第三章空间数据处理介绍

合集下载

地理信息系统概论-第三章

地理信息系统概论-第三章

2024/7/17
22
高斯-克吕格投影的特点:
① 中央经线上没有任何变形,满足中央经线投影后保持长度 不变的条件;
② 除中央经线上的长度比为1外,其他任何点上长度比均大 于1;
③ 在同一条纬线上,离中央经线越远,变形越大,最大值位 于投影带的边缘;
④ 在同一条经线上,纬度越低,变形越大,变形最大值位于 赤道上。
局部比例尺: 由于投影中必定存在某种变形,地图仅能在某些点或线上保 持比例尺,其余位置的比例尺都与主比例尺不相同,即大于 或小于主比例尺。这个比例尺被称为局部比例尺。
一般地图上注明的比例尺是主比例尺,而对用于测量长度的
地图要采用一定的方式设法表示出该图的局部比例尺。这就
是在大区域小比例尺地图(小于1:1 000 000)上常见的图解
地形图上公里网横坐标前2位就是带号, 例如:1∶5万地形图上的坐标为(18576000, 293300),其中18即为带号。
2024/7/17
24
当地中央经线经度的计算
六度带中央经线经度的计算: 当地中央经线经度=6°×当地带号-3°, 例如:地形图上的横坐标为18576000,其所处的六度带的中 央经线经度为:6°×18-3°=105°。
2、建立地图投影的目的: 采用某种数学法则,使空间信息在地球表面上的位置和地 图平面位置一一对应起来,以满足地图制图的要求。
2024/7/17
9
理解地图投影如何改变空间属性的一种简便方法:
观察光穿过地球投射到表面(称为投影曲面)上。 想像一下,地球表面是透明的,其上绘有经纬网。用一 张纸包裹地球。位于地心处的光会将经纬网投影到一张纸上 。现在,可以展开这张纸并将其铺平。纸张上的经纬网形状 与地球上的形状不同。 地图投影使经纬网发生了变形。

GIS空间数据处理与分析

GIS空间数据处理与分析
内边界
栅格单元(i,j)四角点坐标的计算:
X(i1,i2)=(j-1)*DX和J*DX Y(i1,i2)=(i-1)*DY和i*DY I,j:栅格单元行列值; DX,DY:栅格单元边长
⑴:识别内边界,并将内边界端点坐标置零. 判别方法: 判断与栅格单元某条边相邻的另一栅 格单元的值,若值小于零,则该边为内边界. 内边界端点坐标置零: 边界起点和终点坐标置零.
分区数据的方法就称为空间数据的内插。
第五节 空间数据的内插方法
1、点的内插:研究具有连续变化特征现象 的数值内插方法。
步骤: 数据取样;数据处内插;数据记录
第五节 空间数据的内插方法
2、区域的内插
研究根据一组分区的已知数据来推求
同一地区另一组分区未知数据的内插方法。
区域内插方法:
2.1 叠合法:认为源和目标区的数据是均匀 分布的,首先确定两者面积的交集,然后 计算出目标区各个分区的内插值。
1、遥感与GIS数据的融合:
遥感技术的优势 融合必要性 GIS技术的优势 遥感图像与图形的融合 融合方法: 遥感数据与DEM的融合 遥感数据与地图扫描图像的融合第三节 多源 Nhomakorabea间数据的融合
2、不同格式数据的融合
不同格式数据的融合方法主要有:
2.1基于转换器的数据融合:
一种软件的数据格式输出为交换格式,然后用于另
P3
P
0
x
判断点是否在多边形内,从该点向左引水平扫描线,计算此 线段与区域边界相交的次数,若为奇数,该点在多边形内;若为 偶数,在多边形外。利用此原理,直接做一系列水平扫描线,求 出扫描线和区域边界的交点,对每个扫描线交点按X值的大小进 行排序,其两相邻坐标点之间的射线在区域内。
第二节

【GIS】地理信息系统复习资料

【GIS】地理信息系统复习资料

第一章绪论1、信息的特点1)信息的客观性2)信息的适用性3)信息的传输性4)信息的共享性2、数据处理:即对数据进行收集、筛选、排序、归并、转换、存储、检索、计算,以及分析、模拟和预测等操作。

3、地理信息的特点:1)空间分布性2)具有多维结构的特征3)时序特征十分明显4、地理数据:是与地理环境要素有关的物质的数量、质量、分布特征、相互联系和变化规律的数字、文字、图像和图形等的总称。

5、地理信息系统:它是在计算机硬、软件系统支持下,对整个或部分地球表层(包括大气层)空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。

6、简述GIS的构成。

它的的基本功能有哪些?硬件系统、软件系统、空间数据库、应用模型、用户基本功:数据采集与编辑、数据存储与管理、数据处理与变换、空间分析和统计、产品制作与显示、二次开发和编辑。

