文武光华数学工作室 南京 潘成华老师 几何题
子然--两个几何结论,解答与推广潘成华一期证明题
解答与推广潘成华新编的几何证明题上海黄之第一题主要是用三角变换,我觉得第二题的推广可能更有趣和奇妙.1,首先证明第一题,先来证明以下看起来更简单的一些结论:三角形ABC外心为O,O',O''是O分别关于,AB,AC的对称点,BD,CE是两条高,直线O’O,O’’O分别与直线DE交于S,T,过B,C分别作O'E,O''D的垂线,二者交于X,DE与OX交于K,则有这一些命题:(1)BX,OO',ED共点S,CX,OO'',DE共点T.(2)OK与OX的比值在BC不动,A在圆O上运动时保持不变,是cosA的平方.(3)K是ST的中点.(这就是解答原题的关键).证明:首先证明1:设BX与OO’交于S’,由题意,BN⊥O’S’,O’E⊥BS’,这说明E是△O’BS’的垂心,所以S’E⊥BO’.但是显然有BO’∥AO,AO⊥DE,所以DE⊥BO’,这表明S’在DE上,所以S’就是S,所以BX,OO',ED共点S.同理得另一部分.次证2,3:设M,N分别是AC,AB中点.以O 为原点OA 方向为x 轴正方向建立平面直角坐标系.不妨设三角形ABC 内接于单位圆. 设)sin ,(cos ),sin ,(cos ),sin ,(cos γγββααC B A ,三角形ABC 三个角的大小分别为A,B,C , 且由圆心角是圆周角两倍的关系设βγγααβ-=-=-=A B C 2,2,2. 则由基本关系OC OB OA OH ++=得到)sin sin sin ,cos cos (cos γβαγβα++++H 首先求出直线DE 的方程,它显然是两个圆的根轴:以AH 为直径的圆:A y x 222cos )2sin sin sin 2()2cos cos cos 2(=++-+++-γβαγβα 以BC 为直径的圆:A y x 222sin )2sin sin ()2cos cos (=+-++-γβγβ 两个圆的方程作差,得到DE 的方程:A y x 2cos )sin sin sin 2(sin )cos cos cos 2(cos =--------γβααγβαα 即212cos 2cos 2cos sin cos ----=+C B A y x αα 【注:将来要用到这些恒等式,它们都很容易证明,在此不作证明:1,1cos sin sin 42cos 2cos 2cos -=--A B C C B A2,C B A C B A cos sin sin 21cos cos cos 222-=-+3,)sin()sin(sin sin 22y x y x y x +-=-】所以得到DE 的方程为A B C y x cos sin sin 21sin cos -=+αα.一,从现在开始,取定0=α,则B C 2,2-==γβ.直线DE 的方程为:A B C x cos sin sin 21-=二,现在求B ,T 的坐标:显然ON 的方程为C x y tan =,故而得到 ))cos sin sin 21(tan cos sin sin 21(A B C C A B C S --,又有OM 的方程为B x y tan -=,故而得到))cos sin sin 21(tan cos sin sin 21(A B C B A B C T ---,三,现在求X 的坐标:先求出直线SB 的斜率:因为)2sin ,2(cos C C B ,)2sin ,2(cos B B C -有:C B A C B A B A C C B A BA C CB AC B A C A B C C B A B A C A B C C C B A B A A B C C C CA B C A B C C C A B C C A B C C C k SB cos cos sin 2cos cos cos cos sin cos 412cos 2cos 2cos cos sin cos 412cos 2cos 2cos 2cos 2cos sin cos 2cos sin sin 22cos ))sin()(sin(cos 1cos sin sin 2cos 2sin 2)sin()sin()1cos sin sin 2(cos 1cos 2sin 2cos sin sin 2)1cos sin sin 2(tan 2sin 1cos sin sin 22cos )1cos sin sin 2(tan 2sin 22222-+-=-++-=-+--+=-+=-++--+=---+-+=--+=-+-+=对称地可以得到TC 的斜率:CB AC B A k TC cos cos sin 2cos cos cos 222-+=(将B ,C 位置互换,再取整体的相反数) 则有直线方程: SB:)2cos (cos cos sin 2cos cos cos 2sin 222C x CB AC B A C y -+--=- TC: )2cos (cos cos sin 2cos cos cos 2sin 222B x CB AC B A B y --+=+ 联立这两个方程,求出X 的坐标:CB AC C B A B C B A x C B A A C B cos cos sin 22cos )cos cos (cos 2cos )cos cos (cos cos cos sin 2cos 22sin 2sin 2222222+---+-+=+AB C AC B A C B C B A C B