合题意;C、3﹣=2≠3,故本选项不符合题意;D、3+2≠5,故本选项不符合题意.故选:A.【总结归纳】本题考查了二次根式的加减法,解答本题的关键是掌握其运算法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3【知识考点】二次根式的加减法.【思路分析】原式各项合并得到结果,即可做出判断.【解答过程】解:A、2+不能合并,故本选项不符合题意;B、5﹣=4,故本选项不符合题意;C、5+=6,故本选项符合题意;D、+2不能合并,故本选项不符合题意,故选:C.【总结归纳】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±4【知识考点】二次根式的加减法.【思路分析】方程左边化成最简二次根式,再解方程.【解答过程】解:原方程化为:=10,合并得:=10∴=2,即2x=4,∴x=2.故选:C.【总结归纳】本题考查了二次根式的加减法.掌握二次根式的加减运算法则是解题的关键,先化为最简二次根式,再将被开方数相同的二次根式进行合并.解无理方程,需要方程两边平方,注意检验算术平方根的结果为非负数.6.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【知识考点】二次根式的加减法.【思路分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答过程】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.【总结归纳】关键是会表示的整数部分和小数部分,再二次根式的加减运算,即将被开方数相同的二次根式进行合并.7.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.【知识考点】二次根式的性质与化简.【思路分析】根据被开方数是非负数,可得a的取值范围,根据二次根式的性质,可得答案.【解答过程】解:由被开方数是非负数,得﹣a≥0.﹣a=×=,故选:B.【总结归纳】本题考查了二次根式的性质与化简,利用被开方数是非负数得出a的取值范围是解题关键.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质1和性质2逐一判断即可得.【解答过程】解:A.=2,故本选项不符合题意;B.()2=2,故本选项符合题意;C.﹣=﹣2,故本选项不符合题意;D.(﹣)2=2,故本选项不符合题意;故选:B.【总结归纳】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质1与性质2.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质列出不等式,解不等式即可.【解答过程】解:∵=4﹣b,∴4﹣b≥0,解得,b≤4,故选:D.【总结归纳】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键.10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.2【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的意义化简.【解答过程】解:若x<0,则=﹣x,∴===2,故选:D.【总结归纳】本题考查了二次根式的性质与化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.11.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4【知识考点】二次根式的性质与化简;二次根式的乘除法.【思路分析】直接利用二次根式的性质分别分析得出答案.【解答过程】解:A、=3,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、÷=,故本选项不符合题意;D、=4,故本选项不符合题意;故选:B.【总结归纳】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.【知识考点】二次根式的乘除法.【思路分析】根据二次根式的性质及二次根式成立的条件解答.【解答过程】解:∵成立,∴﹣>0,即m<0,∴原式=﹣=﹣.故选:D.【总结归纳】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣【知识考点】二次根式的乘除法.【思路分析】直接进行分母有理化即可求解.【解答过程】解:原式===﹣.故选:C.【总结归纳】本题考查了二次根式的乘除法,解答本题的关键是进行分母有理化.14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣5【知识考点】分母有理化.【思路分析】根据平方差公式,可分母有理化,根据实数的大小比较,可得答案.【解答过程】解:b===+,a=+,故选:A.【总结归纳】本题考查了分母有理化,利用平方差公式将分母有理化是解题关键.15.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等【知识考点】实数的性质;分母有理化.