高频电子线路实验正弦波振荡器
正弦波振荡器实验报告(高频电路)
高频电路原理与分析实验报告组员:学号:班级:电子信息工程实验名称:正弦波振荡器指导教师:一.实验目的1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能;2.掌握LC振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二.实验内容V ,1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值p p并以频率计测量振荡频率;2.测量LC振荡器的幅频特性;3.测量电源电压变化对振荡器的影响;4.观察并测量静态工作点变化对晶体振荡器工作的影响。
三、实验步骤1、实验准备插装好正弦振荡器与晶体管混频模块,接通实验箱电源,此时模块上电源指示灯和运行指示灯闪亮。
用鼠标点击显示屏,选择“实验项目”中的“高频原理实验”,然后再选择“振荡器实验”中的“LC振荡器实验”,显示屏会显示出LC振荡器原理实验图。
说明:电路图中各可调元件的调整,其方法是:用鼠标点击要调整的原件,模块上对应的指示灯点亮,然后滑动鼠标上的滑轮,即可调整该元件的参数。
利用模块上编码器调整与鼠标调整其效果完全相同。
用编码器调整的方法是:按动编码器,选择要调整的元件,模块上对应的指示灯点亮,然后旋转编码器旋钮,即可调整其参数。
我们建议采用鼠标调整,因为长时间采用编码器调整,可能会造成编码器损坏。
本实验箱中,各模块可调元件的调整,其方法与此完全相同,后面不再说明。
2、LC振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即调2W3使晶振停振。
)(1)西勒振荡电路幅频特性测量用铆孔线将2P2与2P4相连,示波器接2TP5,频率计与2P5相连。
开关2K1拨至“p”(往下拨),此时振荡电路为西勒电路。
调整2W4使输出幅度最大。
(用鼠标点击2W4,且滑动鼠标滑轮来调整。
)调整2W2可调整变容管2D2的直流电压,从而改变变容管的电容,达到改变振荡器的振荡频率,变容官上电压最高时,变容管电容最小,此时输出频率最高。
高频实验报告_正弦振荡器和混频器
电容C(pf)
振荡频率f(MHZ)
输出电压VP-P(v) 输出幅度(v)
10
8.998
0.312 0.156
50
13.387
1.36 0.68
100
10.651
1.84 0.92
150
9.347
2.36 1.18
200
9.524
1.68 0.84
250
8.726
2.20 1.10
300
8.264
2.40 1.20
9 D01
LED
9 TP 0 3
音频输出
9 C 08
OUT12
9 L0 1
1
9 C 06
9 P0 3
9 C 05 9 C 09
VCC
GND
GND9
VCC
GND
+12 V
1 2V
+12 V
-1 2 V
9K1 +12 V
+12 V1
9 L0 2
9 C 13
9 R 13
9 C 11
9 TP 0 4
9 Q01
1
调幅输入
9 R 03
9 R 07
9 R 04 9 R 01
8
10
1
9 R 08
4
9 R 09
9 U01
GADJ
GADJ
CAR+
CAR-
OUT+ 6
SIG+
OUT- 12
SIG-
BIAS 5
VEE MC 1 49 6
9R9 9 R 05 9 R 10
9 R 06 OUT12
9 C 04
三点式正弦波振荡器(高频电子线路实验报告)
三点式正弦波振荡器(高频电子线路实验报告)摘要本实验采用三点式正弦波振荡器电路,通过实验验证了三点式正弦波振荡器的设计和实际应用,其中包括三点式正弦波振荡器的基本原理、电路结构和工作特性等。
实验结果表明,通过合理的电路设计和优化,可以得到高精度、稳定性好的正弦波振荡器,为工程应用提供了重要的参考。
关键词:三点式正弦波振荡器、电路结构、工作特性一、实验目的1.熟悉三点式正弦波振荡器的基本原理和电路结构;3.通过实验验证三点式正弦波振荡器的设计和实际应用。
二、实验原理三点式正弦波振荡器是一种常用的基本电路,它通过正反馈作用在电路中产生自激振荡现象,从而输出对称的正弦波信号。
其基本原理如下:当输出正弦信号幅度变动时,输入放大器的反相输出端和反馈电容之间的电压也会变化,导致反馈放大器的增益也会随之变化,最终导致输出正弦波的幅度稳定在一定的水平上。
同时,在电路中增加合理的RC网络,可以使三点式正弦波振荡器输出的波形更加准确、稳定。
其中,- OA1, OA2分别为运算放大器;- R1, R2, R3分别为电阻,C1, C2分别为电容,L为电感;- 输出信号可以从OA1反相输出端或者OA2非反相输出端输出。
三、实验过程本实验采用EDA软件进行电路仿真和搭建,整个实验过程分为以下几个步骤:1.根据电路原理图,使用EDAW工具将三点式正弦波振荡器的电路搭建出来;2.依据实验材料,按照电路图要求选择合适的R、C、L值;3.将搭建好的电路连接上电源(+12V),开启仿真。
