2020年陕西省西安市高新一中中考数学四模试卷 (解析版)

合集下载

2024年陕西省西安市高新一中博雅班中考模拟数学试题(解析版)

2024年陕西省西安市高新一中博雅班中考模拟数学试题(解析版)

2024年陕西省西安市高新一中博雅班中考数学模拟试卷一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1. 下列实数是无理数的是()A. 3.1415926B.C.D.【答案】C【解析】【分析】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有:①π类,如2π,0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1).解:A.3.1415926是有限小数,属于有理数,故本选项不符合题意;B,是分数,属于有理数,故本选项不符合题意;CD.是整数,属于有理数,故本选项不符合题意.故选:C.2. 如图是由一个正方体,截去了一部分后得到的几何体,则其左视图是()A. B. C. D.【答案】D【解析】【分析】本题考查了几何体的三视图,从前面看到的图形是主视图,从上面看到的图形是俯视图,从左边看到的图形是左视图.能看到的线画实线,看不到的线画虚线.根据从左边看到的图形是左视图求解即可.2-3π12=2-解:从左面看,是一个矩形,矩形内部有两条横向的虚线,故选:D .3. 计算:()A. B. C. 8a 6b 3 D. 【答案】A【解析】【分析】本题考查了负整数指数幂.熟练掌握负整数指数幂的运算法则是解题的关键.根据负整数指数幂的运算法则求解作答即可.解:,故选:A .4. 如图,在中,,,,将沿方向平移得到,若平分,则的长为()A. B. C. D. 【答案】B【解析】【分析】,从而,,,在中,,设,则,,再证,由,求解得,从而即可得解.解:由平移得:,∴,,,∵,3212a b -⎛⎫-= ⎪⎝⎭638a b -6318a b 6318a b -3236363111822a b a b a b -⎛⎫-=-⋅⋅=- ⎪⎝⎭Rt ABC 90BAC ∠=︒7AB =4tan 3B =ABC BC A B C ''' AB 'BAC ∠B C '163203283353AB A B ''∥90BAC B EC '∠=∠=︒BAB AB E ''∠=∠B A B C ''∠=∠Rt B EC '△4tan 3EC EB C B E '∠=='4EC x =3B E x '=5B C x ¢=3AE EB x '==344tan 73AC x x B AB +===43x =AB A B ''∥90BAC B EC '∠=∠=︒BAB AB E ''∠=∠B A B C ''∠=∠4tan 3B =∴,在中,,∴设,则,∴,∵平分,∴,∴,∴,在中,,∴,解得:,∴,故选:B .【点睛】本题考查了平移的性质,角平分线的定义,正切,勾股定理以及等腰三角形的判定,熟练掌握平移的性质是解题的关键.5. 若一次函数图象经过点、点和点,则m 、n 的大小关系为()A. B. C. D. 无法确定【答案】A【解析】【分析】本题考查了一次函数的性质中的函数增减性的知识,解决本题的关键是根据函数的比例系数确定函数的增减性,然后确定两个未知数的大小.根据一次函数的图象经过点,,确定函数增减性,再进一步可得答案.解:∵时,,∴一次函数的图象经过点,的3tan ta 4n EB C B '∠==Rt B EC ' 4tan 3EC EB C B E '∠=='4EC x =3B E x '=5B C x '===AB 'BAC ∠BAB B AC ''∠=∠AB E B AC ''∠=∠3AE EB x '==Rt ABC 7AB =344tan 73AC x x B AB +===43x =2053B C x '==()0y kx b k =+≠()3,A m -()4,B n ()2,4C b +m n<m n =m n >()0y kx b k =+≠()0,b ()2,4C b +0x =y b =()0y kx b k =+≠()0,b∵一次函数的图象经过,而,∴该函数图象y 随x 的增大而增大,∵一次函数的图象经过点、点,∵,∴,故选:A .6. 如图,在矩形中,,点是上的一个动点,过点分别作、的垂线,垂足分别是、,若,则的值为()A. 2B. C. D. 【答案】D【解析】【分析】本题考查了矩形的性质,勾股定理,三角形的面积计算以及求正切值,熟练掌握矩形的性质是解题的关键.连接,由得,,利用勾股定理求解即可.】解:连接,过作于,∵四边形是矩形,∴,,,∴,∵的面积的面积的面积,∴,∴,()0y kx b k =+≠()2,4C b +4b b <+()0y kx b k =+≠()3,A m -()4,B n 34-<m n <ABCD AD =P AD P AC BD E F 2PE PF +=tan DOC ∠123443OP AOD AOP DOP S S S =+△△△2DH PE PF =+=PO D DH AC ⊥H ABCD OA =12AC DO =12BD AC BD =OA OD =OAD OPA = OPD + 112212AO DH AO PE OD PF ⋅=⋅+⋅2DH PE PF =+=∵,∴,∴,∴,∵,∴,∴,∴.故选:D .7. 如图,是的半径,弦垂直平分于点,点是优弧上一点,连接,若,则的大小为()A. B. C. D. 【答案】C【解析】【分析】本题考查圆周角定理,线段垂直平分线的性质.连接,,由线段垂直平分线的性质推出,判定是等边三角形,得到由圆周角定理得到,由三角形内角和定理得到,由对顶角的性质得到,由直角三角形的性质求出.解:连接,,AD =4AH ==4OA OH +=4OD OH +=222OD OH DH =+()22242OH OH -=+32OH =4tan 3DH DOC OH ∠==OC O AB OC E D CD 75ABD ∠=︒OCD ∠5︒10︒15︒20︒BC OB BC OB =OBC △60BOC ∠=︒1302D BOC ∠=∠=︒180307575DMB ∠=︒-︒-︒=︒75CME DMB ∠=∠=︒907515OCD ∠=︒-︒=︒BC OB垂直平分,,,是等边三角形,,,,,,,.故选:C .8. 在平面直角坐标系中,若二次函数的图象只经过三个象限,则下列说法正确的是()A. 抛物线的顶点在第二象限B. 的值一定大于C. 抛物线一定过点D. 当时,随的增大而增大【答案】B【解析】【分析】本题主要考查二次函数的性质,由的正负可确定出抛物线的开口方向,结合函数的性质逐项判断即可,确定二次函数的开口方向,对称轴和顶点位置是解题的关键.解:由题意,对称轴是直线.∵当时,,∴图象与轴交于点.根据对称性,∴当时,,即抛物线一定过点,故C 错误.又图象经过三个象限,∴,且.∴.AB OC BC OB ∴=OC OB =Q OBC ∴ 60BOC ∴∠=︒1302D BOC ∴∠=∠=︒75B ∠=︒ 180307575DMB ∴∠=︒-︒-︒=︒75CME DMB ∴∠=∠=︒90CEM ∠=︒ 907515OCD ∴∠=︒-︒=︒()2210y ax ax a =++≠a ()2,13x <-y x a 212a x a=-=-0x =1y =y ()0,1112x =--=-1y =()2,1-0a >2440a a ∆=->1a >∴顶点在第三象限,当时,随的增大而增大.故A 、D 错误,B 正确.故选:B .二、填空题(共5小题,每小题3分,计15分)9. 2024年3月12日的《政府工作报告》中指出,在过去的一年我国经济总体回升向好,其中2023年城镇新增就业1244万人,请将数字用科学记数法表示为__.【答案】【解析】【分析】本题主要考查了科学记数法,将数据表示成形式为的形式,其中,n 为整数,正确确定a 、n 的值是解题的关键.将写成其中,n 为整数的形式即可.解:.故答案为.10. 一个边长为2cm 的正多边形,它的每一个内角都是外角的2倍,则这个正多边形的边心距是_____cm .【解析】【分析】本题考查正多边形和圆.根据正多边形内角与外角的关系求出正多边形的外角的度数,进而正多边形的边数,再根据正六边形的性质进行计算即可.解:设这个正多边形的外角为,则与它相邻的内角为,由题意得,,解得,,所以这个正多边形是正六边形,如图,正六边形内接于,连接、,过点作,垂足为,1x >-y x 1244000071.24410⨯10n a ⨯1||10a <<1244000010n a ⨯1||10a <<712440000 1.24410=⨯71.24410⨯x 2x 2180x x +=60x =360606︒÷︒=ABCDEF O OA OB O OM AB ⊥M六边形是的内接正六边形,,,,,在中,,,,即正六边形.11. 幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格,将9个数填入幻方的空格中,要求每一横行、每一竖行以及两条对角线上的3个数之和相等.如图是一个未完成的幻方,则图中x 的值为______.【答案】【解析】【分析】本题主要考查列代数式、一元一次方程的应用.设第三行第一列的数字为,根据幻方中每一横行、每一竖行以及两条对角线上的3个数之和相等分别表示出第二行第三列的数字、第二行第二列的数字,进而根据第三行数字之和等于第二行数字之和列出方程,即可求解.解:设第三行第一列的数字为,则第三行数字之和为,由第三行数字之和等于第三列数字之和,得第二行第三列的数字为,由第三行数字之和等于对角线数字之和,得第二行第二列的数字为,由第三行数字之和等于第二行数字之和,得,解得.ABCDEF O 360606AOB ︒∴∠==︒2cm OA OB == OM AB ⊥1302AOM AOB ∴∠=∠=︒Rt AOM △2cm OA =30AOM ∠=︒AM ∴==ABCDEF 7-a a 3a +3(2)5a a +--=+3(2)5a a +---=553x a a +++=+7x =-故答案为:.12. 如图,菱形在平面直角坐标系中,点B 在x 轴负半轴,点C 在x 轴正半轴上,点A 在y 轴正半轴上,对角线交y 轴于点E ,交于点F ,反比例函数图象恰好经过点F ,反比例函数的图象也恰好经过点D,若时,则k 的值为______.【答案】【解析】【分析】本题主要考查了菱形的性质,求反比例函数解析式,根据菱形的性质得出,,设,则,得出,表示出,根据反比例函数图象恰好经过点F ,得出,即可求出结果.解:菱形中,,,∵B 、C 在x 轴上,点A 在y 轴正半轴上,∴轴,∵,∴设,则,∵反比例函数的图象经过点D ,∴,∵,∴对角线与的交点,∵反比例函数图象恰好经过点F ,7-ABCD BD AC 2y x=()0k y k x =≠53AD BO =20AD BC ∥AD BC =5AD m =3BO m =5,5m D k m ⎛⎫ ⎪⎝⎭,10k F m m ⎛⎫ ⎪⎝⎭2y x =210k m m⋅=ABCD AD BC ∥AD BC =AD x ∥53AD BO =5AD m =3BO m =()0k y k x =≠5,5m D k m ⎛⎫ ⎪⎝⎭()30B m -,BD AC ,10k F m m ⎛⎫ ⎪⎝⎭2y x=∴,∴.故答案为:20.13. 如图,在正方形中,,连接,点P 为内部一点,连接、、,若,,则面积为______.【答案】【解析】【分析】由同角的余角相等,由正方形的性质得到,进而,从而,把绕着点B 顺时针旋转得到,连接,得到和是等腰直角三角形,设,则,,根据勾股定理有,代入即可构造方程,求得,,根据即可求解.解:∵四边形是正方形,∴,∵,∴,∴,∵,,,,把绕着点B 顺时针旋转得到,连接,的210k m m⋅=20k =ABCD 5AB =AC ABC PA PB PC 90APB ∠=︒12∠=∠APC △51BAP ∠=∠45BAC ACB ∠=∠=︒145PCB ∠+∠=︒135BPC ∠=︒ABP 90︒CBG PG PBG △PCG BG PB x ==PG =2CG x =222AP PB AB +=PB BG ==PG PC ==APC ABC APB BCP S S S S =-- ABC PBG CPG S S S =-- ABCD 5,90,45AB BC ABC BAC ACB ==∠=︒∠=∠=︒90APB ∠=︒190BAP ABP ABP ∠+∠=∠+∠=︒1BAP ∠=∠12∠=∠2BAP ∴∠=∠245PCB ︒∠+∠= 145PCB ︒∴∠+∠=135BPC ∴∠=︒ABP 90︒CBG PG,,,,,,是等腰直角三角形,设,,∴,,,,,(负值舍去),,∴.故答案为:5.【点睛】本题考查等腰直角三角形的判定及性质,正方形的性质,勾股定理,旋转的性质,正确作出辅助线,采用转化思想是解题的关键.PB BG ∴=90PBG ∠=︒BAP BCP ∠=∠45BPG PGB ︒∴∠=∠=1354590CPG BPC BPG ︒∴∠=∠-∠=︒-︒=245PCG PCB BCG PCB BAP PCB ︒∠=∠+∠=∠+∠=∠+∠=PCG∴ BG PBx ==PG ∴==PC PG ==2CG x ==2AP CG x ∴==222AP PB AB += 22425x x ∴+=x ∴=PB BG ∴==PG PC ==APC ABC APB BCPS S S S =-- ABC PBC CGBS S S =-- ABC PBG CPGS S S =-- 11155222=⨯⨯-5=三、解答题(共13小题,计81分,解答应写出过程)14. 计算:.【答案】.【解析】【分析】本题考查实数的混合运算.熟练掌握零指数幂运算法则,二次根式化简,二次根式化简是解题的关键.先计算乘方,并化简二次根式,再计算加减即可.解:=.15.解不等式:,并写出它最小正整数解.【答案】,不等式的最小整数解为.【解析】【分析】本题考查了解一元一次不等式,以及一元一次不等式的整数解,熟练掌握不等式的解法是解本题的关键.求出不等式的解集,进而求出最小整数解即可.解:∵,∴,,,,则,∴不等式的最小整数解为.16. 化简:.【答案】【解析】的)022*******⎛⎫---+- ⎪⎝⎭5-)0220242123⎛⎫--+- ⎪⎝⎭(161=-⨯-+61=--++5-26132x x --≤+165x ≥426132x x --≤+()()22366x x -≤-+423186x x -≤-+231864x x --≤-+-516x -≤-165x ≥42131441x x x x x +⎛⎫⋅-- ⎪+++⎝⎭22x x -+【分析】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.根据分式的混合计算法则,先通分,再乘法运算,约分即可得到最简结果.解:====.17. 如图,在,,,平分交于点E ,请用尺规作图法在上确定一个点F ,使得.(保留痕迹,不写作法)【答案】见解析.【解析】【分析】连接,,相交于点O ,连接并延长,交于点G ,再根据作一个角等于已知角的方法作,与交于点F ,则点F 即为所求作的点.解:如图,连接,,相交于点O ,连接并延长,交于点G ,再根据作一个角等于已知角的方法作,与交于点F ,则点F 即为所求作的点.∵四边形为平行四边形,∴,,,∴,,∵平分,∴,2131441x x x x x +⎛⎫⋅-- ⎪+++⎝⎭()()()2113112x x x x x -+-+⋅++()221412x x x x +-⋅++()()()222112x x x x x +-+⋅++22x x -+ABCD Y 3AB =5AD =BE ABC ∠AD AD 2AF FE =AC BD EO BC FGC ABC ∠=∠AD AC BD EO BC FGC ABC ∠=∠AD ABCD 5AD BC ==OB OD =AD BC ∥EDO GBO ∠=∠AEB CBE ∠=∠BE ABC ∠ABE CBE ∠=∠∴,∴,∴.∵,∴,∴.由,可得,∵,∴四边形为平行四边形,∴,∴,∴.∴点F 即为所求.【点睛】本题主要考查了平行四边形的性质,平行线的判定和性质,作一个角等于已知角,全等三角形的判定和性质,等腰三角形的判定,解题的关键是熟练掌握相关的判定和性质.18. 如图,已在与中,,,,,求证:.【答案】证明见解析.【解析】【分析】本题考查了全等三角形的判定与性质,根据题中条件证明出三角形全等是解题的关键.根据,,,从而得出,,结合,即可得出,进而可以解决问题.证明:∵,∴,即,∵,,AEB ABE ∠=∠3AE AB ==2DE =DOE BOG ∠=∠()ASA DOE BOG ≌2BG DE ==FGC ABC ∠=∠AB FG ∥AF BG ∥ABGF 2AF BG ==1EF AE AF =-=2AF FE =ABC ADE V AB AC =BAC DAE ∠=∠BD AB ⊥EC AC ⊥AD AE =BD AB ⊥EC AC ⊥BAC DAE ∠=∠BAD CAE ∠=∠90ABD ACE ∠=∠=︒AB AC =()ASA ABD ACE ≌△△BAC DAE ∠=∠BAC DAC DAE DAC ∠-∠=∠-∠BAD CAE ∠=∠BD AB ⊥EC AC ⊥∴,在与中,,∴,∴.19. 春季来临某商场销售一种新款服装,销售一段时间后发现,若每件服装按标价的9折销售,卖出10件可以获利润120元;若每件服装不打折销售则可获利30元,请问该服装的进价和标价分别为多少.【答案】服装每件的进价为元,标价为元.【解析】【分析】本题考查了一元一次方程的应用之打折问题,熟练掌握打折问题的解法是解题的关键.设该服装每件的进价为元,根据题意,得,求解即可.解:设该服装每件的进价为元,则标价为元,根据题意得:,解得:,∴,答:服装每件的进价为元,标价为元.20. 在一个不透明的袋子里装有红、白、蓝三种颜色的小球若干个(除颜色外其余均相同),其中红球有2个,白球有2个,我们将“从袋中任意摸出一个小球,记录下颜色放回”称为一次实验,经过大量实验并整理实验数据后发现,任意摸出一个球是白色的频率稳定在.(1)袋子中装有蓝色的小球的个数为______个.(2)某校在3月5日开展了“学雷锋,践行动”主题校会,小明被“雷锋生平事迹”深深地打动着,他和好朋友决定用实际行动来发扬“雷锋精神”,他们计划去敬老院给老年人表演节目、打扫卫生等,为了确定表演节目和打扫卫生人选,小明用袋子中的小球设计一个“配紫色”游戏,具体操作如下:现在从袋子里一次取出两个小球并记下取出小球的颜色,若取出的两个小球颜色分别为蓝色和红色则配成紫色,否则不能配成紫色,如果配成紫色小明表演节目,否则小明打扫卫生,请用树状图或列表法求出小明表演节目的概率.【答案】(1)90ABD ACE ∠=∠=︒ABD △ACE △ABD ACE AB ACBAD CAE ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ABD ACE ≌△△AD AE =150180x ()100930120x x ⎡⎤+-=⎣⎦.x ()30x +()100.930120x x ⎡⎤+-=⎣⎦150x =3015030180x +=+=15018025(2)【解析】【分析】本题主要考查了频率,利用树状图或列表法求概率:(1)设蓝色的小球的个数为x 个,根据频率等于频数除以总数,即可求解;(2)根据题意,画出树状图,可得共有25种等可能的结果数,其中两次摸到的球的颜色能配成紫色的结果数(即两次摸到的球的颜色为红色和蓝色的结果数)为4,再由概率公式计算,即可.【小问1】解:设蓝色的小球的个数为x 个,根据题意得,,解得∶,经检验,是原方程的解,答:袋子中装有蓝色的小球的个数为1个.故答案为:1;【小问2】解:画树状图为:共有25种等可能的结果数,其中两次摸到的球的颜色能配成紫色的结果数(即两次摸到的球的颜色为红色和蓝色的结果数)为4,所以两次摸到的球的颜色能配成紫色的概率,答:小明表演节目的概率为.21. 小明暑假来到了“十三朝古都西安”进行研学旅行,他参观了兵马俑、钟楼、明城墙,在参观中他对城墙的高度产生极大的兴趣,他想用学过的数学知识来测量城墙的高度,由于城墙的外侧有护城河,所以城墙的底部不可到达,于是他在护城河边的围栏点处(在安全范围内)利用测倾器测量城墙上一点的仰角为,在阳光的照射下,他发现城墙上点的影子落在了他身后米的点处,于是他站在点发现他的影子落在地上点处,经过测量得知的长为米,已知小明的身高为米,、、、在一条直线上,且,,请你根据以上数据帮助小明算出城墙的高.(参考数据:s42522225x =++1x =1x =425=425C A 67.38︒A 11D DE ED 2.4 1.8E D C B FD ED ⊥AB BE ⊥,,)【答案】城墙的高为米.【解析】【分析】本题考查了解直角三角形的应用,设=米,在中,得出,进而根据,则,得出即可求解.解:设=米,在中,=,=,米,==()米,由题意得,,则∴即,,解得=,答:城墙的高为米.22. 小明在学习完物理中的“比热容和电功率”相关知识后,通过查阅资料了解到用额定功率为1000瓦的in67.38︒≈1213cos67.38︒≈513tan67.38︒≈12512AB x Rt ABC 512x BC =AD EF ∥ADB FED ∠=∠tan tan ADB FED ∠=∠AB x Rt ABC ABC ∠ 90︒ACB ∠67.38︒∴512tan 125AB x x BC ACB ===∠BD ∴BC CD +11+512x AD EF ∥ADB FED∠=∠tan tan ADB FED∠=∠DF AB DE BD=∴1.852.41110x x =+x 1212电水壶将1升的水加热至100摄氏度大约需要用6分钟.小明想知道烧水时间的长短和水温的变化之间是怎样的一种函数关系,用1000瓦的电水壶烧了1升的水,并详细记录了5分钟内4个时刻的水温情况,其中x 表示的烧水时间(单位:分钟),y 表示的是水的温度(单位:℃)x0123y 15304560为了描述烧水时间和水温的关系,现有以下三种函数类型供选择:①;②;③.(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数类型,求出相应的函数表达式.(2)汉中仙毫茶名满天下,尤其是“明前仙毫”更是风味独特,经了解用96摄氏度的水冲泡汉中仙毫能激发出最大的茶香气,请问小明用家里1000瓦的电水壶烧水多长时间冲泡茶,茶香最大.【答案】(1)图见解析,(2)小明用家里1000瓦的电水壶烧水分钟时间冲泡茶,茶香最大【解析】【分析】本题考查了一次函数的应用,熟练掌握待定系数法求一次函数解析式是关键.(1)根据表格数据,画出函数图象并求出函数解析式即可;(2)令代入(1)中的解析式求出的值即可.【小问1】解:作图如下:图象是一次函数,()0y kx b k =+≠()0k y k x=≠()20y ax bx c a =++≠1515y x =+ 5.496y =x设一次函数解析式为,图象过,代入解析式得:,解得,∴直线解析式为:.【小问2】解:令,则,解得(分钟).答:小明用家里1000瓦的电水壶烧水分钟时间冲泡茶,茶香最大.23. 2022年4月国家颁布了《义务教育劳动课程标准》,课程颁布两年以来各校开展了丰富多彩的劳动教育课,学生的劳动能力得到大幅提升.某校利用教学楼楼顶为学生开辟了“学生种植园”,春天来了,万物复苏,经过一个冬天的劳作种植园里硕果累累,小明想了解种植园中的小西红柿生长情况,于是随机采摘了16个小西红柿并称重,得到了如下的数据(单位:g ):18、16、17、21、25、28、21、18、17、15、16、21、21、18、25、23.小明根据以上数据制作了统计表质量1516171821232528次数122b a121(1)表格中的_____;_____;(2)这16个小西红柿质量的中位数是_____;众数是_____;y kx b =+()0,15()1,301530b k b =⎧⎨+=⎩1515k b =⎧⎨=⎩1515y x =+96y =961515x =+5.4x = 5.4=a b =(3)经了解当小西红柿的平均质量达到时就可以采摘食用,此时的口感和营养价值最佳,请问种植园里小西红柿是否符合采摘食用的要求.【答案】(1)4,3(2)19.5,21(3)种植园里小西红柿符合采摘食用的要求【解析】【分析】本题考查频数、中位数、众数等统计量,用平均数进行决策.(1)分别统计数据中21和18出现的次数,即可解答;(2)根据中位数与众数的定义即可解答;(3)求出这16个小西红柿质量的平均数,判断是否达到,从而解答.【小问1】解:根据给出的数据得到:质量为21的出现4次,质量为18的出现3次.∴,.故答案为:4,3【小问2】解:把这些数据从小到大排列,第8个数据是18,第9个数据是21,故中位数是这两个数的平均数,即,由表格可得,21出现的次数最多,故众数是21;故答案为:19.5,21;【小问3】解:这些小西红柿的平均质量为,∵小西红柿的平均质量达到时就可以采摘食用,∴种植园里小西红柿符合采摘食用的要求.24. 如图,内接于,为直径,过点C 作的切线,过点A 作的垂线交于点D ,平分交于点E.20g 20g 4a =3b =182119.52+=()1516217218321423252212016x g +⨯+⨯+⨯+⨯++⨯+==20g ABC O AB O CD CD CD CE ACB ∠O(1)求证:平分.(2)若,,求的长.【答案】(1)证明见解析(2)【解析】【分析】(1)连接,根据圆周角定理得到,根据切线的性质得到,求得,得到,根据角平分线的定义得到结论;(2)由(1)知,,等量代换得到,根据三角函数的定义得到,于是得到结论;【小问1】连接为直径,∵为直径,∴,∴,∵过点C 作的切线,∴,∴,∴,∵,∴,∴,∵,∴,∴,AC BAD ∠1tan 2E =1AD =AE 3AE =OC 90ACB ∠=︒90OCD ∠=︒B OCB ∠=∠ACD B ∠=∠ACD B ∠=∠E ACD ∠=∠1tan tan 2CD AD E ACD DA CD =∠===OC AB 90ACB ∠=︒90ACO BCO BAC B ∠+∠=∠+∠=︒O CD 90OCD ∠=︒90ACO ACD ∠+∠=︒BCO ACD ∠=∠OB OC =B OCB ∠=∠ACD B ∠=∠CD ED ⊥90D Ð=°90CAD ACD ∠+∠=︒∴,∴平分;【小问2】由(1)知,,∵,∴,∵,∴,∵,∴,∴,∴.【点睛】本题考查了切线的性质,等腰三角形的性质,圆周角定理,解直角三角形,熟练掌握切线的性质是解题的关键.25. 如图,在平面直角坐标系中,抛物线L :与x 轴交于点和点B ,与y 轴交于点.(1)求出抛物线L 的解析式和顶点坐标.(2)点P 是抛物线L 对称轴右侧图象上的一点,过点P 作x 的垂线交x 轴于点Q ,作抛物线L 关于直线BAC CAD ∠=∠AC BAD ∠ACD B ∠=∠E B ∠=∠E ACD ∠=∠1tan 2E =1tan tan 2CD AD E ACD DE CD =∠===1AD =2CD =4DE =413AE =-=2y x bx c =++()1,0A ()0,3C PQ对称抛物线,则C 关于直线的对称点为,若为等腰直角三角形,求出抛物线的解析式.【答案】(1),顶点坐标为(2)【解析】【分析】本题主要考查了二次函数的平移问题,求二次函数的解析式:(1)利用待定系数法解答,即可求解;(2)设交于点N ,根据为等腰直角三角形,可得,设点,可得点P 的横坐标为5,由(1)得:原抛物线的对称轴为直线,从而得到新抛物线的顶点坐标为,即可求解.【小问1】解:由题意得:,解得:,∴抛物线的表达式为:;∵,∴抛物线的顶点坐标为:;【小问2】解:如图,设交于点N ,∵为等腰直角三角形,∴,L 'PQ C 'PCC '△L '243y xx =-+()2,1-()281y x =--CC 'PQ PCC '△PN CN C N '==()2,43P x x x -+2x =()8,1-310c b c =⎧⎨++=⎩43b c =-⎧⎨=⎩243y xx =-+()224321y x x x =-+=--()2,1-CC 'PQ PCC '△PN CN C N '==设点,则,解得:(舍去)或5,即点P 的横坐标为5,由(1)得:原抛物线的对称轴为直线,∴新抛物线的对称轴为直线,∴新抛物线的顶点坐标为:,∴抛物线的解析式为:.26. (1)如图①,在中,过点作于点,过点作于点,若,,的长为___________.(2)如图②,在矩形中,,,点是矩形内部一点,且满足,则点到的最小距离为多少.(3)如图③,小明家有一个边长为10米的正方形空地,点为边上一点且米,小明计划在边上任取一点,以为边在上方修建一个面积为16平方米的矩形草莓种植大棚(即为矩形且面积为16平方米),同时计划利用区域种植葡萄,剩下区域栽种花卉和草坪,由于近几年葡萄的销量不好,所以小明计划在不减少草莓种植面积的条件下减少葡萄种植区域的面积,请你帮助小明计算出当葡萄种植区域面积最小时的长为多少.【答案】(1)2;(2)点P 到AD 的最小距离为2;(3)当葡萄种植区域面积最小时BE 的长为4米.【解析】【分析】(1)利用勾股定理,平行四边形的性质和平行四边形的面积公式解答即可;(2)取的中点,连接,过点作于点,过点作于点,则,当,,三点在一条直线上时,取得最小值,利用矩形的判定与性质和直角三角形的斜边上的中线的性质解答即可;()2,43P x x x -+2433x x x -=+-0x =2x =2338x =++=()8,1-L '()281y x =--ABCD Y A AE BC ⊥E A AF DC ⊥F 2AE =BE =AF =AD ABCD 8AD =6AB =P ABCD 90BPC ∠=︒P AD EFGH A HE 4AE =EF B AB AB ABCD DHG △BE BC E EP P PD AD ⊥F E EH AD ⊥H EP PF EH +≥E P F PF(3)过点作于点,设,,利用相似三角形的判定与性质得到与的函数关系式,利用配方法和非负数的应用求得的最大值;过点作于点,延长,交于点,利用矩形的判定与性质和题意,当取得最大值时,取最小值,即葡萄种植区域面积最小,从而得到值,再利用解答即可.解:(1),,,.四边形为平行四边形,,.,.,,..故答案为:2;(2)取的中点,连接,过点作于点,过点作于点,如图,则为到的距离.四边形为矩形,,,四边形为矩形,,,为的中点,.D DM AH ⊥M AD x =AM y =y x y D DN HG ⊥N ND EF K DK DNx BE =AE BC ⊥ 2AE=BE=AB ∴==ABCD CD AB ∴==AD BC =AF=4ABCD S CD AF ∴=⋅==平行四边形ABCD S CB AE =⋅ 平行四边形24CB ∴=2BC ∴=2AD BC ∴==BC E EP P PD AD ⊥F E EH AD ⊥H PF P AD ABCD 90A ABC ∴∠=∠=︒EH AD ⊥ ∴ABEH 6EH AB ∴==90BPC ∠=︒ E BC 118422PE BC ∴==⨯=,,当,,三点在一条直线上时,取得最小值为2.点到的最小距离为2;(3)过点作于点,如图,设,,四边形为矩形且面积为16平方米,.,,,,.,,,,当时,即时,取得最大值.过点作于点,延长,交于点,∵,,为EP PF EH+≥2PF EH EP∴≥-=∴E P F PF∴P ADD DM AH⊥MAD x=AM y=ABCD16ABx∴=4AE=90E∠=︒BE∴===90DAM EAB∠+∠=︒90EAB ABE∠+∠=︒DAM ABE∴∠=∠90AMD E∠=∠=︒ADM BAE∴∽△△∴AM BEAD AB=∴yx=y∴==∴28x=x=y124=D DN HG⊥N ND EF KGH EF∥NK EF∴⊥,四边形为矩形,(米,同理:四边形为矩形,.减少葡萄种植区域的面积,葡萄种植区域面积最小时,即的面积最小,米,取最小值时,的面积最小.,当取得最大值时,取最小值.由题意:当取得最大值时,取得最大值,此时..当葡萄种植区域面积最小时的长为4(米).【点睛】本题主要考查了平行四边形的性质,直角三角形的性质,勾股定理,矩形的判定与性质,相似三角形的判定与性质,二次函数的的性质,配方法,点到直线的距离,熟练掌握矩形的判定与性质和恰当的添加辅助线是解题的关键.90E EHG ∠=∠=︒ ∴NHEK 10NK HE ∴==DMHN DN HM ∴= ∴DHG △10HG NK Q ==DN ∴DHG △10DN NK += ∴DK DN AM DK 426+=x=4414BE ∴===⨯=∴BE。

陕西省西安市高新一中中考数学四模试卷

陕西省西安市高新一中中考数学四模试卷

E 处后,测得“平安中心”AB 的顶部 A 处的仰角为 60°,(如
图).已知 C、D、B 三点在同一水平直线上,且 CD=400 米,
求平安金融中心 AB 的高度.(参考数据:sin32°≈0.53,
cos32°≈0.85,tan32°≈0.62,tan44°≈0.99, ≈1.41,

21. 某演唱会购买门票的方式有两种.
10. 已知 A(x1,y1),B(x2,y2)是二次函数图象上 y=ax2﹣2ax+a﹣c(a≠0)的两点,
若 x1≠x2 且 y1=y2,则当自变量 x 的值取 x1+x2 时,函数值为()
A. ﹣c
B. c
C. ﹣a+c
D. a﹣c
二、填空题(本大题共 4 小题,共 12.0 分)
11. 在 、π、 、0.5、 这五个数中,无理数有______.
14. 如图,已知正方形 ABCD 的边长是 4,点 E 是 AB 边上一
动点,连接 CE,过点 B 作 BG⊥CE 于点 G,点 P 是 AB 边上另一动点,则 PD+PG 的最小值为______.
三、计算题(本大题共 1 小题,共 5.0 分)
15. 计算:( )-2-(π-3.14)0+ -|2- |.
连接 CD,若 BD=1,则 AC 的长是( )
A. B. 2 C. D. 4
7. 若直线 l1 经过点(-1,0),l2 经过点(2,2),且 l1 与 l2 关于直线 x=1 对称,则 l1
和 l2 的交点坐标为( )
A. (1,4)
B. (1,2)
C. (1,0)
D. (1,3)
8. 如图,正方形纸片 ABCD 的边长为 3,点 E、F 分别在边 BC