【思路分析】求出ab的乘积是多少,即可判断出a与b的关系.【解答过程】解:∵ab=×==1,∴a与b互为倒数.故选:C.【总结归纳】此题主要考查了分母有理化的方法,以及实数的性质和应用,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.【知识考点】最简二次根式.【思路分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答过程】解:A、﹣=﹣,被开方数含分母,故本选项不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故本选项符合题意;C、=4,被开方数含能开得尽方的因数或因式,故本选项不符合题意;D、=2,被开方数含能开得尽方的因数或因式,故本选项不符合题意;故选:B.【总结归纳】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】最简二次根式应满足的条件:①被开方数的因数是整数,因式是整式;②被开方数的因式的指数必须小于根指数2.【解答过程】解:A、不符合上述条件②,即=2,不是最简二次根式,故本选项不符合题意;B、符合上述条件,是最简二次根式,故本选项符合题意;C、不符合上述条件①,即=,不是最简二次根式,故本选项不符合题意;D、不符合上述条件②,即=|x|,不是最简二次根式,故本选项不符合题意.故选:B.【总结归纳】此题考查了最简二次根式应满足的条件.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.【知识考点】最简二次根式.【思路分析】根据二次根式的性质化简,根据最简二次根式的概念判断.【解答过程】解:A、=,不是最简二次根式,故本选项不符合题意;B、,是最简二次根式,故本选项符合题意;C、=|2a+1|,不是最简二次根式,故本选项不符合题意;D、=,不是最简二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查的是最简二次根式的概念、二次根式的性质,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行判断,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答过程】解:A、=|a|,可化简,不是最简二次根式,故本选项不符合题意;B、==,可化简,不是最简二次根式,故本选项不符合题意;C、==3,可化简,不是最简二次根式,故本选项不符合题意;D、=,不能开方,符合最简二次根式的条件,故本选项符合题意.故选:D.【总结归纳】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】先化简二次根式,再根据被开方数相同进行解答即可.【解答过程】解:A、不能与合并,故本选项不符合题意;B、=3,可以与合并,故本选项符合题意;C、=,不能与合并,故本选项不符合题意;D、=2,不能与合并,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式【知识考点】同类二次根式.【思路分析】根据同类二次根式的概念判断.【解答过程】解:A、被开方数不同的二次根式可以是同类二次根式,故本选项不符合题意;B、化简后被开方数完全相同的二次根式才是同类二次根式,故本选项不符合题意;C、同类二次根式不一定都是最简二次根式,故本选项不符合题意;D、两个最简二次根式不一定是同类二次根式,故本选项符合题意;故选:D.【总结归纳】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】根据同类二次根式的定义逐个判断即可.【解答过程】解:=2,A、不能和合并为一个二次根式,故本选项不符合题意;B、能和合并为一个二次根式,故本选项符合题意;C、不能和合并为一个二次根式,故本选项不符合题意;D、=5不能和合并为一个二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,能熟记同类二次根式的定义是解此题的关键.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定【知识考点】二次根式有意义的条件;二次根式的性质与化简.【思路分析】首先求出x的取值范围,再利用绝对值以及二次根式的性质化简求出即可.【解答过程】解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.【总结归纳】本题主要考查了二次根式与绝对值的性质,正确化简二次根式是解题关键.24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.0【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答过程】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【总结归纳】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.25.