4.在电路仿真过程中,通过示波器观察输出的正弦波形,并分析波形的稳定性和频率响应等特性;5.修改电路参数,观测输出波形的变化情况,并记录相应的数据;四、实验结果通过实验,在合适的电路参数和电源电压下,三点式正弦波振荡器的输出波形为一定幅值的正弦波。
图2 实验得到的三点式正弦波振荡器输出波形五、实验分析通过本实验,我们可以看出三点式正弦波振荡器具有以下特点:1.输出波形准确、稳定。
高频电子线路实验正弦波振荡器
.太原理工大学现代科技学院高频电子线路课程实验报告专业班级信息13-1学号2013101269姓名指导教师颖实验名称 正弦波振荡器(LC 振荡器和晶体振荡器) 专业班级 信息13-1 学号 2013100 0 成绩 实验2 正弦波振荡器(LC 振荡器和晶体振荡器) 2-1 正弦波振荡器的基本工作原理 振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定的波形的交变振荡能量的装置。
正弦波振荡器在电子领域中有着广泛的应用。
在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去。
在超外差式的各种接收机中,是由振荡器产生的一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。
振荡器的种类很多。
从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。
我们只讨论反馈式振荡器。
根据振荡器所产生的波形,又可以把振荡器氛围正弦波振荡器和非正弦波振荡器。
我们只介绍正弦波振荡器。
常用正弦波振荡器主要是由决定振荡频率的选项网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。
按照选频网络所采用的元件不同,正弦波振荡器可以分为LC 振荡器、RC 振荡器和晶体振荡器等类型。
一、反馈型正弦波自激振荡器基本工作原理 以互感反馈振荡器为例,分析反馈型正弦自激振荡器的基本原理,其原理电路如图2-1所示; 当开关K 接“1”时,信号源Vb 加到晶体管输入端,这就是一个调谐放大器电路,集电极回路得到了一……………………………………装………………………………………订…………………………………………线………………………………………个放大了的信号Vf。
当开关K接“2”时,信号源Vb不加入晶体管,输入晶体管是Vf的一部分V’b。
若适当选择互感M和Vf的极性,可以使Vb和V’b大小相等,相位相同,那么电路一定能维持高频振荡,达到自激振荡的目的。
实际上起振并不需要外加激励信号,靠电路内部扰动即可起振。
高频电子线路正弦波振荡器
f
1
2 L(CCi)
第4章 正弦波振荡器
4.3 频率稳定度
4.3.1 频率稳定度的意义和表征 ❖ 由于外界条件的变化, 引起振荡器的实际工作
频率偏离标称频率的程度, 它是振荡器的一个 很重要的指标。 ❖ 长期稳定度、短期稳定度与瞬时稳定度(相位噪声)
f f1 f0
f f1 f0
f0
f0
f02
f
不
03
能
振
荡
第4章 正弦波振荡器
❖ 常见振荡器的高频电路, 判断它们是由哪种基 本线路演变而来的
(a)
(b)
(c)
Cb c
(d)
(e)
(f)
图 4 ─8 几种常见振荡器的高频电路
第4章 正弦波振荡器
4.2.2 电容反馈振荡器
❖
图(a)是一电容反馈振荡器的实际电路,
❖
图(b)是其交流等效电路。
C C1 C2 C3
C3
负载R0接入系数:p
C C1
C3 C1
RL
p 2 R0
(
C3 C1
)2
Ro
(4 ─ 35) (4 ─ 36) (4 ─ 37)
结果:C1越大耦合越弱,频率更稳定。
第4章 正弦波振荡器
克拉泼振荡器振荡频率
1 2
1 LC
1 LC3
反馈系数:KF
C1 C2
(4 ─ 38) (4 ─ 39)
(4 ─ 19a) (4 ─ 19b)
(4 ─ 20)
第4章 正弦波振荡器
L
L , - ( f+ F ′)
1 2 0
-
(
+
f
F
′)
高频——实验报告
实验一正弦波振荡器一、实验目的1了解三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2通过实验掌握晶体管静态工作点、反馈系数、负载变化对起振和振荡幅度的影响。
3研究外界条件(温度、电源电压、负载变化)对角振荡器频率稳定度的影响。
4测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。
二、实验设备TKGPZ-1型高频电子线路综合实验箱;双踪示波器;频率计繁用表。
三、实验内容1熟悉振荡器模块各元件及其作用;2进行LC振荡器波段工作研究;3研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响;4测试LC振荡器的频率稳定度。
三、基本原理将开关S2的1拨上2拨下,S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容三点式反馈振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振荡器频率。