A C B C B C A C B B A C B B A C C C A B B C B A C C B A B C B A C B A x cos sin sin 21cos cos cos sin 1cos cos sin cos sin cos sin sin 1cos cos sin cos )1cos 2(sin cos sin )1cos 2(sin 1cos cos cos sin cos sin 2cos sin cos sin 2)sin cos sin 21(2cos 21)cos sin sin 21(2cos 21cos cos sin )2sin 2(sin cos 222222222222222-=-+=+-+=++-+=-----+++=-+-++= 所以得到X 的横坐标:AA B C x X 2cos cos sin sin 21-= 现在,可以得到原命题的第二个结论:A x x OX OK X K 2cos == 接下来,再计算X 的纵坐标,将其横坐标代入SB 的方程即可:C CB A AC A C B A C B C AC A A C B C B A A C B C C A A C B C B A A C B C C AA B C C B A A C B y 2sin cos cos sin cos 2)cos cos 2cos )(cos cos cos (cos 2sin cos 2cos cos cos cos cos cos cos sin 2cos cos cos 2sin )2cos cos cos cos cos (cos cos sin 2cos cos cos 2sin )2cos cos cos sin sin 21(cos cos sin 2cos cos cos 222222222222222222222222222+-+--=+--+--=+--+--=+----=于是:)cos sin sin 21)(sin(sin )cos sin sin 21)(sin()sin(sin )cos sin sin 21)(sin (sin sin )cos cos )(cos cos (cos sin cos cos cos cos cos cos sin cos cos 2)cos cos )(cos cos (cos sin cos cos 2)cos (cos )cos (cos sin cos sin 2sin sin cos cos sin cos 4)cos cos 2cos )(cos 1sin cos sin 2(sin sin cos cos sin cos 4)cos cos 2cos )(cos cos cos (cos cos cos cos 2222222222224422222222222222222222222222222A B C B C AA B C B C B C A A B C B C AA CBC B A C A B A C B AC A A C B C B AC A C B C B C B A AC C B A A C A C B C B A AC C B A A C A C B A C B C B A y --=-+-=--=-+-=+--=+--+=++-+=+-+-=+-+--= 所以得到X 的纵坐标:AA B C B C C B A A B C B C y X 22cos cos sin sin 212tan tan cos cos cos 2)cos sin sin 21)(sin(--=--= 四,现在求出K 的坐标: 所以得到OX 的方程:x B C y 2tan tan -=(这表明OX 的斜率为OM ,ON 斜率的平均数) 联立直线DE 的方程即得到K 的坐标为: ))cos sin sin 21(2tan tan ,cos sin sin 21(A B C B C A B C K --- 结合之前得到的S 和T 的坐标:))cos sin sin 21(tan cos sin sin 21(A B C C A B C S --,))cos sin sin 21(tan cos sin sin 21(A B C B A B C T ---,故而得到K 为ST 的中点.证毕.下面来证明潘成华老师的原题:三角形ABC ,O 是外心,BD ,CE 是高,S ,T 分别是△ABH,△ACH 的外心,SE ,TD 交于Q ,G 是SBQ 的垂心,F 是TCQ 的垂心,J 是GF 中点,GB ,FC 交于X.证明:X 在JO 上.易于证明S 和O 关于直线AB 对称:因为S是△ABH的外心,所以∠ASB=2(180°-∠AHB)=2∠C=∠AOB,又△ASB和△AOB都是以AB为底边的等腰三角形,所以它们全等,四边形ASBO为菱形,所以S,O关于AB对称. 同理,T,O关于AC对称.令直线SO,GB交于M,TO,FC交于N,现在由于G,F是垂心,得到BX⊥SE,CX⊥TD,由之前的命题的结论1,得M,N两点在直线D,E上,令直线OX与与直线DE交于K,则由结论3得到K是MN的中点.QG⊥SB,QF⊥TC,由于四边形ASBO,ATCO都是菱形,故而GQ,FQ同时⊥AO,所以GQF 共线,而且由DE⊥AO,所以GF∥DE,于是,由于NK=KM,所以直线KX将会通过FG的中点J,换言之,X在JO上.证毕.