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.【知识考点】数轴;二次根式有意义的条件.【思路分析】根据二次根式中的被开方数必须是非负数,否则二次根式无意义.【解答过程】解:在数轴上,右边的数总大于左边的数,∴a>b,即a﹣b>0,根据二次根式的性质,被开方数大于等于0,可知二次根式有意义.故选:B.【总结归纳】本题主要考查了二次根式的意义和性质,掌握和理解二次根式的概念和性质是解题的关键.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣2【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式有意义的条件分析得出答案.【解答过程】解:代数式有意义,故x+2>0,解得:x>﹣2.故选:C.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.27.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣1【知识考点】二次根式有意义的条件.【思路分析】依据二次根式有意义的条件即可求得k的范围.【解答过程】解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤﹣≤0 ②①+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选:C.【总结归纳】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.28.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.【知识考点】二次根式有意义的条件.【思路分析】根据有理数的性质以及平方数非负数对各选项分析判断后利用排除法求解.【解答过程】解:A、x≤0时,﹣6x≥0,有意义,故本选项不符合题意;B、x=0时,﹣x2=0,有意义,故本选项不符合题意;C、x为任何数,﹣x2﹣1≤﹣1,无意义,故本选项符合题意;D、﹣x2≥﹣1时,﹣x2+1≥0,有意义,故本选项不符合题意.故选:C.【总结归纳】本题考查了二次根式有意义的条件,判断出各选项中被开方数的正负情况是解题的关键.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=3【知识考点】二次根式的混合运算.【思路分析】根据二次根式的运算法则对每一项分别进行判断,即可得出正确答案.【解答过程】解:A、﹣=2﹣=,故本选项不符合题意;B、2+3=5,故本选项不符合题意;C、÷=,故本选项符合题意;D、(+1)(﹣1)=2﹣1=1,故本选项不符合题意;故选:C.【总结归纳】本题考查了二次根式的运算,关键是熟练掌握二次根式的运算法则,注意把二次根式进行化简.30.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±11【知识考点】二次根式的混合运算.【思路分析】根据二次根式混合运算法则,一一判断即可.【解答过程】解:A、2﹣=,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、==,故本选项不符合题意;D、=11,故本选项不符合题意;故选:B.【总结归纳】本题考查二次根式的混合运算,乘法公式等知识,解题的关键是熟练掌握二次根式的化简以及混合运算法则,属于中考常考题型.31.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+【知识考点】二次根式的混合运算.【思路分析】先利用积的乘方得到原式=[(﹣2)(+2)]2018•(+2),然后根据平方差公式计算.【解答过程】解:(2﹣)2018(2+)2019=[(﹣2)(+2)]2018(+2)=(5﹣4)2018(+2)=1×(+2)=2+.故选:D.【总结归纳】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.20【知识考点】二次根式的混合运算.【思路分析】根据题目所给的运算法则进行求解.【解答过程】解:∵3>2,∴3※2=﹣,∵8<12,∴8※12=+=2×(+),∴(3※2)×(8※12)=(﹣)×2×(+)=2.故选:B.【总结归纳】本题考查了二次根式的混合运算,解答本题的关键是根据题目所给的运算法则求解.33.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.2【知识考点】二次根式的化简求值.【思路分析】首先把原式变为,再进一步代入求得答案即可.【解答过程】解:∵a=3+,b=3﹣,∴a+b=6,ab=4,∴===2.故选:C.【总结归纳】此题考查二次根式的化简求值,抓住式子的特点,灵活利用完全平方公式变形,使计算简便.34.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.15【知识考点】二次根式的化简求值.。
新人教版八年级下册二次根式练习题及参考答案:
![新人教版八年级下册二次根式练习题及参考答案:](https://img.taocdn.com/s3/m/f4e78357915f804d2b16c1a0.png)
二次根式练习题(1)____班 姓名__________ 分数__________一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( )A .m≤3B .m <3C .m≥3D .m >32.下列式子中二次根式的个数有 ( )⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A .1个B .2个C .3个D .4个5.化简二次根式352⨯-)(得 ( )A .35-B .35C .35±D .306.对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是37.把ab a123分母有理化后得 ( )A .b 4B .b 2C .b 21 D . b b2 8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .14310.计算:ab ab b a1⋅÷等于 ( )A .ab ab 21B .ab ab 1C .ab b 1D .ab b二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义.13.比较大小:23-______32-.14.=⋅b aa b182____________;=-222425__________.15.计算:=⋅b a 10253___________.16.计算:2216a cb =_________________.17.当a=3时,则=+215a ___________.18.若x x x x --=--3232成立,则x 满足_____________________.三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式:⑴52-x ; ⑵742-a ;⑶15162-y ; ⑷2223y x -.20.(12分)计算: ⑴))((36163--⋅-; ⑵63312⋅⋅;⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-.21.(12分)计算: ⑴20245-; ⑵14425081010⨯⨯..; ⑶521312321⨯÷; ⑷)(b a b b a 1223÷⋅.22.(8分)把下列各式化成最简二次根式: ⑴27121352722-; ⑵b a c abc4322-.23.(6分)已知:2420-=x ,求221x x +的值.参考答案:一、选择题1.A ;2.C ;3.B ;4.A ;5.B ;6.B ;7.D ;8.C ;9.D ;10.A .二、填空题11.≤31;12.≤43;13.<;14.31,7;15.ab 230;16.a c b 4;17.23;18.2≤x <3.三、解答题19.⑴))((55-+x x ;⑵))((7272-+a a ;⑶))((154154-+y y ; ⑷))((y x y x 2323-+;20.⑴324-;⑵2;⑶34-;⑷xyz 10;21.⑴43-;⑵203;⑶1;⑷43;22.⑴33;⑵ bc a c 242-;23.18.。
最新人教版初中数学八年级数学下册第一单元《二次根式》测试题(答案解析)
![最新人教版初中数学八年级数学下册第一单元《二次根式》测试题(答案解析)](https://img.taocdn.com/s3/m/9d4555c1227916888586d770.png)
一、选择题1.下列二次根式中是最简二次根式的是( )A BC D 2.下列计算中正确的是( ).A =B 5=-C 4=D =3.下列运算正确的是 ( )A B C .1)2=3-1 D4.1=-,则a 与b 的大小关系是( ). A .a b ≤B .a b <C .a b ≥D .a>b 5.下列根式是最简二次根式的是( )A B C D6.)0a <得( )A B .C D .7.下列计算正确的是( )A 9=-B .1=C .-=-D .=8.已知y 3+,则x y 的值为( ). A .43 B .43- C .34 D .34-9.下列二次根式能与 )A B C D10.n 可以取的数为( ). A .4 B .6 C .8 D .1211.下列四个式子中,与(a -的值相等的是( ) AB .CD .12.计算 )A.-3 B.3 C.-9 D.9二、填空题13.x的取值范围是______________.14.=_____.15.与-a可以等于___________.(写出一个即可)16.17.若3,m,5________.182=_______.19.在实数范围内有意义,则 x 的取值范围是_______ .20.(115293-⎛⎫++=⎪⎝⎭__________.三、解答题21.(1(2)解不等式组:2(3)8(1)22x xxx x --<⎧⎪⎨--≤-⎪⎩22.计算:(1)23++;(2.(3)解方程组24 4523 x yx y-=-⎧⎨-=-⎩.