第二章地理信息系统的数据结构1、矢量表示法:采用一个没有大小的点(坐标)来表达基本点元素。

2、栅格表示法:采用一个有固定大小的点(面元)来表达基本点元素。

3、空间数据的基本特征。

1)属性特征:描述空间对象的特性,即是什么。

如对象的类别、等级、名称、数量等。

2)空间特征:描述空间对象的地理位置以及相互关系,又称几何特征和拓扑特征,前者用经纬度、坐标表示,后者用拓扑关系表示,如交通学院与电力学院相邻等。

3)时间特征:描述空间对象随时间的变化。

4、拓扑关系的类型1)拓扑邻接:相同拓扑元素之间的关系。

2)拓扑关联:不同拓扑元素之间的关系。

3)拓扑包含:同类但不同级元素之间的关系。

5、空间数据拓扑关系意义1)根据拓扑关系,不需要利用坐标或距离,可以确定一种地理实体相对于另一种地理实体的空间位置关系。

2)有利于空间要素的查询。

3)可以利用拓扑关系数据作为工具,重建地理实体。

6、建立如下图所示的拓扑关系的全显式表达。

(方向自己给定)弧段与结点关系表多边形与弧段关系表结点与弧段关系表弧段与多边形7、栅格数据单元值的确定方法有哪些?①中心点法:②面积占优法:③重要性法:④百分比法:8、如何确定合理的网格尺寸?为了逼近原始数据精度,除了采用这几种取值方法外,还可以采用缩小单个栅格单元的面积,增加栅格单元总数的方法。

第三章 空间数据的表达方法

第三章 空间数据的表达方法

(一)特点: 1.用离散的点或线描述地理现象及特征 2.用拓扑关系描述矢量数据之间关系
3.面向目标的操作
4.数据结构复杂且难以同遥感数据结合
5.难于处理位置关系
空间对象(实体)的地图表达
点:位置:(x,y) 属性:符号 线:位置:(x1,y1),(x2,y2),…,(xn,yn) 1 1 2 2),„,(xn n 属性:符号—形状、颜色、尺寸
7 7 7 7ຫໍສະໝຸດ 7 7 7 77 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7
空间单元人为划定成 大小相等的正方形网 格,有着统一的定位 参照系。每个空间 单元只记录其属性值, 而不记录它的坐标值。
2
2
2 2 1 4 4 4 4 4 4 4
2
2 2 1 4 4 4 4 4 4 4
2
2 2 1 4 4 4 4 4 4 4
2
2 2 1 4 4 4 4 4 4 4
2
2 1 4 4 4 4 4 4 4 4
2
1 4 4 4 4 4 4 4 4 4
1
1 4 4 4 4 4 4 4 4 4
1
7 1 4 4 4 4 4 4 4 4
7
7 7 1 4 4 4 4 4 4 4
7
7 7 7 1 4 4 4 4 4 4
7
7 7 7 7 1 4 4 4 4 4
地理信息系统为什么要研究数据模型
现实世界真实模型
空间数据处理
空间数据查询
空间数据分析
空间数据模型 空间数据复原 空间数据结构
数据库:空间数据物 理结构
空间信息 3.2 空间数据模型 3.3 空间数据结构 3.4 地貌的表达——数字化地形模型

p03第三章 空间数据模型-第六-八节1

p03第三章 空间数据模型-第六-八节1

第六节、 ArcGIS介绍
1. 厂家:ARCGIS是美国环境系统研究所(Environmental System Research Institute, Co.,简称ESRI)于20世纪80年 代初推出的一个通用GIS软件 。
2. 运行平台:uninx-NT(96年)(2000)-pc
Ar析
2、ArcCatalog
• 空间数据管理:
– ESRI coverage、 shape file
– CADData – 遥感图像 – 栅格 – TINS – Geodatabase – 属性表格
• 察看空间数据、源 数据等
3、ArcToolbox
• 超过140个工具,用 于进行geoprocessing 处理;
六、ARCGIS的开发环境
在Windows环境下以可编程控件(OCX)的形式为用户提 供在其应用中增加制图和GIS功能的可能性(MapObjects);
在ArcView和MapObjects中提供Internet网上的GIS和制图 功能;
ArcObject和ArcEngineer面向组件的开发技术。 Arcsever开发工具
三、ArcGIS Workstation 的功能模块(1)
1. ARC是ARCGIS Workstartion的其他功能模块的运行环境;
① ARC主要完成对工作空间和数据单元的操作和管理; ② 进行空间数据操作; ③ 建立拓扑关系,进行数据格式和投影转换; ④ 进行某些基于矢量的空间分析。
2. INFO是一个完整的关系型数据库管理系统,用于完成对属 性数据库的管理和维护;
第三章 空间数据模型
空间数据模型是GIS的基础;
空间数据模型:指利用特定的数据结构来表达空间对 象的空间位置、空间关系和属性信息;是对空间对象 的数据描述。