(同时还有:K点必定为OX的内分点,而且OK/OX=cosA的平方)2,再来证明第二题,要证明这一题,只要证明下面这个更为本质的命题:三角形ABC所在平面上任意一点J,AJ与BC交于D,BJ与CA交于E,CJ与AB交于F,在三角形DEF三边上分别取三点G,H,J,G在EF上,H在FD上,I在DE上,且满足:EG/GF=BD/DC,FH/HD=CE/EA,DI/IE=AF/FB(这些比值都是有向线段的比)过G作AD的平行线(可能与AD重合,下同),过H作BE的平行线,过I作CF的平行线,则三条平行线共点(K).证明:先来证明一个更为基础的引理:三角形IDF,直线DF上有三个点G,E,H,另有三点A,B,C满足AE∥BH∥IF,CE∥BG∥ID,AG ∥IE∥CH,则A,B,C三点在同一条直线上,且AB/BC=DE/EF(有向线段的比)用向量来证明这一命题:令IF ==,为平面向量的基底.有向线段DE,EF,GE,EH 的数量分别为x,y,m,n.由题意显然有△AGE ∽△IEF,相似比为m/y ,△CHE ∽△IED,相似比为n/x ,△BGH ∽△IDF,相似比为(m+n)/(x+y).下面来表示,,:ym y x x y x y y m y x x )()()(-+++=-+-++=++= yx x x n y x y x n y x y ++-+=-+-++=++=)()()( y x m x y x n y y x n m y x m x +-++-=-+++-+-+=++=)()( 所以有:m x n y m yx xy x n y x xy y y x )()()()(22-+-=-+++-++=+ 即得到:yx y x IB ++= 这就表明A,B,C 共线并且y x =. 现在来证明原命题:过F 作FL ∥AD 交BC 于L ,过D 作DQ ∥CF 交AB 于Q ,FL 与DQ 交于R ,连接LI,QG ,则由条件FB AF IE DI =可得LBDL IE DI =,所以LI ∥BE.同理QG ∥BE. 类似的作出其他的平行线.则六边形TFRDSE 满足三组对边分别平行,事实上三组对边也分别相等,这是因为四边形FRDJ ,ESDJ 都是平行四边形,所以FR 与ES 相等且平行,同理得其余. 令LI,MH 交于V 点,NG,OI 交于W 点,PH,QG 交于U 点.下面来证明最中央的六边形GUHVIW 也满足三组对边平行且相等.注意三角形JBC ,应用引理,得到R,V,S 共线,且CD BD VS RV =,这样就又得到GFEG VS RV =. 同理得到其余的:S,W,T 共线且HD FH WT SW =,T,U,R 共线且IEDI UR TU =. 由于FR ,ES 相等且平行,故四边形FRSE 为平行四边形,故EF=RS(且平行),又GF EG VS RV =所以FG=SV.同理ST=FD ,TR=DE(且也分别平行,可见△STR ≌△FDE),另外同理EI=RU,DH=TW.平行四边形FRSE 与平行四边形FDST 公用一条对角线FS ,所以它们有公共的对称中心X(事实上X 也是六边形TFRDSE 的对称中心).现在,由于FG=SV 所以G ,V 关于X 对称(平行四边形FRSE),又DH=TW 所以W,H 关于X 对称(平行四边形TSDF).这就表明GW=VH(且平行).同理WI=HU,IV=UG(且分别平行),所以六边形GUHVIW 也满足三组对边平行且相等.现在,若过H ,I 分别作BE ,CF 的平行线,交于K ,则IK 与VH 相等且平行,所以IK 与GW 相等且平行,所以IKGW 是平行四边形,所以最终得到GK ∥WI ∥AD.综上,就证明了过H ,I ,G 分别作BE ,CF ,AD 的平行线,则三平行线交于同一点K.证毕.进一步,若是分别取A,B,C 关于G,H,I 的对称点A ’,B ’,C ’,分别过A ’,B ’,C ’作AD,BE,CF 的平行线,则显然这三条平行线必定也共点(K ’),而且还可以得到J ,K ,K ’三点共线,而且K 是JK'的中点.(因为AJ ,BJ ,CJ 分别关于GK ,HK ,IK 的对称直线共点K ’)这样,潘成华老师的第二题就变得十分清楚了,现在来证明:Oa,Ob,Oc 分别是三角形ABC 的A-,B-,C-旁心,分别作Oa,Ob,Oc 关于BC,CA,AB 的对称点X,Y ,Z ,再分别过X,Y ,Z 作ObOc,OcOa,OaOb 的垂线,求证:三条垂线共点.证明:由旁心的定义很容易得到AOa,BOb,COc 共点(H),且H 是三角形OaObOc 的垂心.如图作三条垂线OaD,ObE,OcF.由于OcBCOb 四点共圆,所以∠CBOa=∠Ob ,∠BCOa=∠Oc ,所以:DC BD AO A O c b =,同理得到:FBAF CO C O EA CE BO B O b a a c ==,. 由之前的命题,直接推出结论成立.证毕.。
剖析一道中考几何题,追寻习题评讲的价值
边 中点 F, 结 D 、 F. 连
。 、F分 别是边 A D、 B、AC B 的 、
1 1 丘
中点,’D f CJDE=妄 c D f C且 . E B . .  ̄ B ,FA
D F=言 , C=言 , E
。 . .
四边 形 DF
是 平行 四边 形 .
21 年第 7 00 期
数 学教 学
,五 》1 一
剖析 一 道 中考 几何 题 , 追寻 习题评 讲 的价 值
21 6 江苏省南京市六合区马鞍镇初级中学 卞少云 12 5
在中考 总复习中, 常常要进行难 度较大、灵 活性 较强 的综合 题 演 练 与评 讲 , 目的在 于强 化 其
’
11试题 解 答 回放 .
