复习课 平行线的判定讲义和性质

合集下载

平行线的性质ppt课件

平行线的性质ppt课件
(3) 移: 以关键点为起点作与移动方向平行且与移动距离相
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=



BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .

平行线的性质定理和判定定理课件

平行线的性质定理和判定定理课件

简单说成:同旁内角互补,两直线平行. ∵ ∠1+ ∠2=180°, ∴ a∥b.
证明一个命题的一般步骤: (1)弄清题设和结论;
a1 b2
c
(2)根据题意画出相应的图形;
(3)根据题设和结论写出已知,求证;
(4)分析证明思路,写出证明过程.
【议一议】 据说,人类知识的75%是在操作中学到的.
小明用下面的方法作出平行线,你认为他的作法对吗?为 什么? 通过这个操作活动,得 到了什么结论?
每一个命题都有逆命题,只要将原命题的条件改成 结论,并将结论改成条件,便可得到原命题的逆命题.
但是原命题正确,它的逆命题未必正确.例如真命 题“对顶角相等”的逆命题为“相等的角是对顶角”, 此命题就是假命题.
【跟踪训练】
1.举例说明下列命题的逆命题是假命题. (1)如果一个整数的个位数字是5 ,那么这个整数能被 5整除. 逆命题:如果一个整数能被5整除,那么这个整数的个位 数字是5. 例如,10能被5整除,但它的个位数字是0. (2)如果两个角都是直角,那么这两个角相等. 逆命题:如果两个角相等,那么这两个角是直角. 例如,60°= 60°,但这两个角不是直角.
4.到一个角的两边距离相等的点,在这个角的平分线上.
条件:到一个角的两边距离相等的点. 结论:它在这个角的平分线上. 逆命题:角平分线上的点到角两边的距离相等. 5.线段的垂直平分线上的点到这条线段的两个端点的距离相等. 条件:线段垂直平分线上的点. 结论:它到这条线段的两个端点的距离相等. 逆命题:到一条线段的两个端点的距离相等的点在这条线段 的垂直平分线上.
a
∵∠1+∠2=180°, ∴ a∥b.
b
c
1
2
c

平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册

平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册
∵∠EFC=142°,∴∠FCB+∠EFC=180°.
∴EF∥BC(同旁内角互补,两直线平行).
又 ∵AD∥BC,
∴EF∥AD(平行于同一条直线的两条直线平行);
7.4 平行线的性质






返回目录
(2)由(1)知∠FCB=38°,又 CE 平分∠FCB,
∴∠BCE=


∠FCB=19°(角平分线的定义).
在同一平面内,垂直于
同一条直线的两条直线
如图,∵b⊥a,c⊥a,
∴b∥c
平行
其他
方法
如 图 ,∵a ∥b,a ∥c,
平行于同一条直线的
两条直线平行
∴b∥c
7.3 平行线的判定
返回目录
归纳总结


要判断两条直线是否平行,首先要观察图形中与要判断

单 的两条直线有关的同位角、内错角、同旁内角的关系,这是
7.3 平行线的判定
返回目录
[解析]汽车行驶的方向不变,则汽车拐弯前与拐弯后


题 的行驶路线互相平行,如图所示.先右转后左转的两个角是
型 同位角,根据同位角相等,两直线平行,可知选项 D 正确

破 .
[答案] D
7.3 平行线的判定
返回目录
变式衍生 如图,已知∠1=90°,为保证两条铁轨平


∵∠1=60°(已知),∠ABC=∠1(对顶角相等),
∴∠ABC=60°(等量代换).
∵∠2=120°(已知),
∴∠ABC+∠2=180°,
∴AB∥CD(同旁内角互补,两直线平行).
∵∠2+∠BCD=180°(平角的定义),

