计量经济学总复习知识点汇总

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学 总复习
第一部分:统计基础知识
均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。

方差:变量的每个样本与均值的距离大小的概念。

标准差:对方差开根号就是标准差。

总体方差:
抽样方差: 总体标准偏差:
抽样标准偏差:
假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。

假设检验的步骤:第一步,设定假设条件。

原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。

第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。

第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。

第四步,计算统计值, 或者
第五步,比较统计值与临界值而得出结论。

如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。

第二部分 最小二乘法
最小二乘法的假设条件:(1) (2) (3) (4) (5) N
u x N
i ∑-=
2
2
)
(σ1
)
(2
2--=
∑n x x s n
i 2
σσ=2s s =n
u x Z σ0*-=n s u x t 0*-=
)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1
),(±≠j i X X Cov
文字解释:
(1)每个误差必须是随机的,其误差的期望值是零;
(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。

通用最小二乘法的步骤:
第一步:求出误差项:
第二步:求误差的平方和最小。

第三步:求一阶导数等于零,二阶导数大于零来得出估计方程中的对数。

第四步:同样求出统计量t 、F 进行假设检验。

解释回归结果的步骤:
第一步:根据判定系数来判断方程回归结果的好坏。

R2 越接近于1,方程回归就越好。

第二步:根据F 值来判断方程中的系数是不是同时等于零,如果拒绝F 的原假设,则可以判断回归的方程整体是线性相关的。

第三步:根据第二步的判断结果来分别分析每一个参数的t 值。

t 值是用来检验具体的参数是否为零的统计量。

第四步:根据回归结果的分析来得出解释变量与被解释变量的线性关系。

R ²的计算公式:
F 检验的步骤:
第一步:原假设:所有的系数都同时等于零; 备择假设:至少有一个系数不为零。

第二步:计算F 统计量。

第三步:根据允许的失误率,查F 统计量表对应的值。

第四步:比较F 值。

大于则拒绝原假设,小于则接受原假设。

第二种方法:比较F 值所对应的P 值,如果P 值小于允许的误差,则拒绝原假设;
如果P 值大于允许的误差,则接受原假设。

∑∑∑∑---
=--=-==2
22222)()ˆ(1)()ˆ(1R Y Y Y Y Y Y Y Y R TSS
ESS
TSS RSS i i i i i )
1(--=K N ESS K
RSS F
参数统计值(t 检验)的统计意义分析:
建立和应用计量经济学模型步骤:
1理论模型的设定和建立 2收集数据 3估计参数 4检验模型 5应用模型
第三部分 回归分析中所遇到的问题
一、异方差
概念:对于不同的样本点,随机误差项的方差不再是常数,而互不相同,即,
则认为出现了异方差性。

(往往存在于横截面数据中)
类型:同方差时假定:σi2 = 常数 ≠ f(Xi) 异方差时假定:σi2 = f(Xi)
(1) 单调递增型:σi2随X 的增大而增大
(2) 单调递减型:σi2随X 的增大而减小 (3) 复杂型: σi2与X 的变化呈复杂形式
Var i i ()μσ=2
后果:1、参数估计量非有效(即不是最优的)
2、变量的显著性检验失去意义
3、模型的预测失效
检验的方法(图示法与怀特检验):
1、图示法:(1)用X-Y 的散点图进行判断
(2)用 与X 的散点图进行判断: 看是否存在明显的散点扩大、缩小或复杂型趋势(即不在一个固定的带型域中)。

2、怀特(White )检验:
怀特检验不需要排序,且适合任何形式的异方差 怀特检验的基本思想与步骤(以二元为例):
然后做如下辅助回归:
怀特检验的原假设: H0: 所有的方差都相同,不存在异方差
备择假设: H1: 方差不相同,存在异方差。

怀特检验的判断方法:比较 n*R-squared 所对应的p 值,判断方法与t 、F 检验是一致的。

P 值小于允许的误差,则拒绝原假设,方程存在异方差; P 值大于允许的误差,则接受原假设,方程不存在异方差。

i i i i i i i i X X X X X X e εαααααα++++++=215224213221102
~i i i i X X Y μβββ+++=2211
02
i e
异方差的修正:模型检验出存在异方差性,可用加权最小二乘法进行估计。