第三章-空间数据的处理

第三章-空间数据的处理


二值化

细化

跟踪
分 类 图 扫描 二值化
遥感影象图 栅格分类图 原始线划图
边界 提取 预 处 理
二值化 细化
编 辑
矢 量 跟 踪
数 据 压 缩
拓 扑 化


基于再生栅格数据的矢量化方法
首先对栅格数据按行扫描,找出位于各类型边界的栅格 单元,并将边界内部具有相同值或同质的栅格单元以一 种显著不同的符号进行充值,产生只记录类型边界栅格 值得文件; 其次建立对类型边界栅格单元的追踪算法,寻找同质区 的闭合曲线,同时计算其坐标,并整理成有序(按顺时 针或逆时针方向)的坐标数组; 最后处理相邻类型的公共边界,将按区域单元建立的数 据结构转换为按线段链建立的数据结构,以便实现任意 区域或类型数据的提取、综合、分析和制图输出。
数值变换:根据两种投影在变换区内的若干同名数字化点,
采用插值法,或有限差分法,或最小二乘法,或有限元法, 或待定系数法,从而实现由一种投影的坐标到另一种投影坐 标的变换。
例如,采用二元三次多项式进行变换:
通过选择10个以上的两种投影之间的共同点, 并组成最小二乘法的条件式,进行解算系数。
第二节 空间数据结构的转换

不同格式的融合
数据存储格式和结构不同。 方式: 基于转换器的数据融合 基于数据标准的数据融合 基于公共接口的数据融合 基于直接访问的数据融合
MapInfo向Arcinfo转换
MapInfo中的地图可以有两种格式:Tab格式(表格式)、Mif格式(交换 格式)。 ArcInfo中的地图也支持多种格式:Shape格式、Coverage、E00(交换格 式).... 由Tab->Shape:使用MapInfo工具中的通用转换器 由Tab->E00:使用MapInfo工具中的ArcLink 由Tab->Coverage:先转换成Shape,然后在ArcInfo中用Shapearc;或则 先转成E00,在Import 由Mif->Shape:使用MapInfo工具中的通用转换器;或则使用ArcToolbox 直接转换 由Mif->E00:在MapInfo中导入成Tab,然后使用MapInfo工具中的 ArcLink 由Mif->Coverage:先用ArcToolbox转换成Shape,然后在ArcInfo中用 Shape arc

地理信息系统原理第三章 空间数据模型与数据结构3.2

地理信息系统原理第三章 空间数据模型与数据结构3.2
第1行第N列亮度值 波段2 第1行第1列亮度值
第1行第N列亮度值 波段n 波段1 第2行第1列亮度值 波段n
BSQ结构
BIP结构
BIL结构
星蓝海学习网13
以行为记录单位按行存储 地理数据。属性明显,位 置隐含。 缺点:存在大量冗余,精 度提高有限制。
星蓝海学习网14
0 0 0 0 0 4 4 4 记录1 0 0 0 0 0 4 4 4
星蓝海学习网
• 优点:
• 栅格加密时,数据量不会明显 增加,压缩效率高,最大限度 保留原始栅格结构,
• 编码解码运算简单,且易于检 索、叠加、合并等操作,得到 广泛应用。
• 缺点:
• 不适合于类型连续变化或类型 区域分散的数据。
星蓝海学习网
(2)压缩栅格数据结构
块码(二维游程编码)(行,列,半径,属性值)
弧段ID a b c d e
起始点 5 7 1 13 7
终结点 1 1 13 7 5
… … … 左多边形 Q A Q D D
右多边形 A B B B A
f
13
5
Qห้องสมุดไป่ตู้
D
点号 1 2
…… 25
坐标 (x1,y1) (x2,y2)
…… (x25,y25)
g
25
弧段ID
点号
a
5,4,3,2,1
b
7,8,1
c
1,9,10,11,12,13
• 采用方形区域作为记录单元,每个记录单元包括相邻的若干栅格,数据结构由初始位置(行、 列号)和半径,再加上记录单元代码组成。特点:
• 一个多边形所包含的正方形越大,多边形的边界越简单,块状编码的效率就越好。
• 块状编码对大而简单的多边形更为有效,而对那些碎部较多的复杂多边形效果并不好。

第三章空间数据的组织与结构(二)

第三章空间数据的组织与结构(二)