f=振荡器频率约为4.5MHZ振荡电路反馈系数:1320560.12 470CFC==≈振荡器输出通过耦合电容C3加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
四、实验步骤1研究振荡器静态工作点对振荡幅度的影响。
2将开关S2的1拨上,构成LC振荡器。
3改变上偏置电位器RA1,并用示波器测量对应点的振荡幅度Vp-p,记下停振时的静态工作点电流值。
五、实验结果1、组成LC西勒振荡器:短接K1011-2、K1021-2、K103 1-2、K1041-2,并在C107处插入1000p的电容器,这样就组成了LC西勒振荡器电路。
用示波器(探头衰减10)在测试点TP102观测LC振荡器的输出波形,再用频率计测量其输出频率。
2、调整静态工作点:短接K104 2-3(即短接电感L102),使振荡器停振,并测量三极管BG101的发射极电压Ueq;然后调整电阻R101的值,使Ueq=0.5V,并计算出电流Ieq(=0.5V/1K=0.5mA)。
高频电子线路第四版第7章正弦波振荡器
Av
Av 0 1
1
jQL
0
0
arc
tanQ
0
0
图 7.5.4 并联谐振回路的 相频特性
7.6.1 互感耦合振荡器 7.6.2 电感反馈式三端振荡器
(哈特莱振荡器)
7.6.3 电容反馈式三端振荡器 (考毕兹振荡器)
7.6.4 LC三端式振荡器相位平衡条件 的判断准则
放大器与振荡器本质上都是将直流电能转化为交 流电能,不同之处在于:放大器需要外加控制信号而 振荡器不需要。因此,如果将放大器的输出正反回输 入端,以提供控制能量转换的信号,就可能形成振荡 器。
被保留,成为等幅振荡输出信号。(从无到有)
然而,一般初始信号很微弱,很容易被干扰信号淹没,不 能形成一定幅度的输出信号。因此,起振阶段要求
起振条件 A(0 ) F (0 ) 1 (由弱到强)
A (0 ) F (0 ) 2nπ
当输出信号幅值增加到一定程度时,就要限制它继续增加。 稳幅的作用就是,当输出信号幅值增加到一定程度时,
如果由LC谐振回路通过互感耦合将输出信号送
回输入回路,所形成的是互感耦合振荡器。
由互感耦合同名端定义可判知,反馈网络形成 正反馈,满足相位平衡条件。如果再满足起振条件, 就符合基本原理。射基(集)同名
三极管,LC谐振回路
变压器
如果正反馈网络由LC谐振回路中的电感分压电路将输出信号
送回输入回路,所形成的是电感反馈式三端振荡器。
而对于基频和3次泛音频率来 说,回路呈感性,振荡器不满足相 位平衡条件,不能产生振荡。而对 于7次及其以上的泛音频率,回路 呈容性,但其电容量过大,负载阻 抗过小,以致电压增益下降太多, 不能起振。
图 7.8.5 泛音晶体振荡器 交流等效电路
三点式正弦波振荡器(高频电子线路实验报告)
三点式正弦波振荡器(⾼频电⼦线路实验报告)三点式正弦波振荡器⼀、实验⽬的1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2、通过实验掌握晶体管静态⼯作点、反馈系数⼤⼩、负载变化对起振和振荡幅度的影响。
3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。
⼆、实验内容1、熟悉振荡器模块各元件及其作⽤。
2、进⾏LC 振荡器波段⼯作研究。
3、研究LC 振荡器中静态⼯作点、反馈系数以及负载对振荡器的影响。
4、测试LC 振荡器的频率稳定度。
三、实验仪器1、模块 3 1块2、频率计模块 1块3、双踪⽰波器 1台4、万⽤表 1块四、基本原理实验原理图见下页图1。
将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可⽤来改变振荡频率。
)14(1210CC C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围)振荡电路反馈系数F=32.04702202203311≈+=+C C C振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输⼊端,因C 5容量很⼩,再加上射随器的输⼊阻抗很⾼,可以减⼩负载对振荡器的影响。
射随器输出信号经N3调谐放⼤,再经变压器耦合从P1输出。
图1 正弦波振荡器(4.5MHz )五、实验步骤1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作⽤。
2、研究振荡器静态⼯作点对振荡幅度的影响。
(1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。
(2)改变上偏置电位器W1,记下N1发射极电流I eo (=11R V e ,R11=1K)(将万⽤表红表笔接TP2,⿊表笔接地测量V e ),并⽤⽰波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态⼯作点的关系,测量值记于表2中。
《高频电子线路》课件—05正弦波振荡器
相位条件判断:
图5.2.2 例5.2.1图
e1 c1 b2 e2 (e1)
可见电路是负反馈,不能产生振荡。
怎样修改才能能产生振荡?