陕西省西安市雁塔区高新一中2019-2020学年中考数学模拟教学质量检测试题

陕西省西安市雁塔区高新一中2019-2020学年中考数学模拟教学质量检测试题

陕西省西安市雁塔区高新一中2019-2020学年中考数学模拟教学质量检测试题一、选择题1.△ABC 中,∠A ,∠B 都是锐角,且sinA =2,cosB =12,则△ABC 的形状是( ) A.直角三角形 B.钝角三角形 C.锐角三角形D.锐角三角形或钝角三角形 2.(11·孝感)如图,某航天飞机在地球表面点P 的正上方A 处,从A 处观测到地球上的最远点Q ,若∠QAP =α,地球半径为R ,则航天飞机距地球表面的最近距离AP ,以及P 、Q 两点间的地面距离分别是( )A.,sin 180R R παα B.(90),sin 180R R R απα-- C.(90),sin 180R R R απα-- D.(90),sin 180R R R απα+- 3.已知二次函数y =ax 2+(a+2)x ﹣1(a 为常数,且a≠0),( )A .若a >0,则x <﹣1,y 随x 的增大而增大B .若a >0,则x <﹣1,y 随x 的增大而减小C .若a <0,则x <﹣1,y 随x 的增大而增大D .若a <0,则x <﹣1,y 随x 的增大而减小4.已知,则等于( ) A.1 B.3 C.-1 D.-35.下面是小林做的4道作业题:(1)2ab+3ab =5ab ;(2)2ab ﹣3ab =﹣ab ;(3)2ab ﹣3ab =6ab ;(4)2ab÷3ab=23.做对一题得2分,则他共得到( ) A .2分 B .4分 C .6分 D .8分6.如图,在Rt ABC ∆中,90C ∠=︒,4AC =,3BC =,则sin B 的值为( )A .23B .35C .34D .457.如图是将一多边形剪去一个角,则新多边形的内角和( )A .比原多边形少180°B .与原多边形一样C .比原多边形多360°D .比原多边形多180°8.某几何体的平面展开图如图所示,则该几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱 9.已知二次函数2y ax bx c =++的图像如图所示,对称轴是直线x=1,下列结论中:①abc>0,②2a+b=0,③24b ac -<0,④4a+2b+c>0,其中正确的是( )A .①②B .①③C .②③D .②④ 10.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为( )A .2B .8CD .11.如图,在矩形ABCD 中,AD =3,AB =4,将△ABC 沿CF 折叠,点B 落在AC 上的点E 处,则AF FB等于( )A .12B .35C .53D .212.如图,在平面直角坐标系中,Rt △ABC 的三个顶点的坐标分别为A (1,1),B (4,3),C (4,1),如果将Rt △ABC 绕点C 按顺时针方向旋转90°得到Rt △A′B′C′,那么点A 的对应点A'的坐标是( )A .(3,3)B .(3,4)C .(4,3)D .(4,4)二、填空题 13.如图,四边形ABCD 是矩形,AD =5,AB =163,点E 在CD 边上,DE =2,连接BE ,F 是BE 边上的一点,过点F 作FG ⊥AB 于G ,连接DG ,将△ADG 沿DG 翻折的△PDG ,设EF =x ,当P 落在△EBC 内部时(包括边界),x 的取值范围是__.14.如图,在由边长都为1的小正方形组成的网格中,点A ,B ,C 均为格点,点P ,Q 分别为线段AB ,BC 上的动点,且满足AP BQ =.(1)线段AB 的长度等于__________;(2)当线段AQ CP +取得最小值时,请借助无刻度直尺在给定的网格中画出线段AQ 和CP ,并简要说明你是怎么画出点Q ,P 的:_______________________.15.在平面直角坐标系中,△OAB 各顶点的坐标分别为:O (0,0),A (1,2),B (0,3),以O 为位似中心,△OA′B′与△OAB 位似,若B 点的对应点B′的坐标为(0,﹣6),则A 点的对应点A′坐标为_____.16.已知一次函数y =32x -3的图像与x 、y 轴分别交于点A 、B ,与反比例函数y =k x(x >0)的图像交于点C ,且AB =AC ,则k 的值为________.17.函数31x y x =+中,自变量x 的取值范围是_____.18.如图,在▱ABCD中,AB=AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_____.三、解答题19.从甲市到乙市乘坐高铁列车的路程为180千米,乘坐普通列车的路程为240千米,高铁列车的平均速度是普通列车的平均速度的3倍,高铁列车的乘车时间比普通列车的乘车时间缩短了2小时.(1)求高铁列车的平均速度是每小时多少千米;(2)某日王老师要去距离甲市大约405m的某地参加14:00召开的会议,如果他买到当日10:40从甲市至该地的高铁票,而且从该地高铁站到会议地点最多需要1.5h,试问在高铁列车准点到达的情况下他能在开会之前到达吗?20.某公司准备购进一批产品进行销售,该产品的进货单价为6元/个.根据市场调查,该产品的日销售量y(个)与销售单价x(元/个)之间满足一次函数关系.关于日销售量y(个)与销售单价x(元/个)的几组数据如表:(2)按照(1)中的销售规律,当销售单价定为17.5元/个时,日销售量为个,此时,获得日销售利润是.(3)为防范风险,该公司将日进货成本控制在900(含900元)以内,按照(1)中的销售规律,要使日销售利润最大,则销售单价应定为多少?并求出此时的最大利润.21.五一假期,某家庭开展自驾游活动,计划按A→B→C→D线路游览四个景点,如图,其中A、B、C三景点在同一直线上,D景点在A景点北偏东30°方向,在C景点北偏西45°方向,C景点在A景点北偏东75°方向.若A景点与D景点的直线距离AD=60km,问沿上述线路从A景点到D景点的路程是多少?22.在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a≠0)顶点为P,且该抛物线与x轴交于A,B两点(点A在点B的左侧).我们规定:抛物线与x轴围成的封闭区域称为“G区域”(不包含边界);横、纵坐标都是整数的点称为整点.(1)求抛物线y=ax2-2ax-3a顶点P的坐标(用含a的代数式表示);(2)如果抛物线y=ax2-3ax-3a经过(1,3).①求a的值;②在①的条件下,直接写出“G区域”内整点的个数.(3)如果抛物线y=ax2-2ax-3a在“G区域”内有4个整点,直接写出a的取值范围.23.如图,在△ABD 中,AB =AD ,AB 是⊙O 的直径,DA 、DB 分别交⊙O 于点E 、C ,连接EC ,OE ,OC .(1)当∠BAD 是锐角时,求证:△OBC ≌△OEC ;(2)填空:①若AB =2,则△AOE 的最大面积为 ;②当DA 与⊙O 相切时,若AB AC 的长为 .24.解方程组:226021x xy y x y ⎧+-=⎨+=⎩25.如图,在四边形ABCD 中,AB ∥DC ,AB =AD ,对角线AC ,BD 交于点O ,AC 平分∠BAD .(1)求证:四边形ABCD 是菱形;(2)过点C 作CE ⊥AB 交AB 的延长线于点E ,连接OE ,请你先补全图形,再求出当AB =,BD =2时,OE 的长.【参考答案】***一、选择题13.4≤x≤2. 14.取格点,,,D E F G .连接,BD EF ,它们相交于点T ,连接,AT CG ,分别交,BC AB 于点,Q P ,则线段AQ 和CP 即为所求.15.(﹣2,﹣4)16.1217.13x ≠-18.3三、解答题19.(1)270(2)他能在开会之前到达【解析】【分析】(1)设普通列车平均速度每小时x 千米,则高速列车平均速度每小时3x 千米,根据题意可得,坐高铁走180千米比坐普通车240千米少用2小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.【详解】(1)设普通列车平均速度每小时x 千米,则高速列车平均速度每小时3x 千米, 根据题意得,2401803x x-=2, 解得:x =90,经检验,x =90是所列方程的根,则3x =3×90=270.答:高速列车平均速度为每小时270千米;(2)405÷270=1.5,则坐车共需要1.5+1.5=3(小时),王老师到达会议地点的时间为13点40.故他能在开会之前到达.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.20.(1)y =﹣30x+600;m 的值为120;(2)75,862.5;(3)以15元/个的价格销售这批许愿瓶可获得最大利润1350元【解析】【分析】(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,代入x=16求得m 的值即可;(2)把x=17.5代入y=-30x+600,可求日销售量,日销售利润=每个商品的利润×日销售量,依此计算即可;(3)根据进货成本可得自变量的取值,根据销售利润=每个商品的利润×销售量,结合二次函数的关系式即可求得相应的最大利润.【详解】(1)y 是x 的一次函数,设y =kx+b ,图象过点(10,300),(12,240),1030012240k b k b +=⎧⎨+=⎩, 解得:30600k b =-⎧⎨=⎩, ∴y =﹣30x+600,当x =16时,m =120;∴y 与x 之间的函数关系式为y =﹣30x+600,m 的值为120;(2)﹣30×17.5+600=﹣525+600=75(个),(17.5﹣6)×75=11.5×75=862.5(元),故日销售量为75个,获得日销售利润是862.5元;故答案为:75,862.5;(3)由题意得:6(﹣30x+600)≤900,解得x≥15.w =(x ﹣6)(﹣30x+600)=﹣30x 2+780x ﹣3600,即w 与x 之间的函数关系式为w =﹣30x 2+780x ﹣3600,w =﹣30x 2+780x ﹣3600的对称轴为:x =﹣7802(30)⨯-=13, ∵a =﹣30<0,∴抛物线开口向下,当x≥15时,w 随x 增大而减小,∴当x =15时,w 最大=1350,即以15元/个的价格销售这批许愿瓶可获得最大利润1350元.【点睛】此题主要考查了二次函数的应用;要注意应该在自变量的取值范围内求最大值(或最小值).21.从A 景点到D 景点的路程是)km .【解析】【分析】作DE ⊥AC 于E ,根据等腰直角三角形的性质求出AE 、DE ,根据正弦的定义求出CD ,根据正切的定义求出CE ,结合图形计算即可.【详解】作DE ⊥AC 于E ,由题意得,∠DAC =45°,∠DCA =60°,在Rt △ADE 中,∠DAC =45°,2AE DE AD ∴===Rt △CDE 中,∠DCE =60°,sin DE DCE CD ∠=则CD =DE sin DCE=∠ tan ∠DCE =DE EC ,则CE =DE tan DCE=∠,∴从A 景点到D 景点的路程=+=+答:从A 景点到D 景点的路程是+km .【点睛】本题考查的是解直角三角形的应用﹣方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.22.(1)顶点P 的坐标为(1,-4a ).(2)①a=-34.②“G 区域”有6个整数点.(3)a 的取值范围为-23≤a<-12或12<a≤23. 【解析】【分析】(1)利用配方法将抛物线的解析式变形为顶点式,由此即可得出顶点P 的坐标;(2)将点(1,3)代入抛物线解析式中,即可求出a 值,再分析当x=0、1、2时,在“G 区域”内整数点的坐标,由此即可得出结论;(3)分a <0及a >0两种情况考虑,依照题意画出图形,结合图形找出关于a 的不等式组,解之即可得出结论.【详解】解:(1)∵y=ax 2-2ax-3a=a (x+1)(x-3)=a (x-1)2-4a ,∴顶点P 的坐标为(1,-4a ).(2)∵抛物线y=a (x+1)(x-3)经过(1,3),∴3=a (1+1)(1-3),解得:a=-34. 当y=-34(x+1)(x-3)=0时,x 1=-1,x 2=3, ∴点A (-1,0),点B (3,0). 当x=0时,y=-34(x+1)(x-3)=94, ∴(0,1)、(0,2)两个整数点在“G 区域”; 当x=1时,y=-34(x+1)(x-3)=3, ∴(1,1)、(1,2)两个整数点在“G 区域”;当x=2时,y=-34(x+1)(x-3)=94, ∴(2,1)、(2,2)两个整数点在“G 区域”.综上所述:此时“G 区域”有6个整数点.(3)当x=0时,y=a (x+1)(x-3)=-3a ,∴抛物线与y 轴的交点坐标为(0,-3a ).当a <0时,如图1所示,此时有{24332a a <-≤-≤,解得:-23≤a<-12; 当a >0时,如图2所示,此时有{34232a a -≤-<--≥-,解得:12<a≤23.综上所述,如果G区域中仅有4个整数点时,则a的取值范围为-23≤a<-12或12<a≤23.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征以及解一元一次不等式组,解题的关键是:(1)利用配方法将抛物线解析式变形为顶点式;(2)利用二次函数图象上点的坐标特征,寻找“G区域”内整数点的个数;(3)依照题意,画出图形,观察图形找出关于a的一元一次不等式组.23.(1)见解析;(2)①S△AOE最大=12;②AC=1.【解析】【分析】(1)利用垂直平分线,判断出∠BAC=∠DAC,得出EC=BC,用SSS判断出结论;(2)①先判断出三角形AOE面积最大,只有点E到直径AB的距离最大,即是圆的半径即可;②根据切线的性质和等腰直角三角形的性质解答即可.【详解】(1)连接AC,如图1,∵AB是⊙O的直径,∴AC⊥BD,∵AD=AB,∴∠BAC=∠DAC,∴BC EC=,∴BC=EC,在△OBC和△OEC中BC EC OB E OC COO=⎧⎪=⎨⎪=⎩,∴△OBC≌△OEC(SSS),(2)①∵AB是⊙O的直径,且AB=2,∴OA=1,设△AOE的边OA上的高为h,∴S△AOE=12OA×h=12×1×h=12h,∴要使S△AOE最大,只有h最大,∵点E在⊙O上,∴h最大是半径,即h最大=1∴S△AOE最大=12,故答案为12;②如图2:当DA与⊙O相切时,∴∠DAB=90°,∵AD=AB,∴∠ABD=45°,∵AB是直径,∴∠ADB=90°,∴AC=BC1 AB==,故答案为:1【点睛】此题是圆的综合题,主要考查了圆的性质,全等三角形的判定和性质,解本题的关键是确定面积最大时,点E到AB的距离最大是半径.24.2515xy⎧=⎪⎪⎨⎪=⎪⎩或3515xy⎧=⎪⎪⎨⎪=⎪⎩.【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】原方程组变形为(3)(2)021x y x y x y +-=⎧⎨+=⎩, ∴3021x y x y +=⎧⎨+=⎩或2021x y x y -=⎧⎨+=⎩ ∴原方程组的解为2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查了二次方程组的解,将二次方程组化为一次方程组是解题的关键.25.(1)见解析;(2)2.【解析】【分析】(1)先判断出∠OAB=∠DCA ,进而判断出∠DAC=∠DAC ,得出CD=AD=AB ,即可得出结论;(2)先判断出OE=OA=OC ,再求出OB=1,利用勾股定理求出OA ,即可得出结论.【详解】(1)证明:∵AB ∥CD ,∴∠OAB =∠DCA ,∵AC 平分∠BAD .∴∠OAB =∠DAC ,∴∠DCA =∠DAC ,∴CD =AD =AB ,∵AB ∥CD ,∴四边形ABCD 是平行四边形,∵AD =AB ,∴四边形ABCD 是菱形;(2)解:补全图形如图所示:∵四边形ABCD 是菱形,∴OA =OC ,BD ⊥AC ,∵CE ⊥AB ,∴OE =OA =OC ,∵BD =2,∴OB =BD =1,在Rt △AOB 中,AB =,OB =1, ∴OA ==2,∴OE =OA =2.【点睛】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD =AD =AB 是解本题的关键.。

西安高新第一中学初中校区东区初级中学高中数学选修4-1第一章《直线,多边形,圆》测试卷(含答案解析)

西安高新第一中学初中校区东区初级中学高中数学选修4-1第一章《直线,多边形,圆》测试卷(含答案解析)

一、选择题1.已知,x y 满足2240x x y -+=,则2x y -的最大值为( )A .25B .252+C .352+D .452.已知直线:2l x y +=和圆222:C x y r +=,若r 是在区间()1,3上任意取一个数,那么直线l 与圆C 相交且弦长小于22的概率为( ) A .12B .22C .214-D .212-3.已知圆()221:24C x y +-=,抛物线22:2(0)C y px p =>, 1C 与2C 相交与,A B 两点,且855AB =,则抛物线2C 的方程为( ) A .285y x =B .2165y x =C .2325y x =D .2645y x = 4.已知双曲线的离心率为,则圆上的动点到双曲线的渐近线的最短距离为 ( ) A .23 B .24 C .D .5.如图所示,在圆的内接四边形ABCD 中,AC 平分BAD ∠,EF 切O 于点C ,那么图中与DCF ∠相等的角的个数是( )A .4B .5C .6D .76.圆4)2()1(22=+++y x 与圆9)2()2(22=-+-y x 的公切线有( ) A .1条 B .2条 C .3条 D .4条7.已知斜率为k 的直线l 平分圆22230x y x y +-+=且与曲线2y x = 恰有一个公共点,则满足条件的k 值有( )个. A .1 B .2C .3D .08.设集合(){},|A x y y x a ==+,集合(){}2,|34B x y y x x ==-, 若A B ∅⋂≠的概率为1,则a 的取值范围是( )A .122,122⎡-+⎣B .12,3⎡⎤⎣⎦C .1,122⎡⎤-+⎣⎦D .122,3⎡⎤-⎣⎦9.设直线10x ky --=与圆22(1)(2)4x y -+-=相交于A ,B 两点,且弦AB 的长为23,则实数k 的值是( )A .3-B .3±C .33D .33±10.(2013•文昌模拟)过点A (a ,a )可作圆x 2+y 2﹣2ax+a 2+2a ﹣3=0的两条切线,则实数a 的取值范围为( ) A .a <﹣3或B .C .a <﹣3D .﹣3<a <1或11.直线:1l y kx =-与圆221x y +=相交于A 、B 两点,则OAB ∆的面积最大值为( ) A .14 B .12 C .1 D .3212.已知点13(,)22A 是圆C:221x y += 上的点,过点A 且与圆C 相交的直线AM 、AN 的倾斜角互补,则直线MN 的斜率为( )A .33 B .3 C .233D .不为定值 二、填空题13.过点P (t ,t )作圆C :(x 一2)2+y 2=1的两条切线,切点为A ,B ,若直线AB 过点(2,18),则t =____. 14.(几何证明选讲选做题)如图2所示AB 与CD 是O 的直径,AB ⊥CD ,P 是AB 延长线上一点,连PC 交O 于点E ,连交AB 于点,若,则.15.设,m n R ∈,若直线()()1120m x n y +++-=与圆()()22111x y -+-=相切,则+m n 的取值范围为_________.16.设直线:340l x y a ++=,圆()22:22C x y -+=,若在圆C 上存在两点,P Q ,在直线l 上存在一点M ,使得90PMQ ∠=︒,则a 的取值范围是__________. 17.如图,圆O 的直径CD=10cm ,D 为AB 的中点,CD 交弦AB 于P ,AB=8cm ,则tan D ∠=______.18.(几何证明选讲选做题)如图,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C 23E =,则D A =___________.19.如图所示,过点P 的直线与⊙O 相交于A ,B 两点.若PA =1,AB =2,PO =3,则⊙O 的半径r =________.20.以点为圆心且与直线相切的圆的方程为______.三、解答题21.A .选修4—1 几何证明选讲 在直径是的半圆上有两点,设与的交点是.求证:22.已知圆C :422=+y x 和直线l :01243=++y x ,点P 是圆C 上的一动点,直线与x 轴,y 轴的交点分别为点A 、B 。

2020年陕西省西安市高新一中中考数学一模试卷 (解析版)

2020年陕西省西安市高新一中中考数学一模试卷 (解析版)

2020年陕西省西安市高新一中中考数学一模试卷一、选择题1.3-的相反数是( ) A .13B .13-C .3D .3-2.如图,//AB CD ,AE 平分CAB ∠交CD 于点E ,若50C ∠=︒,则(AED ∠= )A .65︒B .115︒C .125︒D .130︒3.下列运算正确的是( ) A .2235a a a += B .222(2)4a b a b +=+ C .236a a a =gD .2336()ab a b -=-4.发展工业是强国之梦的重要举措,如图所示零件的左视图是( )A .B .C .D .5.一次函数y kx b =+的图象与正比例函数6y x =-的图象平行且经过点(1,3)A -,则这个一次函数的图象一定经过( ) A .第一、二、三象限 B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限6.如图,在Rt ABC ∆中,90C ∠=︒,30B ∠=︒,AD 是BAC ∠的角平分线,6AC =,则点D 到AB 的距离为( )A .33B .3C .23D .337.如图,在矩形ABCD 中,3AB =,4AD =,点E 在边BC 上,若AE 平分BED ∠,则BE 的长为( )A .35B .938C .7D .47-8.如图,点E 是平行四边形ABCD 中BC 的延长线上的一点,连接AE 交CD 于F ,交BD 于M ,则图中共有相似三角形(不含全等的三角形)( )对.A .4B .5C .6D .79.已知,如图,点C 、D 在O e 上,直径6AB cm =,弦AC 、BD 相交于点E .若CE BC =,则阴影部分面积为( )A .934πB .9942π-C .39324π-D .3922π-10.已知抛物线22y ax bx =+-与x 轴没有交点,过(2A -、1)y 、2(3,)B y -、2(1,)C y 、(3D ,3)y 四点,则1y 、2y 、3y 的大小关系是( )A .123y y y >>B .213y y y >>C .132y y y >>D .321y y y >>二.填空题(共4小题)11.在实数3-,0,π,5-,6中,最大的一个数是 .12.菱形ABCD 的边6AB =,60ABC ∠=︒,则菱形ABCD 的面积为 .13.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,)m ,(3,6)C m +,那么图象同时经过点B 与点D 的反比例函数表达式为 .14.如图,已知在四边形ABCD 中,AB AD =,60BAD ∠=︒,30BCD ∠=︒,42AC =,则四边形ABCD 面积的最小值是 .三.解答题(共11小题)15.计算:3011118()|223|()822--⨯-+---16.化简求值:228166(1)122x x x x x -+÷-+++,其中x 选取2-,0,1,4中的一个合适的数. 17.尺规作图:已知点D 为ABC ∆的边AB 的中点,用尺规在ABC ∆的边上找一点E ,使:1:4ADE ABC S S ∆∆=.(保留作图痕迹,不写作法)18.如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE .证明:AB DF =.19.某学校为了了解本校1800名学生的课外阅读的情况,现从各年级随机抽取了部分学生对他们一周的课外阅读时间进行了调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为图①中m的值为;(2)本次调查获取的样本数据的众数是小时,中位数是小时;(3)根据样本数据,估计该校一周的课外阅读时间大于6h的学生人数.20.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22︒时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45︒时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:3sin228︒≈,15cos2216︒≈,2tan22)5︒≈21.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20立方米时,按2元/立方米计费;月用水量超过20立方米时,其中的20立方米仍按2元/立方米收费,超过部分按2.6元/立方米计费.设每户家庭用水量为x 立方米时,应交水费y 元.(1)写出y 与x 之间的函数表达式; (2)小明家第二季度交纳水费的情况如下:月份 四月份 五月份 六月份 交费金额30元34元47.8元小明家这个季度共用水多少立方米?22.如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120︒.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止). (1)转动转盘一次,求转出的数字是1的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之和为正数的概率.23.如图,在Rt ABC ∆中,90ACB ∠=︒,点D 是AB 的中点,以CD 为直径作O e ,O e 分别与AC ,BC 交于点E ,F ,过点F 作O e 的切线FG ,交AB 于点G . (1)求证:FG AB ⊥;(2)若6AC =,8BC =,求FG 的长.24.如图,抛物线2y x bx c =++经过(1,0)A -、(4,0)B 两点,与y 轴交于点C ,D 为y 轴上一点,点D 关于直线BC 的对称点为D '. (1)求抛物线的解析式;(2)当点D 在x 轴上方,且OBD ∆的面积等于OBC ∆的面积时,求点D 的坐标; (3)当点D '刚好落在第四象限的抛物线上时,求出点D 的坐标;(4)点P 在抛物线上(不与点B 、C 重合),连接PD 、PD '、DD ',是否存在点P ,使PDD ∆'是以D 为直角顶点的等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.25.问题背景(1)如图(1)ABC ∆内接于O e ,过A 作O e 的切线l ,在l 上任取一个不同于点A 的点P ,连接PB 、PC ,比较BPC ∠与BAC ∠的大小,并说明理由. 问题解决(2)如图(2),(0,2)A ,(0,4)B ,在x 轴正半轴上是否存在一点P ,使得cos APB ∠最小?若存在,求出P 点坐标,若不存在,请说明理由. 拓展应用(3)如图(3),在四边形ABCD 中,//AB CD ,AD CD ⊥于D ,E 是AB 上一点,AE AD =,P 是DE 右侧四边形ABCD 内一点,若8AB =,11CD =,tan 2C ∠=,9DEP S ∆=,求sin APB ∠的最大值.参考答案一.选择题(共10小题) 1.3-的相反数是( ) A .13B .13-C .3D .3-【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可. 解:(3)30-+=. 故选:C .2.如图,//AB CD ,AE 平分CAB ∠交CD 于点E ,若50C ∠=︒,则(AED ∠= )A .65︒B .115︒C .125︒D .130︒【分析】根据平行线性质求出CAB ∠的度数,根据角平分线求出EAB ∠的度数,根据平行线性质求出AED ∠的度数即可. 解://AB CD Q , 180C CAB ∴∠+∠=︒, 50C ∠=︒Q ,18050130CAB ∴∠=︒-︒=︒,AE Q 平分CAB ∠, 65EAB ∴∠=︒, //AB CD Q ,180EAB AED ∴∠+∠=︒, 18065115AED ∴∠=︒-︒=︒,故选:B .3.下列运算正确的是( ) A .2235a a a +=B .222(2)4a b a b +=+C .236a a a =gD .2336()ab a b -=-【分析】直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案. 解:A 、235a a a +=,故此选项错误; B 、222(2)44a b a ab b +=++,故此选项错误; C 、235a a a =g ,故此选项错误;D 、2336()ab a b -=-,正确.故选:D .4.发展工业是强国之梦的重要举措,如图所示零件的左视图是( )A .B .C .D .【分析】根据从左边看得到的图形是左视图,可得答案. 解:如图所示零件的左视图是.故选:D .5.一次函数y kx b =+的图象与正比例函数6y x =-的图象平行且经过点(1,3)A -,则这个一次函数的图象一定经过( ) A .第一、二、三象限 B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限【分析】根据两条直线相交或平行问题由一次函数y kx b =+的图象与正比例函数2y x =的图象平行得到2k =,然后把点(1,3)A -代入一次函数解析式可求出b 的值,根据k 、b 的值即可判断一次函数的图象经过的象限.解:Q 一次函数y kx b =+的图象与正比例函数6y x =-的图象平行, 6k ∴=-,6y x b ∴=-+,把点(1,3)A -代入6y x b =-+得63b -+=-,解得3b =, 60k =-<Q ,30b =>,∴一次函数的图象一定经过第一、二、四象限,故选:C .6.如图,在Rt ABC ∆中,90C ∠=︒,30B ∠=︒,AD 是BAC ∠的角平分线,6AC =,则点D 到AB 的距离为( )A 3B 3C .3D .33【分析】作DE AB ⊥于E ,根据角平分线的定义得到30CAD ∠=︒,根据直角三角形的性质得到5CD =,根据角平分线的性质得到答案. 解:作DE AB ⊥于E , 90C ∠=︒Q ,30B ∠=︒, 60CAB ∴∠=︒,又AD 是BAC ∠的平分线, 30CAD ∴∠=︒, 6AC =Q ,3CD ∴=, 又6AC =, 23CD ∴=AD Q 是BAC ∠的平分线,90C ∠=︒,DE AB ⊥, 23DE CD ∴==,故选:C .7.如图,在矩形ABCD 中,3AB =,4AD =,点E 在边BC 上,若AE 平分BED ∠,则BE 的长为( )A .35B .938C .7D .47-【分析】由已知条件和矩形的性质易证ADE ∆是等腰三角形,所以4AD DE ==,在直角三角形DEC 中利用勾股定理可求出CE 的长,进而可求出BE 的长. 解:Q 四边形ABCD 是矩形,//AB CD ∴,90C ∠=︒,3AB CD ==,4AD BC ==,AEB DAE ∴∠=∠, AE Q 平分BED ∠, AEB AED ∴∠=∠, DAE AED ∴∠=∠, 4AD DE ∴==,在Rt DCE ∆中,3CD ==,227CE DE CD ∴=-=47BE BC CE ∴=-=-,故选:D .8.如图,点E 是平行四边形ABCD 中BC 的延长线上的一点,连接AE 交CD 于F ,交BD 于M ,则图中共有相似三角形(不含全等的三角形)( )对.A .4B .5C .6D .7【分析】根据平行四边形的对边平行,再根据平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似找出相似三角形即可得解. 【解答】:在ABCD Y 中, //AB CD Q ,ABM FDM ∴∆∆∽,ABE FCE ∆∆∽, //AD BC Q ,ADM EBM ∴∆∆∽,FDA FCE ∆∆∽, ABE FDA ∴∆∆∽, ∴图中相似三角形有5对.故选:B .9.已知,如图,点C 、D 在O e 上,直径6AB cm =,弦AC 、BD 相交于点E .若CE BC =,则阴影部分面积为( )A .934πB .9942π-C .39324π-D .3922π-【分析】连接OD 、OC ,根据CE BC =,得出DBC CEB ∠=∠,进而得出DBC A ABD ∠=∠+∠,从而求得¶¶·AD BCDC +=,得出90DOC ∠=︒,根据ODC S S S ∆=-阴影扇形即可求得.解:连接OD 、OC , AB Q 是直径,90ACB ∴∠=︒, CE BC =Q ,45DBC CEB ∴∠=∠=︒,∴·DC的度数为90︒, 90DOC ∴∠=︒,290319933360242ODC S S S ππ∆⨯∴=-=-⨯⨯=-阴影扇形.故选:B .10.已知抛物线22y ax bx =+-与x 轴没有交点,过(2A -、1)y 、2(3,)B y -、2(1,)C y 、(3D ,3)y 四点,则1y 、2y 、3y 的大小关系是( )A .123y y y >>B .213y y y >>C .132y y y >>D .321y y y >>【分析】由题意可知抛物线开口向下,对称轴为3112x -+==-,然后根据点(2A -、1)y 、2(3,)B y -、2(1,)C y 、(3D 3)y 离对称轴的远近可判断1y 、2y 、3y 大小关系.解:令0x =,则2y =-,即该抛物线与y 轴的交点坐标是(0,2)-, Q 抛物线22y ax bx =+-与y 轴交于负半轴,且与x 轴没有交点, ∴抛物线开口向下,对称轴为3112x -+==-. |1(2)||11|31|---<+<Q 123y y y ∴>>,故选:A .二.填空题(共4小题)11.在实数3-,0,π,5-6中,最大的一个数是 π .【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解:6053π>>>->-Q ,∴在实数3-,0,π,5-,6中,最大的一个数是π.故答案为:π.12.菱形ABCD 的边6AB =,60ABC ∠=︒,则菱形ABCD 的面积为 183 . 【分析】根据菱形的性质以及锐角三角函数关系得出AE 的长,即可得出菱形的面积. 解:如图所示:过点A 作AE DC ⊥于点E , Q 在菱形ABCD 中,6AB =,60ABC ∠=︒, 60D ∴∠=︒,4AB AD DC cm ===,sin 6033AE AD ∴=︒=g ,∴菱形ABCD 的面积633183S AE DC =⨯=⨯=,故答案为:183.13.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,)m ,(3,6)C m +,那么图象同时经过点B 与点D 的反比例函数表达式为 9y x=.【分析】根据矩形的性质得出B 点坐标,再利用待定系数法求出反比例函数解析式. 解:Q 矩形ABCD 的边AB 与y 轴平行,(1,)A m ,(3,6)C m +, (1,6)B m ∴+、(3,)D m ,B Q 、D 在反比例函数图象上, 1(6)3m m ∴⨯+=,解得:3m =,(1,9)B ∴,故反比例函数表达式为:9y x=. 故答案为:9y x=. 14.如图,已知在四边形ABCD 中,AB AD =,60BAD ∠=︒,30BCD ∠=︒,42AC =,则四边形ABCD 面积的最小值是 838- .【分析】将ADC ∆绕点A 顺时针旋转60︒到ABP ∆,AD 旋转至AB 处,易得APC ∆为等边三角形,可得2AP CP AC ===,易得ABC ACD ABC ABP APC BPC ABCD S S S S S S S ∆∆∆∆∆∆=+=+=-四边形,由已知条件可得360PBC ABP ABC ∠=︒-∠-∠,所以点B 在以PC 为直径的圆弧MN 上(不含点M ,)N .连接圆心O 与点B ,当OB PC ⊥时,点B 到PC 的距离最大,分析知当CPB S ∆的最大值,四边形ABCD 面积的最小,即可得出结论.解:如图,将ADC ∆绕点A 顺时针旋转60︒到ABP ∆,AD 旋转至AB 处, AC AP =Q ,60CAP ∠=︒, APC ∴∆为等边三角形42AP CP AC ∴===,ABC ACD ABC ABP APC BPC ABCD S S S S S S S ∆∆∆∆∆∆∴=+=+=-四边形,30BCD ∠=︒Q ,360PBC ABP ABC ∴∠=︒-∠-∠, 360ADC ABC =︒-∠-∠, BAD BCD =∠+∠, 6030=︒+︒, 90=︒,∴点B 在以PC 为直径的圆弧MN 上(不含点M ,)N .连接圆心O 与点B ,当OB PC ⊥时,点B 到PC 的距离最大,CPB S ∆∴的最大值为1422282⨯⨯=,14242sin 60832APC S ∆=⨯⨯︒=Q , ABCD S ∴四边形的最小值838APC CBP S S ∆∆=-=-的最大值.故答案为:三.解答题(共11小题)153011118()|223|()822--⨯-+---【分析】首先利用二次根式的性质、绝对值的性质、零次幂的性质、负整数指数幂的性质进行计算,再算加减即可.解:原式132(8)32218=-⨯-+--,321321=++--, 23=+.16.化简求值:228166(1)122x x x x x -+÷-+++,其中x 选取2-,0,1,4中的一个合适的数. 【分析】可先把分式化简,再把x 的值代入计算求值. 解:原式2(4)62()1(2)22x x x x x x -+=÷-++++ 2(4)21(2)4x x x x x -+=++-g 4x xx x -=+ 4x=当1x =时,原式4=.17.尺规作图:已知点D 为ABC ∆的边AB 的中点,用尺规在ABC ∆的边上找一点E ,使:1:4ADE ABC S S ∆∆=.(保留作图痕迹,不写作法)【分析】根据相似三角形面积的比等于相似比的平方即可在在ABC ∆的边上找一点E ,使:1:4ADE ABC S S ∆∆=.解:如图,作ADE B ∠=∠,交AC 于点E .点E 即为所求.18.如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE .证明:AB DF =.【分析】根据矩形性质推出BC AD AE ==,//AD BC ,根据平行线性质推出DAE AEB ∠=∠,根据AAS 证出ABE DFA ∆≅∆即可.【解答】证明:在矩形ABCD 中 BC AD =Q ,//AD BC ,90B ∠=︒,DAF AEB ∴∠=∠,DF AE ⊥Q ,AE BC AD ==, 90AFD B ∴∠=∠=︒,在ABE ∆和DFA ∆中AFD B DAF AEB AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABE DFA AAS ∴∆≅∆,AB DF ∴=.19.某学校为了了解本校1800名学生的课外阅读的情况,现从各年级随机抽取了部分学生对他们一周的课外阅读时间进行了调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为 40 图①中m 的值为 ; (2)本次调查获取的样本数据的众数是 小时,中位数是 小时;(3)根据样本数据,估计该校一周的课外阅读时间大于6h 的学生人数.【分析】(1)利用课外阅读时间为5小时的人数除以所占百分比可得本次接受随机抽样调查的学生人数,然后再求m 的值即可; (2)根据众数和中位数定义可得答案; (3)利用样本估计总体的方法可得答案.解:(1)接受随机抽样调查的学生人数:1230%40÷=(人), %1040100%25%m =÷⨯=,则25m =, 故答案为:40;25;(2)本次调查获取的样本数据的众数是5小时,中位数是6小时, 故答案为:5;6;(3)48180054040+⨯=(人), 答:该校一周的课外阅读时间大于6h 的学生人数为540人.20.如图,某办公楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22︒时,办公楼在建筑物的墙上留下高2米的影子CE ,而当光线与地面夹角是45︒时,办公楼顶A 在地面上的影子F 与墙角C 有25米的距离(B ,F ,C 在一条直线上). (1)求办公楼AB 的高度;(2)若要在A ,E 之间挂一些彩旗,请你求出A ,E 之间的距离. (参考数据:3sin 228︒≈,15cos 2216︒≈,2tan 22)5︒≈【分析】(1)首先构造直角三角形AEM ∆,利用tan 22AMME︒=,求出即可; (2)利用Rt AME ∆中,cos 22MEAE︒=,求出AE 即可 解:(1)如图,过点E 作EM AB ⊥,垂足为M . 设AB 为x .Rt ABF ∆中,45AFB ∠=︒, BF AB x ∴==,25BC BF FC x ∴=+=+,在Rt AEM ∆中,22AEM ∠=︒,2AM AB BM AB CE x =-=-=-, tan 22AMME︒=,则22255x x -=+, 解得:20x =. 即教学楼的高20m .(2)由(1)可得25202545ME BC x ==+=+=. 在Rt AME ∆中,cos 22MEAE︒=. 454815cos 2216ME AE m ∴=≈=︒, 即A 、E 之间的距离约为48m21.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20立方米时,按2元/立方米计费;月用水量超过20立方米时,其中的20立方米仍按2元/立方米收费,超过部分按2.6元/立方米计费.设每户家庭用水量为x 立方米时,应交水费y 元.(1)写出y 与x 之间的函数表达式; (2)小明家第二季度交纳水费的情况如下:小明家这个季度共用水多少立方米?【分析】(1)根据题意,可以写出y 与x 之间的函数表达式;(2)根据(1)中的结果和表格中的数据,可以求得四月、五月和六月的用水量,从而可以解答本题.解:(1)由题意可得,当020x 剟时,2y x =, 当20x >时,202(20) 2.6 2.612y x x =⨯+-⨯=-, 由上可得,2(020)2.612(20)xx y x x ⎧=⎨->⎩剟; (2)20x =Q 时,40y =, ∴令302x =,得15x =,令342x =,得17x =,令47.8 2.612x =-,得23x =,即四月份用水15立方米,五月份用水17立方米,六月份用水23立方米, 15172355++=(立方米),答:小明家这个季度共用水55立方米.22.如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120︒.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止). (1)转动转盘一次,求转出的数字是1的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之和为正数的概率.【分析】(1)根据概率公式直接求解即可;(2)根据题意列出图表得出所有等情况数,找出两次分别转出的数字之和为正数的情况数,然后根据概率公式即可得出答案.解:(1)Q 标有数字“1”的扇形的圆心角为120︒, ∴转出的数字是1的概率是12013603︒=︒;(2)根据题意列表如下:2- 2- 1 1 3 3 2- 4- 4- 1- 1- 1 1 2-4- 4- 1-1-1 1 1 1- 1-2 2 4 4 1 1-1-2 2 4 43 1 14 4 6 6 3114466由表可知共有36种等可能结果,其中两次分别转出的数字之和为正数的有24种,则两次分别转出的数字之和为正数的概率是242363=. 23.如图,在Rt ABC ∆中,90ACB ∠=︒,点D 是AB 的中点,以CD 为直径作O e ,O e 分别与AC ,BC 交于点E ,F ,过点F 作O e 的切线FG ,交AB 于点G .(1)求证:FG AB ⊥;(2)若6AC =,8BC =,求FG 的长.【分析】(1)连接OF ,利用已知条件证明90BFG B ∠+∠=︒,即可得到FG AB ⊥; (2)连接DF ,先利用勾股定理求出10AB =,进而求出5CD BD ==,再求出4CF =,进而求出3DF =,利用面积法即可得出结论.解:(1)证明:连接OF ,OC OD =Q ,CF BF =,//OF AB ∴,OFC B ∴∠=∠,FG Q 是O e 的切线,90OFG ∴∠=︒,90OFC BFG ∴∠+∠=︒,90BFG B ∴∠+∠=︒,90FGB ∴∠=︒,FG AB ∴⊥;(2)解:连接DF ,在Rt ABC ∆中,根据勾股定理得,10AB =,∴点D 是AB 中点,152CD BD AB ∴===, CD Q 是O e 的直径,90CFD ∴∠=︒,142BF CF BC ∴===, 22543DF ∴=-=,1122BDF S DF BF BD FG ∆∴=⨯=⨯, 125DF BF FG BD ⨯∴==.24.如图,抛物线2y x bx c =++经过(1,0)A -、(4,0)B 两点,与y 轴交于点C ,D 为y 轴上一点,点D 关于直线BC 的对称点为D '.(1)求抛物线的解析式;(2)当点D 在x 轴上方,且OBD ∆的面积等于OBC ∆的面积时,求点D 的坐标; (3)当点D '刚好落在第四象限的抛物线上时,求出点D 的坐标;(4)点P 在抛物线上(不与点B 、C 重合),连接PD 、PD '、DD ',是否存在点P ,使PDD ∆'是以D 为直角顶点的等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)由待定系数法可求解析式;(2)由三角形面积关系可求点D 坐标;(3)由对称性可求90DCD '∠=︒,可得//CD OB ',可得点D '的纵坐标为4-,代入解析式可求点D '坐标,可得3CD CD '==,可求点D 坐标;(4)分两种情况讨论,由等腰三角形的性质和全等三角形的性质可求点坐标. 解:(1)Q 抛物线2y x bx c =++经过(1,0)A -、(4,0)B∴010164b c b c=-+⎧⎨=++⎩ 解得34b c =-⎧⎨=-⎩, ∴抛物线解析式为:234y x x =--;(2)Q 抛物线234y x x =--与y 轴交于点C ,∴点(0,4)C -,4OC ∴=,设点(0D ,)(0)y y >OBD ∆Q 的面积等于OBC ∆的面积, ∴11422OB y OB ⨯⨯=⨯, 4y ∴=,∴点(0,4)D(3)4OB OC ==Q ,45OCB ∴∠=︒,Q 点D 关于直线BC 的对称点为D '.45DCB D CB '∴∠=∠=︒,CD CD '=,90DCD '∴∠=︒,//CD OB '∴,∴点D '的纵坐标为4-,2434x x ∴-=--,10x ∴=(舍去),23x =,3CD CD '∴==,∴点(0,1)D -(4)若点D 在点C 上方,如图1,过点P 作PH y ⊥轴,90DCD '∠=︒Q ,CD CD '=,45CDD '∴∠=︒,90D DP '∠=︒Q45HDP ∴∠=︒,且PH y ⊥轴,45HDP HPD ∴∠=∠=︒,HP HD ∴=,CDD HDP '∠=∠Q ,90PHD DCD '∠=∠=︒,DP DD '=,DPH ∴∆≅△()DD C AAS 'CD CD HD HP '∴===,设CD CD HD HP a '====,∴点(,42)P a a -+23442a a a ∴--=-+,5a ∴=,0a =(不合题意舍去),∴点(5,6)P若点D 在点C 下方,如图2,DD DP '=Q ,90DCD '∠=︒,CD CP ∴=,DCP COB ∠=∠,//CP AB ∴,∴点P 纵坐标为4-,2434x x ∴-=--,10x ∴=(舍去),23x =,∴点(3,4)P -综上所述:点(5,6)P 或(3,4)-.25.问题背景(1)如图(1)ABC ∆内接于O e ,过A 作O e 的切线l ,在l 上任取一个不同于点A 的点P ,连接PB 、PC ,比较BPC ∠与BAC ∠的大小,并说明理由.问题解决(2)如图(2),(0,2)A ,(0,4)B ,在x 轴正半轴上是否存在一点P ,使得cos APB ∠最小?若存在,求出P 点坐标,若不存在,请说明理由.拓展应用(3)如图(3),在四边形ABCD 中,//AB CD ,AD CD ⊥于D ,E 是AB 上一点,AE AD =,P 是DE 右侧四边形ABCD 内一点,若8AB =,11CD =,tan 2C ∠=,9DEP S ∆=,求sin APB ∠的最大值.【分析】(1)问题背景:设直线BP 交O e 于点A ',连接CA ',由外角的知识即可求解; (2)问题解决:过点B 、A 作C e 与x 轴相切于点P ,连接AC 、PC 、BC ,x 轴的坐标轴上的点除了点P 外都在圆外,即可求解;(3)拓展应用:求出1182ADE S AD AE ∆=⨯⨯=,而9P ED DEN DEP S S S '∆∆===V ,从面积看,点P '符合点P 的条件,即点P 可以和点P '重合;由52FG EQ QG BF =+=<,则F e 与直线l 有两个交点,则点P '符合题设中点P 的条件,即可求解.解:(1)问题背景:如图1,设直线BP 交O e 于点A ',连接CA ',则CA B P ∠'>∠,而CA B CAB ∠'=∠,BPC BAC ∴∠<∠;(2)问题解决:如图2,过点B 、A 作C e 与x 轴相切于点P ,连接AC 、PC 、BC ,x Q 轴的坐标轴上的点除了点P 外都在圆外,APB ∴∠最大,即cos APB ∠最小,由点B 、A 的坐标,根据中点公式得,点C 的纵坐标为1(24)32+=, 设点(,0)P x ,则点(,3)C x ,Q 点P 、B 都是圆上的点,CB CP ∴=,222(41)3x ∴+-=,解得:22x =±(舍去负值),故点P 的坐标为:(22,0);(3)拓展应用:过点B 作BH CD ⊥于点H ,过点A 作AM DE ⊥于点M ,延长AM 到点N 使12MN AM =, 过点N 作DE 的平行线l ,过点F 作FG l ⊥于点G ,FG 交DE 于点Q ,以AB 为直径作F e 交直线l 于点P ',在梯形ABCD 中,8AB =,11CD =,则1183CH =-=, tan 23BH BH C HC ===Q ,解得:6BH AD AE ===, 在等腰直角三角形ADE 中,1182ADE S AD AE ∆=⨯⨯=, 12MN AM =Q , 192DEN ADE S S ∆∆∴==, Q 直线//l DE ,9P ED DEN DEP S S S '∆∆∴===V ,∴从面积看,点P '符合点P 的条件,即点P 可以和点P '重合, FG l ⊥Q ,而直线//l DE ,GF DE ∴⊥,而45AEB ∠=︒,故EFQ ∆为等腰直角三角形,862BE AB AE =-=-=Q ,422EF BF BE ∴=-=--,则22FQ EF ==, 112322FG EQ QG MN QG AM ∴=+=+=+=⨯5222BF =<, F ∴e 与直线l 有两个交点,则点P '符合题设中点P 的条件, AB Q 是直径,90∴∠=︒,APB∠的最大值为1.故sin APB。