24 25 8 6
3 4
5
多边形原始数据
多边形 A B
数据项
(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),(x6,y6),(x7,y7),(x8,y8),(x9,y 9),(x1,y1) (x1,y1), (x9,y9), (x8,y8), (x17,y17), (x16,y16), (x15,y15),(x14,y14) ,(x13,y13), (x12,y12), (x11,y11),(x10,y10),(x1,y1)


栅格数据结构是一种影像数据结构,适用于遥 感图像的处理。它与制图物体的空间分布特征 有着简单、直观而严格的对应关系,对于制图 物体空间位置的可探性强,并为应用机器视觉 提供了可能性,对于探测物体之间的位置关系, 栅格数据最为便捷。 多边形数据结构的计算方法中常常采用栅格选 择方案,而且在许多情况下,栅格方案还更有 效。例如,多边形周长、面积、总和、平均值 的计算、从一点出发的半径等在栅格数据结构 中都减化为简单的计数操作。
c
d e f g h i j
16
19 15 15 1 8 16 31
8
5 19 16 15 1 19 31
E
O O D O A D B
B
E D B B B E C
弧段文件
弧段坐标文件
结点号 1 2
坐标 (x1,y1)
连接弧段 a,g
…… …… …… ……
结点文件
…… …… …… ……
……
22 23
24 25 8 6
3 4
5
B
C
D
EaΒιβλιοθήκη bcfg
h j

第三章 空间数据模型

第三章 空间数据模型

分类 空间关系 非空间关系 时间关系 非空间属性 地理空间 空间要素
子类 超类 子部分 超部分
几何坐标
对象模型对空间要素的描述
场模型 • 也称域(field)模型,是把地理空间中的现象看作连续 也称域( )模型,是把地理空间中的现象看作连续 的变量或体,如大气污染程度、地表温度、土壤湿度、 变量或体 如大气污染程度、地表温度、土壤湿度、 地形高度以及大面积空气和水域的流速和方向等。 地形高度以及大面积空气和水域的流速和方向等。 • 场可分为二维或三维。二维场是在二维空间 2中任意给 在二维空间R 场可分 二维或三维。 场是在二维空间 定的一个空间位置上,都有一个表现某现象的属性值, 定的一个空间位置上,都有一个表现某现象的属性值, 场是在三维空间R 即A=f(x,y)。三维场是在三维空间 3中任意给定一个 = , 。三维场是在三维空间 空间位置上,都对应一个属性值, 空间位置上,都对应一个属性值,即A=f(x,y,z)。 = , , 。
• 由于地理空间事物和现象的复杂性和人们 认识地理空间在观念和方法上的不同, 认识地理空间在观念和方法上的不同,墓 地里信息系统对空间实体的抽象方式也存 在一定的差别,或者说不同的学科或部门 在一定的差别, 可能对地理空间按照各自的认识和思维方 式来构造不同的模型。 式来构造不同的模型。
地理空间认知概念模式( 地理空间认知概念模式(国际标准化组织地理信息 标准化委员会) 标准化委员会)
机器世界
用数据模型描述现实世界中的事物及其联系。 用数据模型描述现实世界中的事物及其联系。
1) 字段(field)或数据项(data item): 字段( )或数据项( ): 标记实体属性的命名单位,是数据库中的最小信息单位。 标记实体属性的命名单位,是数据库中的最小信息单位。 2) 记录(record):字段值的有序集合。 记录( ):字段值的有序集合 ):字段值的有序集合。 3) 记录型 : 字段名的有序集合。 字段名的有序集合。 4) 文件 : 同类记录的集合。对应于实体集。 同类记录的集合。对应于实体集。

p03第三章 空间数据模型-第六-八节2

p03第三章 空间数据模型-第六-八节2

要素的特点
① 要素具有形状 ② 要素具有空间参考 ③ 要素具有属性 ④ 要素具有子类 ⑤ 要素具有关联 ⑥ 要素属性可以被限制 ⑦ 要素能用规则来验证 ⑧ 要素具有拓扑关系 ⑨ 要素具有复杂的行为
1)要素具有形状
要素的形状是以 Geometry (shape)这么一个特殊字段存储在要素类 表中的。要素可以用以下这些几何类型表达: 点或多点(一组点) 线(一组相连或不相连的线段) 多边形(不相邻或嵌套的环)。环是由一组连接的、闭合的、不 相交的线段组成的
• 属性关联:也可以定义非空间对象的关联,如房屋与 其主人的关系。
6)要素属性可以被限制
• 为加强数据录入的准确性,还可以制定属性域对要素的属性 进行限定。属性域,表现为一个数值范围或合法值的列表, 也可以在要素创建之时为其属性自动分配一个缺省值。可以 在要素类中为不同的子类设置不同的属性域和缺省值。
要素集中可以存储对象(Objects)、要素(features)及关联 类(Relationship class)和拓扑、几何网络。
对象、要素和关联类直接存储在 Geodatabase 中,不需要非得 存放在要素集中。
二、对象类
• 对象类是Geodatabase中的一个表,保存与地理对 象相关联的描述性信息;
7)要素能用规则来验证
• 现实世界中的对象存在或改变都是必须遵循一定规则 的。可以用这样的规则来限制几何网络中元素的制约 规则,或者定义这些元素关联的对应基数。
8)要素可具有拓扑关系
各类型要素之间具有的精确的空间位置关系就叫做拓扑。 例如,宗地 的二级小分块必须是彼此严格毗邻的,不允许有缝隙和重叠。这种二 维关系称为平面拓扑。
第八节、面向对象的空间数据模型介绍