复习课平行线的判定和性质课件

复习课平行线的判定和性质课件

通过直线与平面的关系判定
总结词
如果一条直线与一个平面平行,那么这条直线上所有点与平面上相应点的连线都 与该平面平行。
详细描述
这是利用直线与平面的关系来判定平行线的方法。如果一条直线与一个平面平行 ,那么这条直线上所有点与平面上相应点的连线都与该平面平行,因此这些连线 也互相平行。
02
平行线的性质
THANKS
感谢观看
通过内错角判定
总结词
当两直线被第三条直线所截,如果内 错角相等,则两直线平行。
详细描述
这也是平行线判定的常用方法之一。 当两直线被第三条直线所截,如果内 错角相等,则说明这两条直线是平行 的。
通过同旁内角判定
总结词
当两直线被第三条直线所截,如果同旁内角互补,则两直线平行。
详细描述
这是平行线判定的另一种方法。当两直线被第三条直线所截,如果同旁内角互 补(即它们的角度和为180度),则说明这两条直线是平行的。
详细描述
这是平行线的另一个重要性质。如果 两条直线平行,那么它们的对应边长 之间的比例是恒定的。这个性质可以 用来证明两条直线是否平行。
平行线间的距离相等
总结词
任意两条平行线之间的距离都是相等的。
详细描述
这是平行线的另一个重要性质。任意两条平行线之间的距离都是相等的,这个性质可以用来计算两条平行线之间 的距离。
建筑设计中,平行线被广泛应 用,如窗户、门、墙面的排列 等。
在道路和桥梁的设计中,平行 线也是重要的参考元素,以确 保道路的平直和桥梁的稳定性。
在家居装修中,平行线也是不 可缺少的元素,如地板、墙面 的铺设等。
在数学解题中的应用
在代数解题中,平行线常常被用 来解决与一次函数、二次函数等

平行线的判定课件

平行线的判定课件
建筑结构
在建筑结构设计中,为了确保结 构的稳定性和安全性,常常需要 使用平行线的概念来设计和建造 支撑结构。
平行线在生产实践中的应用
机械制造
在机械制造中,为了确保机器的精确 度和稳定性,需要使用平行线的概念 来制造和校准机器部件。
电子设备
在电子设备中,平行线被广泛应用于 电路板的布线和元件的排列,以确保 电流的稳定传输和元件的正常工作。
平行线在几何证明中的应用
平行线的判定定理
通过平行线的性质和判定定理,可以证明两条直线是否平行,从而解决一些几何证明问题。
平行线在几何证明中的重要性
平行线是几何证明中的重要工具,通过平行线可以推导出许多重要的几何结论,如角平分线定理、勾股定理等。
平行线在日常生活中的应用
道路规划
在道路规划中,为了确保车辆行 驶的安全和顺畅,需要确保道路 的平直和方向的一致性。平行线 的概念在这里发挥了重要作用。
同旁内角可以判定两条直线平行 。
详细描述
根据平行线的性质,如果两条直线被第三条 直线所截,且同旁内角互补,则这两条直线 平行。可以通过反证法证明这一点,假设两 条直线不平行,则它们相交于一点,由此产 生的同旁内角不互补,与已知条件矛盾,因 此假设不成立,原命题成立。
内错角相等判定法的证明
总结词
通过内错角相等,可以判定两条直线平 行。
VS
详细描述
根据平行线的性质,如果两条直线被第三 条直线所截,且内错角相等,则这两条直 线平行。可以通过相似三角形的性质进行 证明,设两直线分别为AB和CD,交于点 E,若内错角相等,则△ADE与△CBE相似 ,从而AB与CD平行。
同旁内角互补判定法
总结词
当两条直线被第三条直线所截,如果同旁内角互补,则这两条直线平行。

公开课《平行线的判定与性质复习课》课件

公开课《平行线的判定与性质复习课》课件
《平行线的判定和性质》复习课
知识梳理
回顾“三线八角”:
4对同位角 ∠1和∠5, ∠2和∠6, ∠3和∠7, ∠4和∠8. ∠3和∠5, ∠6和∠4. ∠5和∠4, ∠3和∠6.