2020年陕西省西安市高新一中中考数学三模试卷 解析版 (1)

2020年陕西省西安市高新一中中考数学三模试卷 解析版 (1)

2020年陕西省西安市高新一中中考数学三模试卷一.选择题(共10小题)1.在,,1.62,0四个数中,有理数的个数为()A.4B.3C.2D.12.将两个长方体如图放置,则所构成的几何体的主视图可能是()A.B.C.D.3.直线l1∥l2,一块含45°角的直角三角板,如图放置,∠1=42°,则∠2等于()A.97°B.93°C.87°D.83°4.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣45.下列运算正确的是()A.2m2+m2=3m4B.(mn2)2=mn4C.2m•4m2=8m2D.m5÷m3=m2 6.如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD 的周长为()A.20B.16C.12D.87.一次函数y=mx+4与一次函数y=3x+n关于直线y=1对称,则m、n分别为()A.m=﹣3,n=﹣2B.m=﹣3,n=﹣4C.m=3,n=﹣2D.m=3,n=﹣4 8.如图,四边形ABCD中∠DAB=60°,∠B=∠D=90°,BC=1,CD=2,则对角线AC 的长为()A.B.C.D.9.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°10.二次函数y=ax2﹣8ax(a为常数)的图象不经过第三象限,在自变量x的值满足2≤x ≤3时,其对应的函数值y的最大值为﹣3,则a的值是()A.B.﹣C.2D.﹣2二.填空题(共4小题)11.比较大小:.12.如图,已知正六边形ABCDEF,则∠ADF=度.13.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为.14.如图,在锐角△ABC中,AB=2,AC=,∠ACB=45°,D是平面内一点且∠ADB =30°,则线段CD的最小值为.三.解答题15.计算:﹣22+sin45°﹣|﹣2|﹣(﹣1)0.16.解方程:+=1.17.如图,点P是⊙O外一点,请你用尺规画出一条直线P A,使得其与⊙O相切于点A,(不写作法,保留作图痕迹)18.如图,△ABC和△EBD均为等腰直角三角形,点E是边AB上一点,∠ABC=∠EBD=90°,连接AD,CE.求证:AD⊥CE.19.某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查部分学生的数学成绩,并将抽样的数据进行了如下整理:(1)填空m=,n=,数学成绩的中位数所在的等级;(2)如果该校有1200名学生参加了本次模拟测,估计D等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A等级学生的数学成绩的平均分数.①如下分数段整理样本;等级等级分数段各组总分人数A110<X<120P4B100<X<110843nC90<X≤100574mD80<X<901712②根据左表绘制扇形统计图.20.2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用“硬科技”打造了最具独特的风景线,2018“西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F点,此时,他测得F点都塔顶A点的俯视角为30°,同时也测得F点到塔底C点的俯视角为45°,已知塔底边心距OC=23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1米)?(≈1.73,≈1.41).21.市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如表:品种项目单价(元/棵)成活率A8092%B10098%若购买A种树x棵,购树所需的总费用为y元.(1)求y与x之间的函数关系式.(2)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A、B两种树各多少棵?此时最低费用为多少?22.象棋是棋类益智游戏,中国象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.李凯和张萌利用象棋棋盘和棋子做游戏.李凯将四枚棋子反面朝上放在棋盘上,其中有两个“兵”、一个“马”、一个“士”,张萌随机从这四枚棋子中摸一枚棋子,记下正汉字,然后再从剩下的三枚棋子中随机摸一枚.(1)求张萌第一次摸到的棋子正面上的汉字是“兵”的概率;(2)游戏规定:若张萌两次摸到的棋子中有“士”,则张萌胜;否则,李凯胜.请你用树状图或列表法求李凯胜的概率.23.如图,点O是△ABC的边AB上一点,以OB为半径的⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.24.已知抛物线,L:y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,与y轴交于点C,且抛物线L的对称轴为直线x=1.(1)抛物线的表达式;(2)若抛物线L′与抛物线L关于直线x=m对称,抛物线L′与x轴交于点A′,B′两点(点A′在点B′左侧),要使S△ABC=2S△A′BC,求所有满足条件的抛物线L′的表达式.25.解决问题:(1)如图①,半径为4的⊙O外有一点P,且PO=7,点A在⊙O上,则P A的最大值和最小值分别是和.(2)如图②,扇形AOB的半径为4,∠AOB=45°,P为弧AB上一点,分别在OA边找点E,在OB边上找一点F,使得△PEF周长的最小,请在图②中确定点E、F的位置并直接写出△PEF周长的最小值;拓展应用(3)如图③,正方形ABCD的边长为4;E是CD上一点(不与D、C重合),CF⊥BE于F,P在BE上,且PF=CF,M、N分别是AB、AC上动点,求△PMN周长的最小值.2020年陕西省西安市高新一中中考数学三模试卷参考答案与试题解析一.选择题(共10小题)1.在,,1.62,0四个数中,有理数的个数为()A.4B.3C.2D.1【分析】根据有理数的定义,即可解答.【解答】解:在,,1.62,0四个数中,有理数为,1.62,0,共3个,故选:B.2.将两个长方体如图放置,则所构成的几何体的主视图可能是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形即可解答.【解答】解:根据主视图的概念可知,从物体的正面看得到的视图是A,故选:A.3.直线l1∥l2,一块含45°角的直角三角板,如图放置,∠1=42°,则∠2等于()A.97°B.93°C.87°D.83°【分析】根据平行线的性质得出∠2=∠ADE,根据三角形外角性质求出∠ADE,即可得出答案.【解答】解:∴直线l1∥l2,∴∠2=∠ADE,∵∠1=42°,∠A=45°,∴∠2=∠ADE=∠1+∠A=87°,故选:C.4.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣4【分析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选:B.5.下列运算正确的是()A.2m2+m2=3m4B.(mn2)2=mn4C.2m•4m2=8m2D.m5÷m3=m2【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【解答】解:A、2m2+m2=3m2,故此选项错误;B、(mn2)2=m2n4,故此选项错误;C、2m•4m2=8m3,故此选项错误;D、m5÷m3=m2,正确.故选:D.6.如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD 的周长为()A.20B.16C.12D.8【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.7.一次函数y=mx+4与一次函数y=3x+n关于直线y=1对称,则m、n分别为()A.m=﹣3,n=﹣2B.m=﹣3,n=﹣4C.m=3,n=﹣2D.m=3,n=﹣4【分析】先求出一次函数y=mx+4与y轴交点关于直线y=1的对称点,得到n的值,再求出一次函数y=3x+b与x轴交点关于直线y=1的对称点,代入一次函数y=mx+4,求出m的值即可.【解答】解:∵一次函数y=mx+4与y轴交点为(0,4),∴点(0,4)关于直线y=1的对称点为(0,﹣2),∴n=﹣2,一次函数y=3x﹣2与x轴交点为(,0),(,0)关于直线y=1的对称点为(,2),∴m+4=2,解得m=﹣3.故选:A.8.如图,四边形ABCD中∠DAB=60°,∠B=∠D=90°,BC=1,CD=2,则对角线AC 的长为()A.B.C.D.【分析】延长DC与AB交于一点K.解直角三角形求出DK,再求出AD,利用勾股定理求出AC.【解答】解:延长DC交AB的延长线于点K;在Rt△ADK中,∠DAK=60°∠AKD=30°,BC=1,∴,∴DK=CD+CK=4,∴AD==,在△Rt△ADC中,AC==,故选:C.9.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.【解答】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠ADC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选:C.10.二次函数y=ax2﹣8ax(a为常数)的图象不经过第三象限,在自变量x的值满足2≤x ≤3时,其对应的函数值y的最大值为﹣3,则a的值是()A.B.﹣C.2D.﹣2【分析】根据题意和题目中的函数解析式,利用二次函数的性质可以求得a的值,本题得以解决.【解答】解:∵二次函数y=ax2﹣8ax=a(x﹣4)2﹣16a,∴该函数的对称轴是直线x=4,又∵二次函数y=ax2﹣8ax(a为常数)的图象不经过第三象限,∴a>0,∵在自变量x的值满足2≤x≤3时,其对应的函数值y的最大值为﹣3,∴当x=2时,a×22﹣8a×2=﹣3,解得,a=,故选:A.二.填空题(共4小题)11.比较大小:<.【分析】先把根号外的因式移入根号内,再根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵﹣2=﹣,﹣3=﹣,∴﹣2<﹣3,故答案为:<.12.如图,已知正六边形ABCDEF,则∠ADF=30度.【分析】连接OF,由多边形是正六边形可求出∠AOF的度数,再根据圆周角定理即可求出∠ADF的度数.【解答】解:由题意知:AD是正六边形的外接圆的半径,找到AD的中点O,连接OF,∵六边形ABCDEF是正六边形,∴∠AOF==60°,∴∠ADF=∠AOF=×60°=30°.故答案为:30°.13.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为9.【分析】要求△AOC的面积,已知OB为高,只要求AC长,即点C的坐标即可,由点D为三角形OAB斜边OA的中点,且点A的坐标(﹣6,4),可得点D的坐标为(﹣3,2),代入双曲线可得k,又AB⊥OB,所以C点的横坐标为﹣6,代入解析式可得纵坐标,继而可求得面积.【解答】解:∵点D为△OAB斜边OA的中点,且点A的坐标(﹣6,4),∴点D的坐标为(﹣3,2),把(﹣3,2)代入双曲线,可得k=﹣6,即双曲线解析式为y=﹣,∵AB⊥OB,且点A的坐标(﹣6,4),∴C点的横坐标为﹣6,代入解析式y=﹣,y=1,即点C坐标为(﹣6,1),∴AC=3,又∵OB=6,∴S△AOC=×AC×OB=9.故答案为:9.14.如图,在锐角△ABC中,AB=2,AC=,∠ACB=45°,D是平面内一点且∠ADB =30°,则线段CD的最小值为3﹣.【分析】作AH⊥BC于H,因为AB=2,AC=,∠ACB=45°,可得∠ABH=60°,BC=,在BC上截取BO=AB=2,则△OAB为等边三角形,以O为圆心,2为半径作⊙O,根据∠ADB=30°,可得点D在⊙O上运动,当DB经过圆心O时,CD最小,其最小值为⊙O的直径减去BC的长.【解答】解:如图,作AH⊥BC于H,∵AB=2,AC=,∠ACB=45°,∴CH=AH=,∴BH=,∴∠ABH=60°,BC=CH+BH=,在BC上截取BO=AB=2,则△OAB为等边三角形,以O为圆心,2为半径作⊙O,∵∠ADB=30°,∴点D在⊙O上运动,当DB经过圆心O时,CD最小,最小值为4﹣(+1)=3﹣.故答案为:3﹣.三.解答题15.计算:﹣22+sin45°﹣|﹣2|﹣(﹣1)0.【分析】根据零次幂、绝对值、特殊锐角的三角函数值以及实数的运算法则进行计算即可.【解答】解:﹣22+sin45°﹣|﹣2|﹣(﹣1)0.=﹣4+2×﹣2+﹣1,=﹣4+2﹣2+﹣1,=﹣5.16.解方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.17.如图,点P是⊙O外一点,请你用尺规画出一条直线P A,使得其与⊙O相切于点A,(不写作法,保留作图痕迹)【分析】连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线P A,P A′,直线P A,P A′即为所求.【解答】解:连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK 为半径作⊙K交⊙O于点A,A′,作直线P A,P A′,直线P A,P A′即为所求.18.如图,△ABC和△EBD均为等腰直角三角形,点E是边AB上一点,∠ABC=∠EBD=90°,连接AD,CE.求证:AD⊥CE.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【专题】553:图形的全等.【分析】延长CE交AD于点F,根据SAS证明△EBC与△DBA全等,利用全等三角形的性质和垂直的定义证明即可.【解答】证明:延长CE交AD于点F,∵△ABC和△EBD均为等腰直角三角形,∴EB=DB,AB=BC,∠ABD=∠EBC=90°,在△EBC与△DBA中,∴△EBC≌△DBA(SAS),∴∠DAB=∠ECB,∵∠DAB+∠ADB=90°,∴∠ECB+∠ADB=90°,∴∠DFC=90°,∴AD⊥CE.19.某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查部分学生的数学成绩,并将抽样的数据进行了如下整理:(1)填空m=6,n=8,数学成绩的中位数所在的等级B;(2)如果该校有1200名学生参加了本次模拟测,估计D等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A等级学生的数学成绩的平均分数.①如下分数段整理样本;等级等级分数段各组总分人数A110<X<120P4B100<X<110843nC90<X≤100574mD80<X<901712②根据左表绘制扇形统计图.【考点】V2:全面调查与抽样调查;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图;W2:加权平均数;W4:中位数.【专题】54:统计与概率;65:数据分析观念.【分析】(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;(2)根据表格中的数据可以求得D等级的人数;(3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数.【解答】解:(1)本次抽查的学生有:4÷=20(人),m=20×30%=6,n=20﹣4﹣6﹣2=8,数学成绩的中位数所在的等级B,故答案为:6,8,B;(2)1200×=120(人),答:D等级的约有120人;(3)由表可得,A等级学生的数学成绩的平均分数:=113(分),即A等级学生的数学成绩的平均分是113分.20.2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用“硬科技”打造了最具独特的风景线,2018“西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F点,此时,他测得F点都塔顶A点的俯视角为30°,同时也测得F点到塔底C点的俯视角为45°,已知塔底边心距OC=23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1米)?(≈1.73,≈1.41).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】1:常规题型.【分析】作FD⊥BC,交BC的延长线于D,作AE⊥DF于E,则四边形AODE是矩形.解直角△CDF,得出CD=DF=185米,那么OD=OC+CD=208米,AE=OD=208米.再解直角△AEF,求出EF=AE•tan∠F AE=米,然后根据OA=DE=DF﹣EF即可求解.【解答】解:如图,作FD⊥BC,交BC的延长线于D,作AE⊥DF于E,则四边形AODE 是矩形.由题意,可知∠F AE=30°,∠FCD=45°,DF=185米.在直角△CDF中,∵∠D=90°,∠FCD=45°,∴CD=DF=185米,∴OD=OC+CD=208米,∴AE=OD=208米.在直角△AEF中,∵∠AEF=90°,∠F AE=30°,∴EF=AE•tan∠F AE=208×=(米),∴DE=DF﹣EF=185﹣≈185﹣119.95≈65.1(米),∴OA=DE≈65.1米.故大雁塔的大体高度是65.1米.21.市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如表:品种项目单价(元/棵)成活率A8092%B10098%若购买A种树x棵,购树所需的总费用为y元.(1)求y与x之间的函数关系式.(2)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A、B两种树各多少棵?此时最低费用为多少?【考点】FH:一次函数的应用.【分析】(1)根据购树的总费用=买A种树的费用+买B种树的费用,化简后便可得出y 与x的函数关系式;(2)先根据A种树成活的数量+B种树成活的数量≥树的总量×平均成活率,列出不等式,得出x的取值范围,然后根据一次函数的性质判断出最佳的方案.【解答】解:(1)由题意,得:y=80x+100(900﹣x)化简,得:y=﹣20x+90000(0≤x≤900且为整数);(2)由题意得:92%x+98%(900﹣x)≥94%×900,解得:x≤600.∵y=﹣20x+90000随x的增大而减小,∴当x=600时,购树费用最低为y=﹣20×600+90000=78000.当x=600时,900﹣x=300,故此时应购A种树600棵,B种树300棵,最低费用为78000元.22.象棋是棋类益智游戏,中国象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.李凯和张萌利用象棋棋盘和棋子做游戏.李凯将四枚棋子反面朝上放在棋盘上,其中有两个“兵”、一个“马”、一个“士”,张萌随机从这四枚棋子中摸一枚棋子,记下正汉字,然后再从剩下的三枚棋子中随机摸一枚.(1)求张萌第一次摸到的棋子正面上的汉字是“兵”的概率;(2)游戏规定:若张萌两次摸到的棋子中有“士”,则张萌胜;否则,李凯胜.请你用树状图或列表法求李凯胜的概率.【考点】X6:列表法与树状图法.【专题】543:概率及其应用.【分析】(1)用“兵”的个数除以棋子的总个数即可得;(2)画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【解答】解:(1)张萌第一次摸到的棋子正面上的汉字是“兵”的概率为=;(2)画树状图如下:由树状图知,共有12种等可能结果,其中不含“士”的结果有6种,∴李凯胜的概率为=.23.如图,点O是△ABC的边AB上一点,以OB为半径的⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.【考点】MC:切线的性质;T7:解直角三角形.【专题】15:综合题.【分析】(1)连接OE,BE,因为DE=EF,所以,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sin A=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===∴r=∴AF=5﹣2×=24.已知抛物线,L:y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,与y轴交于点C,且抛物线L的对称轴为直线x=1.(1)抛物线的表达式;(2)若抛物线L′与抛物线L关于直线x=m对称,抛物线L′与x轴交于点A′,B′两点(点A′在点B′左侧),要使S△ABC=2S△A′BC,求所有满足条件的抛物线L′的表达式.【考点】H3:二次函数的性质;H6:二次函数图象与几何变换;H8:待定系数法求二次函数解析式;HA:抛物线与x轴的交点.【专题】535:二次函数图象及其性质;65:数据分析观念.【分析】(1)抛物线L:y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,对称轴为直线x =1,则点B(3,0),即可求解;(2)S△ABC=2S△A′BC,则点A′为(1,0)或(5,0),对应抛物线的对称轴为:x=3或7,即可求解.【解答】解:(1)抛物线L:y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,对称轴为直线x=1,则点B(3,0),则抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=﹣3,解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3;(2)S△ABC=2S△A′BC,则点A′为(1,0)或(5,0),对应抛物线的对称轴为:x=3或7,故抛物线L′的表达式为:y=(x﹣3)2﹣4或y=(x﹣7)2﹣4.25.解决问题:(1)如图①,半径为4的⊙O外有一点P,且PO=7,点A在⊙O上,则P A的最大值和最小值分别是11和3.(2)如图②,扇形AOB的半径为4,∠AOB=45°,P为弧AB上一点,分别在OA边找点E,在OB边上找一点F,使得△PEF周长的最小,请在图②中确定点E、F的位置并直接写出△PEF周长的最小值;拓展应用(3)如图③,正方形ABCD的边长为4;E是CD上一点(不与D、C重合),CF⊥BE于F,P在BE上,且PF=CF,M、N分别是AB、AC上动点,求△PMN周长的最小值.【考点】MR:圆的综合题.【专题】55C:与圆有关的计算.【分析】(1)根据圆外一点P到这个圆上所有点的距离中,最远是和最近的点是过圆心和该点的直线与圆的交点,容易求出最大值与最小值分别为11和3;(2)作点P关于直线OA的对称点P1,作点P关于直线OB的对称点P2,连接P1、P2,与OA、OB分别交于点E、F,点E、F即为所求,此时△PEF周长最小,然后根据等腰直角三角形求解即可;(3)类似(2)题作对称点,△PMN周长最小=P1P2,然后由三角形相似和勾股定理求解.【解答】解:(1)如图①,∵圆外一点P到这个圆上所有点的距离中,最大距离是和最小距离都在过圆心的直线OP上,此直线与圆有两个交点,圆外一点与这两个交点的距离个分别最大距离和最小距离.∴P A的最大值=P A2=PO+OA2=7+4=11,P A的最小值=P A1=PO﹣OA1=7﹣4=3,故答案为11和3;(2)如图②,以O为圆心,OA为半径,画弧AC和弧BD,作点P关于直线OA的对称点P1,作点P关于直线OB的对称点P2,连接P1、P2,与OA、OB分别交于点E、F,点E、F即为所求.连接OP1、OP2、OP、PE、PF,由对称知识可知,∠AOP1=∠AOP,∠BOP2=∠BOP,PE=P1E,PF=P2F∴∠AOP1+∠BOP2=∠AOP+∠BOP=∠AOB=45°∠P1OP2=45°+45°=90°,∴△P1OP2为等腰直角三角形,∴P 1P2=,△PEF周长=PE+PF+EF=P1E+P2F+EF=P1P2=,此时△PEF周长最小.故答案为4;(3)作点P关于直线AB的对称P1,连接AP1、BP1,作点P关于直线AC的对称P2,连接P1、P2,与AB、AC分别交于点M、N.由对称知识可知,PM=P1M,PN=P2N,△PMN周长=PM+PN+MN=PM1+P2N+MN=P1P2,此时,△PMN周长最小=P1P2.由对称性可知,∠BAP1=∠BAP,∠EAP2=∠EAP,AP1=AP=AP2,∴∠BAP1+∠EAP2=∠BAP+∠EAP=∠BAC=45°∠P1AP2=45°+45°=90°,∴△P1AP2为等腰直角三角形,∴△PMN周长最小值P1P2=,当AP最短时,周长最小.连接DF.∵CF⊥BE,且PF=CF,∴∠PCF=45°,∵∠ACD=45°,∴∠PCF=∠ACD,∠PCA=∠FCD又,∴在△APC与△DFC中,,∠PCA=∠FCD∴△APC∽△DFC,∴=,∴∵∠BFC=90°,取BC中点O.∴点F在以BC为直径的圆上运动,当D、F、O三点在同一直线上时,DF最短.DF=DO﹣FO===,∴AP最小值为∴此时,△PMN周长最小值P1P2====.。