第三章 空间数据结构

第三章 空间数据结构

(三)栅格数据的组织
数据文件 像元1
像元2 … 像元n
X坐标
数据文件
Y坐标
层1属性
层1
层2属性 ...
层n属性
层2 …
层n
像元1
X坐标
Y坐标 属性值
数据文件 层1
像元2 ...
像元n
多边 形1
属性值 像元1坐标
像元2坐标 … 像元n坐标
多边形2 ... 多边形n
层2 …
层n
(四)栅格结构的建立
一)建立途径
数据存储量大
(2)费尔曼链码 (边界编码)
将线状地物或区域边界表示为:由某一起始点 和某些基本方向上的单位矢量链组成。
前两个字母表示起点的行列号,从第三个数 字开始每个数字表示单位矢量的方向。
单位矢量的长度 为一个栅格单元, 后续点可能位于前 继点8个基本方向上。
7
0
1
6
2
5
4
3
(2)费尔曼链码 (边界编码)
三)栅格属性值的确定
4、重要性法
突出某些主要属性,只要在栅格中出现就把该属性作为 栅格属性
A
B
C
D
AABB AABB CDDB DDDD
三)栅格属性值的确定
5、百分比法
根据矩形区域内各地理要素所占面积的百分比数确定单 元的取值。
A
B
C
D
AABB AABB CDDB DDDD
(五)栅格数据编码方式
(3)游程(行程)编码
特点:属性的变化愈少,游程愈长,即压缩比的
大小与图的复杂程度成反比。
优点:数据压缩率高,易于实现叠加,检索和合
并运算。
缺点:适合类型区面积较大的专题图、遥感影像

黄杏元《地理信息系统概论》(第3版)章节题库-第三章至第四章【圣才出品】

黄杏元《地理信息系统概论》(第3版)章节题库-第三章至第四章【圣才出品】

第3章空间数据处理一、名词解释1.栅格数据压缩编码答:栅格数据压缩编码是指在不丢失信息的前提下,缩减数据量以减少存储空间,提高传输、存储和处理效率的一种技术方法。

编码方式有键码、游程长度编码、块码和四叉树编码等。

其类型又有信息无损编码和信息有损编码之分。

2.边界代数算法答:边界代数算法是一种基于积分思想的矢量格式向栅格格式转换算法,它适合于将记录拓扑关系的多边形矢量数据转换为栅格结构。

它不是逐点判断与边界的关系完成转换,而是根据边界的拓扑信息,通过简单的加减代数运算将边界位置信息动态地赋给各栅格点,实现了矢量格式到栅格格式的高速转换,而不需要考虑边界与搜索轨迹之间的关系,因此算法简单、可靠性好,各边界弧段只被搜索一次,避免了重复计算。