(4)解方程组4342312 x yx y⎧+=⎪⎨⎪-=⎩.23.计算:216(2019)|52π-⎛⎫--- ⎪⎝⎭.24.计算:(1+(2)(1)2)26.(1)计算:))2221-.(2)先化简,再求值:221193x x x +⎛⎫÷- ⎪-+⎝⎭,其中3x =+.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用最简二次根式定义判断即可.【详解】=,故本选项不合题意;=2=,故本选项不合题意. 故选:A .【点睛】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.2.D解析:D【分析】根据二次根式的性质,对各个选项逐一分析,即可得到答案.【详解】不可直接相加运算,故选项A 错误;5=,故选项B 错误;2==,故选项C 错误;==D 正确;故选:D .本题考查了二次根式的整式;解题的关键是熟练掌握二次根式混合运算的性质,从而完成求解.3.B解析:B【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A A 错误;B ,故选项B 正确;C 、21)313=-=-,故选项C 错误;D 53=≠+,故选项D 错误;故选:B .【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的法则. 4.B解析:B【分析】根据二次根式非负性质,得a b ≤;再根据分式的定义,得0a b -≠;即可得到答案.【详解】∵1=-∴()a b =--∵0∴0a b -≤∴a b ≤又∵1=- ∴0a b -≠∴a b <故选:B .【点睛】本题考查了二次根式、分式的知识;解题的关键是熟练掌握二次根式、分式的性质,从而完成求解.5.B解析:B【分析】利用最简二次根式定义判断即可.【详解】A =BC =,不是最简二次根式,该选项不符合题意;D =,不是最简二次根式,该选项不符合题意; 故选:B .【点睛】本题考查了最简二次根式.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6.A解析:A【分析】根据二次根式有意义的条件可推测0,0a b <≤,利用积的算术平方根以及商的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来即可.【详解】∵0a <,∴0b ≤,∴a -====- 故选A.【点睛】本题考查二次根式的性质与化简,掌握二次根式的意义以及化简方法为解题关键. 7.C解析:C【分析】分别根据二次根式的性质进行化简与计算即可得出答案【详解】解:9=,故本选项不符合题意;B.=C.-=-D.2=--≠, ,故本选项不符合题意.故选C .【点睛】本题考查了二次根式的加减法、二次根式的性质等知识点,能正确求出每个式子的值是解此题的关键.8.A解析:A【分析】由二次根式有意义的条件可得出x 的值,即可得出y 的值,计算出x y 的值即可. 【详解】因为3y =,4040x x -≥⎧∴⎨-≥⎩, ∴x =4,∴y =3, ∴43x y =. 故选:A .【点睛】本题主要考查二次根式有意义的条件,熟记二次根式有意义的条件是解题关键. 9.C解析:C【分析】根据同类二次根式的定义可得答案.【详解】A =,不能与B =合并,故本选项不符合题意;C =合并,故本选项符合题意;D ,不能与合并,故本选项不符合题意.故选:C .【点睛】本题主要考查了同类二次根式的定义,即二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.10.C解析:C【分析】是同类二次根式.【详解】解:A 2=不是同类二次根式;B 不是同类二次根式;C =是同类二次根式,正确;D =不是同类二次根式;故选:C .【点睛】本题考查了同类二次根式的定义.要化简为最简二次根式后再判断.11.D解析:D【分析】根据二次根式有意义的条件可得出20210a ->,可得20210a -<,由此可将2021a -变形得出答案.【详解】由题意得:20210a ->,可得20210a -<,∴((2021a a ---== 故选:D .【点睛】本题考查了二次根式的性质与化简,关键是由等式可确定出20210a ->. 12.A解析:A【分析】根据二次根式的性质即可求出答案.【详解】解:原式=-3,故选:A .【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.二、填空题13.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.14.【分析】直接根据二次的性质进行化简即可【详解】解:因为>1所以=故答案为:【点睛】此题主要考查了二次根式的性质掌握是解答此题的关键1.【分析】直接根据二次的性质进行化简即可.【详解】>1,|1(11=-=1.【点睛】()(0)0(0)a a a a a a a >⎧⎪===⎨⎪-<⎩是解答此题的关键.15.3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可【详解】解:∵二次根式与是同类二次根式∴可设则∴解得故答案为:3(答案不唯一)【点睛】本题考查的是同类二次根式的概念把几个二次根式化为最简二 解析:3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可.