2020年陕西省西安市高新一中中考数学三模试卷

2020年陕西省西安市高新一中中考数学三模试卷

2020年陕西省西安市高新一中中考数学三模试卷一.选择题(共10小题) 1.(3分)在227,3π,1.62,0四个数中,有理数的个数为( ) A .4B .3C .2D .12.(3分)将两个长方体如图放置,则所构成的几何体的主视图可能是( )A .B .C .D .3.(3分)直线12//l l ,一块含45︒角的直角三角板,如图放置,142∠=︒,则2∠等于()A .97︒B .93︒C .87︒D .83︒4.(3分)设正比例函数y mx =的图象经过点(,4)A m ,且y 的值随x 值的增大而减小, 则(m = ) A . 2B .2-C . 4D .4-5.(3分)下列运算正确的是( ) A .22423m m m +=B .224()mn mn =C .22248m m m =D .532m m m ÷=6.(3分)如图,ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且4AE EO +=,则ABCD 的周长为( )A .20B .16C .12D .87.(3分)一次函数4y mx =+与一次函数3y x n =+关于直线1y =对称,则m 、n 分别为()A .3m =-,2n =-B .3m =-,4n =-C .3m =,2n =-D .3m =,4n =-8.(3分)如图,四边形ABCD 中60DAB ∠=︒,90B D ∠=∠=︒,1BC =,2CD =,则对角线AC 的长为( )A .21B .21C .221D .5219.(3分)如图,四边形ABCD 内接于O ,若四边形ABCO 是平行四边形,则ADC ∠的大小为( )A .45︒B .50︒C .60︒D .75︒10.(3分)二次函数28(y ax ax a =-为常数)的图象不经过第三象限,在自变量x 的值满足23x 时,其对应的函数值y 的最大值为3-,则a 的值是( )A .14B .14-C .2D .2-二.填空题(共4小题)11.比较大小:25- 32-.12.(3分)如图,已知正六边形ABCDEF ,则ADF ∠= 度.13.(3分)如图,已知双曲线(0)k y k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6,4)-,则AOC ∆的面积为 .14.(3分)如图,在锐角ABC ∆中,2AB =,6AC =,45ACB ∠=︒,D 是平面内一点且30ADB ∠=︒,则线段CD 的最小值为 .三.解答题(共11小题)15.计算:2028sin 45|22|(31)-+︒----. 16.解方程:22142xx x +=--. 17.如图,点P 是O 外一点,请你用尺规画出一条直线PA ,使得其与O 相切于点A ,(不写作法,保留作图痕迹)18.如图,ABC ∆和EBD ∆均为等腰直角三角形,点E 是边AB 上一点,90ABC EBD ∠=∠=︒,连接AD ,CE .求证:AD CE ⊥.19.某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查部分学生的数学成绩,并将抽样的数据进行了如下整理:(1)填空m = ,n = ,数学成绩的中位数所在的等级 ; (2)如果该校有1200名学生参加了本次模拟测,估计D 等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A 等级学生的数学成绩的平均分数. ①如下分数段整理样本;等级等级分数段 各组总分 人数 A 110120X << P4B100110X <<843 nC90100X <574 mD 8090X <<1712②根据左表绘制扇形统计图.20.2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用“硬科技”打造了最具独特的风景线,2018“西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F 点,此时,他测得F 点都塔顶A 点的俯视角为30︒,同时也测得F 点到塔底C 点的俯视角为45︒,已知塔底边心距23OC=米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1米)?(3 1.73≈.≈,2 1.41)21.市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如表:品种项目单价(元/棵)成活率A8092%B10098%若购买A种树x棵,购树所需的总费用为y元.(1)求y与x之间的函数关系式.(2)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A、B两种树各多少棵?此时最低费用为多少?22.象棋是棋类益智游戏,中国象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.李凯和张萌利用象棋棋盘和棋子做游戏.李凯将四枚棋子反面朝上放在棋盘上,其中有两个“兵”、一个“马”、一个“士”,张萌随机从这四枚棋子中摸一枚棋子,记下正汉字,然后再从剩下的三枚棋子中随机摸一枚.(1)求张萌第一次摸到的棋子正面上的汉字是“兵”的概率;(2)游戏规定:若张萌两次摸到的棋子中有“士”,则张萌胜;否则,李凯胜.请你用树状图或列表法求李凯胜的概率.23.如图,点O 是ABC ∆的边AB 上一点,以OB 为半径的O 与边AC 相切于点E ,与边BC ,AB 分别相交于点D ,F ,且DE EF =.(1)求证:90C ∠=︒; (2)当3BC =,3sin 5A =时,求AF 的长.24.已知抛物线,2:3L y ax bx =+-与x 轴交于(1,0)A -、B 两点,与y 轴交于点C ,且抛物线L 的对称轴为直线1x =. (1)抛物线的表达式;(2)若抛物线L '与抛物线L 关于直线x m =对称,抛物线L '与x 轴交于点A ',B '两点(点A '在点B '左侧),要使2ABC A BCS S ∆'=,求所有满足条件的抛物线L '的表达式.25.解决问题:(1)如图①,半径为4的O 外有一点P ,且7PO =,点A 在O 上,则PA 的最大值和最小值分别是 和 .(2)如图②,扇形AOB的半径为4,45∠=︒,P为弧AB上一点,分别在OA边找点E,AOB在OB边上找一点F,使得PEF∆周长的最小,请在图②中确定点E、F的位置并直接写出∆周长的最小值;PEF拓展应用(3)如图③,正方形ABCD的边长为E是CD上一点(不与D、C重合),CF BE⊥于F,P在BE上,且PF CF=,M、N分别是AB、AC上动点,求PMN∆周长的最小值.2020年陕西省西安市高新一中中考数学三模试卷参考答案与试题解析一.选择题(共10小题) 1.(3分)在227,3π,1.62,0四个数中,有理数的个数为( ) A .4B .3C .2D .1【分析】根据有理数的定义,即可解答. 【解答】解:在227,3π,1.62,0四个数中,有理数为227,1.62,0,共3个, 故选:B .【点评】本题考查了有理数的分类,解决本题的关键是熟记有理数的分类. 2.(3分)将两个长方体如图放置,则所构成的几何体的主视图可能是( )A .B .C .D .【分析】根据主视图是从物体正面看所得到的图形即可解答.【解答】解:根据主视图的概念可知,从物体的正面看得到的视图是A , 故选:A .【点评】本题考查了简单几何体的主视图,注意主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3.(3分)直线12//l l ,一块含45︒角的直角三角板,如图放置,142∠=︒,则2∠等于()A .97︒B .93︒C .87︒D .83︒【分析】根据平行线的性质得出2ADE ∠=∠,根据三角形外角性质求出ADE ∠,即可得出答案.【解答】解:∴直线12//l l ,2ADE ∴∠=∠, 142∠=︒,45A ∠=︒,2187ADE A ∴∠=∠=∠+∠=︒,故选:C .【点评】本题考查了三角形外角性质,平行线的性质的应用,能正确运用定理进行推理是解此题的关键.4.(3分)设正比例函数y mx =的图象经过点(,4)A m ,且y 的值随x 值的增大而减小, 则(m = ) A . 2B .2-C . 4D .4-【分析】直接根据正比例函数的性质和待定系数法求解即可 . 【解答】解: 把x m =,4y =代入y mx =中, 可得:2m =±,因为y 的值随x 值的增大而减小,所以2m =-, 故选:B .【点评】本题考查了正比例函数的性质: 正比例函数(0)y kx k =≠的图象为直线, 当0k >时, 图象经过第一、 三象限,y 值随x 的增大而增大;当0k <时, 图象经过第二、 四象限,y 值随x 的增大而减小 . 5.(3分)下列运算正确的是( ) A .22423m m m +=B .224()mn mn =C .22248m m m =D .532m m m ÷=【分析】直接利用合并同类项法则以及积的乘方运算法则、 整式的乘除运算分别计算得出答案 .【解答】解:A 、22223m m m +=,故此选项错误;B 、2224()mn m n =,故此选项错误;C 、23248m m m =,故此选项错误;D 、532m m m ÷=,正确 .故选:D .【点评】此题主要考查了合并同类项以及积的乘方运算、 整式的乘除运算, 正确掌握相关运算法则是解题关键 .6.(3分)如图,ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且4AE EO +=,则ABCD 的周长为( )A .20B .16C .12D .8【分析】首先证明:12OE BC =,由4AE EO +=,推出8AB BC +=即可解决问题; 【解答】解:四边形ABCD 是平行四边形, OA OC ∴=,AE EB =,12OE BC ∴=, 4AE EO +=,228AE EO ∴+=,8AB BC ∴+=,∴平行四边形ABCD 的周长2816=⨯=,故选:B .【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.7.(3分)一次函数4y mx =+与一次函数3y x n =+关于直线1y =对称,则m 、n 分别为( )A .3m =-,2n =-B .3m =-,4n =-C .3m =,2n =-D .3m =,4n =-【分析】先求出一次函数4y mx =+与y 轴交点关于直线1y =的对称点,得到n 的值,再求出一次函数3y x b =+与x 轴交点关于直线1y =的对称点,代入一次函数4y mx =+,求出m 的值即可.【解答】解:一次函数4y mx =+与y 轴交点为(0,4),∴点(0,4)关于直线1y =的对称点为(0,2)-,2n ∴=-,一次函数32y x =-与x 轴交点为2(3,0), 2(3,0)关于直线1y =的对称点为2(3,2), ∴2423m +=,解得3m =-. 故选:A .【点评】本题考查的是一次函数图象与几何变换,待定系数法求函数解析式,先根据题意得出直线与坐标轴的交点是解决问题的关键.8.(3分)如图,四边形ABCD 中60DAB ∠=︒,90B D ∠=∠=︒,1BC =,2CD =,则对角线AC 的长为( )A.21B.21C.221D.521【分析】延长DC与AB交于一点K.解直角三角形求出DK,再求出AD,利用勾股定理求出AC.【解答】解:延长DC交AB的延长线于点K;在Rt ADK∆中,6030DAK AKD∠=︒∠=︒,1BC=,∴2,3CK BK==,4DK CD CK∴=+=,43tan60DKAD∴==︒,在△Rt ADC∆中,22221AC AD DC=+=,故选:C.【点评】考查了解直角三角形的应用,解题关键在于构造直角三角形ADK.9.(3分)如图,四边形ABCD内接于O,若四边形ABCO是平行四边形,则ADC∠的大小为()A.45︒B.50︒C.60︒D.75︒【分析】设ADC∠的度数α=,ABC∠的度数β=,由题意可得18012αβαβ+=︒⎧⎪⎨=⎪⎩,求出β即可解决问题.【解答】解:设ADC ∠的度数α=,ABC ∠的度数β=;四边形ABCO 是平行四边形,ABC AOC ∴∠=∠;12ADC β∠=,ADC α∠=;而180αβ+=︒, ∴18012αβαβ+=︒⎧⎪⎨=⎪⎩, 解得:120β=︒,60α=︒,60ADC ∠=︒,故选:C .【点评】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.10.(3分)二次函数28(y ax ax a =-为常数)的图象不经过第三象限,在自变量x 的值满足23x 时,其对应的函数值y 的最大值为3-,则a 的值是( )A .14B .14-C .2D .2-【分析】根据题意和题目中的函数解析式,利用二次函数的性质可以求得a 的值,本题得以解决.【解答】解:二次函数228(4)16y ax ax a x a =-=--,∴该函数的对称轴是直线4x =, 又二次函数28(y ax ax a =-为常数)的图象不经过第三象限,0a ∴>,在自变量x 的值满足23x 时,其对应的函数值y 的最大值为3-,∴当2x =时,22823a a ⨯-⨯=-, 解得,14a =, 故选:A .【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二.填空题(共4小题)11.比较大小:- -【分析】先把根号外的因式移入根号内,再根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:2520-=-,3218-=-,2532∴-<-,故答案为:<.【点评】本题考查了实数的大小比较法则,能熟记实数的大小比较法则内容是解此题的关键,注意:两个负数比较大小,其绝对值大的反而小.12.(3分)如图,已知正六边形ABCDEF ,则ADF ∠= 30 度.【分析】连接OF ,由多边形是正六边形可求出AOF ∠的度数,再根据圆周角定理即可求出ADF ∠的度数.【解答】解:由题意知:AD 是正六边形的外接圆的半径,找到AD 的中点O ,连接OF ,六边形ABCDEF 是正六边形,360606AOF ∴∠==︒, 11603022ADF AOF ∴∠=∠=⨯︒=︒. 故答案为:30︒.【点评】本题考查的是正多边形和圆及圆周角定理,根据题意作出辅助线构造出圆心角是解答此题的关键.13.(3分)如图,已知双曲线(0)k y k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6,4)-,则AOC ∆的面积为 9 .【分析】要求AOC ∆的面积,已知OB 为高,只要求AC 长,即点C 的坐标即可,由点D 为三角形OAB 斜边OA 的中点,且点A 的坐标(6,4)-,可得点D 的坐标为(3,2)-,代入双曲线(0)k y k x=<可得k ,又AB OB ⊥,所以C 点的横坐标为6-,代入解析式可得纵坐标,继而可求得面积.【解答】解:点D 为OAB ∆斜边OA 的中点,且点A 的坐标(6,4)-,∴点D 的坐标为(3,2)-,把(3,2)-代入双曲线(0)k y k x=<, 可得6k =-,即双曲线解析式为6y x=-, AB OB ⊥,且点A 的坐标(6,4)-,C ∴点的横坐标为6-,代入解析式6y x=-, 1y =,即点C 坐标为(6,1)-,3AC ∴=,又6OB =,192AOC S AC OB ∆∴=⨯⨯=. 故答案为:9.【点评】本题考查反比例函数系数k 的几何意义及其函数图象上点的坐标特征,体现了数形结合的思想.14.(3分)如图,在锐角ABC ∆中,2AB =,6AC =45ACB ∠=︒,D 是平面内一点且30ADB ∠=︒,则线段CD 的最小值为 33 .【分析】作AH BC ⊥于H ,因为2AB =,6AC =,45ACB ∠=︒,可得60ABH ∠=︒,31BC =+,在BC 上截取2BO AB ==,则OAB ∆为等边三角形,以O 为圆心,2为半径作O ,根据30ADB ∠=︒,可得点D 在O 上运动,当DB 经过圆心O 时,CD 最小,其最小值为O 的直径减去BC 的长.【解答】解:如图,作AH BC ⊥于H ,2AB =,6AC =,45ACB ∠=︒,3CH AH ∴==,222(3)1BH ∴=-=,60ABH ∴∠=︒,31BC CH BH =+=+,在BC 上截取2BO AB ==,则OAB ∆为等边三角形,以O 为圆心,2为半径作O ,30ADB ∠=︒,∴点D 在O 上运动,当DB 经过圆心O 时,CD 最小,最小值为4(31)33-+=-.故答案为:33-.【点评】本题考查勾股定理,锐角三角形函数定义,圆周角定理.解题的关键是得出点D 在O 上运动.三.解答题(共11小题)15.计算:2028sin 45|22|(31)-+︒----.【分析】根据零次幂、绝对值、特殊锐角的三角函数值以及实数的运算法则进行计算即可.【解答】解:2028sin 45|22|(31)-+︒----. 2422221=-+⨯-+-, 42221=-+-+-,25=-.【点评】本题考查零次幂、绝对值、特殊锐角的三角函数值以及实数的运算等知识,掌握计算法则理解运算性质是正确计算的关键.16.解方程:22142x x x +=--. 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:22(2)4x x x ++=-,解得:3x =-,经检验3x =-是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.如图,点P 是O 外一点,请你用尺规画出一条直线PA ,使得其与O 相切于点A ,(不写作法,保留作图痕迹)【分析】连接OP ,作线段OP 的垂直平分线MN 交OP 于点K ,以点K 为圆心OK 为半径作K 交O 于点A ,A ',作直线PA ,PA ',直线PA ,PA '即为所求.【解答】解:连接OP ,作线段OP 的垂直平分线MN 交OP 于点K ,以点K 为圆心OK 为半径作K 交O 于点A ,A ',作直线PA ,PA ',直线PA ,PA '即为所求.【点评】本题考查作图-复杂作图,切线的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.如图,ABC ∆和EBD ∆均为等腰直角三角形,点E 是边AB 上一点,90ABC EBD ∠=∠=︒,连接AD ,CE .求证:AD CE ⊥.【分析】延长CE 交AD 于点F ,根据SAS 证明EBC ∆与DBA ∆全等,利用全等三角形的性质和垂直的定义证明即可.【解答】证明:延长CE 交AD 于点F ,ABC ∆和EBD ∆均为等腰直角三角形, EB DB ∴=,AB BC =,90ABD EBC ∠=∠=︒,在EBC ∆与DBA ∆中EB DB ABD EBC AB BC =⎧⎪∠=∠⎨⎪=⎩,()EBC DBA SAS ∴∆≅∆,DAB ECB ∴∠=∠,90DAB ADB ∠+∠=︒,90ECB ADB ∴∠+∠=︒,90DFC ∴∠=︒,AD CE ∴⊥.【点评】此题考查全等三角形的判定和性质,关键是根据等腰直角三角形的性质和SAS 证明EBC ∆与DBA ∆全等.19.某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查部分学生的数学成绩,并将抽样的数据进行了如下整理:(1)填空m = 6 ,n = ,数学成绩的中位数所在的等级 ;(2)如果该校有1200名学生参加了本次模拟测,估计D 等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A 等级学生的数学成绩的平均分数. ①如下分数段整理样本;等级等级 分数段各组总分 人数 A 110120X <<P 4 B100110X << 843 n C 90100X < 574m D 8090X << 171 2②根据左表绘制扇形统计图.【分析】(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m 、n 的值,从而可以得到数学成绩的中位数所在的等级;(2)根据表格中的数据可以求得D 等级的人数;(3)根据表格中的数据,可以计算出A 等级学生的数学成绩的平均分数.【解答】解:(1)本次抽查的学生有:72420360︒÷=︒(人),2030%6m=⨯=,204628n=---=,数学成绩的中位数所在的等级B,故答案为:6,8,B;(2)2120012020⨯=(人),答:D等级的约有120人;(3)由表可得,A等级学生的数学成绩的平均分数:102208435741711134⨯---=(分),即A等级学生的数学成绩的平均分是113分.【点评】本题考查扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.20.2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用“硬科技”打造了最具独特的风景线,2018“西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F点,此时,他测得F点都塔顶A点的俯视角为30︒,同时也测得F点到塔底C点的俯视角为45︒,已知塔底边心距23OC=米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1米)?(3 1.73≈,2 1.41)≈.【分析】作FD BC⊥,交BC的延长线于D,作AE DF⊥于E,则四边形AODE是矩形.解直角CDF∆,得出185CD DF==米,那么208OD OC CD=+=米,208AE OD==米.再解直角AEF∆,求出2083tanEF AE FAE=∠=OA DE DF EF==-即可求解.【解答】解:如图,作FD BC⊥于E,则四边形AODE⊥,交BC的延长线于D,作AE DF是矩形.由题意,可知30DF=米.∠=︒,185FAE∠=︒,45FCD在直角CDF∠=︒,FCD∆中,90∠=︒,45D∴==米,185CD DF∴=+=米,208OD OC CD∴==米.208AE OD在直角AEF∆中,90∠=︒,FAEAEF∠=︒,3032083∴=∠=⨯=(米),tan208EF AE FAE2083∴=-=-≈-≈(米),185185119.9565.1DE DF EF∴=≈米.65.1OA DE故大雁塔的大体高度是65.1米.【点评】本题考查解直角三角形的应用-仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.21.市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如表:品种项目单价(元/棵)成活率A8092%B10098%若购买A种树x棵,购树所需的总费用为y元.(1)求y与x之间的函数关系式.(2)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A 、B 两种树各多少棵?此时最低费用为多少?【分析】(1)根据购树的总费用=买A 种树的费用+买B 种树的费用,化简后便可得出y 与x 的函数关系式;(2)先根据A 种树成活的数量B +种树成活的数量树的总量⨯平均成活率,列出不等式,得出x 的取值范围,然后根据一次函数的性质判断出最佳的方案. 【解答】解:(1)由题意,得:80100(900)y x x =+- 化简,得:2090000(0900y x x =-+且为整数);(2)由题意得:92%98%(900)94%900x x +-⨯, 解得:600x .2090000y x =-+随x 的增大而减小,∴当600x =时,购树费用最低为206009000078000y =-⨯+=.当600x =时,900300x -=,故此时应购A 种树600棵,B 种树300棵,最低费用为78000元.【点评】本题考查了一次函数的应用,一元一次不等式的应用,一次函数的性质,利用成活率得到自变量的取值范围是解决本题的难点.22.象棋是棋类益智游戏,中国象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.李凯和张萌利用象棋棋盘和棋子做游戏.李凯将四枚棋子反面朝上放在棋盘上,其中有两个“兵”、一个“马”、一个“士”,张萌随机从这四枚棋子中摸一枚棋子,记下正汉字,然后再从剩下的三枚棋子中随机摸一枚. (1)求张萌第一次摸到的棋子正面上的汉字是“兵”的概率;(2)游戏规定:若张萌两次摸到的棋子中有“士”,则张萌胜;否则,李凯胜.请你用树状图或列表法求李凯胜的概率.【分析】(1)用“兵”的个数除以棋子的总个数即可得;(2)画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【解答】解:(1)张萌第一次摸到的棋子正面上的汉字是“兵”的概率为21 42 =;(2)画树状图如下:由树状图知,共有12种等可能结果,其中不含“士”的结果有6种,∴李凯胜的概率为61 122=.【点评】本题考查了列表法与树状图法:运用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.如图,点O是ABC∆的边AB上一点,以OB为半径的O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE EF=.(1)求证:90C∠=︒;(2)当3BC=,3sin5A=时,求AF的长.【分析】(1)连接OE ,BE ,因为DE EF =,所以DE EF =,从而易证OEB DBE ∠=∠,所以//OE BC ,从可证明BC AC ⊥;(2)设O 的半径为r ,则5AO r =-,在Rt AOE ∆中,3sin 55OE r A OA r ===-,从而可求出r 的值.【解答】解:(1)连接OE ,BE ,DE EF =,∴DE EF =OBE DBE ∴∠=∠OE OB =, OEB OBE ∴∠=∠OEB DBE ∴∠=∠, //OE BC ∴O 与边AC 相切于点E , OE AC ∴⊥ BC AC ∴⊥ 90C ∴∠=︒(2)在ABC ∆,90C ∠=︒,3BC =,3sin 5A = 5AB ∴=,设O 的半径为r ,则5AO r =-, 在Rt AOE ∆中,3sin 55OE r A OA r ===- 158r ∴=1555284AF ∴=-⨯=【点评】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.24.已知抛物线,2:3L y ax bx =+-与x 轴交于(1,0)A -、B 两点,与y 轴交于点C ,且抛物线L 的对称轴为直线1x =. (1)抛物线的表达式;(2)若抛物线L '与抛物线L 关于直线x m =对称,抛物线L '与x 轴交于点A ',B '两点(点A '在点B '左侧),要使2ABC A BCS S ∆'=,求所有满足条件的抛物线L '的表达式.【分析】(1)抛物线2:3L y ax bx =+-与x 轴交于(1,0)A -、B 两点,对称轴为直线1x =,则点(3,0)B ,即可求解; (2)2ABC A BCS S ∆'=,则点A '为(1,0)或(5,0),对应抛物线的对称轴为:3x =或7,即可求解.【解答】解:(1)抛物线2:3L y ax bx =+-与x 轴交于(1,0)A -、B 两点,对称轴为直线1x =, 则点(3,0)B ,则抛物线的表达式为:2(1)(3)(23)y a x x a x x =+-=--, 即33a -=-,解得:1a =,故抛物线的表达式为:223y x x =--;(2)2ABC A BCS S∆'=,则点A '为(1,0)或(5,0),对应抛物线的对称轴为:3x =或7,故抛物线L '的表达式为:2(3)4y x =--或2(7)4y x =--.【点评】本题考查的是抛物线与x 轴的交点,要求学生非常熟悉函数与坐标轴的交点、顶点等点所代表的意义、图象上点的坐标特征等. 25.解决问题:(1)如图①,半径为4的O 外有一点P ,且7PO =,点A 在O 上,则PA 的最大值和最小值分别是 11 和 .(2)如图②,扇形AOB 的半径为4,45AOB ∠=︒,P 为弧AB 上一点,分别在OA 边找点E ,在OB 边上找一点F ,使得PEF ∆周长的最小,请在图②中确定点E 、F 的位置并直接写出PEF ∆周长的最小值;拓展应用(3)如图③,正方形ABCD 的边长为42;E 是CD 上一点(不与D 、C 重合),CF BE ⊥于F ,P 在BE 上,且PF CF =,M 、N 分别是AB 、AC 上动点,求PMN ∆周长的最小值.【分析】(1)根据圆外一点P 到这个圆上所有点的距离中,最远是和最近的点是过圆心和该点的直线与圆的交点,容易求出最大值与最小值分别为11和3;(2)作点P 关于直线OA 的对称点1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与OA 、OB 分别交于点E 、F ,点E 、F 即为所求,此时PEF ∆周长最小,然后根据等腰直角三角形求解即可;(3)类似(2)题作对称点,PMN ∆周长最小12P P =,然后由三角形相似和勾股定理求解.【解答】解:(1)如图①,圆外一点P 到这个圆上所有点的距离中,最大距离是和最小距离都在过圆心的直线OP 上,此直线与圆有两个交点,圆外一点与这两个交点的距离个分别最大距离和最小距离.PA ∴的最大值227411PA PO OA ==+=+=, PA 的最小值11743PA PO OA ==-=-=,故答案为 11和3;(2)如图②,以O 为圆心,OA 为半径,画弧AC 和弧BD ,作点P 关于直线OA 的对称点1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与OA 、OB 分别交于点E 、F ,点E 、F 即为所求.连接1OP 、2OP 、OP 、PE 、PF ,由对称知识可知,1AOP AOP ∠=∠,2BOP BOP ∠=∠,1PE PE =,2PF P F = 1245AOP BOP AOP BOP AOB ∴∠+∠=∠+∠=∠=︒ 12454590POP ∠=︒+︒=︒,∴△12POP 为等腰直角三角形,121PP ∴=,PEF ∆周长1212PE PF EF PE P F EF PP =++=++==PEF ∆周长最小.故答案为(3)作点P 关于直线AB 的对称1P ,连接1AP 、1BP ,作点P 关于直线AC 的对称2P , 连接1P 、2P ,与AB 、AC 分别交于点M 、N . 由对称知识可知,1PM PM =,2PN P N=,PMN ∆周长1212PM PN MN PM P N MN PP =++=++=,此时,PMN ∆周长最小12P P =.由对称性可知,1BAP BAP ∠=∠,2EAP EAP ∠=∠,12AP AP AP ==, 1245BAP EAP BAP EAP BAC ∴∠+∠=∠+∠=∠=︒ 12454590P AP ∠=︒+︒=︒,∴△12P AP 为等腰直角三角形,PMN ∴∆周长最小值12PP ,当AP 最短时,周长最小. 连接DF .CF BE ⊥,且PF CF =,45PCF ∴∠=︒,PCCF=45ACD ∠=︒, PCF ACD ∴∠=∠, PCA FCD ∠=∠又ACCD= ∴在APC ∆与DFC ∆中,AC PCCD CF=,PCA FCD ∠=∠ APC DFC ∴∆∆∽,∴AP ACDF CD==,∴AP =90BFC ∠=︒,取BC 中点O .∴点F 在以BC 为直径的圆上运动,当D 、F 、O 三点在同一直线上时,DF 最短.DF DO FO OC =-==AP ∴最小值为AP =∴此时,PMN ∆周长最小值122222(2102PP DF ===-=【点评】本题考查圆以及正方形的性质,运用圆的对称性和正方形的对称性是解答本题的关键.。

2020-2021学年陕西省中考数学四模试卷及答案解析

2020-2021学年陕西省中考数学四模试卷及答案解析

2020-2021学年陕西省中考数学四模试卷及答案解析陕西省西安市中考数学四模试卷(解析版)⼀、选择题:共10⼩题,每⼩题3分,共30分,每⼩题只有⼀个选项是符合题意的.1.﹣8的⽴⽅根是()A.2 B.﹣2 C.±2 D.【分析】利⽤⽴⽅根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的⽴⽅根是﹣2.故选B【点评】本题主要考查了平⽅根和⽴⽅根的概念.如果⼀个数x的⽴⽅等于a,即x的三次⽅等于a(x3=a),那么这个数x就叫做a的⽴⽅根,也叫做三次⽅根.读作“三次根号a”其中,a叫做被开⽅数,3叫做根指数.2.如图,是⼀根粉笔的⽰意图,它的主视图是()A.B.C.D.【分析】找出从⼏何体的正⾯看所得到的视图即可.【解答】解:粉笔的主视图是等腰梯形,故选:C.【点评】此题主要考查了简单⼏何体的三视图,关键是掌握视图中每⼀个闭合的线框都表⽰物体上的⼀个平⾯,⽽相连的两个闭合线框常不在⼀个平⾯上.3.下列运算正确的是()A.2xy﹣3xy=﹣1 B.x5÷x=x5C.m3?m2=m6D.(﹣m3n4)2=m6n8【分析】根据合并同类项法则,同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;积的乘⽅和幂的乘⽅的性质对各选项分析判断即可得解.【解答】解:A、2xy﹣3xy=﹣xy,故本选项错误;B、x5÷x=x5﹣1=x4,故本选项错误;C、m3?m2=m3+2=m5,故本选项错误;D、(﹣m3n4)2=(﹣m3)2?(n4)2=m6n8,故本选项正确.故选D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘⽅、积的乘⽅、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.如图,已知直线a⊥c,直线b⊥c,若∠1=65°,则∠2的度数为()A.20°B.25°C.50°D.65°【分析】先根据题意得出a∥b,再由平⾏线的性质得出∠3的度数,由余⾓的定义即可得出结论.【解答】解:∵直线a⊥c,直线b⊥c,∴a∥b,∠3=90°.∵∠1=∠4=65°,∴∠2=90°﹣65°=25°.故选B.【点评】本题考查的是平⾏线的判定与性质,熟知平⾏线的判定定理是解答此题的关键.5.已知正⽐例函数y=(﹣2k+2)x,若y随x的增⼤⽽增⼤,则k的取值范围是()A.k≤1 B.k≥1 C.k<1 D.k>1【分析】根据正⽐例函数图象的增减性可求出k的取值范围.【解答】解:根据y随x的增⼤⽽增⼤,知:﹣2k+2>0,解得k<1.故选C.【点评】考查了正⽐例函数图象的性质:它是经过原点的⼀条直线.当k>0时,图象经过⼀、三象限,y随x的增⼤⽽增⼤;当k<0时,图象经过⼆、四象限,y随x的增⼤⽽减⼩.6.如图,在菱形ABCD中,对⾓线AC、BD相交于点O,点E、F分别是边AB、BC的中点,连接EF,若EF=3,BD=6,则菱形ABCD的⾯积为()A.6B.9C.18D.36【分析】根据EF是△ABC的中位线,根据三⾓形中位线定理求的AC的长,然后根据菱形的⾯积公式求解.【解答】解:∵E、F是AB和BC的中点,即EF是△ABC的中位线,∴AC=2EF=6,则S菱形ABCD=AC?BD=×6×6=18,故选C.【点评】本题考查了三⾓形的中位线定理和菱形的⾯积公式,理解中位线定理求的AC的长是关键.7.直线y=2x﹣3与y=﹣x+3的交点在()A.第⼀象限B.第⼆象限C.第三象限D.第四象限【分析】将y=2x﹣3与y=﹣x+3联⽴⽅程组,求出⽅程组的解,然后即可判断交点在第⼏象限,本题得以解决.【解答】解:,解得,,∴直线y=2x﹣3与y=﹣x+3的交点是(2,1),∵点(2,1)在第⼀象限,∴直线y=2x﹣3与y=﹣x+3的交点在第⼀象限,故选A.【点评】本题考查两条直线相交或平⾏问题,解答本题的关键求出两条直线的交点,明确各个象限内点的坐标的正负情况.8.如图,在?ABCD中,对⾓线AC、BD相交于点O,分别过点A、C作BD的垂线,垂⾜分别为点E、F,则图中共有全等三⾓形()A.5对B.6对C.7对D.8对【分析】先根据平⾏四边形的性质得AD=BC,AB=CD,OA=OC,OB=OD,则根据全等三⾓形的判定⽅法易得△OAD≌△OCB,△OAB≌△OCD,△ABC≌△CDA,△ABD≌△CDB,再由AE⊥BD,CF⊥BD,则根据全等三⾓形的判定⽅法易得△OAE≌△OCF,△ABE≌△CDF,△AED≌△CFB.【解答】解:∵四边形ABCD为平⾏四边形,∴AD=BC,AB=CD,OA=OC,OB=OD,∴△OAD≌△OCB,△OAB≌△OCD,△ABC≌△CDA,△ABD≌△CDB,∵AE⊥BD,CF⊥BD,∴△OAE≌△OCF,△ABE≌△CDF,△AED≌△CFB.故选C.【点评】本题考查了全等三⾓形的判定:全等三⾓形的5种判定⽅法中,选⽤哪⼀种⽅法,取决于题⽬中的已知条件,若已知两边对应相等,则找它们的夹⾓或第三边;若已知两⾓对应相等,则必须再找⼀组对边对应相等,且要是两⾓的夹边,若已知⼀边⼀⾓,则找另⼀组⾓,或找这个⾓的另⼀组对应邻边.9.如图,在⊙O中,AB是⊙O的弦,点C是优弧上⼀点,连接OA、OC.若∠AOC=100°,则∠B的度数为()A.150°B.130°C.100°D.50°【分析】在优弧AC上取⼀点D,连接AD、CD.由∠D=∠AOC=50°,∠B+∠D=180°,即可解决问题【解答】解:在优弧AC上取⼀点D,连接AD、CD.∵∠D=∠AOC=50°,⼜∵∠B+∠D=180°,∴∠B=130°,故选B.【点评】本题考查圆周⾓定理、圆内接四边形的性质等知识,解题的关键是灵活运⽤所学知识解决问题,学会添加常⽤辅助线,构造圆内接四边形解决问题,属于中考常考题型.10.抛物线y=x2+bx+c与x轴只有⼀个公共点,且过点A(m+1,n),B(m﹣9,n),则n=()A.16 B.18 C.20 D.25【分析】根据点A、B的坐标易求该抛物线的对称轴是x=m﹣4.故设抛物线解析式为y=(x﹣m+4)2,直接将A(m+1,n)代⼊,通过解⽅程来求n的值即可.【解答】解:∵抛物线y=x2+bx+c过点A(m+1,n),B(m﹣9,n),∴对称轴是x=m﹣4.⼜∵抛物线y=x2+bx+c与x轴只有⼀个交点,∴设抛物线解析式为y=(x﹣m+4)2,把A(m+1,n)代⼊,得n=(m+1﹣m+4)2,即n=25.故选D.【点评】本题考查了抛物线与x轴的交点.解答该题的技巧性在于找到抛物线的顶点坐标,根据顶点坐标设抛物线的解析式.⼆、填空题:共5⼩题,每⼩题3分,共12分.11.⽐较⼤⼩:﹣2 >﹣(填“>”,“<”或“=”)【分析】先计算两数的绝对值得到|﹣2|﹣2,|﹣|=,由于>2,根据负数的绝对值越⼤,这个数反⽽越⼩即可得到﹣2与﹣的⼤⼩关系.【解答】解:∵|﹣2|﹣2,|﹣|=,⽽>2,∴﹣2>﹣.故答案为>.【点评】本题考查了实数⼤⼩⽐较:所有正数⼤于0,所有负数⼩于0;负数的绝对值越⼤,这个数反⽽越⼩.12.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA= 36°.【分析】⾸先求得正五边形内⾓∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利⽤平⾏线的性质求得∠DFA的度数即可.【解答】解:∵正五边形的外⾓为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°.故答案为:36°.【点评】本题考查了多边形的内⾓和外⾓及平⾏线的性质,解题的关键是求得正五边形的内⾓.13.⼩蓝周末去⼴场放风筝,如图,当风筝飞到点C处时的线长BC约为25m,此时⼩蓝正好站在点A处,并测得∠CBD=61°,牵引底端B距离地⾯1.5m,则此时风筝距离地⾯的⾼度CE约为23.3 m(⽤科学计算器计算,结果精确到0.1m).【分析】根据锐⾓三⾓函数可以求得CD的长,从⽽可以求得CE的长,本题得以解决.【解答】解:由题意可得,BC=25m,BA=DE=1.5m,∠CBD=61°,∵sin∠CBD=,∴CD=BC?sin∠CBD=25×sin61°≈25×0.87≈21.8,∴CE=CD+DE=21.8+1.5=23.3m,故答案为:23.3.【点评】本题考查解直⾓三⾓形的应⽤,解答本题的关键是明确题意,找出所求问题需要的条件,利⽤锐⾓三⾓函数解答.14.如图,在平⾯直⾓坐标系中,点A是反⽐例函数y=(x<0)的图象上⼀点,过点A作AB ⊥x轴,垂⾜为B,点C是y轴上任意⼀点,连接AC、BC,若△ABC的⾯积为2,则k的值为﹣4 .【分析】连结OA,如图,利⽤三⾓形⾯积公式得到S△OAB=S△CAB=2,再根据反⽐例函数的⽐例系数k的⼏何意义得到|k|=2,然后去绝对值即可得到满⾜条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=2,⽽S△OAB=|k|,∴|k|=2,∵k<0,∴k=﹣4.故答案为:﹣4.【点评】本题考查了反⽐例函数的⽐例系数k的⼏何意义:在反⽐例函数y=图象中任取⼀点,过这⼀个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的⾯积是定值|k|.15.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的⼀个动点,且满⾜∠PAB=∠PBC,则线段CP长的最⼩值为 2 .【分析】⾸先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最⼩,利⽤勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最⼩,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最⼩值为2.故答案为2.【点评】本题考查点与圆位置关系、圆周⾓定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外⼀点到圆的最⼩、最⼤距离,属于中考常考题型.三、解答题:共11⼩题,共78分,解答应写出过程.16.(5分)计算:(π﹣3.14)0+|﹣3|﹣2(tan60°+cos30°).【分析】⾸先计算乘⽅和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(π﹣3.14)0+|﹣3|﹣2(tan60°+cos30°)=1+3﹣2×(+)=4﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进⾏实数运算时,和有理数运算⼀样,要从⾼级到低级,即先算乘⽅、开⽅,再算乘除,最后算加减,有括号的要先算括号⾥⾯的,同级运算要按照从左到右的顺序进⾏.另外,有理数的运算律在实数范围内仍然适⽤.17.(5分)解⽅程:.【分析】本题考查解分式⽅程的⽅程,因为x2﹣4=(x+2)(x﹣2),所以可确定原⽅程的最简公分母为(x+2)(x﹣2),⽅程两边乘最简公分母,可以把分式⽅程转化为整式⽅程求解,注意⼀定要检验.【解答】解:去分母,得x(x+2)﹣(x2﹣4)=2,去括号,得x2+2x﹣x2+4=2,整理,得2x=﹣2,解得x=﹣1,检验:将x=﹣1代⼊(x+2)(x﹣2)=﹣3≠0,∴x=﹣1是原⽅程的解.【点评】解分式⽅程的关键是两边同乘最简公分母,将分式⽅程转化为整式⽅程,易错点是忽视检验.18.(5分)如图,已知△ABC,请利⽤尺规求作⼀直线AD,使其平分△ABC的⾯积(不写作法,保留作图痕迹).【分析】⾸先作出BC的垂直平分线,可确定BC的中点记作D,再根据三⾓形的中线平分三⾓形的⾯积画出直线AD即可.【解答】解:作法:作边BC的中垂线EF,交BC于D,作直线AD,则直线AD平分△ABC的⾯积.【点评】此题主要考查了作图﹣﹣复杂作图,关键是掌握线段垂直平分线的作法,掌握三⾓形的中线平分三⾓形的⾯积.19.(5分)⼿机党,简称MP,是对使⽤⼿机进⾏互联⽹交流⼈群的称谓.他们做任何事都离不开⼿机,有些甚⾄过分依赖⼿机⽽形成了“⼿机瘾”.某校团组织为了解初三毕业⽣的⼿机使⽤情况,随机调查了部分初三毕业⽣的⼿机使⽤时间,并将调查结果分成了以下五类如图,已知∠ABC=90°,点D是AB延长线上⼀点,AD=BC,过点A作AF⊥AB,且AF=BD,连接CD、DF.求证:CD⊥DF.【分析】利⽤垂直的定义得到⼀对直⾓相等,利⽤SAS得到三⾓形AFD与三⾓形BDC全等,利⽤全等三⾓形的对应⾓相等得到∠ADF=∠BCD,利⽤等式的性质及垂直定义即可得证.【解答】证明:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC=90°,在△AFD和△BDC中,,∴△AFD≌△BDC(SAS),∴∠ADF=∠BCD,∵∠BDC+∠BCD=90°,∴∠BDC+∠ADF=90°,即∠CDF=90°,∴CD⊥DF.【点评】此题考查了全等三⾓形的判定与性质,熟练掌握全等三⾓形的判定与性质是解本题的关键.21.(7分)雯雯和笑笑想利⽤⽪尺和所学的⼏何知识测量学校操场上旗杆的⾼度,他们的测量⽅案如下:当雯雯站在旗杆正前⽅地⾯上的点D处时,笑笑在地⾯上找到⼀点G,使得点G、雯雯的头顶C以及旗杆的顶部A三点在同⼀直线上,并测得DG=2.8m;然后雯雯向前移动1.5m到达点F处,笑笑同样在地⾯上找到⼀点H,使得点H、雯雯的头顶E以及旗杆的顶部A三点在同⼀直线上,并测得GH=1.7m,已知图中的所有点均在同⼀平⾯内,AB⊥BH,CD⊥BH,EF⊥BH,雯雯的⾝⾼CD=EF=1.6m.请你根据以上测量数据,求该校旗杆的⾼度AB.【分析】由题意知,CD=EF=1.6m,DG=2.8m,DF=1.5m,GH=1.7m,根据题意可得△CDG∽△ABG,△EFH∽△ABH,根据相似三⾓形的性质得到=,=,可得=,求得BD=21m,得到=,解得AB=13.6m,从⽽求解.【解答】解:由题意知,CD=EF=1.6m,DG=2.8m,DF=1.5m,GH=1.7m,∴FH=2.8﹣1.5+1.7=3m,∵AB⊥BH,CD⊥BH,EF⊥BH,∴△CDG∽△ABG,△EFH∽△ABH,∴=,=,∴=,即=,解得BD=21m,∴=,解得AB=13.6m.即该校旗杆的⾼度AB为13.6m.【点评】本题考查了相似三⾓形的应⽤、相似三⾓形的判定与性质;根据题意得出⽅程是解决问题的关键,本题难度适中.22.(7分)西安的雾霾天⽓趋于严重,某商城根据市场需求,从⼚家⼀次购进了A、B两种空⽓净化器180台,已知销售每台A种空⽓净化器的利润为200元,销售每台B种空⽓净化器的利润为300元,设该商城购进A种空⽓净化器x台,销售完这批空⽓净化器所获得的总利润为y 元.(1)求出y与x之间的函数关系式;(2)若该商城规定B种空⽓净化器的进货量不超过A种空⽓净化器的2倍,则该商城购进A型、B型空⽓净化器各多少台时,才能使销售完这批空⽓净化器所获得的总利润最⼤?并求出最⼤利润.【分析】(1)根据题⽬条件“销售每台A种空⽓净化器的利润为200元,销售每台B种空⽓净化器的利润为300元”即可得到y与x 之间的函数关系式;(2)由题⽬条件“商城规定B种空⽓净化器的进货量不超过A种空⽓净化器的2倍”可求出⾃变量x的取值范围,进⽽利⽤⼀次函数的性质可得到所获得的总利润.【解答】解:(1)由题意得:y=200x+300(180﹣x)=﹣100x+54000;(2)由题意得:180﹣x≤2x,解得:x≥60,∵﹣100<0,∴y=﹣100x+54000随x的增⼤⽽减⼩,∴当x=60时,y最⼤值=﹣100×60+54000=48000,此时180﹣x=120,答:该商城分别购进A型、B型空⽓净化器各60台、120台台时,才能使销售完这批空⽓净化器所获得的总利润最⼤,最⼤利润为48000元.【点评】本题考查⼀次函数的应⽤以及⼀元⼀次不等式的应⽤,解答本题的关键是明确题意,找出所求问题需要的条件,利⽤⼀次函数的性质解答.23.(7分)爸爸下班回家呆了⼀张同事送的《加勒⽐海盗5》的电影票,结果两⼩⼉⼦都想要去看,于是爸爸提议⽤如图所⽰的两个转盘(其中转盘A被等分成4个扇形,且4个扇形内依次标有数字:1,2,3,4;转盘B被等分成3个扇形,且3个扇形内依次标有数字:﹣1,﹣2,﹣3)做游戏来决定谁去.规则如下:同时转动两个转盘,转盘停⽌后,分别记下指针所指扇形内的数字,若所得的数字之和为0或1,则哥哥去,否则弟弟去.若指针恰好指向两个扇形的边界,则需重转⼀次,直到指针指向某⼀扇形内为⽌.(1)⽤列表法或画树状图法求哥哥去看电影的概率;(2)这个游戏规则对兄弟⼆⼈公平吗?为什么?【分析】(1)画树状图列出所有等可能结果,找到和为0或1的结果数,根据概率公式求解可得;(2)根据概率之和为1求得弟弟去看电影的概率,即可判断该游戏规则的公平性.【解答】解:(1)画树状图如下:由树状图可知,共有12种等可能结果,其中和为0或1的有6种结果,∴哥哥去看电影的概率为=;(2)弟弟去看电影的概率为1﹣=,∵哥哥去看电影的概率=弟弟去看电影的概率,∴这个游戏规则对兄弟⼆⼈公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24.(8分)如图,点D是以AB为直径的半圆O上⼀点,连接BD,点C是的中点,过点C 作直线BD的垂线,垂⾜为点E.求证:(1)CE是半圆O的切线;(2)BC2=AB?BE.【分析】(1)连接OC,根据圆周⾓定理得到∠ABC=∠DBC,根据等腰三⾓形的性质得到∠OCB=∠OBC,等量代换得到∠OCB=∠CBD,推出OC∥BD,根据平⾏线的性质得到OC⊥CE,于是得到结论;(2)连接AC,由AB是⊙O的直径,得到∠ACB=90°,根据相似三⾓形的性质即可得到结论.【解答】证明:(1)连接OC,∵点C是的中点,∴=,∴∠ABC=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OCB=∠CBD,∴OC∥BD,∵CE⊥BE,∴OC⊥CE,∴CE是半圆O的切线;(2)连接AC,。