3.DIME文件答:DIME文件是美国人口普查局在1980年的人口普查中提出的双重独立地图编码文件。

它含有调查获得的地理统计数据代码及大城市地区的界线的坐标值,提供了关于城市街道、住址范围以及与人口普查局的列表统计数据相关的地理统计代码的纲要图。

在1990年的人口普查中,TIGER取代了DIME文件。

4.空间数据内插答:空间数据内插是通过已知点或分区的数据,推求任意点或分区数据的方法。

在已观测点的区域内估算未观测点的数据的过程称为内插。

一般情况下,空间位置越靠近已观测点的未观测点越有可能获得与实际值相似的数据,而空间位置越远的点则获得与实际值相似的数据的可能性越小。

5.坐标变换答:坐标变换是把一个坐标系下的空间对象转换到另一个坐标系下的过程,是空间实体的位置描述。

其实质是建立两个平面点之间的一一对应关系,包括几何纠正和投影转换,是空间数据处理的基本内容之一。

两个及以上的坐标转换时由极坐标相对参照确定维数空间。

6.仿射变换答:仿射变换是GIS数据处理中使用最多的一种几何纠正方法。

是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。

它的主要特性为:同时考虑到因地形突变而引起的实际比例尺在x和y方向上的变形,因此纠正后的坐标数据在不同方向上的长度比将发生变化。

第三章 空间数据处理

第三章 空间数据处理

平面方程为: zp=a0+a1x+a2y 只需要3个数据点即可。
z1=a0+a1x1+a2y1
z2=a0+a1x2+a2y2
z3=a0+a1x3+a2y3
z1 1 z 1 2 z 3 1
x1 x2 x3
y1 a 0 y 2 a 1 y 3 a 2
21 22.5 23 27 28 28.6 29 30.4 31 26 18 17
23 24 24 28 30 29 30 31 32 27 20 18
26.6 24.3
2、双线性多项式内插法
双线性内插多用于已经规则分布的数据内插。
用最邻近的四个已知点构成一个四边形块,并确定一 个双线性函数。
p1 p2
因此最少需要三个同名地点的坐标,列出6 个方程组。求出系数,得到两者的转换方程。
X1’= a0 +a1 x1+a2 y1 Y1’= b0 + b1 x1 + b2 y1 X2’= a0 +a1 x2+a2 y2 Y2’= b0 + b1 x2 + b2 y2 X3’= a0 +a1 x3+a2 y3 Y3’= b0 + b1 x3 + b2 y3 a0, a1, a2, b0 , b1, b2
压缩后由{A1,A2………Am}m个坐标子集组成。 则压缩比为: a=m/n ; a≤1
二、矢量数据压缩
V3 V2 V4
V5
V1
V6
(一)矢量数据压缩基本原理:道格拉斯—佩克算法 (1)用待压缩折线首尾两点连接为直线L。
(2)计算折线上各坐标点到直线的垂直距离。

第三章-空间数据模型

第三章-空间数据模型
多 边 形 与 弧 段 : P2 与 L3,L5,L2
2)邻接性: (同类元素之 间)
多边形之间、结点之间。
邻接矩阵
重叠:-- 邻接:1 不邻接: 0
P1 P2 P3 P4 P1 -- 1 1 1 P2 1 -- 1 0 P3 1 1 -- 0 P4 1 0 0 --
3)连通性:与邻接性相类似,指对弧段连接的判别,如用于网络 分析中确定路径、街道是否相通。
连通矩阵: 重叠:-- 连通:1 不连通:0
V1 V2 V3 …
V1 -- 1 0 V2 1 -- 1 V3 0 1 --
4)拓扑包含:指面状实体包含了哪些线、点或面状实体。
主要的拓扑关系:拓扑邻接、拓扑关联、拓扑包含。
P2
P1
P2
P3 P2
P1 P1
P2
拓扑关系的表达 拓扑关系具体可由4个关系表来表示: (1) 面--链关系: 面 构成面的弧段 (2) 链--结点关系: 链 链两端的结点 (3) 结点--链关系: 结点 通过该结点的链 (4) 链—面关系: 链 左面 右面
2 杨树 x1, y1;x2, y2;…; 林 xn, yn; x1, y1
3 松树 x1, y1;x2, y2;…; 林 xn, yn; x1, y1
空间对象的矢量数据模型
3.4 空间逻辑数据模型
二、栅格数据模型
在栅格数据模型中,点实体是一 个栅格单元(cell)或像元,线实体 由一串彼此相连的像元构成,面实 体则由一系列相邻的像元构成,像 元的大小是一致的。
象)
分类
子类/超类 等效
空间关系 非空间关系 时间关系
地理空间 空间要素
几何坐标
子部分 超部分
非空间属性