5.2.2 三点式振荡电路
三点式振荡器的工作频率可达到几百兆赫。
一、电路组成法则(相位条件)
在三点式电路中,LC回 路中与发射极相连接的两个电 抗元件必须为同性质,另外一 个电抗元件必须为异性质。同 时满足 X ce Xbe Xbc 0
Vi
5.1.3 反馈振荡的条件
一、起振条件和平衡条件 由振荡建立过程的起振循环得出,使振幅不断增 长的条件(起振条件)是 Vf Vi 。
1、起振条件
T
josc
Vf Vi
1
或
或表示为
( AF 1)
T (osc ) 1 T 2n
或 AAF1F(振 2幅n起(振相条位件起)振条件)(n=0,1,2,…)
若组成电感三点式,则在振荡频率 fosc2处,应满足
f1 f2 fosc2 f3 或 f2 f1 fosc2 f3
二、 电容三点式电路(又称考毕兹电路,Coplitts)
1、电路分析
L回路电感
Cb 高
频旁 路电 容
电耦容合回C路1 电C容2
图5.2.5 电容三点式电路 (a)原理电路 (b)高频交流等效电路
由(a)到(b):
C2 C2 Cbe
V f
1 n
Vf
接入系数 n C1
C1 C2
(通常re Re )
re
1 n2
(re
//
Re )
1 n2
re
由(b) 到(c):
G
g L
ge
1 RL
正弦波振荡器高频
高频电子线路实验设计电容三端式正弦波振荡器(3MHZ)姓名:张楷伟学号:02121433班级:021215一、实验名称: 电容三端式正弦波振荡器 二、原理介绍正弦波振荡器是指不需要输入信号控制就能自动地将直流电转换为特定频率和振幅的正弦交变电压(电流)的电路。
它由四部分组成:放大电路,选频网络,反馈网络和稳幅电路。
常用的正弦波振荡器有电容反馈振荡器和电感反馈振荡器两种。
后者输出功率小,频率较低;而前者可以输出大功率,频率也较高。
三、设计方案本次课程设计我选择的是电容三端式振荡器, 电容三端式振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。
电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。
因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。
四、原理和分析反馈振荡器原理方框图所示。
反馈型振荡器是由放大器和反馈网络组成的一个闭合环路,放大器通常是以某种选频网络(如振荡回路)作负载,是一个调谐放大器。
反馈振荡器方框图为了能产生自激振荡,必须有正反馈,即反馈到输入端的自你好与放大器输入端的信号相位相同。
定义A (S )为开环放大器的电压放大倍数:)()()(S U S U S A i o =F(S)为反馈网络的电压反馈系数:)()()('S U S U S F o i =)(S A f 为闭环电压放大倍数:)()(1)()()()(S F S A S A s U s U S A i o f ⋅-==在振荡开始时,由于激励信号较弱,输出电压的振幅o U 则比较小,此后经过不断放大与反馈循环,输出幅度o U 开始逐渐增大,为了维持这一过程使输出振幅不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡,即:1)(>jw T因此起振的振幅条件是:1..>⋅F A起振的相位条件是:πϕϕn F A 2=+要使振荡器起振必须同时满足起振的振幅条件和相位条件。
高频实验 正弦波振荡器
实验三正弦波振荡器
一、正反馈LC振荡器
1)电感三端式振荡器
通过示波器观察其输出波形,并说明该电路的不足
(不足在于截止失真)
3.1 电感三端式振荡器
2)电容三端式振荡器
(a)(b)
3.2 电容三端式振荡器
(1)分别画出(a)(b)的交流等效图,计算其反馈系数
(2)通过示波器观察输出波形,与电感三端式振荡器比较
(3)用虚拟仪器数字频率计(XFC1)测量频率,与计算值进行比较。
3)克拉泼振荡器
3.3 克拉泼振荡器
(1)通过示波器观察输出
(2)在该电路的基础上,将其修改为西勒振荡器,并通过示波器观察波形
二、晶体振荡器
(a)
(b)
3.4 晶体振荡器
(1)(a)(b)分别是什么形式的振荡器?
(2)通过示波器观察波形,电路的振荡频率是多少?
注意:3.3和3.4电路中有滑阻,在仿真时可以通过改变滑阻值,来触发电路。
问题:
(1)振荡器的电路特点?电路组成?
(2)并联型和串联型晶体振荡器中的晶体分别起什么作用?