【详解】解:∵与-∴==∴2612a +=,解得3a =,故答案为:3(答案不唯一).【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.16.【分析】首先把和化成与原根式相等的根指数相等的根式再进行比较即可【详解】故答案为:【点睛】本题考查了实数的大小比较和根式的性质的应用关键是把根式化成与原根式相等的根指数相等的根式解析:<【分析】【详解】63==,==,6298132766∴<,<故答案为:<.【点睛】本题考查了实数的大小比较和根式的性质的应用,关键是把根式化成与原根式相等的根指数相等的根式.17.【分析】先根据三角形三边的关系判断2-m和m-8的正负然后根据二次根式的性质化简即可【详解】解:∵3m5为三角形的三边长∴5-3<m<5+3∴2<m<8∴2-m<0m-8<0∴=-(2-m)+(m-m-解析:210【分析】先根据三角形三边的关系判断2-m和m-8的正负,然后根据二次根式的性质化简即可.【详解】解:∵3,m,5为三角形的三边长,∴5-3<m<5+3,∴2<m<8,∴2-m<0,m-8<0,∴=-(2-m)+(m-8)=-2+m+m-8=2m-10.故答案为:2m-10.【点睛】本题考查了三角形三条边的关系,以及二次根式的性质,熟练掌握二次根式的性质是解答本题的关键.18.【分析】先化简二次根式再进行计算即可【详解】解:=故答案为:【点睛】此题主要考查了二次根式加减法关键是灵活运用二次根式的性质时行化简解析:【分析】先化简二次根式,再进行计算即可.【详解】2===故答案为:【点睛】此题主要考查了二次根式加减法,关键是灵活运用二次根式的性质时行化简. 19.【分析】根据二次根式的性质被开方数大于等于0列出不等式即可求解【详解】由题意得:解得:故答案为:【点睛】本题主要考查了二次根式熟练掌握二次根式的性质并列出不等式是解决本题的关键解析:3x ≥【分析】根据二次根式的性质,被开方数大于等于0,列出不等式即可求解.【详解】由题意得:30x -解得:3x故答案为:3x .【点睛】本题主要考查了二次根式,熟练掌握二次根式的性质并列出不等式是解决本题的关键. 20.5【分析】根据零指数幂负整指数幂绝对值二次根式化简的运算法则化简然后根据实数的运算法则计算即可【详解】==5答案为:5【点睛】本题考查实数的综合运算能力是各地中考题中常见的计算题型解决此类题目的关键 解析:5【分析】根据零指数幂、负整指数幂、绝对值、二次根式化简的运算法则化简,然后根据实数的运算法则计算即可.【详解】(1015293-⎛⎫++ ⎪⎝⎭52314=-++-,=544--=5,答案为:5.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.三、解答题21.(1)2)﹣2<x≤2【分析】(1)先算乘除,再算加减;(2)分别求出两个一元一次不等式的解即可;【详解】(1)原式=,=;(2)2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩, 解不等式2(3)8--<x x 得:x >﹣2; 解不等式(1)22--≤-x x x 得:x≤2; 所以,不等式组的解集为:﹣2<x≤2.【点睛】本题主要考查了二次根式的混合运算和一元一次不等式组的求解,准确计算是解题的关键.22.(1)2)0;(3)125x y ⎧=⎪⎨⎪=⎩;(4)1083x y =⎧⎪⎨=⎪⎩. 【分析】(1)二次根式的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的;(2)二次根式的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的;(3)利用代入消元法解二元一次方程组;(4)利用加减消元法解二元一次方程组【详解】解:(1)023++(211=++211 =++=(2)6===(3)244523x yx y-=-⎧⎨-=-⎩①②由①得24y x=+③把③代入②得()452423x x-+=-解得:12x=将12x=代入③得12+4=52y=⨯∴原方程组的解是125xy⎧=⎪⎨⎪=⎩(4)4342312x yx y⎧+=⎪⎨⎪-=⎩原方程组可化为:43482312x yx y+=⎧⎨-=⎩①②①+②,得660x=∴10x=把10x=代入①得:410348y⨯+=解得:83y=∴方程组的解为1083xy=⎧⎪⎨=⎪⎩【点睛】本题考查二次根式的混合运算及解二元一次方程组,掌握计算步骤和计算法则正确计算是解题关键.23.2.【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:216(2019)|52π-⎛⎫--- ⎪⎝⎭=61|543⨯+---154=+-2=-【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.24.(1)6;(2)7.