陕西省西安市2019-2020学年中考数学四模试卷含解析

陕西省西安市2019-2020学年中考数学四模试卷含解析

陕西省西安市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面计算中,正确的是( )A .(a+b )2=a 2+b 2B .3a+4a=7a 2C .(ab )3=ab 3D .a 2•a 5=a 72.在△ABC 中,∠C =90°,1cos 2A =,那么∠B 的度数为( ) A .60° B .45° C .30° D .30°或60°3.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数4.下列计算正确的是()A .2x 2-3x 2=x 2B .x +x =x 2C .-(x -1)=-x +1D .3+x =3x5.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-6.如图,在等腰直角三角形ABC 中,∠C=90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )A .35B .34C .23D .577.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x 件,乙种奖品y 件.依题意,可列方程组为( )A .204030650x y x y +=⎧⎨+=⎩B .204020650x y x y +=⎧⎨+=⎩C.203040650x yx y+=⎧⎨+=⎩D.704030650x yx y+=⎧⎨+=⎩8.在平面直角坐标系中,位于第二象限的点是()A.(﹣1,0)B.(﹣2,﹣3)C.(2,﹣1)D.(﹣3,1)9.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()A.3B.23C.332D.23310.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种11.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1 B.2 C.23﹣2 D.4﹣2312.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正确的结论有()A.4 个B.3 个C.2 个D.1 个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:(12)﹣1﹣(5﹣π)0=_____.14.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于点A、B,若其对称轴为直线x=2,则OB–OA 的值为_______.15.分解因式x2﹣x=_______________________16.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为__________17.用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为cm2(精确到1cm2).18.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x (元)的关系为y=﹣2x+1.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?20.(6分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p=14t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?21.(6分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?22.(8分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.23.(8分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;补全条形统计图;如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?24.(10分)如图,四边形ABCD 中,对角线AC、BD 相交于点O,若2OA OB OC OD====AB,求证:四边形ABCD 是正方形25.(10分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?26.(12分)如图所示,直线y=﹣2x+b与反比例函数y=kx交于点A、B,与x轴交于点C.(1)若A(﹣3,m)、B(1,n).直接写出不等式﹣2x+b>kx的解.(2)求sin∠OCB的值.(3)若CB﹣CA=5,求直线AB的解析式.27.(12分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案.【详解】A. (a+b)2=a2+b2+2ab,故此选项错误;B. 3a+4a=7a,故此选项错误;C. (ab)3=a3b3,故此选项错误;D. a2⋅a5=a7,正确。

2022年陕西省西安高新第一中学九年级四模数学试题(含答案)

2022年陕西省西安高新第一中学九年级四模数学试题(含答案)

2022年陕西省西安高新第一中学九年级四模数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣(﹣20)的绝对值是( )A .﹣120B .120C .﹣20D .20 2.国家统计局发布公报,2021年我国经济规模达到114.4万亿元,将114.4万亿用科学记数法表示为( )A .1.144×1015B .0.1144×1015C .1.144×1014D .11.44×1013 3.如图,已知l 1∥l 2,l 3分别与l 1、l 2相交,点A 、B 分别为l 3,l 2上一点,且AB ⊥l 2,若∠1=52°,则∠2的度数为( )A .28°B .42°C .38°D .32° 4.下列运算中,与()23a 的结果相同的是( )A .42a a +B .23a aC .126÷a aD .533÷a b b 5.如图,△ABC 中,AB =10,AC =8,点D 是BC 边上的中点,连接AD ,若△ACD 的周长为20,则△ABD 的周长是( )A .16B .18C .20D .22 6.若正比例函数的图象经过不同象限的两点A (a ,2)和B (3,b ),则一次函数y =ax +b 的图象所经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四 7.如图,在正方形ABCD 中,N 为CD 的中点,MN ꓕCD ,CM =2CN ,连接BD 、MA ,MA 交BD 于点O ,则sin ∠AOB 的值为( )A .12 B .13 C D 8.抛物线y =x 2-6x+n 经过A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,且x 1<x 2<x 3,|x 1|=|x 3|,x 2+x 3>6,则下列关于y 1,y 2,y 3的大小关系的结论正确的是( )A .y 1>y 3>y 2B .y 3>y 2>y 1C .y 1>y 2>y 3D .y 2>y 3>y 1二、填空题9,﹣1,0,2中,最小的一个数是_____.10.如图,在正五边形ABCDE 内作正方形ABGF ,则∠EAF 的度数是_____.11.如图,C 是线段AB 上的任一点,分别以AB .AC .BC 为直径在线段AB 同侧作半圈,则这三个半圆周围成的图形被阿基米德称为“鞋匠刀形”(即图中阴影部分).当“鞋匠刀形”的面积等于以BC 为直径的半圆的面积时,过C 作CD ⊥AB ,交圆周于点D ,连接BD ,则CD BC的值为_____.12.如图,点A (3,m ),B (6,n )是反比例函数y =k x图象上的两点,若△OAB 的面积为6,则k 的值为_____.13.如图,在菱形ABCD 中,∠BAD =120°,连接AC ,BD 交于点O ,AO =2,点E 为边CD 的中点,F ,G 分别为CD ,BD 上的点(点F 不与点E 重合),则EG +FG 的最小值是__.三、解答题141123---(). 15.解不等式组:253(2)112x x x +≤+⎧⎪⎨-<⎪⎩,并把解集在数轴上表示出来. 16.解方程:21233x x x--=-- 17.如图,已知在△ABC 中,∠A =90°.在边BC 上求作一点D ,连接AD ,使得∠C +∠CAD =90°;(保留作图痕迹,不写作法和证明)18.如图,在四边形ABCD 中,AB CD ∥,点E 在DB 的延长线上,连接CE ,∠A =∠E ,∠CBD =∠DCB ,求证:AD =EC .19.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化,每年5月21日为国际茶日.紫阳毛尖和午子仙毫是我省两个著名的茶叶品种.某茶庄一周内紫阳毛尖和午子仙毫的销售总额为54000元,已知紫阳毛尖的单价1000元/千克,午子仙毫的单价600元/千克,紫阳毛尖的销售量比午子仙毫少10克.求这家茶庄一周内紫阳毛尖和午子仙毫的销量分别是多少千克?20.不透明的袋子里装4个小球,小球上分别标有“绿”、“色”、“奥”、“运”四个汉字,这些小球除所标汉字不同外其他均相同.(1)任意摸出一个小球,则摸到标有汉字“绿”的小球的概率是 ;(2)任意摸出一个小球记下所标的汉字后,再将该小球放回袋中,搅匀后再摸出一个小球,求两次摸到的小球上所标汉字是“奥”、“运”的概率.21.走进南泥湾党徽广场,迎面而来的是一个巨大的党徽雕塑,党徽雕塑传承红色精端A 点的仰角为60°,然后在另一侧D 点用测倾器测得雕塑顶端A 点的仰角为37°,已知A ,B ,C ,D ,E ,F ,G 在同一平面内,E ,F 两点间的距离为22.9m ,测倾器的高度CE =DF =1.8m ,求该雕塑的高度AB .(结果精确到0.1m ,参考数据:sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75)22.为了深入贯彻落实国家疫情防控策略,巩固全民免疫屏障,有效遏制新冠肺炎疫情输入传播,西安市有序启动新冠疫苗加强针的接种工作,某校情况,特从该校南、北两个校区各随机抽取10个班级(所有班的人数相同),并对各班接种人数进行收集,整理,分析后,给出以下信息:信息一:南校区10个班级各班级接种人数:47,52,44,42,47,46,52,47,43,54.信息二:北校区10个班级各班级接种人数条形统计图信息三:抽取的南、北两个校区的各班接种人数的平均数、众数、中位数以及接种达到或超过50人的班数占各校区样本的班数的百分比情况,如下表所示:根据以上信息,解答以下问题:(1)直接写出上表中a,b,c的值:a=;b=;c.(2) (填“南校区”或“北校区”)的接种情况更好;理由是(只填一个):;(3)接种人数达到或超过50人的班级,视为防控“特别积极”,若该校南北校区分别有40,30个班级,试估算该校防控“特别积极”的班级有多少个?23.五一期间,甲、乙两家樱桃采摘园的品质相同,销售价格也相同,销售价格均为每千克20元,两家均推出了不同的优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的樱桃六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的樱桃不超过10千克则按原价购买,超过部分五折优惠.优惠期间,设某游客的樱桃采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元).(1)甲采摘园优惠后的樱桃销售价格是每千克__________元;(2)求y1、y2与x的函数表达式;(3)当采摘樱桃在什么范围内时,在甲采摘园更优惠.24.如图,在△ABC中,AC=BC,⊙O是△ABC的外接圆,过点B作⊙的切线BD,连接AD交BC于点E,交⊙O于点F,连接BF.(1)求证:∠FBD=∠FAB;(2)若AE⊥BC,AC=6,CE1EB2,求DF的长.25.抛物线W:y=ax2+bx+3(a≠0)与x轴交于A(1,0)、B(4,0)两点,与y轴交于点C.(2)已知点P为x轴上一点,是否存在这样的点P,使得△BCP是以CP为腰的等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由.26.问题探究(1)如图①,点B,C分别在AM,AN上,AM=18米,AN=30米,AB=4.5米,BC=4.2米,AC=2.7米,求MN的长.(2)问题解决:如图②,四边形ACBD规划为园林绿化区,对角线AB将整个四边形分成面积相等的两部分,已知AB=60米,四边形ACBD的面积为2400平方米,为了更好地美化环境,政府计划在AC,BC边上分别确定点E,F,在AB边上确定点P,Q,使四边形EFPQ为矩形,在矩形EFPQ内种植花卉,在四边形ACBD剩余区域种植草坪,为了方便市民观赏,计划在FQ之间修一条小路,并使得FQ最短,根据设计要求,求出FQ的最小值,并求出当FQ最小时花卉种植区域的面积.参考答案:1.D2.C3.A4.C5.D6.B7.C8.A9.10.18︒##18度11 12.-81314.515.13x -≤<16.7x =17.见解析18.证明见解析19.紫阳毛尖销量是30千克,午子仙毫的销量是40千克20.(1)14(2)1821.13.8m22.(1):47、48.5、40;(2)北校区,北校区接种人数的平均数大于南校区接种人数(或北校区接种人数的众数大于南校区接种人数);(3)24个23.(1)12(2)15012,y x 220010.1010010x x y x x(3)当6.2525x 时,在甲采摘园更优惠. 24.(1)证明见解析(2)25.(1)2315344y x x =-+; (2)点P 的坐标为(-4,0)或(78,0) 26.(1)28MN =米;(2)FQ 86400169平方米.。

2020年陕西省西安市高新一中中考数学一模试卷 (含答案解析)

2020年陕西省西安市高新一中中考数学一模试卷 (含答案解析)

2020年陕西省西安市高新一中中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−2018的相反数是()A. 2018B. −2018C. 12018D. −120182.如图,BD//AC,BE平分∠ABD,交AC于点E.若∠A=40°,则∠1的度数为()A. 80°B. 70°C. 60°D. 40°3.下列运算,正确的是()A. 2x+3y=5xyB. (x−3)2=x2−9C. (xy2)2=x2y4D. x6÷x3=x24.某同学画出了如图所示的几何体的三种视图,其中正确的是()A. ①②B. ①③C. ②③D. ②5.若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象一定不经过()A. 第四象限B. 第三象限C. 第二象限D. 第一象限6.已知:如图,在△ABC中,∠C=90°,∠CAB=60°,AD平分∠BAC,点D到AB的距离DE=2cm,则BC等于()A. 2cmB. 4cmC. 6cmD. 8cm7.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=1,∠ABE=45°,则BC的长为()A. √2B. 1.5C. √3D. 28.如图,在▱ABCD中,F是AD延长线上一点,连接BF交DC于点E,则图中相似三角形共有()A. 2对B. 3对C. 4对D. 5对9.如图所示,AB是⊙O的直径,CD、EF是⊙O的弦,且AB//CD//EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是().π B. 10π C. 24+4π D. 24+5πA. 25210.抛物线y=x2−2与y轴交点的坐标是()A. (0,2)B. (0,−2)C. (2,0)D. (−2,0)二、填空题(本大题共4小题,共12.0分)11.在实数−5、−√3、0、√6中最大的一个数是______12.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是______.(k≠0)在第一象限内的图13.如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=kx,则k的值为.像经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=3414.如图,O是等边△ABC内一点,OA=6,OB=8,OC=10,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为8;③四边形AOBO′的面积为24+15√3;④∠AOB=150°;⑤S△AOC+S△AOB=9√3+24,其中正确的结论是______.三、解答题(本大题共11小题,共78.0分)15.计算:|−5|−20180+(12)−1−(√3)216.先化简:1−a−1a ÷a2−1a2+2a,再选取一个合适的a值代入计算.17.在四边形ABCD中,AB=AD,请利用尺规在CD边上求作一点P,使得S△PAB=S△PAD,(保留作图痕迹,不写作法).18.如图,矩形ABCD中,AB=3,BC=5,点E是AD边上一点,BE=BC.(1)求证:EC平分∠BED.(2)过点C作CF⊥BE,垂足为点F,连接FD,求FD⋅EC的值.19.为了推动阳光体育运动的广泛开展,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为__________,图①中m的值为__________;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双⋅20.如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD//AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)21.某城市城区居民从2017年1月1日开始执行阶梯水价,收费标准如下表所示:平均月用水量不超过13.5立方米的部分超过13.5立方米不超过23立方米的部分超过23立方米的部分收费标准(元/立方米)3.84.657.18设该城市城区居民月用水量为x(立方米)时,每月应缴纳水费为y(元).(1)求该城市城区居民每月应缴纳的水费y与月用水量x之间的函数关系式;(2)该城市城区居民小华家1月份缴纳水费为79.2元,则小华家1月份的用水量是多少?22.小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色,同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,利用列表或树状图,求配成紫色的概率.23.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E,BC=3,CD=3√2.(1)求证:直线CE是⊙O的切线;(2)求⊙O的半径;(3)求弦AD的长.24.如图,开口向下的抛物线y=ax2+bx+c交x轴于A(−1,0)、B(5,0)两点,交y轴于点C(0,5),(1)求抛物线的解析式;(2)设抛物线的顶点为D,求△BCD的面积;(3)在(2)的条件下,P、Q为线段BC上两点(P左Q右,且P、Q不与B、C重合),PQ=2√2,在第一象限的抛物线上是否存在这样的点R,使△PQR为等腰直角三角形?若存在,求出点R 的坐标;若不存在,请说明理由.25.如图,四边形ABCD是⊙O的内接四边形,AB=CD.(1)如图(1),求证:AD//BC;(2)如图(2),点F是AC的中点,弦DG//AB,交BC于点E,交AC于点M,求证:AE=2DF;(3)在(2)的条件下,若DG平分∠ADC,GE=5√3,tan∠ADF=4√3,求⊙O的半径.【答案与解析】1.答案:A解析:解:−2018的相反数是2018.故选:A.只有符号不同的两个数叫做互为相反数.本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.答案:B解析:解:∵BD//AC,∠A=40°,∴∠ABD=140°,又∵BE平分∠ABD,∴∠1=1∠ABD=70°,2故选:B.根据平行线的性质,得到∠ABD=140°,再根据BE平分∠ABD,即可得到∠1的度数.本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.3.答案:C解析:此题主要考查了合并同类项以及完全平方公式和积的乘方与幂的乘方、同底数幂的除法运算,正确掌握相关运算法则是解题关键.直接利用合并同类项法则以及完全平方公式和积的乘方与幂的乘方运算法则、同底数幂的除法运算法则分别计算得出答案.解:A.2x+3y,无法计算,故此选项错误;B.(x−3)2=x2−6x+9,故此选项错误;C.(xy2)2=x2y4,正确;D.x6÷x3=x3,故此选项错误.故选:C.4.答案:B解析:本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:B.5.答案:C解析:本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∵a<0,∴函数y=cx+a的图象与y轴负半轴相交,∵c>0,∴函数y=cx+a的图象经过第一、三、四象限.故选:C.6.答案:C解析:本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形两锐角互余的性质以及直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质并准确识图是解题的关键.根据直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据BC=BD+CD计算即可得解.解:∵∠C=90°,∠CAB=60°,∴∠B=90°−60°=30°,∵DE⊥AB,∴BD=2DE=2×2=4cm,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴CD=DE=2cm,∴BC=BD+CD=4+2=6cm.故选C.7.答案:A解析:解:∵四边形ABCD是矩形,∴AD//BC.∴∠DEC=∠BCE.∵EC平分∠DEB,∴∠DEC=∠BEC.∴∠BEC=∠ECB.∴BE=BC.∵四边形ABCD是矩形,∴∠A=90°.∵∠ABE=45°,∴∠ABE=∠AEB=45°.∴AB=AE=1.∵由勾股定理得:BE=√AB2+AE2=√12+12=√2,∴BC=BE=√2.故选:A.由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC,求得AE=AB=1,然后依据勾股定理可求得BE的长.本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出BE=BC 是解题的关键.8.答案:B解析:本题主要考查了平行四边形的性质及相似三角形的判定,正确掌握相似三角形的判定是解题的关键.根据已知及相似三角形的判定方法进行分析,从而得到图中的相似三角形的对数.解:∵四边形ABCD是平行四边形,∴AD//BC,DC//AB,∴△ABF∽△DEF∽△CEB,∴相似三角形共有3对.故选B.9.答案:A解析:本题考查扇形面积的计算,圆周角定理、勾股定理,三角形的面积,本题中找出两个阴影部分面积之间的联系是解题的关键.作直径CG,连接OD、OE、OF、DG,根据勾股定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.解:作直径CG,连接OD、OE、OF、DG.∵CG是圆的直径,∴∠CDG=90°,则DG=√CG2−CD2=√102−62=8,又∵EF=8,∴DG⏜=EF⏜,∴S扇形ODG =S扇形OEF,∵AB//CD//EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=12π×52=252π.故选A.10.答案:B解析:解:令x=0,得y=−2,故抛物线与y轴交于(0,−2).故选:B.此题令x=0,可确定抛物线与y轴的交点坐标.本题考查了二次函数的性质.令x=0,可确定抛物线与y轴的交点坐标是解题关键.11.答案:√6解析:解:∵√6>0>−√3>−5,∴在实数−5、−√3、0、√6中最大的一个数是√6.故答案为:√6.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.答案:5解析:根据菱形的性质及已知条件可得△ABC为等边三角形,从而得到AC=AB后即可得解.本题考查了菱形的性质和等边三角形的判定,解答本题的关键是掌握菱形四边相等的性质,属于基础题.解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°,∴△ABC为等边三角形,∴AC=AB=5.故答案为5.13.答案:3解析:本题主要考查反比例函数图象上点的坐标特征及待定系数法求反比例函数解析式,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.由tan∠AOD=34,可设AD=3a、OA=4a,在表示出点D、E的坐标,由反比例函数经过点D、E列出关于a的方程,解之求得a的值即可得出答案.解:因为四边形ABCD为矩形,所以AD⊥AB,BC⊥AB,AD=BC.在Rt△AOD中,tan∠AOD=ADAO =34,所以设AD=3a,则OA=4a.所以点D的坐标为(4a,3a).因为BC=AD=3a,CE=2BE,所以BE=a.所以点E的坐标为(4a+4,a).因为D,E两点都在双曲线y=kx上,所以4a×3a=a(4a+4)=k,解得a=12,k=3.所以k=3.14.答案:①②④⑤解析:解:∵∠O′BO=∠ABC=60°,∴∠O′BO−∠ABO=∠ABC−∠ABO,∴∠O′BA=∠OBC,在△BO′A和△BOC中,{BO′=BO∠O′BA=∠OBC BA=BC∴△BO′A≌△BOC(SAS).∴O′A=OC.∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,①正确;如图1,连接OO′,根据旋转的性质可知△BOO′是等边三角形,∴点O与O′的距离为8,②正确;在△AOO′中,AO=6,OO′=8,AO′=10,∴△AOO′是直角三角形,∠AOO′=90°.∴Rt△AOO′面积为12×6×8=24,又等边△BOO′面积为12×8×4√3=16√3,∴四边形AOBO′的面积为24+16√3,③错误;∠AOB=∠AOO′+∠BOO′=90°+60°=150°,④正确;如图2,将线段AO以点A为旋转中心顺时针旋转60°得到线段AO′′,连接OO′′,易证△AO′′B≌△AOC(SAS),△BOO′′是直角三角形,∠BOO′′=90°,△AOO′′是等边三角形,所以S△AOC+S△AOB=S四边形AO′′BO=S△AOO′′+S△BOO′′=9√3+24,⑤正确.故答案为①②④⑤.①证明△BO′A≌△BOC即可说明△BO′A可以由△BOC绕点B逆时针旋转60°得到;②根据旋转的性质可知△BOO′是等边三角形,则点O与O′的距离为8,②正确;③利用:四边形AOBO′的面积=等边△BOO′的面积+Rt△AOO′的面积,进行计算即可判断;④∠AOB=∠AOO′+∠BOO′=90°+60°=150°,④正确;⑤模仿原图的旋转方法,将线段AO以点A为旋转中心顺时针旋转60°得到线段AO′′,连接OO′′,根据S△AOC+S△AOB=S四边形AO′′BO=S△AOO′′+S△BOO′′即可判断.本题主要考查了旋转的性质、等边三角形的性质、全等三角形的判定和性质、勾股定理的逆定理,此题难度较大,解题的关键是通过旋转把三条线段转化到特殊三角形中,利用特殊三角形的性质进行求解,使得问题迎刃而解.15.答案:解:原式=5−1+2−3=3.解析:本题涉及绝对值、零指数幂、负指数幂、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16.答案:解:原式=1−a−1a ×a2+2aa2−1=1−a−1a×a(a+2)(a−1)(a+1) =1−a+2a+1=a+1a+1−a+2a+1=−1a+1,a取除0、−2、−1、1以外的数,如取a=10,原式=−111.解析:先将分式的除法转化为乘法进行计算,然后再算减法,最后找一个使分母不为0的值代入即可.本题考查了分式的化简求值,不仅要懂得因式分解,还要知道分式除法的运算法则.17.答案:解:如图,点P即为所求.解析:作∠A的平分线交CD边于点P,则点P即为所求.本题考查的是作图−复杂作图,熟知三角形的面积公式及角平分线的性质是解答此题的关键.18.答案:(1)证明:∵四边形ABCD是矩形,∴AD//BC,∴∠DEC=∠BCE,∵BE=BC,∴∠BEC=∠BCE,∴∠DEC=∠BEC,即EC平分∠BED.(2)解:在Rt△ABE中,AB=3,BE=BC=5,∴AE=√BE2−AB2=4,∴DE=1,在△ECD和△ECF中,{∠D=∠CFE=90∘∠DEC=∠FEC CE=CE∴△ECD≌△ECF,∴ED=EC=1,CF=CD=3,∴S四边形EFCD =2⋅S△EDC=12FD⋅EC,∴EC垂直平分线段DF,∴12FD⋅EC=2×12×3×1=3,∴FD⋅EC=6.解析:(1)由四边形ABCD是矩形,推出AD//BC,推出∠DEC=∠BCE,由BE=BC,推出∠BEC=∠BCE,推出∠DEC=∠BEC,即可解决问题.(2)在Rt△ABE中,可得AE=√BE2−AB2=4,推出DE=1,由△ECD≌△ECF,推出ED=EC=1,CF=CD=3,推出EC垂直平分线段DF,根据S四边形EFCD =2⋅S△EDC=12FD⋅EC,即可解决问题.本题考查矩形的性质、角平分线的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,记住当四边形对角线垂直时,面积等于对角线乘积的一半,属于中考常考题型.19.答案:解:(1)4015;(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为36+362=36;(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.解析:此题考查了条形统计图,扇形统计图,以及用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(2)找出出现次数最多的数即为众数,将数据按照从小到大顺序排列,求出最中间的两个数的平均数即为中位数;(3)用学校计划购买的总鞋数乘以35号运动鞋所占的百分比即可.解:(1)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100−30−25−20−10=15;故答案为40,15;(2)见答案;(3)见答案.20.答案:解:过点A作AE⊥CD,垂足为点E,由题意得,AE=BC=28,∠EAD=25°,∠EAC=43°,,在Rt△ADE中,∵tan∠EAD=DEAE所以DE=tan25°×28=0.47×28≈13.2,,在Rt△ACE中,∵tan∠EAC=CEAE所以CE=tan43°×28=0.93×28≈26,∴DC=DE+CE=13.2+26≈39(米),答:建筑物CD的高度约为39米.解析:本题考查了解直角三角形的应用,能构造直角三角形是解此题的关键.过点A作AE⊥CD,解直角三角形求出DE和CE,即可求出CD.21.答案:解:(1)由题意可得,当0≤x≤13.5时,y=3.8x,当13.5<x≤23时,y=13.5×3.8+4.65(x−13.5)=4.65x−11.475,当x>23时,y=13.5×3.8+4.65×(23−13.5)+7.18×(x−23)=7.18x−69.665;(2)∵3.8×13.5=51.3<79.2,3.8×13.5+(23−13.5)×4.65=95.475>79.2,∴79.2=4.65x−11.475,解得,x=19.5,即小华家1月份的用水量是19.5立方米.解析:本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的性质解答问题.(1)根据表格中的数据可以分别求得在各个阶段的函数解析式;(2)根据(1)中的函数解析式,可以求得小华家1月份的用水量.22.答案:解:根据题意列表如下:上面等可能出现的6种结果中,有2种情况可以得到紫色,故配成紫色的概率是26=13.解析:此题考查的是用列表法或树状图法求概率,概率公式.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.根据题意先列表,得出所有可能出现的情况数和配成紫色的情况数,再根据概率公式即可得出答案.23.答案:(1)证明:连接OD,∵AD平分∠CAE交⊙O于点D,∴∠EAD=∠DAB,∵OA=OD,∴∠ODA=∠DAB,∴∠EAD=∠ODA,∵AE⊥CD,∴∠EAD+∠EDA=90°,∴∠EDA+∠ODA=90°,即OD⊥CE,∴直线CE是⊙O的切线;(2)设⊙O的半径为r,∵BC=3,CD=3√2,∴r2+(3√2)2=(r+3)2,解得r=32;(3)连接BD,∵∠CDO=∠ADB=90°,∴∠ADO=∠CDB,∵OA=OD,∴∠ADO=∠DAO,∴∠CDB=∠CAD,∵∠C=∠C,∴△CDB∽△CAD,∴BDAD=BCCD=3√2=√22,设BD=√2k,k≠0,则AD=2k,∵AD是⊙O的直径,∴∠ADB=90°,在Rt△ADB中,AD2+BD2=AB2,即(2k)2+(√2k)2=32,解得k=√62.∴AD=√6.解析:本题主要考查圆的切线的性质与判定,勾股定理,相似三角形的判定与性质,圆周角定理等知识的综合运用,属于中档题.(1)连结OD,利用角平分线的定义证∠EDO=90°,即OD⊥CE,进而可证明结论;(2)设⊙O的半径为r,利用勾股定理可求解;(3)连结BD,易证△CDB∽△CAD,BDAD =√22,设BD=√2k,k≠0,则AD=2k,利用勾股定理可求解.24.答案:解:(1)∵抛物线y=ax2+bx+c与x轴交于两点A(−1,0),B(5,0),C(0,5),∴{a−b+c=025a+5b+c=0 c=5,解得{a=−1 b=4c=5.∴此抛物线的解析式为:y=−x2+4x+5;(2)由y=−x2+4x+5=−(x−2)2+9可知顶点D的坐标为(2,9),作DE⊥AB于E,交BC于F,如图,∴E(2,0),∵B(5,0),C(0,5),∴直线BC的解析式为y=−x+5,把x=2代入得,y=3,∴F(2,3),∴DF=9−3=6,S△BCD=S△CDF+S△BDF=12×6×2+12×6×(5−2)=12×6×5=15;(3)分三种情况:①以点P为直角顶点,∵PQ=2√2,∴RQ=√2PQ=4,∵C(0,5),B(5,0),∴OC=OB=5,∴∠OCB=∠OBC=45°,∵∠RQP=45°,∴RQ//OC,可求得直线BC的解析式为y=−x+5,设R(m,−m2+4m+5),则Q(m,−m+5),则RQ=(−m2+4m+5)−(−m+5)=4,解得m1=4,m2=1,∵点Q在点P右侧,∴m=4,∴R(4,5);②以点R 为直角顶点,∵PQ =2√2, ∴RQ =√22PQ =2, 设R(m,−m 2+4m +5)则Q(m,−m +5),则RQ =(−m 2+4m +5)−(−m +5)=2,解得m 1=5+√172,m 2=5−√172,∵点Q 在点P 右侧,∴m =5+√172, ∴R(5+√172,9−√172); ③以点Q 为直角顶点,∵PQ =2√2∴PR =√2PQ =4,∵C(0,5),B(5,0),∴OC =OB =5,∴∠OCB =∠OBC =45°,∵∠RPQ =45°,∴PR//OB ,设R(m,−m 2+4m +5),则P(m −4,−m 2+4m +5),把P(m −4,−m 2+4m +5)代入y =−x +5,得−(m −4)+5=−m 2+4m +5解得m 1=4,m 2=1,此时点P(0,5),因为点P 在线段BC 上运动,且不与B 、C 重合,所以不存在以Q 为直角顶点的情况. 综上所述:当 R(4,5)或(5+√172,9−√172)时,△PQR 为等腰直角三角形.解析:本题考查了二次函数综合题,涉及的知识点有:待定系数法求抛物线的解析式,顶点坐标,面积计算,等腰直角三角形的判定与性质,以及分类思想的应用,综合性较强,有一定的难度.(1)直接把点A(−1,0)、B(5,0),C(0,5)代入抛物线y =ax 2+bx +c ,利用待定系数法即可得出抛物线的解析式;(2)作DE⊥AB于E,交对称轴于F,根据(1)求得的解析式得出顶点坐标,然后根据S△BCD=S△CDF+ S△BDF即可求得;(3)分三种情况:①以点P为直角顶点;②以点R为直角顶点;③以点Q为直角顶点;进行讨论可得使△PQR为等腰直角三角形时点R的坐标.25.答案:(1)证明:如图1,连接AC,∵AB=CD,∴∠DAC=∠ACB,∴AD//BC;(2)如图2,延长AD到N,使DN=AD,连接NC∵AD//BC,DG//AB,∴四边形ABED是平行四边形,∴AD=BE,∴DN=BE,∴∠NDC=∠B.∵AB=CD,∴△ABE≌△CND,∴AE=CN.∵DN=AD,AF=FC,∴DF是△ANC的中位线,∴DF=12CN=12AE,∴AE=2DF;(3)如图3,连接BG,过点A作AH⊥BC,由(2)知∠AEB=∠ANC 四边形ABED是平行四边形,∴AB=DE.∵DF//CN,∴∠ADF=∠ANC,∴∠AEB=∠ADF.∵DG平分∠ADC,∴∠ADG=∠CDG.∵AD//BC,∴∠ADG=∠CED,∵AB//DG,∴∠ABC=∠DEC,∠ABC=∠NDC.可证△CDE是等边三角形,△BGE是等边三角形∴AB=DE=CE,∴解△ABE得AB=8√3,HB=4√3,AH=12,EC=DE=AB=8√3∴HC=HE+EC=9√3,∴AC=√AH2+HC2=3√43作直径AP,连接CP,∴∠ACP=90°,∠P=∠ABC=60°,∴sin∠P=ACAP =√32,∴AP=2√129.∴⊙O的半径是√129.解析:(1)由AB=CD,得到AB⏜=CD⏜,从而得到∠ACB=∠DAC,即可得到AD//BC.(2)如图2,延长AD到N,使DN=AN,连接NC,构造三角形中位线和全等三角形△ABE≌△CND,由该全等三角形的对应边相等得到:AE=CN.所以DF=12CN=12AE,即AE=2DF;(3)如图3,连接BG,过点A作AH⊥BC,构造等边三角形△CDE、△BGE.通过△ABE得AB=8√3,HB=4√3,AH=12,AC=3√43.作直径AP,连接CP,∠ACP=90°,故∠P=∠ABC=60°,由锐角三角函数的定义求得sin∠P=ACAP =√32,从而得到直径AP的长度,易得半径的长度.此题属于圆的综合题,涉及了平行四边形的性质、全等三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.。

2020年陕西省西安市中考数学四模试卷答案版

2020年陕西省西安市中考数学四模试卷答案版

则 值为______.
13. 若反比例函数 y= 的图象与一次函数 y=x+k 的图象有一个交点为(m,-4),则 这个反比例函数的表达式为______.
第 2 页,共 18 页
14. 如图,已知 AD∥BC,∠B=90°,∠C=60°,BC=2AD=4, 点 M 为边 BC 的中点,点 E、F 在边 AB、CD 上运动, 点 P 在线段 MC 上运动,连接 EF、EP、PF,则△EFP 的周长最小值为______.
A. -
B. -3
C.
D. 3
6. 如图在△ABC 中,AC=BC,过点 C 作 CD⊥AB,垂足为点 D,过 D 作 DE∥BC 交 AC 于点 E,若 BD=6,AE=5,则 sin∠EDC 的值 为( )
第 1 页,共x+2 的图象,绕 x 轴上一点 P(m,0)旋转 180°,所得的图象经
19. 如图,已知△ABC 是等边三角形,点 D 在 AC 边上一点,连接 BD,以 BD 为边在 AB 的左侧作等边△DEB,连接 AE,求证:AB 平分∠EAC.
20. 某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调 查部分学生的数学成绩,并将抽样的数据进行了如下整理: (1)填空 m=______,n=______,数学成绩的中位数所在的等级______; (2)如果该校有 1200 名学生参加了本次模拟测,估计 D 等级的人数; (3)已知抽样调查学生的数学成绩平均分为 102 分,求 A 等级学生的数学成绩的 平均分数.
三、计算题(本大题共 1 小题,共 6.0 分) 15. 如图,四边形 ABCD 的外接圆为⊙O,AD 是⊙O 的直径,
过点 B 作⊙O 的切线,交 DA 的延长线于点 E,连接 BD,且 ∠E=∠DBC. (1)求证:DB 平分∠ADC; (2)若 EB=10,CD=9,tan∠ABE= ,求⊙O 的半径.