(1)振荡器的电路特点:不需要输入信号控制就能自动的将直流电源转变为特定频率和振幅的正弦交变能量的电路。
电路由振荡回路和直流信号源以及晶体管引入正反馈网络组成。
(2)并联型晶体振荡器中的晶体的作用:晶体管相当于线圈,呈感性。
串联型晶体振荡器中的晶体的作用:晶体管相当于导线,短路。
高频电子线路第4章-正弦波振荡器
,
满
足
相
位 U
平
ce
衡
条件
,
I
I
UUi f
23
3、起振条件 (A0F 1)
分析起振条件时可以利用高 频小信号放大器的分析法。
C1
g
' 0
(1)
C1 Coe , C2
p12 g0 p1
电压增益
CC1' 2CC2'ie C2'
,
A0
Uc Ui
y fe g
g goe gL g0' p2 gie
C1、C2、L构成振荡回路
反馈信号取自C2两端
c b
C1
e
C2
电容三点 L 式振荡器
直流通路
交流等效电路
22
2、相位平衡条件
用矢量法分析其交流通路是否 满足相位平衡条件,即分析电路 是否为正反馈。
U f
I •
1
jC2
I •
1 j
C2
U+ce
U+ i
-
-
U- f
+
可 可
见U f、U 能振荡
同
i
相
3○ 5⊕ 4○
1⊕ 2○ (f)经判断满足相位平衡条件,故 可能振荡,为共射调基型互感耦 合振荡器。
34
例2 考毕兹电路见图,已知C1 100pF,C2 300pF,
L 50uH,求(: 1)振荡频率f0, (2)为维持振荡,
放大器所需的最小放大倍数Amin
解:(1) f0
2
1 L C1C2
bc e
结论:射同集(基)反
(3) 对于振荡频率,应满足:
《高频电子线路》正弦波振荡器实验报告
《高频电子线路》正弦波振荡器实验报告课程名称:高频电子线路实验类型:验证型实验项目名称:正弦波振荡器一、实验目的和要求通过实验,学习克拉泼振荡器的工作原理、电路组成和调试方法,学习电容三点式振荡器的设计方法,利用Multisim仿真软件进行仿真分析实验。
二、实验内容和原理(一)实验原理1、正弦振荡器的基本原理;2、产生等幅震荡的两个基本条件:相位条件和幅度条件)1 利用正反馈将电源接入瞬间的一个激励不断通过谐振网络滤波放大得到一个只含有一个频率成分的正弦。
2 振幅条件:环路增益在放大倍率为1时的偏导数(对输出电压)小于0.相位条件:谐振频率的信号输出相位为2π整数倍(二)实验内容(1)设计振荡频率为9.5MHz的克拉泼振荡器。
(2)用Multisim进行仿真,用双踪示波器观察振荡器器输出信号波形,并用频率计测量振荡频率,并与理论计算结果进行对比。
(3)改变电阻R3的阻值,用电压表测量振荡管的直流静态工作电压。
三、主要仪器设备计算机、Multisim仿真软件、双踪示波器、频率计、电压表、直流电源。
四、操作方法与实验步骤及实验数据记录和处理1、设计频率为9.5MHz的克拉泼振荡器电路图。
C11000pF R212kΩR12kΩL110mHR4100ΩXSC3ABExt Trig++__+_L23.2uHC41000pFR310kΩKey=A0 %C31000pF C510µFC610µFV112VL322mH C21µFC7100pFXFC1123Q12N29232、用Multisim 进行仿真,用双踪示波器观察振荡器器输出信号波形,并用频率计测量振荡频率,并与理论计算结果进行对比。
(1)仿真波形和频率测量(2)理论分析计算根据电路图提供的振荡回路参数,计算设计电路的振荡频率与实际测试的振荡频率进行对比。
计算频率值02f LCπ==8.897MHz电路测试频率值f = 9.325MHz 00||100%f f f -=⨯=频率稳定度 5.3%对比分析其产生误差的原因:3、改变电阻R3的阻值,用电压表测量振荡管Q1的直流静态工作电压。
高频电子线路实验正弦波振荡器(特选资料)
太原理工大学现代科技学院高频电子线路课程实验报告专业班级信息13-1学号2013101269姓名指导教师孙颖实验名称 正弦波振荡器(LC 振荡器和晶体振荡器) 专业班级 信息13-1 学号 2013100 姓名 0 成绩 实验2 正弦波振荡器(LC 振荡器和晶体振荡器) 2-1 正弦波振荡器的基本工作原理 振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定的波形的交变振荡能量的装置。
正弦波振荡器在电子领域中有着广泛的应用。
在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去。
在超外差式的各种接收机中,是由振荡器产生的一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。
振荡器的种类很多。
从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。
我们只讨论反馈式振荡器。
根据振荡器所产生的波形,又可以把振荡器氛围正弦波振荡器和非正弦波振荡器。
我们只介绍正弦波振荡器。
常用正弦波振荡器主要是由决定振荡频率的选项网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。