(第三章)空间数据结构

(第三章)空间数据结构

(第三章)空间数据结构空间数据结构1·简介空间数据结构是在计算机科学领域中用于表示和组织空间数据的数据结构。

它们被广泛应用于地理信息系统(GIS)、计算机图形学、计算机视觉等领域。

2·常见的空间数据结构2·1·四叉树四叉树是一种常见的空间数据结构,它将空间划分为四个象限,并将空间中的点或对象存储在树节点中。

它可以支持高效的空间查询和检索操作,特别适用于二维空间数据。

2·2·八叉树八叉树是四叉树的扩展,将空间划分为八个象限。

它在三维空间中更加常用,可以表示立方体或球体中的对象。

八叉树适用于对三维空间进行高效的查询和搜索。

2·3·R树R树是一种多叉树,用于表示和组织高维空间中的对象。

它通过将空间划分为矩形区域来存储和查询对象。

R树广泛应用于空间数据库和地理信息系统中。

2·4·KD树KD树是一种二叉树,用于存储和查询k维空间中的对象。

它通过将空间划分为超平面来快速定位对象。

KD树在计算机视觉领域中广泛使用,特别适用于最近邻搜索和范围搜索。

2·5·网格网格是一种将空间划分为规则网格单元的数据结构。

它是一种简单而高效的空间索引方法,可以快速进行点查询和范围查询。

3·空间查询操作3·1·点查询点查询是通过给定一个点坐标来查找空间数据结构中的对象。

点查询可以通过遍历整个数据结构或使用特定的查询算法来实现。

3·2·范围查询范围查询是通过给定一个矩形区域来查找空间数据结构中与该区域相交的对象。

范围查询可以通过遍历整个数据结构或使用特定的查询算法来实现。

3·3·最近邻查询最近邻查询是通过给定一个点坐标来查找空间数据结构中最接近该点的对象。

最近邻查询可以通过遍历整个数据结构或使用特定的查询算法来实现。

4·附件附件一:四叉树示意图附件二:八叉树示意图附件三:R树示意图附件四:KD树示意图附件五:网格示意图5·法律名词及注释5·1·GIS(地理信息系统):是一种用于捕获、存储、分析、管理和展示地理空间数据的计算机系统。

地理信息系统期末复习(1-3)

地理信息系统期末复习(1-3)

地理信息系统期末复习第一章导论第一节地理信息系统的基本概念一、数据与信息data)为便于交流、解释或处理,对信息的可再解释的形式化表示。

理解:泛指表示一个指定的值或条件的数字、符号(或字母)等。

数据是表示信息的,但这种表示要适合传输、分析和处理。

在数字通信中,常把数据当作信息的同义词。

information)关于客体(如事实、事件、事物、过程或思想,包括概念)的知识,在一定场合中具有特定的意义。

二、地理信息与地理信息系统geographic data)直接或间接关联着相对于地球的某个地点的数据。

(geographic information)关于那些直接或间接涉及相对于地球的某个地点的现象的信息。

GIS的操作对象是地理数据或空间数据。

P5-----Who?GIS空间数据(地理信息)的基本特征:空间特征、属性特征、时序或时间特征。

(1、2题的关系)P3------操作对象的特点GIS,7.132)在计算机软硬件支持下,把各种地理信息按照空间分布,以一定的格式输入、存储、检索、更新、显示、制图和综合分析的计算机技术系统。

课后习题1、什么是地理信息系统(GIS)?它与一般计算机应用系统有哪些异同点?(P4)答:在计算机软硬件支持下,把各种地理信息按照空间分布,以一定的格式输入、存储、检索、更新、显示、制图和综合分析的计算机技术系统。