+
Ac = ZEHC —_ AEHC 为 等腰 三 角形 +
等量 代 换
图形 判 定
解: 结论: H =言 . E
证 明: 取
.
这种评说的处理手段, 也是一种偏重结果的 方法, 主要 的功能是对 思维过程作形式上的概括 与梳理, 力求 有 条 理 、有 层 次地 用 数 学 的符 号 语 言 表 达 思维 的 成 果, 示 的是 思 维活 动 的后半 段 展 工作, 而师生对问题 的复 杂思考 不能完整体现, 学生对综合性问题理解上的困难没有得到实质 上的帮助.实际上, 学生更需要的不只在于 “ 是
-
4 2
数 学教 学
2 1 年第 7 00 期
什 么” 更 在 于 “ , 么” 如,“ 什 么这 样 做; 勾什 , 为 为
件 :“ P 在 直 线 BC上 , 结 EQ, PC于 点 点 连 交 H . 因为 “ P与 点 F, Q与 点 E 分别 是 相似 ” 点 点
潘成华——数学奥林匹克训练题(526):一道几何训练题
潘成华——数学奥林匹克训练题(526):一道几何训练题奥数名师——潘成华老师萧振纲专集(截至2021-04-27)李耀文专集(截至2022-02-24)余佑官专集(截至2022-02-15)数学奥林匹克训练题(511):一道几何训练题数学奥林匹克训练题(514):一道几何训练题数学奥林匹克训练题(517):一道几何训练题数学奥林匹克训练题(518):一道几何训练题数学奥林匹克训练题(520):一道几何训练题数学奥林匹克训练题(523):一道几何训练题数学奥林匹克训练题(524):一道几何训练题数学奥林匹克训练题(525):一道几何训练题2021-11-21 【成绩发布】第四届刘徽杯获奖名单2021-11-21 陈嘉昊——第四届刘徽杯数学竞赛第6题解答2021-11-18 褚小光——第四届刘徽杯数学竞赛第4题解答2021-11-17 顾冬华——第四届刘徽杯数学竞赛第1题解答2021-11-17 杨晓鸣——第四届刘徽杯数学竞赛第2题解答2021-11-16 史皓嘉——第四届刘徽杯数学竞赛解答2021-11-16 第一至四届刘徽杯数学竞赛命题人名单2021-11-15 邓乐言——第四届刘徽杯数学竞赛解答2021-11-14 第四届刘徽杯数学竞赛试题(第二天)2021-11-13 第四届刘徽杯数学竞赛试题(第一天)2021-11-12 【重磅】公益赛事:第四届“刘徽杯”数学竞赛举办在即2021-09-13 第一届“刘徽杯”数学竞赛试题2021-09-13 第二届“刘徽杯”数学竞赛试题2021-09-13 第三届“刘徽杯”数学竞赛试题2021-09-13 第四届“刘徽杯”数学竞赛赞助征集启事2021-09-13 第一、二、三届“刘徽杯”数学竞赛专集。
(江苏专用)2017版高考数学 专题9 平面解析几何 68 对称问题 理
【步步高】(江苏专用)2017版高考数学专题9 平面解析几何 68 对称问题理2.直线ax+3y-9=0与直线x-3y+b=0关于直线x+y=0对称,则a与b的值分别为________.3.设△ABC的一个顶点是A(3,-1),∠B,∠C的平分线方程分别为x=0,y=x,则直线BC的方程为________.4.已知圆C:x2+y2+2x+ay-3=0 (a为实数)上任意一点关于直线l:x-y+2=0的对称点都在圆C上,则a=________.5.直线2x+3y-6=0分别交x,y轴于A,B两点,P是直线y=-x上的一点,要使PA+PB 最小,则点P的坐标是________.6.已知点P(a,b),Q(b,a)(a,b∈R)关于直线l对称,则直线l的方程为________________.7.已知圆C:x2+y2+2x-4y+m=0与直线l:y=x+2相切,且圆D与圆C关于直线l对称,则圆D的方程是________________.8.若直线ax-y+2=0与直线3x-y-b=0关于直线y=x对称,则a=________,b=________.9.若圆C:x2+y2-ax+2y+1=0和圆x2+y2=1关于直线l1:x-y-1=0对称,动圆P与圆C相外切且与直线l2:x=-1相切,则动圆P的圆心的轨迹方程是________________.10.如图所示,在平面直角坐标系xOy中,平行于x轴且过点A(33,2)的入射光线l1被直线l:y=33x反射,反射光线l2交y轴于B点,圆C过点A且与l1,l2都相切.(1)求l2所在直线的方程和圆C的方程;(2)设P,Q分别是直线l和圆C上的动点,求PB+PQ的最小值及此时点P的坐标.答案解析1.x +2y -3=0解析 由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3, 即x +2y -3=0.2.-9,3解析 在直线ax +3y -9=0上取一点(0,3),点(0,3)关于x +y =0的对称点(-3,0)在直线x -3y +b =0上,所以b =3,同理在直线x -3y +b =0上取一点(0,1),它关于x +y =0的对称点(-1,0)在直线ax +3y -9=0上,∴a =-9.3.y =2x +5解析 点A (3,-1)关于直线x =0,y =x 的对称点分别为A ′(-3,-1),A ″(-1,3),且都在直线BC 上,故得直线BC 的方程为:y =2x +5.4.