【分析】(1)利用二次根式的除法运算计算后,再分别计算算术平方根,相加、减即可;(2)利用二次根式的除法运算计算后,再分别计算算术平方根,相加、减即可.【详解】解:(1)原式=3-2+5=6;(2==4-3+6=7.【点睛】0,0)a b=≥>是解题关键.25.(1;(2)-17【分析】(1)先化简二次根式,再合并即可;(2)利用平方差计算即可.【详解】解:(1)=(68=-+=(2)22=-320=-17=-【点睛】本题考查了二次根式的运算、平方差公式,准确掌握运算法则,合理利用公式是解题关键.26.(1)7-+;(2)13x -,2. 【分析】(1)利用平方差公式和完全平方式展开,再进行根式的加减运算即可求出答案. (2)先将进行因式分解和括号内的通分运算,再将除法变为乘法即可化简,将3x =【详解】(1)原式()22)51=---.3451=--+.7=-+(2)原式()()2313333x x x x x x ++⎛⎫=÷- ⎪+-++⎝⎭. ()()22333x x x x x ++=÷+-+. ()()23332x x x x x ++=⋅+-+.13x =-.当3x =+2===. 【点睛】 本题考查二次根式的混合运算和分式的化简求值,掌握各运算的运算顺序和方法是解答本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级数学下二次根式练习题
测试时间:90分钟
第Ⅰ卷[基础测试卷]
一、单项选择题(每小题2分,共20分) 1.下列各式是二次根式的是( )
A.2--x
B.x
C.22+x
D.22-x
2.x 的取值范围是( )
A.1x >
B.1x ≥
C.1x ≤
D.1x <
)
A. C. 4.下列根式中属于最简二次根式的是( )
5.下列计算错误..的是( )
==
=3=
6.估计202
1
32+⨯
的运算结果应在( ) A.6到7之间 B.7到8之间 C.8到9之间 D.9到10之间 7.最简二次根式x 26-与2是同类二次根式,则x 的值为( ) A.-2 B.2 C.-4 D.4
8.n 的最小值是( )
A.2
B.3
C.4
D.5
9.x ,小数部分为y y -的值是( )
A.310.已知△ABC 的三边分别为2,x ,5,则化简2
2
)7()3(-+-x x 的值是( ) A.102-x B.4 C.x 210- D.4- 二、填空题(每小题2分,共20分) 1.已知2=
a ,则代数式12-a 的值是.
2.__________==.
3.计算:825-=.
4.比较大小:--).
5.若实数y x ,2(0y =,则xy 的值为.
6.已知x y ==33
_________x y xy +=
7.三角形的一边长是cm 42,这边上的高是cm 30,则这个三角形的面积是2
cm
8.已知a ,b 为两个连续的整数,且a b <,则a b +=. 9.如果101=+
a a ,则221
a
a +的值是. 10.观察下列各式:①312
311=+
,②413412=+③5
1
4513=+,…… 请用含n (n ≥1)的式子写出你猜想的规律:.
三、计算题(每小题5分,共20分)
; 2.4
3.)632)(63(2-+;
4.6)273482(÷-.
四、求值题(每小题5分,共10分)
1.当1x =时,求代数式652--x x 的值.
2.先化简,再求值:12121432
22-+÷⎪⎭
⎫ ⎝⎛---+x x x x x x ,其中x =
五、解答题(每小题7分,共14分)
1.若实数,x y 满足1y <
,求
11
y y --的值.
2.解方程组⎩⎨
⎧=+=+8
3610
63y x y x ,并求xy 的值.
六、解答题(每小题8分,共16分)
1.已知正方形纸片的面积是2
32cm ,如果将这个正方形做一个圆柱的侧面,请问这个圆柱底面半径是多少?(精确到0.1,π取3.14)
2.已知a 、b 、c 满足0235)8(2=-+-+-c b a .
求:(1)a 、b 、c 的值;
(2)试问:以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.
第Ⅱ卷 [实践操作卷]
一、想一想,算一算(10分)
已知,a b 为等腰三角形的两条边长,且,a b 满足4b ,求此三角形的周长.
二、猜一猜,算一算(10分) 阅读下面问题:
12)12)(12()12(1211-=-+-⨯=
+;
(
)
;23)
23)(23(2
312
31-=-+-⨯
=
+
()
25)
25)(25(2
512
51-=-+-⨯=
+;……
仿上的规律计算:
100
99199
9814
313
212
11++++++++++ .
参考答案
第Ⅰ卷
一、选择题:
1.1;
2.6,18;
3.23;
4.<;
5.32;
6.10;
7.353;
8.11;
9.8;10.2
1
)
1(++n n . 三、1.
334;2.22
3
;3.6;4.22-. 四、1.575-;2.
2
2
. 五、1.-1;2.23
2
. 六、1.0.7.
2.(1)22=a ,5=b ,23=c ;(2)能构成三角形(525=>=+b c a ),其周长为525+.
第Ⅱ卷
一、10或11. 二、9.。