2 3 4
E
1
2对内错角
D A
6 7 5

2对同旁内角
8
F
知识梳理
1、如何根据同位角、内错角、同旁内角数量关系来判定两条直线平行?
P
C D
典型例题
变式2. 如图,∠PCD=∠APC+ ∠PAB, 判断AB与CD是否平行,并说明理由
C F P
D
A
B
E
台球运动中,如果母球P击中桌边点A,经桌边反弹后 击中相邻的另一条桌边,再次反弹,那么母球P经过的路
线BC与PA平行吗?请说明你判断的理由 CC
P
P
1 5 A
4 6 2 3
B
ห้องสมุดไป่ตู้
4.归纳小结
同 位 角 内 错 角 同 旁 内 角
a
图形 1 2 c 3 2 c 4 2 c
已知
1 2
结论 a//b
理由 同位角相等 两直线平行 内错角相等 两直线平行 同旁内角互补 两直线平行
b
a
b
a
3 2
a//b
2 4 180 (2与4互补)
a//b
b
平行线的判定
2、已知两条直线平行,同位角,内错角,同旁内角有什么关系?
2211ab??????abab1??同位角相等同位角相等两直线平行两直线平行两直线平行同位角相等2?平行线的性质错同旁内角角同旁内42?1802?4?ab2互补与?????1??abab3?abab与?内错角相等同位角相等两直线平行两直线平行两直线平行内错角相等同旁内角互补同位角相等同旁内角互补两直线平行两直线平行2324ababcc4218042互补??????两直线平行231???ab22??两直线平行条件结论同位角相等内错角相等平行线的判定知识梳理知识梳理同旁内角互补两直线平行条件结论同位角相等内错角相等平行线的性质知识梳理知识梳理同旁内角互补归纳

数学人教版七年级下册ppt课件平行线的性质判定复习课

数学人教版七年级下册ppt课件平行线的性质判定复习课
1、填空:
综合应用:
A F
(1)、∵ ∠A=_∠__4_, (已知)
判定
∴ AC∥ED ,(__同_位__角__相_等__,__两__直_线__平__行_。_)
(2)、 ∵AB ∥_D__F___, (已知)
B
E
42 13
D
∴ ∠2= ∠4,(___两_直__线__平_行__,_内__错_角__相__等_。__) 性质
同位角相等
的 内错角相等

定 同旁内角互补
结论
同位角相等 内错角相等 同旁内角互补
结论
两直线平行
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
平行线的判定方法1
两条直线被第三条直线所截,如果同位角相等,那么 这两条直线平行.
简称:同位角相等, 两直线平行。
平行线的判定应用练习:
A B
如图: 填空,并注明理由。
16
(1)∵ ∠1= ∠2 (已知)
3 F
4
C

—A—B ∥—E—D

内错角相等,两 直线平行。

5
2
∵ ∠3= ∠4 (已知)
E
D
∴ —AF—∥—BE— ( 同位角相等,两直线平行。)
∵ ∠5= ∠6 (已知) ∴ —B—C ∥—E—F (内错角相等,两直线平行。)

平行线的性质与判定_讲义

平行线的性质与判定_讲义

一、授课目的与分析:一、授课目的与分析:教学目标:1. 了解平行线的概念和两条直线的位置关系了解平行线的概念和两条直线的位置关系2. 掌握平行公理及其推论,掌握两直线平行的判定方法和平行线的性质掌握平行公理及其推论,掌握两直线平行的判定方法和平行线的性质重 点:平行公理及其推论、两直线平行的判定方法和平行线的性质的应用平行公理及其推论、两直线平行的判定方法和平行线的性质的应用 难 点:平行的性质和判定的综合应用二、授课内容:二、授课内容: 平行线的性质与判定教学过程:【知识点】【知识点】1、平行线的概念:、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b 2、两条直线的位置关系、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。

在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。

3、平行公理――平行线的存在性与惟一性、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行经过直线外一点,有且只有一条直线与这条直线平行4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行5、 平行线的判定与性质平行线的判定与性质 平行线的判定平行线的判定 平行线的性质平行线的性质 1、 同位角相等,两直线平行同位角相等,两直线平行 2、 内错角相等,两直线平行内错角相等,两直线平行 3、 同旁内角互补,两直线平行同旁内角互补,两直线平行 4、 平行于同一条直线的两直线平行平行于同一条直线的两直线平行 5、 垂直于同一条直线的两直线平行垂直于同一条直线的两直线平行 1、两直线平行,同位角相等、两直线平行,同位角相等 2、两直线平行,内错角相等、两直线平行,内错角相等 3、两直线平行,同旁内角互补、两直线平行,同旁内角互补 4、经过直线外一点,有且只有一条直线与已知直线平行知直线平行 6两条平行线的距离两条平行线的距离如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离。