按照选频网络所采用的元件不同,正弦波振荡器可以分为LC 振荡器、RC 振荡器和晶体振荡器等类型。
一、反馈型正弦波自激振荡器基本工作原理 以互感反馈振荡器为例,分析反馈型正弦自激振荡器的基本原理,其原理电路如图2-1所示;……………………………………装………………………………………订…………………………………………线………………………………………当开关K接“1”时,信号源Vb加到晶体管输入端,这就是一个调谐放大器电路,集电极回路得到了一个放大了的信号Vf。
当开关K接“2”时,信号源Vb不加入晶体管,输入晶体管是Vf的一部分V’b。
若适当选择互感M 和Vf的极性,可以使Vb和V’b大小相等,相位相同,那么电路一定能维持高频振荡,达到自激振荡的目的。
实际上起振并不需要外加激励信号,靠电路内部扰动即可起振。
太原理工大学高频实验二 LC正弦波振荡器
本科高频电子线路实验报告课程名称:高频电子线路实验名称:正弦波振荡器实验实验地点:北区学院楼四楼实验室实验二 正弦波振荡器一、实验目的1、掌握晶体管工作状态,反馈大小,负载变化对振荡幅度与波形的影响。
2、掌握改进型电容三点式正弦波振荡器的工作原理及振荡性能的测量方法。
3、研究外界条件变化对振荡频率稳定度的影响。
4、比较LC 振荡器和晶体振荡器频率稳定度,加深对晶体振荡器频率稳定度高的理解。
二、实验原理与线路正弦波振荡器是指振荡波形接近理想正弦波的振荡器,这是应用非常广泛的一类电路,产生正弦信号的振荡电路形式很多,但归纳起来,不外是RC 、LC 和晶体振荡器三种形式。
在本实验中,我们研究的主要是LC 三点式振荡器振荡器。
LC 三点式振荡器的基本电路如图所示:根据相位平衡条件,图中构成振荡电路的三个电抗中间,X 1、X 2必须为同性质的电抗,X3必须为异性质的电抗,且它们之间应满足下列关系式:()213X X X +-= (2-1) 这就是LC 三点式振荡器相位平衡条件的判断准则。
若X 1和X 2均为容抗,X 3为感抗,则为电容三点式振荡电路;若X 1和X 2均为感抗,X 3为容抗,则为电感三点式振荡器。
1、电容三点式振荡器共基电容三点式振荡器的基本电路如图2-2所示。
图中C3为耦合电容。
由图可见:与发射极连接的两个电抗元件为同性质的容抗元件C1和C2;与基极连接的为两个异性质的电抗元件C2和L ,根据前面所述的判别准则,该电路满足相位条件。
若要它产生正弦波,还须满足振幅,起振条件,即:10>⋅F A (2-2)式中A O 为电路刚起振时,振荡管工作状态为小信号时的电压增益;F 是反馈系数,只要求出A O 和F 值,便可知道电路有关参数与它的关系。
为此,我们画出图2-2的简化,y 参数等效电路如图2-3所示,其中设y rb ≈0 y ob ≈0,图中G O 为振荡回路的损耗电导,G L 为负载电导。
0910高频电子线路正弦波振荡器
• 不需外加输入信号,便能自行产生输出信号的电路称为 振荡器.
• 按照所产生的波形,振荡器可分为正弦波振荡器和非正 弦波振荡器,按照产生振荡的工作原理可分为反馈式振 荡器和负阻式振荡器.
• 正弦波振荡器的应用可分为两类:频率输出和功率输出. 所谓频率输出是指用正弦波振荡器产生具有准确而稳定 的频率的电信号.它的应用范围极为广泛.如无线电通信 中所需的载波信号和本地振荡信号,在各种无线电测量 仪器中要用的正弦波信号源,在数字系统中的时钟信号 源等.功率输出则将振荡器用作高频功率源.
• 与发射极相连接的两个电抗元件同为电容时的三点式电 路,称为电容回授三点式振荡器电路,也称为考毕兹电路.
• 与发射极相连接的两个电抗元件同为电感时的三点式电 路,称为电感回授三点式振荡器电路,也称为哈特莱电路.
• 由于要求与发射极相连的两个电抗元件为同性质,而与 基极相连的则为异性质,所以这个法则又称为“射同基 反”原则。以此准则可迅速判断振荡电路组成是否合理, 能否起振。也可用于分析复杂电路与寄生振荡现象。
考毕兹振荡器分析
(1) 振荡器的工作频率
在工程设计的近似条件下,可认为振荡器的工作频率
ωg等于由L、C1、C2组成的回路的谐振频率。即
g 0
1 L C
或f g
f021 L NhomakorabeaC 因此根据此电路的交流通路可以求得该振荡器的工
作频率为
C
C1串C2
C1
/ /C2
C1 • C2 C1 C2
g 0
1 L C1C2
C4 C3 C4
C1 C2 C3
C1 C2
振荡器的振荡频率为
g
1 L(C3 C4 )
晶体振荡器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频电子线路实验正弦波振荡器太原理工大学现代科技学院高频电子线路课程实验报告专业班级信息13-1学号2013101269姓名指导教师孙颖实验名称 正弦波振荡器(LC 振荡器与晶体振荡器)专业班级 信息13-1 学号 2013100 姓名 0 成绩 实验2 正弦波振荡器(LC 振荡器与晶体振荡器) 2-1 正弦波振荡器的基本工作原理 振荡器就是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定的波形的交变振荡能量的装置。