-2解析 由已知得,直线x -y +2=0经过圆心⎝⎛⎭⎪⎫-1,-a 2, 所以-1+a 2+2=0,从而有a =-2. 5.(0,0)解析 2x +3y -6=0分别交x 、y 轴于A 、B 两点,则A (3,0)、B (0,2). B 关于y =-x 的对称点为B ′(-2,0).AB ′交直线y =-x 于点(0,0),则P (0,0)即为所求.6.x -y =0解析 由题意知,k PQ =-1,故直线l 的斜率k =1,又直线l 过线段PQ 的中点M (a +b 2,a +b 2), 故直线l 的方程为y -a +b 2=x -a +b 2, 即x -y =0.7.x 2+(y -1)2=12解析 圆C 的标准方程为(x +1)2+(y -2)2=5-m ,由于圆C 与直线l 相切,故圆心C (-1,2)到l 的距离等于半径, 即|-1-2+2|2=5-m , 解得m =92. 故5-m =12, 又圆心C (-1,2)关于直线l :y =x +2的对称点为D (0,1),所以圆D 的方程为x 2+(y -1)2=12. 8.136 解析 因为直线ax -y +2=0关于直线y =x 对称的直线是ay -x +2=0,即x -ay -2=0, 所以直线x -ay -2=0与直线3x -y -b =0重合,所以13=-a -1=-2-b, 即a =13,b =6. 9.y 2-6x +2y -2=0解析由题意知,圆C 的圆心为C ⎝ ⎛⎭⎪⎫a2,-1, 圆x 2+y 2=1的圆心为O (0,0),由两圆关于直线l 1对称,易得点(0,0)关于直线l 1:x -y -1=0对称的点(1,-1)即为点C ,故a =2,所以圆C 的标准方程为(x -1)2+(y +1)2=1,其半径为1.设动圆P 的圆心为P (x 0,y 0),半径为r ,由动圆P 与圆C 相外切可得:PC =r +1,由图可知,圆心P 一定在直线x =-1的右侧,所以由动圆P与直线l2:x=-1相切可得r=x0-(-1)=x0+1. 代入PC=r+1,得:x0-2+y0+2=x0+1+1=x0+2,整理得:y20-6x0+2y0-2=0.即圆心P的轨迹方程为y2-6x+2y-2=0.10.解(1)易知直线l1:y=2,设l1交l于点D,则D(23,2),因为直线l的斜率为33,所以l的倾斜角为30°,所以l2的倾斜角为60°,所以k2=3,所以反射光线l2所在的直线方程为y-2=3(x-23),即3x-y-4=0.由题意,知圆C与l1切于点A,设圆心C的坐标为(a,b),因为圆心C在过点D且与l垂直的直线上,所以b=-3a+8,①又圆心C在过点A且与l1垂直的直线上,所以a=33,②由①②得a=33,b=-1,故圆C的半径r=3,故所求圆C的方程为(x-33)2+(y+1)2=9.综上,l2所在直线的方程为3x-y-4=0,圆C的方程为(x-33)2+(y+1)2=9.(2)设点B(0,-4)关于l对称的点为B′(x0,y0),即y0-42=33·x02,且y0+4x0=-3,解得x0=-23,y0=2,故B′(-23,2).由题意易知,当B′,P,Q三点共线时,PB+PQ最小,故PB+PQ的最小值为B ′C-3=-23-332++2-3=221-3,由⎩⎪⎨⎪⎧ y +12+1=x -33-23-33,y =33x ,得P (32,12), 故PB +PQ 的最小值为221-3, 此时点P 的坐标为(32,12).。
潘成华老师几何原创题
证明 延长AC 、BC 、AB 交DI 、EF 、GH 分别于M 、N 、L 、S 、T 、P,易知FM+MN=NV+VT(1),MW+WK=MN+NE(2),EM=MW,NE=NV,WK=VT, (1)+(2)得:2FM=2NV,所以FM=MK=NV=NE,根据 对称性NE=CN,所以CK=MW,同理ZS=BY=AK,AW=CZ, 因此K 是MS 中点,根据对称性可知∠NMW=∠LSZ, 即∠MFW=∠ZIS,同理∠NEV=∠YHT ,∠PGX=∠UDL,所以VE UD ∙ZI HY ∙GX WF =sin ∠NEV sin ∠UDL ∙sin ∠ZIS sin ∠YHT ∙sin ∠XGP sin ∠WFM=1已知 (文武光华数学工作室 南京 潘成华)如图,△ABC 的三旁切圆 在直线AB 、BC 、AC 上切点分别是U 、V 、W 、X 、Y 、Z 、T 、K, 线段EF 、DI 、GH 是外公切线.