《平行线的判定定理》课件

《平行线的判定定理》课件

平行线的同旁内角互补定理
总结词
同旁内角互补是判断两直线平行的关键条件。
详细描述
当两条直线被第三条直线所截,如果同旁内角互补,则这两条直线平行。具体来 说,如果同旁内角之和等于180度,则这两条直线平行。
平行线的内错角相等定理
总结词
内错角相等是判断两直线平行的又一 重要条件。
详细描述
当两条直线被第三条直线所截,如果 内错角相等,则这两条直线平行。具 体来说,如果内错角相等,则这两条 直线平行。
平行线表示方法
用“//”表示两条直线平行。
平行线性质符号表示
同位角相等(∠1=∠2),内错角相等(∠3=∠4),同旁内角互补( ∠5+∠6=180°)。
平行线的性质
平行线的性质
同位角相等、内错角相等、同旁内角 互补。
平行线性质的应用
证明两直线平行、计算角度大小、解 决几何问题。
02
平行线的判定定理
键之一。
04
练习题与解析
基础练习题
01
基础练习题1:题目1 、2、3
02
基础练习题2:题目4 、5、6
03
基础练习题3:题目7 、8、9
进阶练习题
1 2
3
进阶练习题1
题目10、11、12
进阶练习题2
题目13、14、15
进阶练习题3
题目16、17、18
综合练习题
综合练习题1 综合练习题2 综合练习题3
题。
角的度量与计算
02
介绍角的度量单位和方法,以及如何进行角的计算。
复习与巩固
03
对本单元所学知识进行复习巩固,强化学生对平行线和相交线
知识的掌握。
THANKS

复习课-平行线的判定和性质ppt课件

复习课-平行线的判定和性质ppt课件

2 34
F
A
∠CAB =75°
如图,填空 (1)∵∠B=∠1(已知)
∴__A_B_//__D_E_( 同位角相等,两直线平行 ) (2)∵CG // DF(已知)
∴∠2= ∠F ( 两直线平行,同位角相等 ) (3)∵∠3=∠A(已知)
∴_A_B__//__D_E_( 内错角相等,两直线平行 )
A
量得 A 115, D 100,你想一想,梯形另外两个角
各是多少度?
解: ∵ AD∥BC
∴∠A+∠B=180°(两直线平行,同旁内角互补)
∠D+∠C=180°(两直线平行,同旁内角互补)
A
D
∵ ∠A=115°,∠D=100°(已知)
∴ ∠B=180 ° ∠A=65°(等式的性质)
∠C=180° ∠D=80°(等式的性质) B
1
3
4
2
• 1、通过复习你有何收获? • 要判定两条直线平行,可以运用哪些方法? • 要判定两个角相等或互补,可以运用方法?
• 2、思想方法: • 分析问题的方法: • 由已知看可知,扩大已知面。 • 由未知想需知,明确解题方向 • 识图的方法: • 在定理图形中提炼基本图形, • 在解题时把复杂图形分解为基本图形
则∠ 1与∠ 2的关系是什么?
说明理由。
D
解:∠ 1与∠ 2互余
1
E2 C
∵AB ∥ CD(已知)
∴∠ABC+ ∠BCD=180O(两直线平行,同旁内角互补)
∵ BE平分∠ ABC,CE平分∠ BCD(已知)
∴ ∠1= 1∠ABC, ∠2= 1∠BCD(角平分线定义)
∴ ∠1+∠2 2= 1 ∠ABC+ 1∠2 BCD= 1(∠ABC+∠BCD)=90O (等式的性质 )

平行线的性质和判定复习课优课教学课件

平行线的性质和判定复习课优课教学课件

平行线的性质和判定复习课优课教学课件一、教学内容1. 平行线的定义及其基本性质;2. 平行线的判定方法:同位角相等、内错角相等、同旁内角互补;3. 平行线与横截线形成的相应角关系;4. 平行线在实际问题中的应用。

二、教学目标1. 让学生掌握平行线的定义和基本性质,并能运用这些性质解决相关问题;2. 使学生熟练掌握平行线的判定方法,提高解题能力;3. 培养学生的空间想象能力和逻辑思维能力。

三、教学难点与重点1. 教学难点:平行线的判定方法及其在实际问题中的应用;2. 教学重点:平行线的性质和判定方法的掌握。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:直尺、圆规、量角器。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示实际生活中含有平行线元素的场景,如铁路、公路、建筑物等,引导学生发现其中的平行线。