2021年陕西省西安市雁塔区高新一中中考数学四模试卷-解析版

2021年陕西省西安市雁塔区高新一中中考数学四模试卷-解析版

2021年陕西省西安市雁塔区高新一中中考数学四模试卷1.−1.5的相反数是()A. 1.5B. −1.5C. 23D. −232.如图所示的六角螺母,其俯视图是()A. B. C. D.3.如图,已知平行线a,b,一个直角三角板的直角顶点在直线a上,另一个顶点在直线b上,若∠1=70°,则∠2的大小为()A. 15°B. 20°C. 25°D. 30°4.如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩方差分别记作S甲2、S乙2,则下列结论正确的是()A. S甲2<S乙2B. S甲2>S乙2C. S甲2=S乙2D. 无法确定5.(−5x3y)2计算的结果是()A. 25x5y2B. 25x6y2C. −5x3y2D. −10x6y26.在如图的网格中,每个小正方形的边长是1,A,B,C三点均在正方形格点上,则下列结论错误的是()A. AB=2√5B. 点A到直线BC的距离是2C. S△ABC=10D. ∠BAC=90°7.若直线l1经过点(−1,0),l2经过点(2,2),且l1与l2关于y轴对称,则l1和l2的交点坐标为()A. (1,0)B. (0,2)C. (0,−1)D. (0,−2)8.如图,菱形ABCD中,∠D=135°,BE⊥CD于E,交AC于F,FG⊥BC于G.若△BFG的周长为4,则菱形ABCD的面积为()A. 4√2B. 8√2C. 16D. 16√29.如图,在⊙O中,弦AB//CD,连接BC,OA,OD.若∠BCD=20°,CD=OD,则∠AOD的度数是()A. 120°B. 140°C. 110°D. 100°10.在平面直角坐标系中,点P的坐标为(1,2),将抛物线y=12x2−3x+2沿坐标轴平移一次,使其经过点P,则平移的最短距离为()A. 12B. 1 C. 5 D. 5211.比较大小:3√3______2√7.12.如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为______cm2.13.已知A,B两点分别在反比例函数y=2ax(a≠0)和y=3a−1 x (a≠13)的图象上,若点A与点B关于y轴对称,则a的值是______.14.如图,已知A、B两点的坐标分别为(−2,0)、(0,1),⊙C的圆心坐标为(0,−1),半径为1.若D是⊙C上的一个动点,射线AD 与y轴交于点E,则△ABE面积的最大值是______ .15.解不等式组:{3x−23≥14x−5<3x+2.16.解方程:x+3x−3−2x+3=1.17.如图,已知在矩形ABCD中,E是AD上一定点,连接BE,请用尺规在BE上求作一点P,使得△PCB∽△ABE.(不写作法,保留作图痕迹)18.如图,已知平行四边形ABDC中,E,F是对角线BC上两点,且满足BF=CE.求证:AF//DE.19.为了解某校学生运动时间情况,随机抽取了m名学生,根据平均每天运动时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.组别时间/(小时)频数/人数A0≤t<0.52nB0.5≤t<120C1≤t<1.5n+10D t≥1.55请根据图表中的信息解答下列问题:(1)求n的值,并补全扇形统计图;(2)所抽取的n名学生平均每天运动时间的众数落在______ 组;(3)该校现有1200名学生,请你估计该校有多少名学生平均每天运动时间不少于1小时.20.如图,小明和小敏准备利用所学的知识测量路灯OS的高度,小敏把一根长1.5米的竹竿AB竖直立在水平地面上,小明测得竹竿的影子BC长为1米,然后小敏拿竹竿向远离路灯方向走了4米(BB′),再把竹竿竖直立在地面上B′处,小明测得此时竹竿的影长B′C′为1.8米,已知O、B、B′成一线,求路灯离地面的高度.21.甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为______千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.22.A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里班抽取一张卡、抽到的卡片上标有数字为奇数的概率是______;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.23.如图,在⊙O中,AB是直径,BC是弦,BC=BD,连接CD交⊙O于点E,∠BCD=∠DBE.(1)求证:BD是⊙O的切线.(2)过点E作EF⊥AB于F,交BC于G,已知DE=2√10,EG=3,求BG的长.24.如图,已知抛物线y=12x2+bx+c的对称轴为直线x=−52且与x轴相交于点A(−6,0),与y轴相交于点C,直线l:y=2x+b经过点C.(1)求该抛物线与直线l的表达式;(2)设动点P(m,n)在该抛物线上,当∠PAC=45°时,求m的值.25.问题提出:(1)如图1,正方形ABCD中,CF⊥DE,则线段CF与DE的数量关系为______ ;问题探究:(2)如图2,已知正方形ABCD,一个直角三角板NEM的直角顶点E在正方形对角线AC上运动,直角边EN始终经过点B,另一条直角边EM与正方形的边CD交于点F,过点F作FG⊥AC于点G,请猜想线段EG与正方形边长BC之间的数量关系,并证明;问题解决:(3)如图3,△ABC是一个旧广场示意图,其中∠ABC=∠ACB=30°,AB=12米.现计划对旧广场进行扩建改造,在AC边上取一点D,以BD为边向外扩建一个等边三角形商业活动区△EBD,为方便进入商业区,同时修建小路CE,从美化环境的角度考虑,计划在如图阴影部分全部建成景观绿化区.①若CD长为x米,阴影部分面积为S,请求出S关于x的函数关系式;②若点D为AC边的中点,求出此时的景观绿化区面积.答案和解析1.【答案】A【解析】解:−1.5的相反数是1.5,故选:A.利用相反数定义可得答案.此题主要考查了相反数,关键是掌握只有符号不同的两个数叫做互为相反数.2.【答案】B【解析】解:从上面看,是一个正六边形,六边形的中间是一个圆.故选:B.根据俯视图是从上面看得到的图形,可得答案.本题考查了简单组合体的三视图,利用三视图的意义是解题关键.3.【答案】B【解析】解:∵a//b,∠1=70°∴∠3=70°,∵直角三角板的直角顶点在直线a上,∴∠2=90°−∠3=20°,故选:B.先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.本题考查的是平行线的性质以及垂线的定义的运用,解题时注意:两直线平行,内错角相等.4.【答案】A【解析】解:由图象可知:乙偏离平均数大,甲偏离平均数小,所以乙波动大,不稳定,方差大,即S甲2<S乙2.故选:A.根据数据偏离平均数越大,即波动越大,数据越不稳定,方差越大;数据偏离平均数越小,即波动越小,数据越稳定,方差越小进行判断.本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.【答案】B【解析】【分析】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.直接利用积的乘方运算法则计算得出答案.【解答】解:(−5x3y)2=25x6y2.故选:B.6.【答案】C【解析】解:由题意可得,AB=√22+42=2√5,故选项A正确;AC=√12+22=√5,BC=√32+42=5,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,故选项D正确;∴S△ABC=AB⋅AC2=2√5×√52=5,故选项C错误;过点A作AD⊥BC于点D,则BC⋅AD2=5,即5×AD2=5,解得,AD=2,即点A到直线BC的距离是2,故选项B正确;故选:C.根据题意和题目中的数据,利用勾股定理,可以得到AB、BC、AC的值,然后即可判断各个选项中的结论是否正确,从而可以解答本题.本题考查勾股定理、勾股定理的逆定理、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.7.【答案】D【解析】解:∵直线l 1经过点(−1,0),l 2经过点(2,2),且l 1与l 2关于y 轴对称, ∴点(−1,0)关于直线x =1对称点为(1,0),∴直线l 2经过点(1,0),(2,2),设直线l 2的解析式为y =kx +b ,∴{k +b =02k +b =2,解得{k =2b =−2, ∴直线l 2的解析式为:y =2x −2,∴当x =0时,y =−2,∴l 1和l 2的交点坐标为(0,−2),故选:D .根据对称的性质得出点(−1,0)关于y 轴对称的对称点,再根据待定系数法确定直线l 2关系式,求出与y 轴交点坐标即可.此题主要考查了一次函数图象与几何变换,正确得出l 1与l 2的交点坐标为l 1与l 2与y 轴的交点是解题关键.8.【答案】B【解析】解:∵菱形ABCD 中,∠D =135°,∴∠BCD =45°,∵BE ⊥CD 于E ,FG ⊥BC 于G ,∴△BFG 与△BEC 是等腰直角三角形,∵∠GCF =∠ECF ,∠CGF =∠CEF =90°,CF =CF ,∴△CGF≌△CEF(AAS),∴FG =FE ,CG =CE ,设BG =FG =EF =x ,∴BF =√2x ,∵△BFG 的周长为4,∴x +x +√2x =4,∴x=4−2√2,∴BE=2√2,∴BC=√2BE=4,∴菱形ABCD的面积=4×2√2=8√2,故选:B.根据菱形的性质得到∠BCD=45°,推出△BFG与△BEC是等腰直角三角形,根据全等三角形的性质得到FG=FE,CG=CE,设BG=FG=EF=x,得到BF=√2x,根据△BFG 的周长为4,列方程x+x+√2x=4,即可得到结论.本题考查了菱形的性质,等腰三角形的性质,求FG的长是本题的关键.9.【答案】D【解析】解:连结OC,如图,∵AB//CD,∴∠ABC=∠BCD=20°,∴∠AOC=2∠ABC=40°,∵CD=OD,而OC=OD,∴△OCD为等边三角形,∴∠COD=60°,∴∠AOD=40°+60°=100°.故选:D.连结OC,如图,先利用平行线的性质得∠ABC=∠BCD=20°,再根据圆周角定理得到∠AOC=2∠ABC=40°,接着判断△OCD为等边三角形,得到∠COD=60°,则易得∠AOD=100°.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:y=12x2−3x+2=12(x−3)2−52,当沿水平方向平移时,纵坐标和P的纵坐标相同,把y=2代入y=12x2−3x+2得:2=12x2−3x+2,解得:x=0或6,平移的最短距离是1−0=1,当沿竖直方向平移时,横坐标和P的横坐标相同,把x=1代入y=12x2−3x+2得:y=1 2×12−3×1+2=−12,平移的最短距离是2+12=52,即平移的最短距离是1,故选:B.先求出平移后P点对应点的坐标,求出平移距离,即可得出选项.本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.11.【答案】<【解析】解:∵3√3=√27,2√7=√28,27<28,∴3√3<2√7.故结果为:<.因为是两个无理数比较大小,所以应把根号外的数整理到根号内再进行比较.此题主要考查了实数的大小的比较,此题要比较的两个数都是带根号的无理数时,应把根号外的数整理到根号内,然后比较被开方数的大小.12.【答案】2√3【解析】解:连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB//EF ,AB =AF ,∠BAF =120°,∴S △PEF =S △BEF ,∵AT ⊥BE ,AB =AF ,∴BT =FT ,∠BAT =∠FAT =60°,∴BT =FT =AB ⋅sin60°=√3,∴BF =2BT =2√3,∵∠AFE =120°,∠AFB =∠ABF =30°,∴∠BFE =90°,∴S △PEF =S △BEF =12⋅EF ⋅BF =12×2×2√3=2√3, 故答案为2√3.连接BF ,BE ,过点A 作AT ⊥BF 于T ,证明S △PEF =S △BEF ,求出△BEF 的面积即可. 本题考查正多边形与圆,解直角三角形等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.13.【答案】15【解析】解:设点A 的坐标(m,2a m ),点B 的坐标为(n,3a−1n ),∵点A 与点B 关于y 轴对称,∴{m =−n 2a m =3a−1n ,解得,a =15,故答案为:15.根据题意,设出点A 和点B 的坐标,再根据点A 与点B 关于y 轴对称,即可求得a 的值. 本题考查反比例函数图象上点的坐标特征、关于x 轴、y 轴对称的点的坐标特征,解答本题的关键是明确题意,求出a 的值. 14.【答案】113【解析】解:当射线AD 与⊙C 相切时,△ABE 面积的最大.连接AC ,∵∠AOC =∠ADC =90°,AC =AC ,OC =CD ,∴Rt △AOC≌Rt △ADC(HL),∴AD =AO =2,连接CD ,设EF =x ,∴DE 2=EF ⋅OE ,∵CF =1,∴DE =√x(x +2), ∴△CDE∽△AOE , ∴CD AO=CE AE , 即12=x+12+√x(x+2),解得x =23,S △ABE =BE×AO2=2×(23+1+2)2=113. 故答案为:113当射线AD 与⊙C 相切时,△ABE 面积的最大.设EF =x ,由切割线定理表示出DE ,可证明△CDE∽△AOE ,根据相似三角形的性质可求得x ,然后求得△ABE 面积.本题是一个动点问题,考查了切线的性质和三角形面积的计算,解题的关键是确定当射线AD 与⊙C 相切时,△ABE 面积的最大.15.【答案】解:解不等式3x−23≥1,得:x ≥53, 解不等式4x −5<3x +2,得:x <7,则不等式组的解集为53≤x <7.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 16.【答案】解:去分母得,(x +3)2−2(x −3)=(x −3)(x +3),去括号得,x 2+6x +9−2x +6=x 2−9,移项,系数化为1,得x =−6,经检验,x=−6是原方程的解.【解析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.【答案】解:如图,点P即为所求作.【解析】过点C作CP⊥BE于P,点P即为所求作.本题考查作图−相似变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】证明:∵四边形ABDC是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠DCF,又∵BF=CE,∴CDE≌△ABF(SAS),∴∠CED=∠AFB,∴∠DEB=∠CFA,∴AF//DE.【解析】可由题中条件判断出△CDE≌△ABF,得出∠CED=∠AFB,即∠DEB=∠CFA,进而可求证DE与AF平行.本题考查了平行四边形的判定和性质,熟练掌握平行四边形的判定和性质定理是解题的关键.19.【答案】B【解析】解:(1)m=20÷40%=50,2n+(n+10)=50−20−5,解得,n =5;A 组所占的百分比为:2×5÷50×100%=20%,C 组所占的百分比为:(5+10)÷50×100%=30%,补全的扇形统计图如图所示:(2)∵A 组有2×5=10(人),B 组有20人,C 组有5+10=15(人),D 组有5人,抽查的学生一共有50人,∴所抽取的m 名学生平均每天课外阅读时间的众数落在B 组;故答案为:B ;(3)1200×5+10+550=480(名), 所以该校有480名学生平均每天课外阅读时间不少于1小时.(1)根据B 组的频数和所占的百分比,可以求得m 的值,然后即可计算出n 的值;(2)根据频数分布表中的数据,可以得到众数数落在哪一组;(3)根据频数分布表中的数据,可以计算出该校有多少名学生平均每天课外阅读时间不少于1小时.本题考查频数分布表、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】解:∵AB ⊥OC′,OS ⊥OC′,∴SO//AB ,∴△ABC∽△SOC ,∴BCBC+OB=AB OS , 即11+OB =1.5ℎ, 解得OB =23ℎ−1①,同理,∵A′B′⊥OC′,∴△A′B′C′∽△SOC′,∴B′C′B′C′+BB′+OB =A′B′OS , 即 1.81.8+4+OB =1.5ℎ②,把①代入②得, 1.85.8+2ℎ3−1=1.5ℎ,解得:ℎ=9(米). 答:路灯离地面的高度是9米.【解析】先根据AB ⊥OC′,OS ⊥OC′可知△ABC∽△SOC ,同理可得△A′B′C′∽△SOC′,再由相似三角形的对应边成比例即可得出h 的值.此题主要考查了相似三角形的应用,正确表示出DF ,DE 的长是解题关键. 21.【答案】解:(1)80;(2)休息后按原速继续前进行驶的时间为:(240−80)÷80+1.5=3.5(小时), ∴点E 的坐标为(3.5,240),设线段DE 所表示的y 与x 之间的函数表达式为y =kx +b ,则:{1.5k +b =803.5k +b =240, 解得{k =80b =−40, ∴线段DE 所表示的y 与x 之间的函数表达式为:y =80x −40,其中1.5≤x ≤3.5;(3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290÷80+0.5=4.125(小时),12:00−8:00=4(小时),4.125>4,所以接到通知后,汽车仍按原速行驶不能准时到达.【解析】【分析】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.(1)观察图象即可得出休息前汽车行驶的速度;(2)根据题意求出点E 的坐标,再利用待定系数法解答即可;(3)求出到达乙地所行驶的时间,与4小时(8:00∼12:00)进行比较即可解答.【解答】解:(1)由图象可知,休息前汽车行驶的速度为80千米/小时;故答案为:80;(2)见答案;(3)见答案.22.【答案】23【解析】解:(1)从A盒里班抽取一张卡、抽到的卡片上标有数字为奇数的概率为23;故答案为:23;(2)画树状图得:共有9种等可能的结果,抽到的两张卡片上标有的数字之和大于7的有3种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为39=13.(1)由概率公式即可得出结果;(2)画出树状图,由树状图求得所有等可能的结果与抽到的两张卡片上标有的数字之和大于7的情况,再由概率公式即可求得答案.本题考查了列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.【答案】(1)证明:如图1,连接AE,则∠A=∠C,∵AB是直径,∴∠AEB=90°,∴∠A+∠ABE=90°,∵∠C=∠DBE,∴∠ABE+∠DBE=90°,即∠ABD=90°,∴BD是⊙O的切线(2)解:如图2,延长EF交⊙O于H,∵EF⊥AB,AB是直径,∴BE⏜=BH⏜,∴∠ECB=∠BEH,∵∠EBC=∠GBE,∴△EBC∽△GBE,∴BEBG =BCBE,∵BC=BD,∴∠D=∠C,∵∠C=∠DBE,∴∠D=∠DBE,∴BE=DE=2√10,又∠AFE=∠ABD=90°,∴BD//EF,∴∠D=∠CEF,∴∠C=∠CEF,∴CG=GE=3,∴BC=BG+CG=BG+3,∴2√10BG =2√10,∴BG=−8(舍)或BG=5,即BG的长为5.【解析】(1)连接AE,由条件可得出∠AEB=90°,证明∠C=∠DBE,得出∠ABE+∠DBE=90°,即∠ABD=90°,结论得证;(2)延长EF 交⊙O 于H ,证明△EBC∽△GBE ,得出BE BG =BC BE ,求出BE 长,求出CG =GE =3,则BC =BG +3,可得出2√10BG =BG+32√10,解出BG =5.本题考查了切线的判定定理、圆周角定理、垂径定理、相似三角形的判定与性质的综合应用,正确作出辅助线,用好圆的性质是解题的关键.24.【答案】解:(1)∵对称轴公式x =−b 2a =−b 2×12=−b =−52,∴b =52,把A(−6,0)代入y =12x 2+52x +c 中,得C =−3,又∵C(0,−3)过y =2x +b ,把C 代入y =2x +b 中,∴b =−3,即抛物线的表达式为y =12x 2+52x −3,直线l 的表达式为y =2x −3,(2)当点P 在x 轴上方时,延长AP 交直线l 于点M ,设M(t,2t −3),设AC 直线的表达式为y =k 1x +b 1,把A(−6,0)、C(0,−3)代入上式,得{0=−6k 1+b 1−3=b 1, 解得{k 1=−12b 1=−3, ∴AC ⊥直线l ,∴∠PAC =45°,∴△ACM 为等腰直角三角形,则62+32=(t−0)2+(2t−3+3)2,解得t=2,故M(3,3),由点A、M的坐标得直线AM的表达式为y=13x+2,∵抛物线与直线AM交于点P,∴{y=12x2+52x−3y=13x+2,解得x=−6(舍去)或x=53,故P的横坐标为m=53;②当点P在x轴下方时,同理可得m=−5,综上所述,m=−5或m=53.【解析】(1)由对称轴公式得b,把A代入抛物线得C,即抛物线解析式可求,把C的坐标代入直线的解析式,可得b的值,即可得直线l的解析式;(2)当点P在x轴上方时,延长AP交直线l于点M,设M(t,2t−3),AC⊥直线l,∠PAC= 45°,可得△ACM为等腰直角三角形,即AC=CM,可得M点坐标,两点确定一条直线,由A、M坐标,可得直线AM的表达式y=13x+2,直线AM与抛物线相交于点P,联立方程可得P的横坐标,P在x轴下方时,同理可得M的值.本题考查二次函数的应用,解本题关键熟练掌握二次函数对称轴公式,代入法求二次函数的解析式,一次函数的解析式,勾股定理,解一元二次方程等.25.【答案】DE=CF【解析】解:(1)DE=CF,理由如下:∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE+∠CDE=90°=∠DCF+∠CDE,∴∠DCF=∠ADE,又∵AD=CD,∠CDF=∠DAB,∴△CDF≌△DAE(ASA),故答案为DE=CF;(2)EG=√22BC,理由如下:如图2,过点E作EP⊥CD于P,EQ⊥AD于Q,过点B作BH⊥AC于点H,∴∠EQC=∠EPC=90°=∠DCB,∴四边形PCQE是矩形,∵四边形ABCD是正方形,∴∠ACD=∠ACB=45°,∴∠DCE=∠PEC=45°,∴PE=PC,∴四边形PCQE是正方形,∴EP=EQ,∠PEF+∠FEQ=∠QEP=90°,又∵∠FEQ+∠PEF=∠FEB=90°,∴∠PEF=∠QEB,在△PEF和△QEB中,{∠EPF=∠EQB PE=EQ∠PEF=∠QEB,∴△PEF≌△QEB(ASA),∴EB=EF,∵∠FEC+∠CEB=∠FEC+∠EFG=90°,∴∠CEB=∠EFG,在△EFG和△BEH中,{EFG=∠CEB∠FGE=∠BHE EF=BE,∴△EFG≌△BEH(AAS),∴BH=EG,在Rt△CBH中,∵∠ACB=45°,∴BH=CH=EG=BCsin∠ACB=√22BC即EG=√22BC;(3)①如图3,过点E作EF⊥AC,交CA的延长线于F,过点D作DH⊥BA,交BA的延长线于H,过点B作BG⊥CF于G,∵△BED是等边三角形,∴DE=BD=BE,∠BDE=60°,∴∠BDA+∠EDF=60°,∵∠ABC=∠ACB=30°,∴∠DAH=∠BAG=60°,∴∠ADB+∠ABD=60°,∴∠ABD=∠EDF,在△BDH和△DEF中,{∠BHD=∠EFD=90°∠DBH=∠EDFBD=DE,∴△BDH≌△DEF(AAS),∴EF=DH,∵∠BAG=60°=∠DAH,AB=12米,AD=(12−x)(米),∴BG=AB⋅sin∠BAG=12×√32=6√3(米),DH=AD⋅sin∠DAH=√32×(12−x)(米),∴S阴影=S△CDE+S△BDC,∴S=12×6√3x+12×x×√32×(12−x)=−√34x2+6√3x;②∵点D为AC边的中点,∴x=6,∴S=−√3×36+6√3×6=27√3(平方米).4(1)由“ASA”可证△CDF≌△DAE,可得DE=CF;(2)过点E作EP⊥CD于P,EQ⊥AD于Q,过点B作BH⊥AC于点H,先证EF=BE,再由“AAS”可证△EFG≌△BEH,可得BH=EG,由等腰直角三角形的性质可求解;(3)①过点E作EF⊥AC,交CA的延长线于F,过点D作DH⊥BA,交BA的延长线于H,过点B作BG⊥CF于G,由“AAS”可证△BDH≌△DEF,可得EF=DH,由面积和差关系可求解;②将x=6代入可求解.本题是四边形综合题,考查了正方形的性质,等边三角形的性质,全等三角形的判定和性质,锐角三角函数等知识,添加恰当辅助线构造全等三角形是本题的关键.。

西安市高新第一中学九年级数学上册第四单元《圆》测试(含答案解析)

西安市高新第一中学九年级数学上册第四单元《圆》测试(含答案解析)

一、选择题1.下列说法正确的是( )A .在同圆或等圆中,如果两条弧相等,则它们所对的圆心角也相等B .三点确定一个圆C .平分弦的直径垂直于这条弦D .90°的圆心角所对的弦是直径2.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10π3.点P 到圆上各点的最大距离为10cm ,最小距离为6cm ,则此圆的半径为( ) A .8cm B .5cm 或3cm C .8cm 或2cm D .3cm4.已知△ABC 的外心为O ,连结BO ,若∠OBA=18°,则∠C 的度数为( )A .60°B .68°C .70°D .72°5.已知⊙O ,如图, (1)作⊙O 的直径AB ;(2)以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点;(3)连接CD 交AB 于点E ,连接AC ,BC .根据以上作图过程及所作图形,有下面三个推断:①CE DE =;②3BE AE =;③2BC CE =.其中正确的推断的个数是( )A .0个B .1个C .2个D .3个 6.如图,已知AB 是O 的直径,AD 切O 于点A ,CE CB =.则下列结论中不一定正确的是( )A .OC BE ⊥B .//OC AE C .2COE BAC ∠=∠D .OD AC ⊥ 7.给出下列说法:①圆是轴对称图形,对称轴是圆的每一条直径;②三角形的外心到三角形各顶点的距离相等;③经过三个点一定可以画一个圆;④平分弦的直径垂直于弦;⑤垂直于弦的直径平分弦,并且平分弦所对的两条弧.正确的有( )A .4B .3C .2D .18.如图,ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将ABC 绕点B 顺时针旋转到A B C '''的位置,且点A '、C '仍落在格点上,则线段AB 扫过的图形的面积是( )平方单位(结果保留)A .254πB .134πC .132πD .136π 9.如图,A 、B 、C 三点在O 上,D 是CB 延长线上的一点,40ABD ∠=︒,那么AOC ∠的度数为( ).A.80°B.70°C.50°D.40°10.如图,在⊙O中,AB是直径,弦AC=5,∠BAC=∠D.则AB的长为()A.5B.10C.52D.10211.在下列命题中,正确的是( )A.弦是直径B.半圆是弧C.经过三点确定一个圆D.三角形的外心一定在三角形的外部12.在△ABC中,∠ACB为锐角,分别以AB,AC为直径作半圆,过点B,A,C作弧BAC,如图所示.若AB=4,AC=2,图中两个新月形面积分别为S1,S2,两个弓形面积分别为S3,S4,S1-S2=14π,则S3-S4的值是( )A.294πB.234πC.114πD.54π二、填空题13.如图,O的半径为6,AB、CD是互相垂直的两条直径,点P是O上任意一点,过点P作PM AB⊥于M,PN CD⊥于N,点Q是MN的中点,当点P沿着圆周从点D逆时针方向运动到点C的过程中,当∠QCN度数取最大值时,线段CQ的长为______.OA=,AB是O的切线,点B是切点,弦14.如图,A是半径为1的O外一点,2BC OA,连接AC,则图中阴影部分的面积为________.//15.边长为2的正方形ABCD的外接圆半径是____________.BC=,若点P是矩形ABCD上一动点,要使得16.在矩形ABCD中,43AB=,6APB∠=︒,则AP的长为__________.6017.如图,⊙O的半径为1,作两条互相垂直的直径AB、CD,弦AC是⊙O的内接正四边形的一条边.若以A为圆心,以1为半径画弧,交⊙O于点E,F,连接AE、CE,弦EC是该圆内接正n边形的一边,则该正n边形的面积为____.18.已知三角形三边分别为3、4、5,则该三角形内心与外心之间的距离为_____.19.扇形的半径为6cm,弧长为10cm,则扇形面积是________.20.如图,直线AB,CD相交于点O,∠AOC=30°,半径为1cm的的圆心P在射线OA上,且与点O的距离为6cm,以1cm/s的速度沿由A向B的方向移动,那么与直线CD相切时,圆心P的运动时间为 _____.三、解答题21.如图所示,AB是⊙O的直径,AC是⊙O的弦,∠ACB的平分线交⊙O于点D.若AB =10,AC=6,求BC、BD的长.22.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC ∆的顶点均在格点上,点B 的坐标为()1,0.(1)画出ABC ∆关于x 轴对称的111A B C ∆,写出1C 点的坐标;(2)画出将ABC ∆绕原点O 按逆时针旋转90︒所得的222A B C ∆,写出2B 点的坐标并求出A 运动经过的路径的长度.23.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为()2,1-.(1)画出将ABC 关于y 轴对称的111A B C △;(2)画出ABC 绕点O 的逆时针旋转90°得到的图形222A B C △,并求出在此旋转过程中点A 运动到点2A 所经过路径的长.24.如图,AB 是⊙O 的直径,弦CD AB ⊥于点H ,30A ∠=︒,43CD =⊙O 的半径的长.25.如图,已知A 、B 、C 、D 四点都在⊙O 上.(1)若∠ABC=120°,求∠AOC 的度数;(2)在(1)的条件下,若点B 是弧AC 的中点,求证:四边形OABC 为菱形.26.如图,在直角坐标系中,A (0,4)、B (4,4)、C (6,2),(1)写出经过A 、B 、C 三点的圆弧所在圆的圆心M 的坐标:______;(2)判断点()5,2D -与圆M 的位置关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用等弧和弦的概念,垂径定理以及弧,弦与圆心角之间的关系进行判断.【详解】解:A 、弧的度数与所对圆心角的度数相等,所以同圆或等圆中弧相等,则它们所对的圆心角也相等,故本选项正确;B 、不在同一直线上的三点确定一个圆,故本选项错误;C 、应强调这条弦不是直径,故本选项错误;D 、90°的圆周角所对的弦是直径,故本选项错误.故选:A .【点睛】本题考查了圆周角定理,垂径定理以及确定圆的条件.熟练掌握相关概念是解题的关键. 2.B解析:B【分析】设AC=a ,BC=b ,由勾股定理可求得a 2+b 2=102,由三角形的面积公式和圆的面积公式分别求出空白部分图形面积和阴影部分图形面积,利用阴影部分图形面积之和是空白部分图形面积之和的3倍可求得ab ,进而可求得△ABC 的面积.【详解】解:设AC=a ,BC=b ,由题意,AB=10,∴a 2+b 2=102, 由图可知,空白部分面积为(25122ab π-), 阴影部分面积= 22111251()()2222222a b ab ab πππ⨯+⨯⨯+-+ = 22()2582a b ab ππ+-+ =1002582ab ππ-+ = ab , ∵阴影部分图形面积之和是空白部分图形面积之和的3倍,∴ab =3(25122ab π-), 解得:15ab π=,∴△ABC=12ab =7.5π, 故选:B .【点睛】 本题考查了圆的面积公式、三角形的面积公式、勾股定理、解方程等知识,熟记面积公式,利用割补法和整体思想解决问题是解答的关键.3.C解析:C【分析】分析题意,本题应分两种情况讨论:(1)点P在圆内;(2)点P在圆外;根据“一个点到圆的最大距离和最短距离都在过圆心的直线上”可知,点P到圆的最大距离与最小距离的和或差即是圆的直径,进而即可得出半径的长.【详解】当点P在圆内时,圆的直径是10+6=16cm,所以半径是8cm.当点P在圆外时,圆的直径是10-6=4cm,所以半径是2cm.故选C.【点睛】本题考查了圆的有关性质,熟知一个点到圆的最大距离和最短距离都在过圆心的直线上是解题的关键.4.D解析:D【分析】连接OA,则OA=OB,可得∠OBA=∠OAB,再结合∠OBA=18°即可求得∠AOB=144°,再根据圆周角的性质即可求得∠C=72°.【详解】解:如图,连接OA,∵点O为ABC的外心,∴OA=OB,∴∠OBA=∠OAB,又∵∠OBA=18°,∴∠OAB=∠OBA=18°,∴∠AOB=180°-∠OAB-∠OBA=144°,∠AOB=72°,∴∠C=12故选:D.【点睛】本题考查了三角形的外心,圆周角定理,熟练掌握相关定义及性质是解决本题的关键.5.D解析:D【分析】①根据作图过程可得AC AD,根据垂径定理可判断;②连接OC,根据作图过程可证得△AOC为等边三角形,由等边三角形的性质即可判断;③根据直角三角形中30°角所对的直角边等于斜边的一半即可判断.【详解】解:①∵以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点,∴AC AD =,根据垂径定理可知,AB ⊥CE ,CE=DE ,∴①正确;②连接OC ,∵AC=OA=OC ,∴△AOC 为直角三角形,∵AB ⊥CE ,∴AE=OE ,∴BE=BO+OE=3AE ,∴②正确;③∵AB 为直径,∴∠ACB=90°,∵∠CAB=60°,∴∠ABC=30°,∴BC=2CE ,∴③正确,故选:D .【点睛】本题考查了垂径定理、圆周角定理、等边三角形的判定与性质、含30°角的直角三角形的性质,理解基本作图知识,熟练掌握各基本性质和综合运用是解答的关键.6.D解析:D【分析】分别根据平行线的判定与性质,以及圆周角定理对各选项进行逐一判断即可.【详解】B. ∵CE CB =,2BAE BAC ∴∠=∠, 又2BOC BAC ∠=∠,BAE BOC ∴∠=∠,//OC AE ∴,正确;A. AB 是O 的直径,∴∠AEB=90°,∵//OC AE ,OC BE ⊥,正确;C. ∵EC 所对的圆心角为COE ∠,EC 所对的圆周角为CAE ∠,2COE CAE ∴∠=∠,正确;D. 只有AE EC=时,才可证得OD AC⊥,故不一定正确;故选D.【点睛】本题考查了圆周角定理,平行线的判定与性质,熟知圆周角定理及其推论是解答此题的关键.7.C解析:C【分析】根据对称轴是一条直线,即可判断①;根据外心的性质即可判断②;利用确定圆的条件即可判断③;根据弦不是直径时,平分弦的直径才垂直于弦,即可判断④;根据垂径定理的推论,即可判断⑤.【详解】∵圆是轴对称图形,直径所在直线是它的对称轴,∴①错误;∵三角形的外心到三角形的三个顶点的距离相等,∴②正确;∵经过不在同一直线上的三点确定一个圆,∴③错误;∵平分弦(弦不是直径)的直径垂直于弦,∴④错误;∵垂直于弦的直径平分弦,且平分弦所对的弧,∴⑤正确;综上,正确的是②⑤,共2个,故选:C.【点睛】本题考查了垂径定理及其推论,三角形的外接圆与外心等知识点的应用,正确把握相关定义是解题关键.8.B解析:B【分析】在Rt△ABC中,由勾股定理求AB,观察图形可知,线段AB扫过的图形为扇形,旋转角为90°,根据扇形面积公式求解.【详解】解:在Rt△ABC中,由勾股定理,得==由图形可知,线段AB扫过的图形为扇形ABA′,旋转角为90°,∴线段AB扫过的图形面积=2290n13= 3603604AB⨯=πππ.故选:B.【点睛】本题考查了旋转的性质,扇形面积公式的运用,关键是理解题意,明确线段AB扫过的图形是90°的扇形,难度一般.9.A解析:A【分析】作弧ABC所对的圆周角∠AEC,如图,先利用邻补角计算出∠ABC=140°,再利用圆内接四边形的性质计算出∠E=40°,然后根据圆周角定理得到∠AOC的度数.【详解】解:作弧ABC所对的圆周角∠AEC,∵∠ABD=40°,∴∠ABC=180°-40°=140°,∵∠AEC+∠ABC=180°,∴∠E=40°,∴∠AOC=2∠AEC=2×40°=80°.故选:A.【点睛】本题考查了圆内接四边形对角互补,以及圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.C解析:C【分析】根据圆周角定理得出∠D=∠B,得出△ABC是等腰直角三角形,进而解答即可.【详解】∵AC=AC,∴∠D=∠B,∵∠BAC=∠D,∴∠B=∠BAC,∴△ABC是等腰三角形,∵AB是直径,∴△ABC是等腰直角三角形,∵AC=5,∴AB=52故选:C.【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B.11.B解析:B【分析】根据命题的“真”“假”进行判断即可.【详解】解:A 、弦不一定是直径,原说法错误,不符合题意;B 、半圆是弧,说法正确,符合题意;C 、不在同一直线上的三点确定一个圆,原说法错误,不符合题意;D 、三角形的外心不一定在三角形的外部,原说法错误,不符合题意;故选:B .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.12.D解析:D【分析】根据AB 和AC 的长和圆的面积公式可求得S 1+S 3,S 2+S 4的值,然后再两值相减即可得出结论.【详解】解:∵AB=4,AC=2,∴S 1+S 3=2π,S 2+S 4=2π, ∴(S 1+S 3)﹣(S 2+S 4)=(S 1﹣S 2)+(S 3﹣S 4)=32π ∵S 1-S 2=14π, ∴S 3-S 4= 32π﹣14π= 54π, 故选:D .【点睛】 本题考查了圆的面积,正确表示出S 1+S 3,S 2+S 4的值是解答的关键.二、填空题13.【分析】利用矩形的性质得出OQ =MN =OP =3再利用当CQ 与此圆相切时∠QCN 最大此时在直角三角形CQ′O 中通过勾股定理求得答案【详解】连接OQ ∵MN =OP (矩形对角线相等)⊙O 的半径为6∴OQ =M解析:【分析】利用矩形的性质得出OQ=12MN=12OP=3,再利用当CQ与此圆相切时,∠QCN最大,此时,在直角三角形CQ′O中,通过勾股定理求得答案.【详解】连接OQ,∵MN=OP(矩形对角线相等),⊙O的半径为6,∴OQ=12MN=12OP=3,可得点Q的运动轨迹是以O为圆心,3为半径的半圆,当CQ与此圆相切时,∠QCN最大,此时,在直角三角形CQ′O中,∠C Q′O=90°,OQ′=3,CO=6,∴CQ′22CO OQ-'33即线段CQ的长为33故答案为:33′【点睛】此题主要考查了矩形的性质、点的轨迹,圆的切线等,得出当CQ与此圆相切时,∠QCN 最大是解题的关键.14.【分析】连接OCOB易证△OAB为等边三角形由BC∥OA得S△OCB=S△ACB把阴影部分的面积转化为扇形OBC的面积【详解】连接OCOB∵是的切线∴OB⊥AB在Rt△OBA中∵OB=1OA=2∴∠解析:6π【分析】连接OC,OB,易证△OAB为等边三角形,由BC∥OA,得S△OCB=S△ACB,把阴影部分的面积转化为扇形OBC的面积.【详解】连接OC,OB∵AB是O的切线∴OB⊥AB在Rt△OBA中∵OB=1,OA=2∴∠AOB=60°又∵//BC OA∴∠OBC=60°∵OB=OC∴△OAB 为等边三角形又∵BC ∥OA∴S △OCB =S △ACB∴S 阴=S 扇形OBC =2601360π⨯⨯ =6π故答案为:6π 【点睛】 本题考查扇形面积的求解,将不规则图形转化成规则的扇形是解题的关键.15.【分析】如图:连接ACBD 交于点O 即为正方形ABCD 外接圆的圆心根据正方形的性质可得OA=OC ∠AOC =90°根据勾股定理可得OA 和OC 的值即为为正方形ABCD 外接圆的半径【详解】解:如图:连接AC2【分析】如图:连接AC 、BD 交于点O ,即为正方形ABCD 外接圆的圆心,根据正方形的性质可得OA=OC ,∠AOC =90°,根据勾股定理可得OA 和OC 的值,即为为正方形ABCD 外接圆的半径.【详解】解:如图:连接AC 、BD 交于点O ,即为正方形ABCD 外接圆的圆心,∴OA 、OB 、OC 、OD 为正方形ABCD 外接圆的半径∵四边形ABCD 是正方形,∴OA=OC ,∠AOC =90°在Rt △AOC 中,AC 2=OA 2+OC 2,∵AC =2,OA=OC , ∴4=2 OA 2,∴OA 2即正方形ABCD 22【点睛】本题考查正方形外接圆的有关知识,利用到正方形的性质,勾股定理,解题的关键是熟练掌握所学知识.16.或4或8【分析】取CD 中点P1连接AP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B 是等边三角形可得∠AP1B =60°过点A 点P1点B 作圆与ADBC 各有一个交点即这样的P 点一共3个再运用勾 解析:43或4或8.【分析】取CD 中点P 1,连接AP 1,BP 1,由勾股定理可求AP 1=BP 1=43,即可证△AP 1B 是等边三角形,可得∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 各有一个交点,即这样的P 点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD 中点P 1,连接AP 1,BP 1,如图1,∵四边形ABCD 是矩形∴AB =CD =3AD =BC =6,∠D =∠C =90°∵点P 1是CD 中点∴CP =DP 1=3∴AP 1221AD DP +3, BP 1221BC CP +=3∴AP 1=P 1B =AB∴△APB 是等边三角形∴∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 的相交,∴这样的P 点一共有3个当点P 2在AD 上时,如图2,∵四边形ABCD 是矩形, ∴43,43,90AB A CD AD =∠===︒∵260,AP B ∠=︒∴221,2P A P B = 即222,P B P A = 在2Rt P AB ∆中,22222,P B P A AB -=∴222222(43),P A P A -=∴24AP =;当点P 3在BC 上时,如图3,∵四边形ABCD 是矩形,∴∠B=90°∵∠360,AP B =︒∴∠3390906030,P AB AP B =︒-∠=︒-︒=︒∴331,2BP AP = 在3Rt ABP ∆中,22233,AP BP AB -=222331()(43),2AP AP -=23348,4AP = ∴8,AP =综上所述,AP 的长为:43或4或8.故答案为:43或4或8.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.17.3【分析】利用正多边形和圆的关系可知弦EC 是该圆内接正十二边形的一边所以∠EOC=30°然后计算出△EOC 的面积最后乘以12即为该多边形的面积【详解】解:如图所示连接EO 作EF ⊥CO 交CO 于点F 由题解析:3【分析】利用正多边形和圆的关系可知弦EC 是该圆内接正十二边形的一边,所以∠EOC=30°,然后计算出△EOC 的面积,最后乘以12即为该多边形的面积.【详解】解:如图所示,连接EO ,作EF ⊥CO 交CO 于点F由题意可得n =12∴∠EOC=30°∴EF=12EO=12∴S △EOC =1·2EF CO =11××122=14 ∴该正12边形的面积=12 S △EOC =3故答案为:3【点睛】本题主要考查圆的内接正多边形的性质及其应用,解题的关键是灵活运用有关定理来分析、判断、推理或解答.18.【分析】利用三角形三边分别为345可得三角形是直角三角形根据内切圆的性质可判定四边形OECE 是正方形所以用r 分别表示:CE =CD =rAE =AN =3−r BD=BN=4−r;再利用AB作为相等关系求出r解析:5【分析】利用三角形三边分别为3、4、5,可得三角形是直角三角形,根据内切圆的性质可判定四边形OECE是正方形,所以用r分别表示:CE=CD=r,AE=AN=3−r,BD=BN=4−r;再利用AB作为相等关系求出r=1,则可得AN=2,N为圆与AB的切点,M为AB的中点,根据直角三角形中外接圆的圆心是斜边的中点,即M为外接圆的圆心;在Rt△OMN中,先求得MN=AM−AN=12,由勾股定理可求得OM的长.【详解】解:∵三角形三边分别为3、4、5,∴32+42=52,∴三角形是直角三角形,如图,设Rt△ABC,∠C=90°,AC=3,BC=4,AB=5,设Rt△ABC的内切圆的半径为r,则OD=OE=r,∵∠C=90°,∴CE=CD=r,AE=AN=3﹣r,BD=BN=4﹣r,∴4﹣r+3﹣r=5,解得r=1,∴AN=2,在Rt△OMN中,MN=AM﹣AN=12,∴OM555【点睛】此题考查了直角三角形的外心与内心概念、勾股定理的逆定理、内切圆的性质.解决本题的关键是掌握直角三角形的外心与内心概念.19.30【分析】结合题意根据弧长计算公式计算得弧长对应圆心角;再结合扇形面积公式计算即可得到答案【详解】∵扇形的半径为6cm 弧长为10cm ∴弧长对应的圆心角n 为:∴扇形面积为:故答案为:30【点睛】本题解析:302cm【分析】结合题意,根据弧长计算公式,计算得弧长对应圆心角;再结合扇形面积公式计算,即可得到答案.【详解】∵扇形的半径为6cm ,弧长为10cm∴弧长对应的圆心角n 为:101803006ππ⨯=⨯ ∴扇形面积为:263003630360360n πππ⨯⨯=⨯=2cm 故答案为:302cm .【点睛】本题考查了弧长、扇形面积计算的知识;解题的关键是熟练掌握弧长、扇形的性质,从而完成求解.20.4秒或8秒【分析】⊙P 与CD 相切应有两种情况一种是在射线OA 上另一种在射线OB 上设对应的圆的圆心分别在MN 两点当P 在M 点时根据切线的性质在直角△OME 中根据30度的角所对的直角边等于斜边的一半即可求 解析:4秒或8秒【分析】⊙P 与CD 相切应有两种情况,一种是在射线OA 上,另一种在射线OB 上,设对应的圆的圆心分别在M ,N 两点.当P 在M 点时,根据切线的性质,在直角△OME 中,根据30度的角所对的直角边等于斜边的一半,即可求得OM 的长,进而求得PM 的长,从而求得由P 到M 移动的时间;根据ON=OM ,即可求得PN ,也可以求得求得由P 到M 移动的时间.【详解】①当⊙P 在射线OA 上,设⊙P 于CD 相切于点E ,P 移动到M 时,连接ME .∵⊙P 与直线CD 相切,∴∠OEM=90°,∵在直角△OPM 中,ME=1cm ,∠AOC=30°,∴OM=2ME=2cm ,则PM=OP-OM=6-2=4cm ,∵⊙P 以1cm/s 的速度沿由A 向B 的方向移动,∴⊙P 移动4秒时与直线CD 相切;②当⊙P的圆移动到直线CD的右侧,同理可求ON=2则PN=6+2=8cm.∴⊙P移动8秒时与直线CD相切.故答案为:4秒或8秒.【点睛】本题主要考查了切线的性质和直角三角形的性质,注意已知圆的切线时,常用的辅助线是连接圆心与切点,本题中注意到分两种情况讨论是解题的关键.三、解答题21.BC=8,BD=52【详解】解:连接BD,如图,∵AB是直径,∴∠ACB=∠ADB=90°,在Rt△ABC中,AB=10,AC=6,∴BC22-8,即BC=8;106-22AB AC∵∠ACB的平分线交⊙O于点D,∴∠DCA =∠BCD ,∴AD BD =,∴AD =BD ,∴在Rt △ABD 中,AD =BD =22AB =22×10=52,即BD =52. 【点睛】本题考查了勾股定理,圆周角定理,解题的关键是求出∠ACB=∠ADB=90°.22.(1)如图,111A B C ∆为所作,见解析;1C (3,-1);(2)如图,222A B C ∆为所作,见解析;A 运动经过的路径的长度为2π【分析】(1)根据网格结构找出点A 、B 、C 关于x 轴的对称点1A 、1B 、1C 的位置,然后顺次连接即可,再根据平面直角坐标系写出点1C 的坐标即可;(2)根据网格结构找出点A 、B 、C 关绕点O 按照逆时针旋转90°后的对应点2A 、2B 、2C 的位置,然后顺次连接即可,再根据平面直角坐标系写出点2B 的坐标再根据弧长公式求解即可;【详解】(1)如图,111A B C ∆为所作∴ 1C (3,-1) ,(2)如图,222A B C ∆为所作∴2B (0,1),∵点A(2,2),∴ OA=22,∵∠2AOA =90°∴A 运动经过的路径的长度为:90222180ππ⋅⋅=【点睛】本题考查了利用旋转变换与对称轴变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键;23.(1)见解析;(2)图见解析,52π【分析】(1)依据轴对称的性质,即可得到△ABC 关于y 轴对称的△A 1B 1C 1;(2)依据旋转中心、旋转方向和旋转角度,即可得到△A 2B 2C 2,再根据弧长计算公式,即可得出旋转过程中点A 运动到点A 2所经过路径的长.【详解】解:(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求;∵OA=22345+=,∠AOA 2=90°,∴在此旋转过程中点A 运动到点A 2所经过路径的长为:90551802ππ⨯⨯=. 【点睛】本题主要考查了利用轴对称变换以及旋转变换进行作图,勾股定理,以及弧长公式,熟练掌握旋转变换与轴对称变换的定义和性质是解题的关键.24.4【分析】连接OC, 根据垂径定理可得∠CHO=90°,CD=2CH ,求出CH 的长,根据30°的直角三角形的特征以及勾股定理求出OC=2OH 即可.【详解】连接OC ,则OA =OC .∴∠A =∠ACO =30°.∴∠COH =60°.∵AB 是⊙O 的直径,弦CD ⊥AB 于点H ,∴∠CHO=90°,CD=2CH∴∠OCH=30°,∴2OC OH =,∵CD =43,∴CH =23.∴在Rt OCH 中,222OH HC OC +=∴OH =2.∴OC =4.【点睛】本题考查了垂径定理及30度的直角三角形的性质以及勾股定理得应用,解题的关键是掌握垂径定理及30度的直角三角形的性质.25.(1)∠AOC=120°;(2)见解析【分析】(1)先由圆内接四边形的性质得∠ADC=60°,再由圆周角定理即可得出答案;(2)证△OAB 和△OBC 都是等边三角形,则AB=OA=OC=BC ,根据菱形的判定方法即可得到结论.【详解】(1)∵A 、B 、C 、D 四点都在⊙O 上∴∠ABC+∠ADC=180°,∵∠ABC=120°,∴∠ADC=60°,∴∠AOC=2∠ADC=120°;(2)连接OB ,如图所示:∵点B 是弧AC 的中点,∠AOC=l20°,∴∠AOB=∠BOC=60°,又∵OA=OC=OB ,∴△OAB 和△OBC 都是等边三角形,∴AB=OA=OC=BC ,∴四边形OABC 是菱形.【点睛】本题考查了圆内接四边形的性质,圆周角定理,圆心角、弧、弦的关系:在同圆或等圆中,相等的弧所对的圆心角相等.也考查了等边三角形的判定与性质以及菱形的判定. 26.(1)(2,0);(2)在圆内.【分析】(1)由网格容易得出AB 的垂直平分线和BC 的垂直平分线,它们的交点即为点M ,根据图形即可得出点M 的坐标;(2)用两点间距离公式求出圆的半径和线段DM 的长,当DM 小于圆的半径时点D 在圆内.【详解】(1)如图1,点M 就是要找的圆心;圆心M 的坐标为(2,0).故答案为(2,0);(2)圆的半径AM 2224+=25线段MD 22(52)2-+1325D 在⊙M 内.【点睛】本题考查的是点与圆的位置关系,坐标与图形性质以及垂径定理,利用网格结构得到圆心M 的坐标是解题的关键.。