求证VE UD ∙ZI HY ∙GX WF=12013 4 13 7:34已知(文武光华数学工作室 南京 B C 分别是△ABC 的B-,C-旁切圆,他们在直线AB, BC,AC 上切点分别是D,E,F,G,线段GF,DE 分别交O B O C 于M ,N,线段MC,BN 交于P (2013 1 17 10:09)记△ABC 三角A,B,C ∠O C MG=∠AMF-∠AFG-∠FAM=180°-(90°-C 2)-(90°-A2)-B 2=∠O C BG,于是O C ,G,B,M 四点共圆,可知⊥O B O C ,同理CN ⊥O B O C ,易知MBA ~NCA,AM AN =MB NC =MP PC,所以AP//MP,即AP ⊥O B O C 潘成华老师几何原创题证明延长CA 、BA 交EF 分别于K 、J,B-、C-旁切圆切BC 分别于点S 、T 根据对称性可知FK=SB=JE=CT,AK=AB,AC=AJ,KB//CJ//XV,所以XV 是∠ZXY 角平分线,因此VX 、UZ 、WY 交点就是△XYZ 内心已知(文武光华数学工作室 南京 潘成华)DI 、 EF 、GH 是三旁切圆外公切线,他们中点分别 是U 、V 、W,BC 、AC 、AB 中点分别是X 、Y 、Z.求证 VX 、UZ 、WY 共点(2013 6 4 19:51)证明 设B-、C-O 1、O 2,连接O 2J 、O 1H, 设JC 交△ABC 于M’,根据位似性质 IM'//O 2J,、因此IM'//HO 1,所以M'必在BH 上, 我们知道M'就是点M,又O 2J ⊥JH,得到MI ⊥JHHJ 是△ABC 的B-、C-伪内切圆外公切线,点I 是△ABC 内心,线段JC 、BH 交于M ,求证 MI ⊥JH (2013 4 12 8:58)证明 延长XE 、IE 、FX 、FI 交⊙O 分别于R 、S 、T 、U,易知RS//XI//TU,延长∠RFT=∠SFU,∠FRX+∠FST=180°,FX RX =sin ∠FRX sin ∠RFX =sin ∠FSI sin ∠SFI =FIIS, 所以FX FI =RX IS =XE IX ,即 XE XF =IEIF南京 潘成华 2013 5 24 19:37已知⊙P 、⊙Q 交于点X 、Y,且与⊙O 内切于E 、F.求证XE XF =IEIFE证明 已有结论FGU ~THE ~WDV,∠FGU=∠THE,于是∠FGW=∠GHE,FG GU =TH HE ,所以FG VH =GWHE,所以FGW ~VHE,EV WF =HE GW =HE HT ,同理FT DH =FU GU =TE HE ,DG UE =THTE,所以FT FW ∙DG DH ∙EV EU=1已知(文武光华数学工作室 南京 潘成华)△ABC 伪旁切圆与外接圆内切于D 、E 、F ,他们在BC 、AC 、AB 三边于W 、V 、H 、T 、U 、G求证FT FW ∙DG DH ∙EV EU =1 (2013 5 21 7:25)证明(潘成华给出)在△FHJ 与△EIM 中,直线FJ,ME 交于K,直线MI,HJ 交于K,易知DK,FH,EI 交于V,根据Desargue 定理,直线EF,HI,JM 共点,因此△EHC 与△FIJ 对应顶点连线共点,所以LK,IJ,HM 共点2013 1 11 21:26已知 (文武光华数学工作室 潘成华原创)△ACE,ABF,BCD 均是等边三角形,他们外心分别是I,H,K,线段FI,HE 交于L,DH 交FK 于J,DI 交EK 于M求证 LK,IJ,HM 共点FD证明 根据曼海姆定理,I 是GH 中点,G,I,D,B 四点共圆,H,I,C,D 四点共圆,∠GDI+∠BIC=∠GDI+∠IDH+∠BIC=∠ABI+∠ICH+∠BIC=∠CIH+∠GIC+∠BIC=180°,所以I,S,D,T 四点共圆,进而∠HGD=∠IBD=∠DHC=∠DIC=∠DST,所以ST//GH2012 12 13 19:56△ABC 的A-伪(内切或旁切)圆相切△ABC于D,切直线AB,AC 分别于G,H,△ABC 内心(或A-旁心)I,交DG 于S,线段DH,IC 交于T,文武光华数学工作室南京 潘成华根据曼海姆定理GH 中点就是△ABC 内心,I,连接AD 交伪内切圆于J,连接GH ,取中点I,伪内切圆半径R A ,△ABC 三角A,B,C,易知G,I,D,B H,I,D,C 四点共圆,GE=2R 1sin ∠GIB 1sin C 2,同理HF=2R 1sin B 2,所以GE HF =sinC 2sinB 2,DG DH =GJJH =∠GDJ sin ∠HDJ =sin ∠IDH sin ∠IDB =sinC 2sinB 2,因此 DG GE =DH HF引理1:2012 12 13 18:00△ABC 的A-伪内切圆内切△ABC 外接圆于D,切AB,AC 分别于G,H,线段BD,DC 交伪内切圆于E,F求证 DG GE =DH HF文武光华数学工作室 南京 潘成华证明∠EVG=∠GEC=∠GTS,∠SCG=∠DGX=∠GET,于是GTS~GEC,得到STGS=CECG,同理UVUG=DFDG,因为CE CG =DFDG,所以UVUG=STGS南京外点C、D上,CE、DF分别于E、F,直线DG、CG 分别于T、V,直线ET、VF交直线DC分别于S、U.UVUG=STGS(2013 5 10 16:48)。
伪内切圆共点