2. 性质复习(10分钟)通过回顾教材,引导学生复习平行线的定义和基本性质。

3. 判定方法讲解(15分钟)介绍平行线的判定方法,结合例题进行讲解。

例题:在三角形ABC中,∠A=60°,∠B=70°,判断AC与BC 是否平行。

4. 随堂练习(10分钟)设计一些与平行线判定相关的题目,让学生当堂完成,巩固所学知识。

5. 知识拓展(10分钟)介绍平行线在实际问题中的应用,如建筑设计、道路规划等。

六、板书设计1. 平行线的定义及基本性质;2. 平行线的判定方法;3. 例题及解题过程;4. 课堂练习题目。

七、作业设计1. 作业题目:(2)已知直线l1平行于直线l2,直线l3与l1形成的同位角相等,求证:直线l3与l2平行。

答案:见附录。

2. 作业要求:认真完成作业,注意书写规范,解题过程要详细。

八、课后反思及拓展延伸1. 课后反思:对本节课的教学内容、教学方法、学生掌握情况进行反思,为今后的教学提供借鉴;2. 拓展延伸:鼓励学生通过查阅资料、参加课外活动等方式,深入了解平行线在生活中的应用,提高学习兴趣。

平行线的判定和性质复习ppt课件.ppt

平行线的判定和性质复习ppt课件.ppt

cd
a
1
3
A
B
2 图1
5b
4
D
图2 C
(2)如图2∵∠A+ ∠D= 180(已知)
∴___A_B__∥____C_D_( 同旁内角互补,两直) 线平行 ∴∠B+∠C=__1_8__0(0 两直线平行,同旁)内角互补
13
体验成功——达标检测
16 a
2、直线a、b与直线c相交,给出下列条件: 5 4
①∠1= ∠2②∠3= ∠6③∠4+∠7=1800
平行线的判定和性质 (复习课)
实验中学 宋春花
1
学习目标
1、掌握平行线的判定和性质, 以及它们的区别;
2、能熟练、准确、灵活地应用 平行线的判定和性质解决问题。
2
知识梳理
一、平行线的性质
1、两直线平行,同位角相等 2、两直线平行,内错角相等 3、两直线平行,同旁内角互补
二、平行线的判断方法
1、同位角相等,两直线平行 2、内错角相等,两直线平行 3、同旁内角互补,两直线平行 4、平行于同一条直线的两直线,互相平行 5、垂直于同一条直线的两直线,互相平行
A
B
E1
F
2
C
D
变式1:已知,如图,AB∥CD,BE平分∠ABC,CF平分
∠BCD,你能发现∠1与∠2的关系吗?说明理由.
5
综合运用
变式2:如图,∠1=∠2,能判断AB∥DF吗?为什么?
若不能判断AB∥DF,你认为还需要再添加的一个条件 是什么呢?写出这个条件,并说明你的理由。
B1A


F2

6
综合运用
F 5
C
(3)、∵ _A__B∥_D__F, (已知)

平行线及其判定和性质课件

平行线及其判定和性质课件

1:如图,直线AB、CD被直线EF所截,量 得∠1=60°∠2=120°就可以判定AB∥CD。 它的根据是什么?
分析:证明AB∥CD
平行线的定理
同旁内角互补,两直线平行 即∠1+∠5 =180°
对顶角的定义
∠5 = ∠2
等量代换
证明:∵∠1=60° ∠2=120° (已知) ∴ ∠1+∠2= 180° ∵ ∠2=∠5 (对顶角相等) ∴∠1+∠5= 180°(等量代换) ∴AB∥CD (同旁内角互补、两直线平行)
∵∠1=60° ∠2=120° (已知) ∴∠1+∠2 =180°
2:如图已知∠1=72°,∠2=72°, ∠3=60°,求∠4的度数。
4 3
分析:求∠4的度数
两角关系
2 1
∠3与∠4互为同旁内角
平行线性质
a b
∠3+∠4=180°
即需证
解:∵∠1=72°∠2=72°(已知) ∴a∥b(内错角相等,两直线平行) ∴ ∠4+∠3 =180° (两直线平行,同旁内角互补) 又∠3=60°(已知) ∴ ∠4=180°-∠3 =180°-60°=120°
证明两直线平行
平行线判定
∵∠1=72°∠2=72°(已知) ∴a∥b(内错角相等,两直线平行)
变式:将原题改为已知∠1=72°,∠2=72°, 证明∠5=∠6
4
6
3
5
证:∵∠1=72°∠2=72°(已知) ∴ ∠1=∠2 ∴a∥b(内错角相等,两直线平行) ∵∠4=∠5,两直线平行,同位角相等 ∠4=∠6(对顶角相等) ∴∠5=∠6
2 1
a b
练习巩固
1、对于图1中标记的各角,下列条件能够推理得到a∥b的是(