2024届陕西省西安市中考四模数学试题含解析

2024届陕西省西安市中考四模数学试题含解析

2024届陕西省西安市中考四模数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm2.下列计算正确的是( )A .2223x x x +=B .623x x x ÷=C .235(2)2x x x =D .222(3)6x x =3.下列因式分解正确的是( )A .x 2+9=(x+3)2B .a 2+2a+4=(a+2)2C .a 3-4a 2=a 2(a-4)D .1-4x 2=(1+4x )(1-4x )4.如图,已知AB ∥CD ,AD =CD ,∠1=40°,则∠2的度数为( )A .60°B .65°C .70°D .75°5.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A 、B 在同一水平面上).为了测量A 、B 两地之间的距离,一架直升飞机从A 地出发,垂直上升800米到达C 处,在C 处观察B 地的俯角为α,则A 、B 两地之间的距离为( )A .800sinα米B .800tanα米C .800sin α米D .800tan α米 6.如图,在下列条件中,不能判定直线a 与b 平行的是( )A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°7.一、单选题如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D8.已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条9.4的平方根是( )A.2 B.2C.±2 D.±210.关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是( ) A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.在Rt△ABC内有边长分别为2,x,3的三个正方形如图摆放,则中间的正方形的边长x的值为_____.12.已知反比例函数21kyx+=的图像经过点(2,1)-,那么k的值是__.13.如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设DA=a,DC=b,那么向量DF用向量a、b表示为_____.14.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+12DC的最小值是_____.15.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).16.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD 的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为__________步.17.已知36,则x2y+xy2的值为____.三、解答题(共7小题,满分69分)18.(10分)(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为;(拓展探究)(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,AB2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.19.(5分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)20.(8分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?21.(10分)某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.有月租的收费方式是________(填“①”或“②”),月租费是________元;分别求出①,②两种收费方式中y与自变量x之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议.22.(1018(2166÷31323.(12分)如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD 于点P.(1)把△ABC 绕点A 旋转到图1,BD ,CE 的关系是 (选填“相等”或“不相等”);简要说明理由; (2)若AB=3,AD=5,把△ABC 绕点A 旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD 的最小值为 ,最大值为 .24.(14分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C .考点:平移的性质.2、C【解题分析】根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可.【题目详解】A 、2x 与2x 不是同类项,不能合并,此选项错误;B 、66422x x x x -÷==,此选项错误;C 、235(2)2x x x =,此选项正确;D 、224(3)9x x =,此选项错误.故选:C .【题目点拨】此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键.3、C【解题分析】试题分析:A 、B 无法进行因式分解;C 正确;D 、原式=(1+2x )(1-2x )故选C ,考点:因式分解【题目详解】请在此输入详解!4、C【解题分析】由等腰三角形的性质可求∠ACD =70°,由平行线的性质可求解.【题目详解】∵AD =CD ,∠1=40°,∴∠ACD =70°,∵AB ∥CD ,∴∠2=∠ACD =70°,故选:C .【题目点拨】本题考查了等腰三角形的性质,平行线的性质,是基础题.5、D【解题分析】【分析】在Rt △ABC 中,∠CAB=90°,∠B=α,AC=800米,根据tanα=AC AB,即可解决问题. 【题目详解】在Rt △ABC 中,∵∠CAB=90°,∠B=α,AC=800米, ∴tanα=AC AB, ∴AB=800tan tan AC αα=, 故选D .【题目点拨】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型. 6、C【解题分析】解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.【题目点拨】本题考查平行线的判定,难度不大.7、D【解题分析】根据全等三角形的性质和已知图形得出即可.【题目详解】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.【题目点拨】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.8、D【解题分析】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.【题目详解】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有12(6×3)=9条,故选:D.【题目点拨】本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键.9、D【解题分析】先化简4,然后再根据平方根的定义求解即可.【题目详解】∵4=2,2的平方根是±2,∴4的平方根是±2.故选D.【题目点拨】本题考查了平方根的定义以及算术平方根,先把4正确化简是解题的关键,本题比较容易出错.10、C【解题分析】由一元二次方程有实数根可知△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【题目详解】∵关于x的一元二次方程x2−2x+k+2=0有实数根,∴△=(−2)2−4(k+2)⩾0,解得:k⩽−1,在数轴上表示为:故选C.【题目点拨】本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1【解题分析】解:如图.∵在Rt△ABC中(∠C=90°),放置边长分别2,3,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合题意,舍去),x=1.故答案为1.点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键.12、32 k=-【解题分析】将点的坐标代入,可以得到-1=212k+,然后解方程,便可以得到k的值.【题目详解】∵反比例函数y=21kx+的图象经过点(2,-1),∴-1=21 2 k+∴k=−32;故答案为k=−32.【题目点拨】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答13、a+2b【解题分析】根据平行四边形的判定与性质得到四边形DBFC是平行四边形,则DC=BF,故AF=2AB=2DC,结合三角形法则进行解答.【题目详解】如图,连接BD,FC,∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB.∴△DCE∽△FBE.又E是边BC的中点,∴11 DE ECEF EB==,∴EC=BE,即点E是DF的中点,∴四边形DBFC是平行四边形,∴DC=BF,故AF=2AB=2DC,∴DF=DA+AF=DA+2DC=a+2b.故答案是:a+2b.【题目点拨】此题考查了平面向量的知识、相似三角形的判定与性质以及平行四边形的性质.注意掌握三角形法则的应用是关键.14、(Ⅰ)AC=3(Ⅱ)3,3【解题分析】(Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+12DC的值最小,解直角三角形即可得到结论.【题目详解】解:(Ⅰ)如图,过B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE=32AB=3∴AC=2AE=3(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+12DC的值最小,∵BF=CF=2,∴BD=CD=230COS=433,∴BD+12DC的最小值=23,故答案为:43,23.【题目点拨】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.15、y=x2+2x(答案不唯一).【解题分析】设此二次函数的解析式为y=ax(x+2),令a=1即可.【题目详解】∵抛物线过点(0,0),(﹣2,0),∴可设此二次函数的解析式为y=ax(x+2),把a=1代入,得y=x2+2x.故答案为y=x2+2x(答案不唯一).【题目点拨】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一.16、2000 3【解题分析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=20003.故答案为:20003.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.17、【解题分析】分析:因式分解,把已知整体代入求解.详解:x2y+xy2=xy(x+y)==.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.三、解答题(共7小题,满分69分)18、(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16﹣【解题分析】(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.【题目详解】(1)∵AB=AD,CB=CD,∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,∴AC垂直平分BD,故答案为AC垂直平分BD;(2)四边形FMAN是矩形.理由:如图2,连接AF,∵Rt△ABC中,点F为斜边BC的中点,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四边形AMFN是矩形;(3)BD′的平方为16+83或16﹣83.分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,如图所示:过D'作D'E⊥AB,交BA的延长线于E,由旋转可得,∠DAD'=60°,∴∠EAD'=30°,∵AB2=AD',∴D'E=12AD2,AE6,∴BE26,∴Rt△BD'E中,BD'2=D'E2+BE2=2)2+(26)23②以点A为旋转中心将正方形ABCD顺时针旋转60°,如图所示:过B作BF⊥AD'于F,旋转可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=22=AD',∴BF=12AB=2,AF=6,∴D'F=22﹣6,∴Rt△BD'F中,BD'2=BF2+D'F2=(2)2+(22-6)2=16﹣83综上所述,BD′平方的长度为16+83或16﹣83.【题目点拨】本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.19、(1)证明见解析;(2)9﹣3π【解题分析】试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.试题解析:(1)如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA•tan60°=3,∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.20、(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.【解题分析】(1)根据“第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数”,设出未知数,列方程解答即可. (2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.【题目详解】(1)设捐款增长率为x,根据题意列方程得:()2⨯-=,100001x12100解得x1=0.1,x2=-1.9(不合题意,舍去).答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.21、(1)①30;(2)y1=0.1x+30,y2=0.2x;(3)当通话时间少于300分钟时,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间为300分钟时,选择通话方式①,②花费一样.【解题分析】试题分析:(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;(2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可.解:(1)①;30;(2)设y1=k1x+30,y2=k2x,由题意得:将(500,80),(500,100)分别代入即可:500k1+30=80,∴k1=0.1,500k2=100,∴k2=0.2故所求的解析式为y1=0.1x+30;y2=0.2x;(3)当通讯时间相同时y1=y2,得0.2x=0.1x+30,解得x=300;当x=300时,y=1.故由图可知当通话时间在300分钟内,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间在300分钟时,选择通话方式①、②一样实惠.22、【解题分析】分析:先化简各二次根式,再根据混合运算顺序依次计算可得.详解:原式×(+3点睛:本题考查了二次根式的混合运算,熟练掌握混合运算的法则是解题的关键.23、(1)BD,CE的关系是相等;(2(3)1,1【解题分析】分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到PDAE=CDCE,进而得到;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到PB BEAB BD,进而得出,(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A 相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.详解:(1)BD,CE的关系是相等.理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案为相等.(2)作出旋转后的图形,若点C在AD上,如图2所示:∵∠EAC=90°,∴CE=2234AC AE+=,∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴PD CD AE CE=,∴PD=534 17;若点B在AE上,如图2所示:∵∠BAD=90°,∴Rt△ABD中,2234AD AB+=BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴PB BEAB BD=,即2334PB=,解得PB=634 34,∴PD=BD+PB=34+63434=203417,故答案为53417或203417;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A 右上方与⊙A相切时,PD的值最大.如图3所示,分两种情况讨论:在Rt△PED中,P D=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.①当小三角形旋转到图中△ACB的位置时,在Rt△ACE中,2253-,在Rt△DAE中,225552+=∵四边形ACPB是正方形,∴PC=AB=3,∴PE=3+4=1,在Rt△PDE中,2250491DE PE-=-=,即旋转过程中线段PD的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=1,即旋转过程中线段PD的最大值为1.故答案为1,1.点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.24、小王在这两年春节收到的年平均增长率是【解题分析】增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.【题目详解】解:设小王在这两年春节收到的红包的年平均增长率是.依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【题目点拨】本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.。

2024年陕西省西安市雁塔区高新一中中考一模数学试题

2024年陕西省西安市雁塔区高新一中中考一模数学试题

2024年陕西省西安市雁塔区高新一中中考一模数学试题学校:___________姓名:___________班级:___________考号:___________1375二、填空题12.如图,某品牌扫地机器人的形状是“莱洛三角形”,它的三“边”分别是以等边三角形的三个顶点为圆心,边长为半径的三段圆弧.若该等边三角形的边长为3,则这个“莱洛三角形”的周长是.13.已知抛物线21:241C y x x =--,抛物线2C 是由抛物线1C 向右平移3个单位得到的,那我们可以得到抛物线1C 和抛物线2C 一定关于某条直线对称,则这条直线为.14.如图,M e 的半径为4,圆心M 的坐标为()68,,点P 是M e 上的任意一点,PA PB ⊥,且PA 、PB 与x 轴分别交于A 、B 两点.若点A 、点B 关于原点O 对称,则当AB 取最大值时,点A 的坐标为.三、解答题55421.有一座抛物线型拱桥,在正常水位时水面宽20m AB =,当水位上升3m 时,水面宽10m CD =.按如图所示建立平面直角坐标系.(1)求此抛物线的函数表达式; (2)有一条船以6km /h 的速度向此桥径直驶来,当船距离此桥36km 时,桥下水位正好在AB 处,之后水位每小时上涨0.3m ,为保证安全,当水位达到距拱桥最高点2m 时,将禁止船只通行.如果该船的速度不变,那么它能否安全通过此桥?22.如图所示,要在底边BC =160cm ,高AD =120cm 的△ABC 铁皮余料上,截取一个矩形EFGH ,使点H 在AB 上,点G 在AC 上,点E ,F 在BC 上,AD 交HG 于点M .(1)设矩形EFGH 的长HG=ycm ,宽HE=xcm.求y 与x 的函数关系式;(2)当x 为何值时,矩形EFGH 的面积S 最大?最大值是多少?23.如图,点O 在∠APB 的平分线上,⊙O 与P A 相切于点C .(1)求证:直线PB 与⊙O 相切;(2)PO 的延长线与⊙O 交于点E .若⊙O 的半径为3,PC =4.求弦CE 的长.24.已知抛物线24y ax bx =+-经过点()20A -,,()40B ,,与y 轴的交点为C . (1)求该抛物线的函数表达式;(2)若点P 是该抛物线上一点,且位于其对称轴l 的左侧,过点P 分别作l ,x 轴的垂线,垂足分别为M ,N ,连接MN .若PMN V 和OBC △相似,求点P 的坐标.25.问题发现(1)在ABC V 中,2AB =,60C ∠=︒,则ABC V 面积的最大值为;(2)如图1,在四边形ABCD 中,6AB AD ==,90BCD BAD ∠=∠=︒,8AC =,求BC CD +的值.问题解决(3)有一个直径为60cm 的圆形配件O e ,如图2所示.现需在该配件上切割出一个四边形孔洞OABC ,要求60O B ∠=∠=︒,OA OC =,并使切割出的四边形孔洞OABC 的面积尽可能小.试问,是否存在符合要求的面积最小的四边形OABC ?若存在,请求出四边形OABC 面积的最小值及此时OA 的长;若不存在,请说明理由.。

2022年陕西省西安高新一中学中考数学全真模拟试题含解析

2022年陕西省西安高新一中学中考数学全真模拟试题含解析

2022年陕西省西安高新一中学中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列命题中错误的有( )个(1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形(4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A .1B .2C .3D .42.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q3.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )A .2B .4C .6D .84.在直角坐标平面内,已知点M(4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,那么r 的取值范围为( )A .0r 5<<B .3r 5<<C .4r 5<<D .3r 4<< 5.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是A .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+ 6.已知1122()()A x y B x y ,,,两点都在反比例函数k y x=图象上,当12x 0x <<时,12y y < ,则k 的取值范围是( )A .k>0B .k<0C .k 0≥D .k 0≤7.已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是( )A .﹣3B .0C .6D .98.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )A .12B .25C .35D .7189.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为( )A .9.29×109B .9.29×1010C .92.9×1010D .9.29×101110.关于x 的方程3x+2a=x ﹣5的解是负数,则a 的取值范围是( )A .a <52B .a >52C .a <﹣52D .a >﹣52二、填空题(共7小题,每小题3分,满分21分)11.如图,直线 a ∥b ,直线 c 分别于 a ,b 相交,∠1=50°,∠2=130°,则∠3 的度数为( )A .50°B .80°C .100°D .130°12.计算:()()a a b b a b +-+=_____________.13.如图,已知点C 为反比例函数6y x=-上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为___________.14.因式分解:3a 3﹣6a 2b +3ab 2=_____.15.为了求1+2+22+23+…+22016+22017的值,可令S =1+2+22+23+…+22016+22017,则2S =2+22+23+24+…+22017+22018,因此2S ﹣S =22018﹣1,所以1+22+23+…+22017=22018﹣1.请你仿照以上方法计算1+5+52+53+…+52017的值是_____.16.如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心.大于12MN 的长为半径画弧,两弧在第二象限内交于点p (a ,b ),则a 与b 的数量关系是________.17.如图,在平面直角坐标系中,点A 是抛物线()2y=a x 3+k -与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边三角形ABC 的周长为 .三、解答题(共7小题,满分69分)18.(10分)如图,直线y=kx+b (k≠0)与双曲线y=m x(m≠0)交于点A (﹣12,2),B (n ,﹣1).求直线与双曲线的解析式.点P 在x 轴上,如果S △ABP =3,求点P 的坐标.19.(5分)如图所示,在▱ABCD 中,E 是CD 延长线上的一点,BE 与AD 交于点F ,DE =12CD . (1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.20.(8分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF.(1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由.21.(10分)矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.22.(10分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?23.(12分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.2014年这种礼盒的进价是多少元/盒?若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?24.(14分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.详解:等腰三角形的两个底角相等,(1)正确;对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;对角线相等的平行四边形为矩形,(3)错误;圆的切线垂直于过切点的半径,(4)错误;平分弦(不是直径)的直径垂直于弦,(5)错误.故选D.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2、C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.3、B【解析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题. 【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.4、D【解析】先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.【详解】解:∵点M的坐标是(4,3),∴点M到x轴的距离是3,到y轴的距离是4,∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,∴r的取值范围是3<r<4,故选:D.【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.5、C【解析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2-1,即y=x2+1.故选C.6、B【解析】根据反比例函数的性质判断即可.【详解】解:∵当x1<x2<0时,y1<y2,∴在每个象限y随x的增大而增大,∴k<0,故选:B.【点睛】本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质.7、A【解析】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选A.8、A【解析】分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,概率为451= 902.故选A.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.9、B【解析】科学记数法的表示形式为a×1n的形式,其中1≤|a|<1,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1.【详解】解:929亿=92900000000=9.29×11.故选B.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.10、D【解析】先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得. 【详解】解方程3x+2a=x﹣5得x=522a --,因为方程的解为负数,所以522a--<0,解得:a>﹣5 2 .【点睛】本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.二、填空题(共7小题,每小题3分,满分21分)11、B【解析】根据平行线的性质即可解决问题【详解】∵a∥b,∴∠1+∠3=∠2,∵∠1=50°,∠2=130°,∴∠3=80°,故选B.【点睛】考查平行线的性质,解题的关键是熟练掌握平行线的性质,属于中考基础题.12、22a b -【解析】分析:按单项式乘以多项式的法则将括号去掉,在合并同类项即可.详解:原式=2222a ab ab b a b +--=-.故答案为:22a b -.点睛:熟记整式乘法和加减法的相关运算法则是正确解答这类题的关键.13、1【解析】解:由于点C 为反比例函数6y x=-上的一点, 则四边形AOBC 的面积S=|k|=1.故答案为:1.14、3a (a ﹣b )1【解析】首先提取公因式3a ,再利用完全平方公式分解即可.【详解】3a 3﹣6a 1b +3ab 1,=3a (a 1﹣1ab +b 1),=3a (a ﹣b )1.故答案为:3a (a ﹣b )1.【点睛】此题考查多项式的因式分解,多项式分解因式时如果有公因式必须先提取公因式,然后再利用公式法分解因式,根据多项式的特点用适合的分解因式的方法是解题的关键. 15、2018514- 【解析】根据上面的方法,可以令S=1+5+52+53+…+52017,则5S=5+52+53+…+52012+52018,再相减算出S 的值即可.【详解】解:令S =1+5+52+53+ (52017)则5S =5+52+53+…+52012+52018,5S ﹣S =﹣1+52018,4S =52018﹣1,则S =2018514-, 故答案为:2018514-. 【点睛】此题参照例子,采用类比的方法就可以解决,注意这里由于都是5的次方,所以要用5S 来达到抵消的目的.16、a+b=1.【解析】试题分析:根据作图可知,OP 为第二象限角平分线,所以P 点的横纵坐标互为相反数,故a+b=1.考点:1角平分线;2平面直角坐标系.17、18。

2020年西安市高新一中中考数学四模试卷(含解析)

2020年西安市高新一中中考数学四模试卷(含解析)