R伪内切圆共点文武光华数学工作室 潘成华 田开斌 褚小光 几何题已知 ⊙1O 、⊙2O 、⊙3O 是△ABC 三伪内切圆,他们与△ABC 外接圆⊙O 分别内切于点D 、E 、F, ⊙1O 切AB 、AC 分别于S 、T,BD C 中点是Q.求证 直线QD 、ST 、2O 3O 、EF 共点证明 我们先证明直线QD 、ST 、2O3O 共点设ST 、BC 交于R EF 中点就是△ABC 内心,设为点I, 易知△BS I ∽△ITC,SI=IT,可知2IR R C R B=⋅(1)B S T I B I S I TC C I==,进而2()B SB I TCC I=(2),根据Menelaus 定理1A S B R C T B S C R A T⋅⋅=,AS=AT,得到B S B R CTC R=(2),易知S 、I 四点共圆,I 、T 、C 、D 四点共圆,得到∠BDI =∠IDC,B D B S B RCD C T C R==,直线QD 是∠BDC 外角平分线,有(1)、(2)因此Q 、D 、R 共线, ,因为B I ⊥IP,CI ⊥IM,得到 ∠PIC=∠BIM,于是∠PIR=∠IMR, 得△MR I ∽△IRP,因此2()M R M I P R R I=(3).我们证明232()OMM I O P R I=(4),即证明3322OMO IIC O PO I IB=⋅,等价于 3232O M O P IC O IO I IB=⋅,1sin 112111sin sin sin 222A B CA CB A BC A C B∠=⋅∠∠∠,显然成立.根据(3)、(4)可知MR P R=32O M O P,可知2O 、3O 、R 共线.其次,证明EF 过点R,因为2O E=2O P,3O F=3O M,OE=OF,于是332232231O R O R O E O P O F O F O R O E O R O M⋅⋅=⋅=,根据Menelaus 定理可知E 、F 、R 共线.综上所述直线QD 、ST 、2O 3O 、EF 共点。
2020届江苏高考数学(理)二轮复习微专题教师用书:微专题16 解析几何中的“隐形圆”问题
微专题16 解+析几何中的“隐形圆”问题真 题 感 悟(2016·江苏卷)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程;(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA→+TP →=TQ →,求实数t 的取值范围.解 圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5.(1)由圆心N 在直线x =6上,可设N (6,y 0).因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,于是圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2. 设直线l 的方程为y =2x +m ,即2x -y +m =0,则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 因为BC =OA =22+42=25,而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22, 所以25=(m +5)25+5,解得m =5或m =-15. 故直线l 的方程为2x -y +5=0或2x -y -15=0.(3)法一 TA→+TP →=TQ →,即TA →=TQ →-TP →=PQ →, 故|TA→|=|PQ →|, 因为|TA→|=(t -2)2+42,又0<|PQ →|≤10, 所以0<(t -2)2+42≤10,解得t ∈[2-221,2+221],对于任意t ∈[2-221,2+221],欲使TA→=PQ →,此时0<|TA →|≤10,只需要作直线TA 的平行线,使圆心到直线的距离为25-|TA →|24,必然与圆交于P ,Q 两点,此时|TA→|=|PQ →|,即TA →=PQ →, 因此对于任意t ∈[2-221,2+221],均满足题意,综上,t ∈[2-221,2+221].法二 设P (x 1,y 1),Q (x 2,y 2).因为A (2,4),T (t ,0),TA→+TP →=TQ →, 所以⎩⎨⎧x 2=x 1+2-t ,y 2=y 1+4.① 因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.②将①代入②,得(x 1-t -4)2+(y 1-3)2=25.于是点P (x 1,y 1)既在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上,从而圆(x -6)2+(y -7)2=25与圆[x -(t +4)]2+(y -3)2=25有公共点,所以5-5≤[(t +4)-6]2+(3-7)2≤5+5,解得2-221≤t ≤2+221. 