平行线的性质和判定复习课优课教学课件(1)

平行线的性质和判定复习课优课教学课件(1)

平行线的性质和判定复习课优课教学课件设计一、教学内容本节课我们将复习教材第十一章“平面几何”中的第五节“平行线的性质与判定”。

详细内容包括平行线的定义、平行公理及其推论、平行线的判定方法,以及平行线在实际问题中的应用。

二、教学目标1. 理解并掌握平行线的定义、性质和判定方法。

2. 能够运用平行线的性质和判定解决实际问题。

3. 培养学生的逻辑思维能力和空间想象能力。

三、教学难点与重点教学难点:平行线的判定方法在实际问题中的应用。

教学重点:平行线的性质与判定方法的掌握。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:直尺、圆规、量角器。

五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中含有平行线的图片,引导学生观察并描述图片中的平行线,从而引出本节课的主题。

2. 知识回顾(10分钟)引导学生回顾平行线的定义、性质及判定方法,并对学生进行提问,检查学生对知识点的掌握情况。

3. 例题讲解(20分钟)(1)运用平行线的性质解决问题;(2)运用平行线的判定方法解决问题。

4. 随堂练习(15分钟)针对例题,设计相关练习题,让学生独立完成,并及时给予反馈。

5. 小组讨论(10分钟)(1)平行线在实际生活中的应用;(2)如何运用平行线的性质和判定方法解决实际问题?六、板书设计1. 平行线的性质和判定复习2. 内容:(1)平行线的定义(2)平行线的性质(3)平行线的判定方法(4)例题及解答七、作业设计1. 作业题目:(1)证明:如果两条直线都和第三条直线平行,那么这两条直线平行。

(2)已知:直线AB平行于直线CD,点E在直线AB上,点F在直线CD上。

求证:线段EF平行于直线AB。

2. 答案:(1)根据平行公理,可得两条直线平行。

(2)根据平行线的性质,可得线段EF平行于直线AB。

八、课后反思及拓展延伸1. 反思:本节课学生对平行线的性质和判定方法的掌握程度,以及在实际问题中的应用能力。

平行线的判定与性质复习课件

平行线的判定与性质复习课件

∵∠CDE=152°∴∠FED=28°
∴∠BED=∠BEF+∠FED=50°+28°=78°
2.如图∠B=25°,∠BCD=45°,∠CDE=30°, ∠E=10°,试说明AB//EF的理由。
A B N
解:过点C作CM // AB ,过点D作DN //EF
C
D
M
F
∵ AB//CM,EF//DN ∠B=25°,∠E=10°(已知) E ∴ ∠BCM = ∠B, ∠EDN = ∠E (两直线平行,内错角相等) 又∵∠BCD=45°,∠CDE=30°(已知) ∴∠DCM=20°,∠CDN=20°
5
a 6 8 7 2 4 3
c 1
b
A 2.如图 1 2
3
D
4
B C (1)从∠1=∠4,可以推出 AB ∥ , CD 理由是 内错角相等,两直线平行 。 (2)从∠ 2 =∠ 3 ,可以推出AD∥BC,
5
理由是 内错角相等,两直线平行 。 (3)从∠ABC +∠ BCD =180,可以推出AB∥CD 同旁内角互补,两直线平行 。 理由是 (4)从∠5=∠ ABC ,可以推出AB∥CD, 。 理由是 同位角相等,两直线平行
D
B D
A C
B
C
(3)
D
(4)
P
解:
∵∠BHE+ ∠BGF=180°, ∠BHE+ ∠BHA=180°, ∴∠BGF= ∠BHA(同角的补角相等), ∴AE//DF(同位角相等,两直线平行), ∴∠A= ∠BFD(两直线平行,同位角相等). 又∵∠D=∠A,所以∠BFD= ∠D, ∴AB//CD(内错角相等,两直线平行). ∴∠B=∠C(两直线平行,内错角相等).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档