加权最小二乘法的基本思想:
是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用OLS 估计其参数。

在实践中,经常用残差绝对值的倒数作为权数。

(即方程两边同时乘以1/abs )。

二、自相关
概念:总体回归方程的误差项之间存在着相关。

类型:一种是正的自相关,也就是当前一个误差项为正值,后一个误差项也是正值;当前
一个误差项为负值时,下一个误差项也是负值
另一种叫做负的自相关,也就是前一个误差项为正值,下一个误差项为负值;当前
一个误差项为负值时,下一个误差项为正值。

后果:(1)参数估计量非有效性。

OLS 估计得到的仍为线性、无偏估计。

但不再具有效性。

(2)变量的显著性检验失效
(3)模型预测失效
检验的方法(图示法与DW 检验): 1. 图示法:
误差εt 并不频繁地改变符号,而是几个正之后跟着几个负,几个负之后跟着几个正,则呈正自相关。

扰动项的估计值呈锯齿型(一个正接一个负),随时间逐次改变符号,表明存在负自相关。

),cov(),cov(≠=j i j i Y Y εε
定义:
一阶序列相关的检验:
检验步骤:(1)提出假设,
H0:ρ=0,即不存在一阶自相关; H1:≠ρ0,即存在一阶自相关。

(2)构造统计量DW 。

(3)检验判断。

根据临界值dL 和dU ,判断。

判断准则:
根据DW 值判断自相关时,需要临界值。

杜宾和瓦尔森给出了DW 的两个临界值下限dL 和上限dU
3.修正:准差分法。

(克服序列相关的有效方法)
2
4
d L d U
4-d L 4-d U ∑
==-=T
t t t t t DW 122
1ˆε111≤≤-+=-ρνρεεt t t
三、多重共线性
1.概念:如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。

其基本假设之一是解释变量是互相独立的。

2.类型:如果存在 c1X1i+c2X2i+…+ckXki=0 i=1,2,…,n 其中: ci 不全为0,
则称为解释变量间存在完全共线性。

如果存在 c1X1i+c2X2i+…+ckXki+vi=0 i=1,2,…,n 其中ci 不全为0,vi 为随机误差项,则称为近似共线性或交互相关。

(比较常见)
3.后果:(1)完全共线性下参数估计量不存在
(2)近似共线性下OLS 估计量非有效 (3)参数估计量经济含义不合理 (4)变量的显著性检验失去意义 (5)模型的预测功能失效
4.检验:
(1) 相关系数法:求出自变量的简单相关系数r ,若|r|接近1,则说明两变量存在较强的多重共线性。

(2) 综合统计检验法:若在OLS 法下:R2与F 值较大,但t 检验值较小,没有通过检验的话,则表明各解释变量间存在共线性而使得它们对Y 的独立作用不能分辨,故t 检验不显著。

(3)参数估计值的经济检验:考察参数估计值的符号和大小,如果不符合经济理论或实际情况,说明模型中可能存在多重共线性。

5.修正:
1、逐步回归法:
方法不仅可以对多重共线性进行判别,同时也是处理多重共线性问题的一种有效方法。

步骤:(1)用被解释变量分别对每个解释变量进行线性回归。

(2)在基本回归模型中逐个增加其他解释变量,重新进行线性回归。

2、差分法(主要用来修正时间序列):
通过差分法,我们设定新的变量如下:
将原模型变换为差分模型: 可有效消除存在于原模型中的多重共线性。

一般,增量之间的线性关系远比总量之间的线性关系弱得多。

3、合并变量法
),(≠j i X X Cov ε
ββββ++++=3322110X X X Y 133*3122*
21
11*11*-----=-=-=-=t t t t t t t t X X X X X X X X X Y Y Y εββββ++++=*
33*22*110*Y X X X。

相关文档
最新文档