GIS脱胎于地图学,是计算机科学、地理学、测绘遥感学、环境科学、城市科学、空间科学、信息科学和管理科学等众多学科交叉融合而成的新兴学科。

但是,地理信息系统与这学科和系统之间既有联系又有区别:(1)GIS与机助制图系统。

机助制图是地理信息系统的主要技术基础,它涉及GIS中的空间数据采集、表示、处理、可视化甚至空间数据的管理。

地理信息系统和数字制图系统的主要区别在于空间分析方面。

一个功能完善的地理信息系统可以包含数字制图系统的所有功能,此外它还应具有丰富的空间分析功能。

(2)GIS与DBMS(数据库管理系统)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

式中:n为控制点个数; x、y为控制点的数字化坐标; X、Y为控制点的理论坐标。
第 3 章 空间数据处理
由上述法方程,通过消元法,可求得仿射变换 的待定参数a0、a1、a2和b0、b1、b2。
仿射变换是GIS数据处理中使用最多的一种几 何纠正方法。它的主要特性为:同时考虑到x和y方 向上的变形,因此纠正后的坐标数据在不同方向上 的长度比将发生变化。其他方法还有相似变换和二 次变换等。 经过仿射变换的空间数据,其精度可用点位中 误差表示,即: [ △x 2 + △y 2 ] Mp = + n 式中:△x = X理论值–X计算值;△y = Y理论值–Y计算值 n为数字化已知控制点的个数。
第 3 章 空间数据处理
旋转
将点(x, y)旋转角 x=A.cos, y=A.sin x*=A.cos(+ ) =A.(cos.cos -sin.sin) =x.cos -y.sin y*=A.sin( + ) =A(sin.cos +cos.sin) =x.sin +y.cos 矩阵为: [x*, y*]=[x, y]. cos sin - sin cos
括结构转换、类型替换等,以实现空间数据在结构、
格式和类型上的统一,多源和异构数据的连接与融合。
数据提取指对数据进行某种条件的取舍,包括类型提
取、窗口提取、空间内插等,以适应不同用户对数据 的特定要求。
第 3 章 空间数据处理
空间数据的处理是GIS的重要功能之一。 空间数据的处理主要取决于原始数据的特 点和用户的具体要求,一般包括数据变换、 数据重构、数据提取等内容。 空间数据处理是指GIS对空间数据本身所提 供的操作手段,它不涉及内容的分析。
第 3 章 空间数据处理
平移 x*=x+dx y*=y+dy 其中,dx、dy分别为x, y 方向平移量 相应的向量形式为: [x*, y*]=[x, y]+[dx, dy]
第 3 章 空间数据处理
设x,y为数字化仪坐标, Y X、Y为理论坐标,m1、m2为地 y 图横向和纵向的长度变化比例, 两坐标系夹角为α ,数字化仪 原点O’相对于理论坐标系原 a0 α 点平移了a0、b0,则根据图形 O’ 变换原理,得出坐标变换公式: b0
第 3 章 空间数据处理
扭曲
x*=x.Sx y*=y.Sy
其中:Sx,Sy分别为x, y方向 的缩放比例系数,矩阵为: [x*, y*]=[x, y].
第 3 章 空间数据处理
比例缩放
x*=x.Sx y*=y.Sy
其中:Sx,Sy分别为x, y方向 的缩放比例系数,矩阵为:
Sx [x*, y*]=[x, y]. 0 0 Sy
第 3 章 空间数据处理
空间数据的处理是GIS的重要功能之一。 空间数据的处理主要取决于原始数据的 特点和用户的具体要求,一般包括数据 变换、数据重构、数据提取等内容。
数据变换指数据从一种数学状态到另一种数学状态的
变换,包括几何纠正和地图投影转换等,以实现空间
数据的几何配准。
数据重构指数据从一种格式到另一种格式的转换,包
a0n + a1∑x + a2∑y = ∑X a0∑x + a1∑x2 + a2∑xy = ∑xX a0∑y + a1∑xy+ a2∑y2= ∑yX b0n + b1∑x + b2∑y = ∑Y b0∑x + b1∑x2 + b2∑xy = ∑xY b0∑y + b1∑xy+ b2∑y2= ∑yY


一、几何纠正 二、地图投影及其转换
第 3 章 空间数据处理
一、几何纠正
几何纠正是为了实现对数字化数据的坐标系
转换和图纸变形误差的改正。常见的GIS软件 一般都具有仿射变换、相似变换和二次变换等 几何纠正功能。 仿射变换可以对坐标数据在x和y方向进行不 同比例的缩放,同时进行扭曲、旋转和平移。
第 3 章 空间数据处理
第1节 第2节 第3节 第4节 第5节 第6节 空间数据的变换 空间数据结构的转换 多元空间数据的融合 空间数据的压缩与重分类 空间数据的内插方法 空间拓扑关系的编辑
第 3 章 空间数据处理
第1节 空间数据的变换
空间数据的变换即空间数据坐标系的变换,其 实质是两个平面点之间的一一对应的关系,包 括几何纠正和投影转换,它们是空间数据处理 的基本内容之一。
X = a0 +(m1cosα)x + (m2sinα)y Y = b0–(m1sinα)x + (m2cosα)y
第 3ቤተ መጻሕፍቲ ባይዱ章 空间数据处理
设Qx、Qy表示转换坐标于理论坐标之差, 则有: Qx = X – (a0 + a1x + a2y)
Qy = Y – (b0 + b1x + b2y)
按照[Qx2] = min和[Qy2] = min的条件, 可得到两组法方程:
第 3 章 空间数据处理
二、地图投影及其转换
(一)地图投影的基本原理
(二)地图投影的类型
(三)地理信息系统常用的地图投影 (四)地图投影转换
第 3 章 空间数据处理
地图投影:投影实质
第 3 章 空间数据处理
地图投影:投影实质
建立地球椭球面上经纬线网和平面上相应经 纬线网的数学基础,也就是建立地球椭球面上 的点的地理坐标(λ,φ)与平面上对应点的平 面坐标(x,y)之间的函数关系:
X = a0 +(m1cosα)x + (m2sinα)y Y = b0–(m1sinα)x + (m2cosα)y
x
O
坐标变换原理
X
第 3 章 空间数据处理
第 3 章 空间数据处理
式中,设 a1 = m1cosα , b1 = -m1sinα a2 = m2sinα , b2 = m2cosα 则上式可以简化为: X = a0 + a1 x + a2 y Y = b0 – b1x + b2 y 上式中含有6个参数a0、a1、a2、b0、b1、b2, 要实现仿射变换,需要知道不在同一直线上的3对控 制点的数字化坐标及其理论值,才能求得上述6个待 定参数。但在实际应用中,通常利用4个以上的点来 进行几何纠正。下面按最小二乘法原理求解待定参 数(首先回顾最小二乘法)
相关文档
最新文档