正弦波振荡器在电子领域中有着广泛的应用。
在信息传输系统的各种发射机中,就就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去。
在超外差式的各种接收机中,就是由振荡器产生的一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。
振荡器的种类很多。
从所采用的分析方法与振荡器的特性来瞧,可以把振荡器分为反馈式振荡器与负阻式振荡器两大类。
我们只讨论反馈式振荡器。
根据振荡器所产生的波形,又可以把振荡器氛围正弦波振荡器与非正弦波振荡器。
我们只介绍正弦波振荡器。
常用正弦波振荡器主要就是由决定振荡频率的选项网络与维持振荡的正反馈放大器组成,这就就是反馈振荡器。
按照选频网络所采用的元件不同,正弦波振荡器可以分为LC 振荡器、RC 振荡器与晶体振荡器等类型。
一、反馈型正弦波自激振荡器基本工作原理 以互感反馈振荡器为例,分析反馈型正弦自激振荡器的基本原理,其原理电路如图2-1所示; 当开关K 接“1”时,信号源Vb 加到晶体管输入端,这就就是一个调谐放大器电路,集电极回路得到了一个放大了的信号Vf 。
……………………………………装………………………………………订…………………………………………线………………………………………当开关K接“2”时,信号源Vb不加入晶体管,输入晶体管就是Vf的一部分V’b。
若适当选择互感M 与Vf的极性,可以使Vb与V’b大小相等,相位相同,那么电路一定能维持高频振荡,达到自激振荡的目的。
实际上起振并不需要外加激励信号,靠电路内部扰动即可起振。
产生自激振荡必须具备一下两个条件;1、反馈必须就是正反馈,即反馈到输入端的反馈电压与输入电压同相,也就就是Vb与V’b同相。
2、反馈信号必须足够大,如果从输出端送回到输入端的信号太弱,就不会产生震荡了,也就就是说,反馈电压V’b在数值上应大于或等于所需要的输入信号电压Vb。
二、电容三点式LC振荡器LC振荡器实质上就是满足振荡条件的正反馈放大器。
LC振荡器就是指振荡回路就是由LC元件组成的。
从交流等效电路可知;由LC振荡器回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。
在几种基本该频振荡器回路中,电容反馈LC振荡器具有较好的振荡波形与稳定度,电路形式简单,适于在较高的频段工作,尤其就是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ-GHZ、1、LC振荡器的起振条件一个振荡器能否起振,主要取决于振荡电路自激振荡的基本条件,即;振荡起振平衡条件与相位平衡条件。
2、LC振荡器的频率稳定度频率稳定度表示;在一定的时间或一定的温度,电压等变化范围内振荡频率的相对变化成都,常用公式表示; f0/f0 来表示(f0为所选的测试频率; f0为振荡频率的频率误差,f0=f02-f01;f02与f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。
由于振荡回路的元件就是决定频率的主要因素,所以要提高频率的稳定性,就要设法提高振荡回路的标准性。
3、LC振荡器的调度与参数选择以实验采用改进型电容三点振荡电路(西勒电路)为例,交流等效电路如图2-2所示。
从图可知,该电路C2上的电压为反馈电压,即该假牙加在三极管be之间。
由于该电压形成正反馈,符合振荡器的相位平衡条件。
(1)静态工作点的调整合理选择振荡管的静态工作点,对振荡器工作的稳定性以及波形的好坏,有一定影响,偏置电路一般采用分压式电路。
当振荡器稳定工作时,振荡管在非线性状态,通常就是依靠晶体管本身的非线性实现稳幅。
若选择晶体管进入饱与区来实现幅稳,则将使振荡器回路的等效Q值降低,输出波形变差,频率稳定度降低。
因此,一般在小功率振荡器中总就是使静态工作点远离饱与区,靠近截止区。
(2)振荡频率f的计算f=式中为c1,c2与c3串联值,因此;C1(300p)>>C3(75P),C2(1000P)>>C3(75P),故C3,所以,振荡频率主要由L,C与C3决定。
(3)反馈系数F的选择反馈系数F不宜过大或过小,一般经验数据F 0、1-、05,本实验取F==0、34、克拉泼与西勒振荡电路图2-3为串联改进型电容三点式振荡电路——克拉泼振荡电路。
图2-4为并联改进型三点式振荡电路——西勒振荡电路。
三.石英晶体振荡器LC振荡器的频率稳定度主要取决于振荡回路的标准型与品质因素(Q值),在采取了稳频措施后,频率稳定性一般只能达到、0、0001数量级。
为了得到更高的频率稳定度,人们发明了一种采用石英晶体做振荡器,她的频率稳定度可达到0、0000001-0、00000001 数量级。
图2-5就是一种晶体振荡器的交流等效电路图。
这种电路类似于电容三点式振荡器,区别仅在于两个分压电容的抽头就是经过石英谐振器接到晶体管发射级的,由此构成正反馈式通路。
C3与C4并联,再与C2串联,然后与L1并联谐振回路,调谐在振荡频率。