2020年西安市高新一中中考数学四模试卷一、选择题(本大题共10小题,共30.0分)1.+8的相反数是()A. 8B. −8C. +18D. −182.某几何体的主视图和左视图如图所示,则该几何体可能是()A. 长方体B. 圆锥C. 圆柱D. 球3.如图,在Rt△ABC中,∠A=90°,直线DE//BC,分别交AB、AC于点D、E,若∠ADE=30°,则∠C的度数为()A. 30°B. 40°C. 50°D. 60°4.正比例函数的图象经过点A(−1,2)、B(a,−1),则a的值为()A. 2B. −2C. 12D. −125.下列运算正确的是()A. x3⋅x4=x12B. (x−2)2=x2−4C. 3x−4x=−xD. (−6x6)÷(−2x2)=3x36.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A. √3B. 1C. √2D. 27.如图,直线l1和l2的交点坐标为()A. (4,−2)B. (2,−4)C. (−4,2)D. (3,−1)8.如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是()A. 3cmB. 4cmC. 5cmD. 6cm9.如图,在⊙O中,AB⏜=BC⏜,点D在⊙O上,∠CDB=25°,则∠AOB=()A. 45°B. 50°C. 55°D. 60°10.如图是二次函数y=ax2+bx+c的图象,有下面四个结论:①abc>0;②a−b+c>0;③2a+3b>0;④c−4b>0其中,正确的结论是()A. ①②B. ①②③C. ①②④D. ①③④二、填空题(本大题共4小题,共12.0分)11.在实数7,√4,π,√−83中,无理数有______个.12.已知正六边形的外接圆半径为2,则它的内切圆半径为_____.13.如图,双曲线y=kx(x>0)经过△OAB的顶点A和OB的中点C,AB//x轴,点A的坐标为(2,3),求△OAC的面积是______.14.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是______.三、计算题(本大题共1小题,共5.0分)15.计算:(2015−π)0+|√3−2|+√12+(13)−1.四、解答题(本大题共10小题,共77.0分)16.先化简,再求值:(n−1n )÷n2−2n+1n,其中,n=−3.17.已如:⊙O与⊙O上的一点A(1)求作:⊙O的内接正六边形ABCDEF;(要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由.18.在平行四边形ABCD中,E是BC边上一点,F是DE上一点,若∠B=∠AFE,AB=AF.求证:(1)△ADF≌△DEC.(2)BE=EF.19.为了解学生的课外阅读情况,在九年级四个班的180名学生中随机抽取45名学生,对他们一周的课外阅读时间进行统计,其中,一周的阅读时间如条形图(1)所示,各班抽取的人数占被调查人数的百分比如扇形图(2)所示,请根据相关信息,解答下列问题:(Ⅰ)随机抽取的学生中,一班的人数是______;(Ⅱ)求本次调查所得样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校九年级一周课外阅读时间大于10h的约有多少人.20.如图,航拍无人机从A处测得一幢建筑物顶部B处的仰角为45°、底部C处的俯角为65°,此时航拍无人机A处与该建筑物的水平距离AD为80米.求该建筑物的高度BC(精确到1米).【参考数据:sin65°=0.91,cos65°=0.42,tan65°=2.14】21.在购买某足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为__________;方案二中,当0≤x≤100时,y与x的函数关系式为________;当x>100时,y与x的函数关系式为________;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张?22. 同时掷两枚质地均匀的骰子(每一枚骰子的六个面上分别标有数字“1”,“2”,“3”,“4”,“5”,“6”),用列表法表示出全部可能,并计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;(3)至少有一枚骰子的点数为2.23. 如图,已知AB 是⊙O 的直径,BC ⊥AB ,CD 切⊙O 于点D ,OC 交⊙O于点E ,连结AD ,AE .(1)求证:AE 平分∠DAB .(2)将△AEO 沿直线OC 翻折得△FEO ,连结BF.若CE═85,cos∠DAB =59,求BF 的长.24.在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(−3,0)、B(1,0)两点,D是抛物线顶点,E是对称轴与x轴的交点.(1)求抛物线的解析式;(2)若点F和点D关于x轴对称,点P是x轴上的一个动点,过点P作PQ//OF交抛物线于点Q,是否存在以点O,F,P,Q为顶点的平行四边形?若存在,求出点P坐标;若不存在,请说明理由.25.已知点D是△ABC边BC上的点,连接AD,则S△ADC:S△ADB=CD:DB,我们可利用这个性质解决问题.(注:S△表示三角形的面积).(1)如图1,若AD是△ABC的中线,且S△ADB=3,则S△ABC=______;(2)如图2,已知AD是△ABC的中线,点E在边AC上,AE:EC=2:3,AD与BE相交于点O,连接OC.①求证:S△AOB=S△AOC;②若OE=2,求OB;(3)如图3,已知长方形ABCD的面积为240,点E、F分别在CD、AD上,AE、CF相交于点O,若CE:ED=AF:FD=2:3,求四边形OEDF的面积.【答案与解析】1.答案:B解析:解:+8的相反数是−8,故选:B.根据只有符号不同的两个数互为相反数,可得答案.主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;2.答案:C解析:解:∵如图所示的几何体的主视图和左视图分别是长方形和圆,∴该几何体可能是圆柱体.故选:C.主视图、左视图是分别从物体正面、左面看,所得到的图形,根据该几何体的主视图和左视图分别是长方形和圆,可得该几何体可能是圆柱体.本题考查由三视图确定几何体的形状,主要考查学生空间想象能力,掌握常见几何体的三视图是解题的关键.3.答案:D解析:本题考查三角形内角和定理,平行线的性质.先根据三角形内角和定理求出∠AED度数,再由DE//BC,根据平行线的性质即可得∠C=∠AED,从而得出答案.解:∵∠A+∠ADE+∠AED=180°,又∵∠A=90°,∠ADE=30°,∴∠AED=60°,∵DE//BC,∴∠C=∠AED=60°.故选D.4.答案:C解析:【试题解析】本题考查的是正比例函数解析式的求法有关知识,用待定系数法可求正比例函数解析式,将点B坐标代入可求a的值.解:设正比例函数解析式为:y=kx(k≠0)∴2=−k∴k=−2,∴正比例函数解析式为:y=−2x,当y=−1时,−1=−2a,∴a=1.2故选C.5.答案:C解析:解:A、x3⋅x4=x7,故选项错误;B、(x−2)2=x2−4x+4,故选项错误;C、正确;D、(−6x6)÷(−2x2)=3x4,故选项错误.故选C.本题考查了同底数的幂的乘法,完全平方公式、合并同类项、以及单项式的除法法则,理解公式、法则是关键.利用同底数的幂的乘法,完全平方公式、合并同类项、以及单项式的除法法则即可判断.6.答案:B解析:解:∵在△ABC 中,∠B =30°,BC 的垂直平分线交AB 于E ,BE =2,∴BE =CE =2,∴∠B =∠DCE =30°,∵CE 平分∠ACB ,∴∠ACB =2∠DCE =60°,∠ACE =∠DCE =30°,∴∠A =180°−∠B −∠ACB =90°.在Rt △CAE 中,∵∠A =90°,∠ACE =30°,CE =2,∴AE =12CE =1. 故选B .先根据线段垂直平分线的性质得出BE =CE =2,故可得出∠B =∠DCE =30°,再由角平分线定义得出∠ACB =2∠DCE =60°,∠ACE =∠DCE =30°,利用三角形内角和定理求出∠A =180°−∠B −∠ACB =90°,然后在Rt △CAE 中根据30°角所对的直角边等于斜边的一半得出AE =12CE =1. 本题考查的是含30度角的直角三角形的性质,线段垂直平分线的性质,等腰三角形的性质,角平分线定义,三角形内角和定理,求出∠A =90°是解答此题的关键. 7.答案:A解析:解:由图象可知l 1过(0,2)和(2,0)两点.l 2过原点和(−2,1).根据待定系数法可得出l 1的解析式应该是:y =−x +2,l 2的解析式应该是:y =−12x ,两直线的交点满足方程组{y =−x +2y =−12x, 解得{x =4y =−2, 即交点的坐标是(4,−2).故选A .求两条直线的交点,要先根据待定系数法确定两条直线的函数式,属基础题.本题可用待定系数法来确定两条直线的解析式,再联立求得交点的坐标. 8.答案:A本题考查折叠问题,找到相应的直角三角形利用勾股定理求解是解决本题的关键.根据△AEF是直角三角形利用勾股定理求解即可.解:∵四边形ABCD是正方形,∴AB=AD=8cm,∠A=90°,∵点E是AB的中点,∴AE=12AB=4cm,由折叠可得DF=EF,设AF=x,则EF=8−x,∵AF2+AE2=EF2,∴x2+42=(8−x)2,解得x=3,即AF的长为3cm.故选A.9.答案:B解析:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.直接根据圆周角定理求解.解:∵AB⏜=BC⏜,∴∠AOB=2∠CDB=50°.故选B.10.答案:C解析:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,根据抛物线开口方向得到a>0;根据对称轴得到x=−b2a>0,则b<0;根据抛物线与y轴的交点在x轴下方得到c<0,则abc>0,可判断①正确;当自变量为−1时对应的函数图象在x轴上方,则a−b+c>0,可判断②正确;根据抛物线对称轴方程得到x=−b2a =13,则2a+3b=0,可判断③错误;当自变量为2时对应的函数图象在x轴上方,则4a+2b+c>0,把2a=−3b代入可对④进解:∵抛物线开口向上,∴a>0;∵抛物线的对称轴在y轴的右侧,∴x=−b2a>0,∴b<0;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵x=−1时,y>0,∴a−b+c>0,所以②正确;∵x=−b2a =13,∴2a+3b=0,所以③错误;∵x=2时,y>0,∴4a+2b+c>0,把2a=−3b代入得−6b+2b+c>0,∴c−4b>0,所以④正确.故选:C.11.答案:1解析:本题考查的是无理数的定义,即其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等这样有规律的数.根据无理数的概念进行解答即可.解:√4=2,√−83=−2,在实数7,√4,π,√−83中,无理数有π,一共1个故答案为:1.12.答案:√3解析:本题考查了正多边形和圆、等边三角形的判定与性质;熟练掌握正多边形的性质,证明△OAB是等边三角形是解决问题的关键,根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.解:如图,连接OA、OB,OG,∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,OG⊥AB,∴∠OAB=60°,∠AOG=30°,∴OA=2,AG=1∴OG=√AO2−AG2=√3,∴半径为2的正六边形的内切圆的半径为√3.故答案为√3.13.答案:92(x>0)上,解析:解:∵点A(2,3)在双曲线y=kx∴k=2×3=6.过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,∵AB//x轴,∴BM⊥y轴,∴MB//CN,∴△OCN∽△OBM,∵C为OB的中点,即OCOB =12,∴S△OCNS△OBM =(12)2,∵A,C都在双曲线y=6x上,∴S△OCN=S△AOM=3,由33+S△AOB=14,得:S△AOB=9,则△AOC面积=12S△AOB=92.故答案是:92.将A坐标代入反比例解析式求出k的值即可;过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,得到CN与BM平行,进而确定出三角形OCN与三角形OBM相似,根据C为OB的中点,得到相似比为1:2,确定出三角形OCN与三角形OBM面积比为1:4,利用反比例函数k的意义确定出三角形OCN与三角形AOM的面积,根据相似三角形面积之比为1:4,求出三角形AOB面积即可.此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,相似三角形的判定与性质,以及反比例函数k的意义,熟练掌握待定系数法是解本题的关键.14.答案:10解析:此题主要考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题关键点是熟练掌握这些性质.要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.解:∵正方形是轴对称图形,点B与点D是以直线AC为对称轴的对称点,∴连接BN,BD,则直线AC即为BD的垂直平分线,∴BN=ND,∴DN+MN=BN+MN,连接BM交AC于点P,∵点N为AC上的动点,由三角形两边和大于第三边,知当点N运动到点P时,BN+MN=BP+PM=BM,BN+MN的最小值为BM的长度,∵四边形ABCD为正方形,∴BC=CD=8,CM=8−2=6,∠BCM=90°,∴BM=√62+82=10,∴DN+MN的最小值是10.故答案为10.15.答案:解:原式=1+2−√3+2√3+3=6+√3.解析:原式利用零指数幂、负整数指数幂法则,绝对值的代数意义计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.答案:解:原式=n2−1n ⋅nn2−2n+1=(n+1)(n−1)n⋅n(n−1)2=n+1n−1,当n=−3时,原式=−3+1−3−1=12.解析:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 先根据分式的混合运算顺序和运算法则化简原式,再将n 的值代入计算可得.17.答案:解:(1)如图,正六边形ABCDEF 为所作;(2)四边形BCEF 为矩形.理由如下:连接BE ,如图,∵六边形ABCDEF 为正六边形,∴AB =BC =CD =DE =EF =FA ,∴AB⏜=BC ⏜=CD ⏜=DE ⏜=EF ⏜=AF ⏜, ∴BC⏜+CD ⏜+DE ⏜=EF ⏜+AF ⏜+AF ⏜, ∴BAE⏜=BCE ⏜, ∴BE 为直径,∴∠BFE =∠BCE =90°,同理可得∠FBC =∠CEF =90°,∴四边形BCEF 为矩形.解析:(1)如图,在⊙O 上依次截取六段弦,使它们都等于OA ,从而得到正六边形ABCDEF ;(2)连接BE ,如图,利用正六边形的性质得AB =BC =CD =DE =EF =FA ,AB⏜=BC ⏜=CD ⏜=DE ⏜=EF⏜=AF ⏜,则判断BE 为直径,所以∠BFE =∠BCE =90°,同理可得∠FBC =∠CEF =90°,然后判断四边形BCEF 为矩形.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定与正六边形的性质. 18.答案:解:(1)证明:∵四边形ABCD 是平行四边形,∴DC =AB ,AD =BC ,AB//CD ,∴∠ADF =∠DEC ,∠B +∠C =180°,∵∠AFE+∠AFD=180°,∠B=∠AFE,∴∠AFD=∠C,∵AB=AF,∴AF=DC,在△ADF和△DEC中{∠ADF=∠DEC∠AFD=∠CAF=DC,∴△ADF≌△DEC(AAS);(2)证明:∵△ADF≌△DEC,∴AD=DE,DF=EC,又∵AD=BC,∴BC=DE,∴BC−EC=DE−DF,即BE=EF.解析:此题主要考查了平行四边形的性质和全等三角形的判定与性质,关键是熟练掌握平行四边形的对边平行且相等.(1)根据平行四边形的性质可得DC=AB,AD=BC,AB//CD,然后再证明AF=DC,∠ADF=∠DEC,∠AFD=∠C,利用AAS可判定△ADF≌△DEC;(2)根据全等三角形的性质得出AD=DE,DF=EC,再证出BC=DE,即可得出结论.19.答案:18解析:解:(Ⅰ)∵一班人数所占比例为1−(20%+20%+20%)=40%,∴一班人数为45×40%=18人,故答案为:18;(Ⅱ)∵9出现了15次,次数最多,∴众数为9;∵共有45个数据,其中位数是第23个数据,∴中位数是10,平均数为8×3+9×15+10×12+11×9+12×645=10;(Ⅲ)估计该校九年级一周课外阅读时间大于10h的约有180×9+645=60人.(Ⅰ)由百分比之和为1求得一班百分比,再用总人数乘以所得百分比即可得;(Ⅱ)根据众数、中位数和平均数的定义求解;(Ⅲ)用总人数乘以样本中阅读时间大于10h的人所占比例即可得.本题考查的是扇形统计图与条形统计图的综合运用,涉及到众数、中位数和平均数的求法.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.20.答案:解:∵在Rt△ABD中,AD=80,∠BAD=45°,∴BD=AD=80m,∵在Rt△ACD中,∠CAD=65°,∴CD=AD⋅tan65°=80×2.14=171.2,∴BC=BD+CD=80+171.2=251.2≈251(米).答:该建筑物的高度BC约为251米.解析:在Rt△ABD中,根据正切函数求得BD=AD⋅tan∠BAD,在Rt△ACD中,求得CD=AD⋅tan∠CAD,再根据BC=BD+CD,代入数据计算即可.此题考查了解直角三角形的应用−仰角俯角问题.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.21.答案:解:(1)y=60x+10000;y=100x;y=80x+2000;(2)已知方案一中y与x的函数关系式为y=60x+10000,∵x>100,∴方案二的y与x的函数关系式为y=80x+2000;当60x+10000>80x+2000时,即100<x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)设甲、乙单位购买本次足球赛门票数分别为a张、b张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:0<b≤100或b>100.当b≤100时,乙公司购买本次足球赛门票费为100b,{a+b=70060a+10000+100b=58000,解得{a =550b =150不符合题意,舍去; 当b >100时,乙公司购买本次足球赛门票费为80b +2000,{a +b =70060a +10000+80b +2000=58000, 解得{a =500b =200,符合题意. 答:甲、乙单位购买本次足球赛门票分别为500张、200张.解析:本题考查了分段函数的应用,用一次函数解决实际问题是近年中考中的热点问题.(1)依题意可得y 与x 的函数关系式y =60x +10000;本题考查了分段函数的有关知识(0≤x ≤100;x >100);(2)设60x +10000>80x +2000,可用方案二买;当60x +1000=80x +2000时,两种方案均可选择;当60x +1000<80x +200时,可选择方案一;(3)设甲、乙单位购买本次足球赛门票数分别为a 张、b 张,分别采用方案一或方案二购买,注意乙需要分类讨论.解:(1)方案一:y =60x +10000;方案二:当0≤x ≤100时,y =100x ;当x >100时,设解析式为y =kx +b ,代入(100,10000),(150,14000)可得{100k +b =10000150k +b =14000,解得{k =80b =2000,即y =80x +2000; (2)见答案;(3)见答案.22.答案:解:由已知得:(1)两枚骰子的点数相同的概率为:636=16;(2)两枚骰子点数的和是9的概率为:436=19;(3)至少有一枚骰子的点数为2的概率为:1136.解析:本题考查了概率公式以及列表法求概率,正确列表是解题的关键.(1)根据表中出现两枚骰子的点数相同的次数,利用概率公式求解即可;(2)根据表中出现两枚骰子点数的和是9的次数,利用概率公式求解即可;(3)根据表中出现至少有一枚骰子的点数为2的次数,利用概率公式求解即可.23.答案:(1)证明:连结OD,如图,∵CD切圆O于点D,∴OD⊥CD,∵BC⊥AB,∴∠ODC=∠OBC=90°,在Rt△ODC和Rt△OBC中{OC=OCOD=OB,∴Rt△ODC≌Rt△OBC(HL),∴∠DOC=∠BOC,∵∠DAE=12∠DOE,∠BAE=12∠BOE,∴∠DAE=∠BAE,∴AE平分∠DAB;(2)由圆的轴对称性可知,点F在⊙O上.∵∠AOE=∠FOE,而∠DOE=∠BOE,∴∠AOD=∠BOF,∴BF=AD ∵DE⏜=BE⏜,∴∠DAB=∠COB,∴cos∠COB=cos∠DAB=59,在Rt △BOC 中,cos∠BOC =OB OC =59, 设OB =OE =5x ,OC =9x ,∴5x +85=9x ,解得x =25,∴OB =2,∴AB =4,∵AB 是⊙O 的直径,∴∠ADB =90°,在Rt △ADB 中,cos∠DAB =AD AB =59,∴AD =59×4=209,∴BF =209.解析:(1)连结OD ,如图,利用切线的性质得OD ⊥CD ,则∠ODC =∠OBC =90°,于是可判断Rt △ODC≌Rt △OBC 得到∠DOC =∠BOC ,再根据圆周角定理得到∠DAE =12∠DOE ,∠BAE =12∠BOE ,所以∠DAE =∠BAE ;(2)证明∠AOD =∠BOF 得到BF =AD ,再证明∠DAB =∠COB 得到cos∠COB =cos∠DAB =59,在Rt △BOC 中利用余弦定义可设OB =OE =5x ,OC =9x ,所以5x +85=9x ,求出x 得到OB =2,AB =4,然后在Rt △ADB 中利用余弦定义计算出AD ,从而得到BF 的长.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理、折叠的性质和解直角三角形. 24.答案:解:(1)据题意得{9a −3b +3=0a +b +3=0.解得{a =−1b =−2. ∴解析式为y =−x 2−2x +3;(2)∵y =−x 2−2x +3=−(x +1)2+4,∴顶点D(−1,4),∴F(−1,−4),若以点O 、F 、P 、Q 为顶点的平行四边形存在,则点Q(x,y)满足|y|=EF =4,①当y=−4时,−x2−2x+3=−4,解得,x=−1±2√2,∴Q1(−1−2√2,−4),Q2(−1+2√2,−4),∴P1(−2√2,0),P2(2√2,0),②当y=4时,−x2−2x+3=4,解得,x=−1∴Q3(−1,4)∴P3(−2,0),综上所述,符合条件的点有三个即:P1(−2√2,0),P2(2√2,0),P3(−2,0).解析:(1)根据待定系数法即可求得;(2)分两种情况,根据平行四边形的性质分别讨论即可求得.本题是二次函数的综合题,考查了待定系数法求解析式以及平行四边形的性质,根据题意求得Q的坐标是解题的关键.25.答案:6解析:(1)解:如图1中,∵BD=CD,∴S△ABC=2S△ABD=6.故答案为6.(2)①如图2中,∵BD=CD,∴S△ABD=S△ADC,S△BDO S△ODC,∴S△ABD−S△BOD=S△ADC−S△ODC,即S△AOB=S△AOC;②如图2中,作DF//BE交AC于F.∵BD=CD,DF//BE,∴EF=CF,∵AE:EC=2:3,∴AE:EF=4:3,AE:AF=4:7,∵OE//DF,∴OEDF =AEAF=47,∵OE=2,∴DF=72,∵CD=BD,CF=EF,∴BE=2DF=7,∴OB=BE−OE=7−2=5.(3)如图3中,作EM//CF交AD于M.连接AC.∵四边形ABCD是矩形,面积为240,∴S△ADC=1×240=120,2∵CE:ED=2:3,×120=72,∴S△ADE=35∵AF:FD=2:3,∴S△ACF=2×120=48,5∵EM//CF,∴EM:CF=DM:DF=3:5,OF:EM=AF:FM=5:8,∴OF:CF=3:8,×48=18,∴S△AOF=38=72−18=54.∴S四边形OFDE(1)根据三角形中线的性质即可解决问题;(2)①由BD=CD,推出S△ABD=S△ADC,S△BDO S△ODC,即可解决问题;②如图2中,作DF//BE交AC于F.求出DF、BE即可解决问题;(3)如图3中,作EM//CF交AD于M.连接AC.想办法求出△ADE,△AOF的面积即可解决问题;本题考查四边形综合题、矩形的性质、三角形中位线的性质,等高模型等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年陕西省西安市高新一中中考数学四模试卷一、选择题1.﹣5的相反数是()A.5B.C.﹣D.﹣52.如图是一个几何体的主视图和俯视图,则这个几何体是()A.正方体B.三棱柱C.三棱锥D.长方体3.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A 的度数为()A.35°B.45°C.55°D.65°4.一个正比例函数的图象过点(2,﹣3),它的表达式为()A.B.C.D.5.下列计算正确的是()A.a3+a3=2a6B.(x﹣3)2=x2﹣9C.a3•a3=a6D.+=6.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是()A.2B.2C.4D.47.若直线l1经过点(﹣1,0),l2经过点(2,2),且l1与l2关于直线x=1对称,则l1和l2的交点坐标为()A.(1,4)B.(1,2)C.(1,0)D.(1,3)8.如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为()A.B.C.D.39.如图,点A、B、C、D在⊙O上,,∠CAD=30°,∠ACD=50°,则∠ADB =()A.30°B.50°C.70°D.80°10.已知A(x1,y1),B(x2,y2)是二次函数图象上y=ax2﹣2ax+a﹣c(a≠0)的两点,若x1≠x2且y1=y2,则当自变量x的值取x1+x2时,函数值为()A.﹣c B.c C.﹣a+c D.a﹣c二.填空题(每小题0分)11.在、π、、0.5、这五个数中,无理数有.12.若一个正多边形的一个外角为60°,则它的内切圆半径与外接圆半径之比是.13.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D,连接OB,与AD相交于点C,若AC=2CD,则k的值为.14.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.三.解答题15.计算:()﹣2﹣(π﹣3.14)0+﹣|2﹣|.16.先化简,再求值,其中x=3.17.如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)18.如图,在平行四边形ABCD中,E为BC边上一点,且∠B=∠AEB.求证:AC=DE.19.西安高新一中初中校区九年级有2000名学生,在体育中考前进行一次模拟体测,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(Ⅰ)本次抽取到的学生人数为,图2中m的值为;(Ⅱ)求出本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计我校九年级模拟体测中不低于11分的学生约有多少人?20.为庆祝中华人民共和国成立70周年,深圳举办了灯光秀,某数学兴趣小组为测量“平安金融中心”AB的高度,他们在地面C处测得另一幢大厦DE的顶部E处的仰角为32°,测得“平安中心”AB的顶部A处的仰角为44°.登上大厦DE的顶部E处后,测得“平安中心”AB的顶部A处的仰角为60°,(如图).已知C、D、B三点在同一水平直线上,且CD=400米,求平安金融中心AB的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,tan44°≈0.99,≈1.41,)21.某演唱会购买门票的方式有两种.方式一:若单位赞助广告费10万元,则该单位所购门票的价格为每张0.02万元;方式二:如图所示.设购买门票x张,总费用为y万元,方式一中:总费用=广告赞助费+门票费.(1)求方式一中y与x的函数关系式.(2)若甲、乙两个单位分别采用方式一、方式二购买本场演唱会门票共400张,且乙单位购买超过100张,两单位共花费27.2万元,求甲、乙两单位各购买门票多少张?22.图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字2,3,4,5.图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子在桌面掷出后,看骰子落在桌面上(即底面)的数字是几,就从图中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法继续……(1)随机掷一次骰子,则棋子跳动到点C处的概率是.(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.23.如图,P为⊙O直径AB延长线上的一点,PC切⊙O于点C,过点B作CP的垂线BH 交⊙O于点D,连结AC,CD.(1)求证:∠PBH=2∠HDC;(2)若sin∠P=,BH=3,求BD的长24.如图,抛物线C1的图象与x轴交A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3)点D为抛物线的顶点.(1)求抛物线C1的解析式;(2)将抛物线C1关于直线x=1对称后的抛物线记为C2,将抛物线C1关于点B对称后的抛物线记为C3,点E为抛物线C3的顶点,在抛物线C2的对称轴上是否存在点F,使得△BEF为等腰三角形?若存在请求出点F的坐标,若不存在请说明理由.25.问题探究(1)如图①,在正方形ABCD内,请画出使∠BPC=90°的所有点P;(2)如图②,已知矩形ABCD,AB=9,BC=10,在矩形ABCD内画出使∠BPC=60°的所有点P,并求出△APD面积的最小值;(3)随着社会发展,农业观光园走进了我们的生活.某农业观光园的平面示意图如图3所示的四边形ABCD,其中∠A=120°,∠B=∠C=90°,AB=km,BC=6km,观光园的设计者想在园中找一点P,使得点P与点A、B、C、D所连接的线段将整个观光园分成四个区域,用来进行不同的设计与规划,从实用和美观的角度他们还要求在△BPC 的区域内∠BPC=120°,且△APD的区域面积最小,试问在四边形ABCD内是否存在这样的点P,使得∠BPC=120°,且△APD面积最小?若存在,请你在图中画出点P 点的位置,并求出△APD的最小面积.若不存在,说明理由.参考答案一.选择题(每小题0分)1.﹣5的相反数是()A.5B.C.﹣D.﹣5【分析】根据相反数的定义直接求得结果.解:﹣5的相反数是5.故选:A.2.如图是一个几何体的主视图和俯视图,则这个几何体是()A.正方体B.三棱柱C.三棱锥D.长方体【分析】根据三视图得出几何体为三棱柱即可.解:由主视图和俯视图可得几何体为三棱柱,故选:B.3.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A 的度数为()A.35°B.45°C.55°D.65°【分析】题中有三个条件,图形为常见图形,可先由AB∥DE,∠BCE=35°,根据两直线平行,内错角相等求出∠B,然后根据三角形内角和为180°求出∠A.解:∵AB∥DE,∠BCE=35°,∴∠B=∠BCE=35°(两直线平行,内错角相等),又∵∠ACB=90°,∴∠A=90°﹣35°=55°(在直角三角形中,两个锐角互余).故选:C.4.一个正比例函数的图象过点(2,﹣3),它的表达式为()A.B.C.D.【分析】利用待定系数法即可求解.解:设函数的解析式是y=kx.根据题意得:2k=﹣3.解得:k=﹣.故函数的解析式是:y=﹣x.故选:A.5.下列计算正确的是()A.a3+a3=2a6B.(x﹣3)2=x2﹣9C.a3•a3=a6D.+=【分析】分别根据合并同类项法则,完全平方公式,同底数幂的乘法法则以及二次根式的加减法法则逐一判断即可.解:A.a3+a3=2a3,故本选项不合题意;B.(x﹣3)2=x2﹣6x+9,故本选项不合题意;C.a3•a3=a6,故本选项符合题意;D.与不是同类二次根式,所以不能合并,故本选项不合题意.故选:C.6.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是()A.2B.2C.4D.4【分析】求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.解:∵∠A=30°,∠B=90°,∴∠ACB=180°﹣30°﹣90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=1,∴CD=2=AD,∴AB=1+2=3,在△BCD中,由勾股定理得:CB=,在△ABC中,由勾股定理得:AC==2,故选:A.7.若直线l1经过点(﹣1,0),l2经过点(2,2),且l1与l2关于直线x=1对称,则l1和l2的交点坐标为()A.(1,4)B.(1,2)C.(1,0)D.(1,3)【分析】根据对称的性质得出两个点关于y轴对称的对称点,再根据待定系数法确定函数关系式,求出交点坐标即可.解:∵直线l1经过点(﹣1,0),l2经过点(2,2),关于直线x=1对称,∴点(﹣1,0)关于直线x=1对称点为(3,0),点(2,2)关于直线x=1对称点为(0,2)∴直线l1经过点(﹣1,0),(0,2),l2经过点(2,2),(3,0),∴直线l1的解析式为:y=2x+2,直线l2的解析式为:y=﹣2x+6,解方程组得,,∴l1和l2的交点坐标为(1,4),故选:A.8.如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为()A.B.C.D.3【分析】由正方形纸片ABCD的边长为3,可得∠C=90°,BC=CD=3,由根据折叠的性质得:EG=BE=1,GF=DF,然后设DF=x,在Rt△EFC中,由勾股定理EF2=EC2+FC2,即可得方程,解方程即可求得答案.解:∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3,根据折叠的性质得:EG=BE=1,GF=DF,设DF=x,则EF=EG+GF=1+x,FC=DC﹣DF=3﹣x,EC=BC﹣BE=3﹣1=2,在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3﹣x)2,解得:x=,∴DF=,EF=1+=.故选:B.9.如图,点A、B、C、D在⊙O上,,∠CAD=30°,∠ACD=50°,则∠ADB =()A.30°B.50°C.70°D.80°【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.解:∵,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故选:C.10.已知A(x1,y1),B(x2,y2)是二次函数图象上y=ax2﹣2ax+a﹣c(a≠0)的两点,若x1≠x2且y1=y2,则当自变量x的值取x1+x2时,函数值为()A.﹣c B.c C.﹣a+c D.a﹣c【分析】先求出抛物线的对称轴为直线x=1,则可判断A(x1,y1)和B(x2,y2)关于直线x=1对称,所以x2﹣1=1﹣x1,即x1+x2=2,然后计算自变量为2对应的函数值即可.解:抛物线的对称轴为直线x=﹣=1,∵x1≠x2且y1=y2,∴A(x1,y1)和B(x2,y2)关于直线x=1对称,∴x2﹣1=1﹣x1,∴x1+x2=2,当x=2时,y=ax2﹣2ax+a﹣c=4a﹣4a+a﹣c=a﹣c.故选:D.二.填空题(每小题0分)11.在、π、、0.5、这五个数中,无理数有π,,.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.解:是分数,属于有理数;0.5是有限小数,属于有理数;∴在、π、、0.5、这五个数中,无理数有π,,.故答案为:π,,.12.若一个正多边形的一个外角为60°,则它的内切圆半径与外接圆半径之比是:2.【分析】由一个正多边形的一个外角为60°,可得是正六边形,然后从内切圆的圆心和外接圆的圆心向三角形的三边引垂线,构建直角三角形,解三角形即可.解:∵一个正多边形的一个外角为60°,∴360°÷60°=6,∴这个正多边形是正六边形,设这个正六边形的半径是r,则外接圆的半径r,∴内切圆的半径是正六边形的边心距,即是r,∴它的内切圆半径与外接圆半径之比是:2.故答案为:2.13.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D,连接OB,与AD相交于点C,若AC=2CD,则k的值为9.【分析】过点B作BE⊥x轴于E,延长线段BA,交y轴于F,得出四边形AFOD是矩形,四边形OEBF是矩形,得出S矩形AFOD=3,S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OD,即OE=3OD,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.解:过点B作BE⊥x轴于E,延长线段BA,交y轴于F,∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y=上,∴S矩形AFOD=3,同理S矩形OEBF=k,∵AB∥OD,∴==,∴AB=2OD,∴DE=2OD,∴S矩形OEBF=3S矩形AFOD=9,∴k=9,故答案是:9.14.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为2.【分析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.解:如图:取点D关于直线AB的对称点D′.以BC中点O为圆心,OB为半径画半圆.连接OD′交AB于点P,交半圆O于点G,连BG.连CG并延长交AB于点E.由以上作图可知,BG⊥EC于G.PD+PG=PD′+PG=D′G由两点之间线段最短可知,此时PD+PG最小.∵D′C′=4,OC′=6∴D′O=∴D′G=2∴PD+PG的最小值为2故答案为:2三.解答题15.计算:()﹣2﹣(π﹣3.14)0+﹣|2﹣|.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果.解:原式=4﹣1+2﹣+2=+5.16.先化简,再求值,其中x=3.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.解:原式=•=,当x=3时,原式==.17.如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【分析】画圆的一条直径AC,作这条直径的中垂线交⊙O于点BD,连结ABCD就是圆内接正四边形ABCD.解:如图所示,四边形ABCD即为所求:18.如图,在平行四边形ABCD中,E为BC边上一点,且∠B=∠AEB.求证:AC=DE.【分析】欲证明AC=DE,只要证明△ABC≌△EAD即可解决问题.【解答】证明:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠DAE=∠AEB,∵∠AEB=∠B,∴AB=AE,∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD,∴AC=DE.19.西安高新一中初中校区九年级有2000名学生,在体育中考前进行一次模拟体测,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(Ⅰ)本次抽取到的学生人数为50,图2中m的值为28;(Ⅱ)求出本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计我校九年级模拟体测中不低于11分的学生约有多少人?【分析】(Ⅰ)根据条形统计图中的数据,可以计算出本次抽取的学生人数,然后即可计算出m的值;(Ⅱ)根据条形统计图中的数据,可以得到本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据条形统计图中的数据,可以计算出我校九年级模拟体测中不低于11分的学生约有多少人.解:(Ⅰ)本次抽取到的学生人数为4+5+11+14+16=50,m%=×100%=28%,故答案为:50,28;(Ⅱ)平均数==10.66(分),众数是12分,中位数是(10+11)÷2=10.5(分);(Ⅲ)2000×=1200(人),答:我校九年级模拟体测中不低于11分的学生约有1200人.20.为庆祝中华人民共和国成立70周年,深圳举办了灯光秀,某数学兴趣小组为测量“平安金融中心”AB的高度,他们在地面C处测得另一幢大厦DE的顶部E处的仰角为32°,测得“平安中心”AB的顶部A处的仰角为44°.登上大厦DE的顶部E处后,测得“平安中心”AB的顶部A处的仰角为60°,(如图).已知C、D、B三点在同一水平直线上,且CD=400米,求平安金融中心AB的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,tan44°≈0.99,≈1.41,)【分析】作EF⊥AB于F.在Rt△DCE中,根据正切函数的定义即可求出大厦DE的高度;设EF=DB=x米,BF=DE,∠AEF=60°.在Rt△ABC中,根据正切函数的定义得出AB=BC•tan∠ACB,在Rt△AFE中,根据正切函数的定义得出AF=EF•tan ∠AEF,由AB=BF+AF列出方程求出x,从而求解.解:如图,作EF⊥AB于F.∵在Rt△DCE中,∠CDE=90°,∠ECD=32°,CD=400米,∴DE=CD•tan∠ECD≈400×0.62=248(米).设EF=DB=x米,BF=DE=248米,∠AEF=60°.∵在Rt△ABC中,∠ABC=90°,AB=BC•tan∠ACB≈0.99(400+x)(米),∵在Rt△AFE中,∠AFE=90°,∴AF=EF•tan∠AEF=x(米),∴AB=BF+AF=248+x=0.99(400+x),解得x=200,AB=0.99(400+x)=0.99×(400+200)=594.故平安金融中心AB的高度约为594米.21.某演唱会购买门票的方式有两种.方式一:若单位赞助广告费10万元,则该单位所购门票的价格为每张0.02万元;方式二:如图所示.设购买门票x张,总费用为y万元,方式一中:总费用=广告赞助费+门票费.(1)求方式一中y与x的函数关系式.(2)若甲、乙两个单位分别采用方式一、方式二购买本场演唱会门票共400张,且乙单位购买超过100张,两单位共花费27.2万元,求甲、乙两单位各购买门票多少张?【分析】(1)方案一中,总费用=广告赞助费10+门票单价0.02×票的张数;(2)方案二中,当x>100时,设出一次函数解析式,把其中两点的坐标代入即可求得相应的函数解析式;设乙单位购买了a张门票,则甲单位购买了(400﹣a)张门票,进而根据((1)得甲单位的总费用,再根据两单位共花费27.2万元,列出方程解答便可.解:(1)方案一:单位赞助广告费10万元,该单位所购门票的价格为每张0.02万元,则y=10+0.02x;(2)方案二:当x>100时,设解析式为y=kx+b.将(100,10),(200,16)代入,得,解得,所以y=0.06x+4.设乙单位购买了a张门票,则甲单位购买了(400﹣a)张门票,根据题意得0.06a+4+[10+0.02(400﹣a)]=27.2,解得,a=130,∴400﹣a=270,答:甲、乙两单位购买门票分别为270张和130张.22.图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字2,3,4,5.图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子在桌面掷出后,看骰子落在桌面上(即底面)的数字是几,就从图中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法继续……(1)随机掷一次骰子,则棋子跳动到点C处的概率是.(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.【分析】(1)当底面数字为2时,可以到达点C,根据概率公式计算即可;(2)利用列表法统计即可;解:(1)随机掷一次骰子,则棋子跳动到点C处的概率是,故答案为;(2)列表如图:共有16种可能,和为8可以到达点C,有3种情形,所以棋子最终跳动到点C处的概率为.23.如图,P为⊙O直径AB延长线上的一点,PC切⊙O于点C,过点B作CP的垂线BH 交⊙O于点D,连结AC,CD.(1)求证:∠PBH=2∠HDC;(2)若sin∠P=,BH=3,求BD的长【分析】(1)连接OC,因为PC切⊙O于点C,则OC⊥PC,因为过点B作CP的垂线BH交⊙O于点D,可得DH∥OC,进而得出∠PBH=∠BOC=2∠HDC;(2)作OM⊥DH于H,设⊙O的半径为r,可得四边形OMHC为矩形,因为sin∠P=,BH=3,所以BP=4,由△PHB∽△PCO,得,求得r=12,可得出MH的长,从而求出BD的长.解:(1)如图,连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵过点B作CP的垂线BH交⊙O于点D,∴DH∥OC,∴∠PBH=∠BOC,∵∠BOC=2∠HDC,∴∠PBH=2∠HDC;(2)如图,作OM⊥DH于H,设⊙O的半径为r,∵∠OCH=∠OMH=∠CHM=90°,∴四边形OMHC为矩形,∵sin∠P=,BH=3,∴,∴BP=4,∵OC∥DH,∴△PHB∽△PCO,∴,∴,解得r=12,∴MH=OC=12,∴MB=MH﹣BH=12﹣3=9,∴BD=2MB=18.24.如图,抛物线C1的图象与x轴交A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3)点D为抛物线的顶点.(1)求抛物线C1的解析式;(2)将抛物线C1关于直线x=1对称后的抛物线记为C2,将抛物线C1关于点B对称后的抛物线记为C3,点E为抛物线C3的顶点,在抛物线C2的对称轴上是否存在点F,使得△BEF为等腰三角形?若存在请求出点F的坐标,若不存在请说明理由.【分析】(1)将A、B、C三点代入一般式,即可求出解析式;(2)由折叠的性质和旋转的性质可求抛物线C2解析式和抛物线C3解析式,可得点E坐标,由等腰三角形的性质可求点F坐标.解:(1)设解析式y=a(x﹣1)(x+3)将C(0,3)代入得a=﹣1∴抛物线C1的解析式为y=﹣x2﹣2x+3;(2)∵抛物线C1的解析式为y=﹣x2﹣2x+3;∴抛物线C1的顶点为(﹣1,4)∵将抛物线C1关于直线x=1对称后的抛物线记为C2,将抛物线C1关于点B对称后的抛物线记为C3,∴抛物线C2解析式为:y=﹣(x﹣3)2+4,抛物线C3解析式为:y=(x﹣3)2﹣4,∵点E为抛物线C3的顶点,∴点E(3,﹣4),∴BE═=2,∵点F抛物线C2的对称轴上,∴点F横坐标为3,若BE=EF=2,则点F坐标为(3,﹣4+2)或(3,﹣4﹣2),若BE=BF时,则点F与点E关于x轴对称,∴点F(3,4),若BF=EF时,则22+(4﹣EF)2=BF2,∴BF=EF=,∴点F(3,﹣),综上所述:当点F为(3,﹣4+2)或(3,﹣4﹣2)或(3,4)或(3,﹣)时,使得△BEF为等腰三角形25.问题探究(1)如图①,在正方形ABCD内,请画出使∠BPC=90°的所有点P;(2)如图②,已知矩形ABCD,AB=9,BC=10,在矩形ABCD内画出使∠BPC=60°的所有点P,并求出△APD面积的最小值;(3)随着社会发展,农业观光园走进了我们的生活.某农业观光园的平面示意图如图3所示的四边形ABCD,其中∠A=120°,∠B=∠C=90°,AB=km,BC=6km,观光园的设计者想在园中找一点P,使得点P与点A、B、C、D所连接的线段将整个观光园分成四个区域,用来进行不同的设计与规划,从实用和美观的角度他们还要求在△BPC 的区域内∠BPC=120°,且△APD的区域面积最小,试问在四边形ABCD内是否存在这样的点P,使得∠BPC=120°,且△APD面积最小?若存在,请你在图中画出点P 点的位置,并求出△APD的最小面积.若不存在,说明理由.【分析】(1)如图1中,以BC为直径作⊙O,点P的轨迹是(不包括B,C).(2)如图2中,以BC为边向上作等边三角形△BCP,作△BCP的外接圆,交AB于E,交CD于F,点P轨迹是(不包括E,F),当点P是的中点时,△ADP的面积最小.(3)如图3中,以BC为边向下作等边三角形△BCE,作△BCE的外接圆,点P轨迹是(不包括B,C),作OJ⊥BC于J,交AD于K,作AT⊥OK于T.延长OP交AD于H,当OH⊥AD时,PH的值最小,此时△PAD的面积最小.解:(1)如图1中,以BC为直径作⊙O,点P的轨迹是(不包括B,C).(2)如图2中,以BC为边向上作等边三角形△BCP,作△BCP的外接圆,交AB于E,交CD于F,点P轨迹是(不包括E,F),当点P是的中点时,△ADP的面积最小.此时S△APD=×10×(9﹣5)=45﹣25.(3)如图3中,以BC为边向下作等边三角形△BCE,作△BCE的外接圆,点P轨迹是(不包括B,C),作OJ⊥BC于J,交AD于K,作AT⊥OK于T.延长OP交AD于H,当OH⊥AD时,PH的值最小,此时△PAD的面积最小.由题意BJ=JC=3,OJ=,∵四边形ABJT是矩形,∴∠BAT=90°,AT=BJ=3,AB=TJ=,∵∠DAB=120°,∴∠KAT=30°,∴KT=,AK=2,∴OK=OJ+JT+TK=3,∵∠OKH=60°,∴OH=OK•sin60°=,∴PH=OH﹣OP=﹣2,∵AB∥JK∥CD,BJ=CJ,∴AK=KD=2,∴AD=4,∴△PAD的面积的最小值=×(﹣2)=9﹣12.。

相关文档
最新文档