当振荡频率等于石英谐振器的串联谐振频率时,晶体呈现纯电阻,阻抗最小,正反馈最强,相移为零,满足相位条件。
因此振荡器的频率稳定性主要取决于石英振谐器。
在其它频率,不能满足振荡条件。
2-2正弦波振荡器的实验电路图2-6为电容三点式LC振荡器与晶体振荡实验电路。
图中,左侧部分为LC振荡器,中间部分为晶体振荡器,右侧部分为射极跟随器。
三极管3Q01为LC振荡器的振荡管,3R01,3R02与3R04为三极管3Q01的直流偏置电阻,以保证振荡管3Q01正常工作。
图中开关3K05达到“S”位置时,为改进型克拉泼振荡电路,打到“p”位置时,为改进西勒振荡电路。
四位拨动开关3SW01控制回路电容的变化,也即控制着振荡频率的变化。
调整点位器3W01可改变振荡器三极管3Q01的电源电压。
图中3Q03为晶体振荡管,3W03,3R10、3R11、3R13为三极管3Q03直流偏置电阻,以保证3Q03正常工作,调整3W03可以改变3Q03的静态工作点。
图中3R12、3C20为去藕元件,3C21为旁路电容,并构成共基接法、3L03、3C18、3C19构成振荡回路,其谐振频率应与晶体频率基本一致。
3C17为输出耦合电容。
3TP03 为晶体振荡器测试点。
该晶体振荡器的交流电路图与图2-5基本一致。
晶体振荡输出与LC振荡输出由3K01来控制,开关与上方接通时,为晶振输出,与下方接通时,为LC振荡器输出。
三极管3Q02为射极跟随器,以提高带负载的能力。
电位器3W02用来调整振荡器输出幅度。
3TP02为输出测量点,3P02振荡器输出铆孔。
图2-6如下页所示;2-3 正弦波振荡器实验内容与实验步骤一,实验内容1、用示波器观察LC振荡器与晶体振荡器输出波形,测量振荡器输出电压峰-峰值Vp-p,并以频率计测量振荡频率;2、测量LC振荡器的幅频特性;3、测量电源电压变化对振荡器的影响;4、观察并测量静态工作点变化对晶体振荡器工作的影响。
二.实验步骤1、实验准备插装好LC振荡器与晶体振荡器模块,接通实验箱电源,接下模块上电源开关,此时模块上电源指示灯点亮。
2、LC振荡实验(1)西勒振荡电路幅频特性的测量3K01拨动至LC振荡器,示波器接3TP02、频率计接振荡器输出口3P02、、调整电位器3W02,使输出最大。
开关3K05拨至“p”,此时振荡电路为西勒电路。
四位拨动开关3SW01分别控制3C06(10P),3C07(50P),3C08(100P)、3C09(200P)就是否接入电路,开关往上拨为接通,往下拨为断开。
四个开关接通的不同组合,可以控制电容的变化。
例如,开关1,2往上拨,其接入电路的电容为10P+50P=60P。
按照表2-1电容的变化测出与电容相对应的振荡频率与输出电压(峰-峰值Vp-p),并将测量结果记录与表中。
表2-1注;如果在开关转换过程中使振荡器停振无输出,可调整3W01,使之恢复振荡。
C=10pF C=50pFC=100pF C=150pF C=200pF C=250pFC=300pF C=350pF(2)克拉泼振荡电路幅频特性的测量将开关3K05拨至“s”,振荡电路转变为克拉泼电路。
按照上述(1)方法,测出振荡频率与输出电压,并将测量结果记录于表2-1中。
C=10pF C=50pFC=100pF C=150pFC=200pF C=250pFC=300pF C=350pF(3)测量电源电压变化对振荡器频率的影响分别将开关3K05打至(S)与(P) 位置,改变电源电压Ec,测出不同E下的振荡频率。
并将测量结果记录于表2-2 中。
其方法就是,频率计接振荡器输出3P01,调整电位器3W02使输出最大,用示波器监测,测好后去掉。
选定回路电容为100P。
即3SW01“3”往上拨。
用三用直流电压档测3TP01测量点电压,按照表2-2给出的电压值Ec,调整3W01电位器,分别测出与电压相对应的频率。
表中f为改变Ec时振荡频率的偏移,假定Ec=10、5V时,f=0,则f=f-f10、5v。
串联(s) EC(V)10、59、58、57、56、55、5F(MHZ)13、714 13、731 13、755 13、778 13、828 13、873 △f(KHZ)0 0、017 0、041 0、064 0、114 0、159并联(p)E C(V)10、59、58、57、56、55、5 F(MHZ)7、542 7、552 7、561 7、580 7、603 7、635 △f(KHZ)0 0、010 0、019 0、038 0、061 0、0933、晶体振荡器实验(1)3K01 拨至“晶体振荡器”,将示波器探头接到 3TP02 端,观察晶体振荡器波形,如果没有波形,应调整 3W03 电位器。
然后用频率计测量其输出端频率,瞧就是否与晶体频率一致。
(2)示波器接 3TP02 端,频率计接 3P02 输出铆孔,调节 3W03 以改变晶体管静态工作点,观察振荡波形及振荡频率有无变化。
三、实验结果1.根据测试数据,分别绘制西勒振荡器,克拉泼振荡器的幅频特性曲线,并进行分析比较。
西勒振荡器:结果分析:CT=C3,C3为3C04,C为可变电容数据表明随着电容的增大,频率降低。