因此,实数t 的取值范围是[2-221,2+221].考 点 整 合高考中圆的方程是C 级考点,其重要性不言而喻.但在一些题目中,条件没有直接给出圆方面的信息,而是隐藏在题目中,要通过分析和转化,发现圆(或圆的方程),从而最终可以利用圆的知识求解,我们称此类问题为“隐形圆”问题,课本习题给出的“阿波罗尼斯圆”是“隐形圆”典型的例子.1.问题背景苏教版《数学必修2》P112第12题:已知点M (x ,y )与两个定点O (0,0),A (3,0)的距离之比为12,那么点M 的坐标应满足什么关系?画出满足条件的点M 所构成的曲线.2.阿波罗尼斯圆公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:到两定点距离之比等于已知数的动点轨迹为直线或圆.如图,点A ,B 为两定点,动点P 满足P A =λP B .则λ=1时,动点P 的轨迹为直线;当λ≠1时,动点P 的轨迹为圆,后世称之为阿波罗尼斯圆.证 设AB =2m (m >0),P A =λPB ,以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则A (-m ,0),B (m ,0).又设P (x ,y ),则由P A =λPB 得(x +m )2+y 2=λ(x -m )2+y 2,两边平方并化简整理得(λ2-1)x 2-2m (λ2+1)x +(λ2-1)y 2=m 2(1-λ2).当λ=1时,x =0,轨迹为线段AB 的垂直平分线;当λ>1时,⎝ ⎛⎭⎪⎫x -λ2+1λ2-1m 2+y 2=4λ2m 2(λ2-1)2,轨迹为以点⎝ ⎛⎭⎪⎫λ2+1λ2-1m ,0为圆心,⎪⎪⎪⎪⎪⎪2λm λ2-1为半径的圆. 上述课本习题的一般化情形就是阿波罗尼斯定理.热点一 轨迹问题【例1】 如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM ,PN (M ,N 分别为切点),使得PM =2PN ,试建立适当的坐标系,并求动点P 的轨迹方程.解 以O 1O 2的中点O 为原点,O 1O 2所在的直线为x 轴,建立平面直角坐标系,则O 1(-2,0),O 2(2,0),由已知PM =2PN ,得PM 2=2PN 2.因为两圆的半径均为1,所以PO 21-1=2(PO 22-1).设P (x ,y ),则(x +2)2+y 2-1=2[(x -2)2+y 2-1].即(x -6)2+y 2=33,所以所求轨迹方程为(x -6)2+y 2=33.探究提高 动点的轨迹问题是高考的热点之一,解决轨迹问题的关键是通过建立直角坐标系,寻找动点满足的条件,列式化简得所求轨迹方程.【训练1】 设A (-c ,0),B (c ,0)(c >0)为两定点,动点P 到A 点的距离与到B 点的距离的比为定值a (a >0),求P 点的轨迹.解 设动点P 的坐标为(x ,y ),由P A PB =a (a >0),得(x +c )2+y 2(x -c )2+y 2=a . 化简得(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+2c (1+a 2)1-a 2x +c 2+y 2=0, 整理得⎝ ⎛⎭⎪⎫x -1+a 2a 2-1c 2+y 2=⎝ ⎛⎭⎪⎫2ac a 2-12. 当a =1时,化简得x =0. 所以当a ≠1时,P 点的轨迹是以⎝ ⎛⎭⎪⎫a 2+1a 2-1c ,0为圆心,⎪⎪⎪⎪⎪⎪2ac a 2-1为半径的圆; 当a =1时,P 点的轨迹为y 轴.热点二 含“隐形圆”的范围与最值问题【例2】 (2013·江苏卷)如图所示,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.解 (1)联立⎩⎨⎧y =x -1,y =2x -4,得圆心为C (3,2). 切线的斜率存在,设切线方程为y =kx +3.则d =|3k +3-2|1+k 2=r =1, 得k =0或k =-34.故所求切线方程为y =3或3x +4y -12=0.(2)设点M (x ,y ),由MA =2MO ,知x 2+(y -3)2=2x 2+y 2,化简得x 2+(y +1)2=4.即点M 的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D .又因为点M 在圆C 上,故圆C 与圆D 的关系为相交或相切.故1≤CD ≤3,又C (a ,2a -4),D (0,-1),故1≤a 2+(2a -3)2≤3.解得0≤a ≤125.所以圆心C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125. 探究提高 (1)如何发现隐形圆(或圆的方程)是关键,常见的有以下五个策略: 策略一:利用圆的定义(到定点的距离等于定长的点的轨迹)确定隐形圆;策略二:动点P 对两定点A ,B 的张角是90°(k P A ·k PB =-1或P A →·PB→=0)确定隐形圆;策略三:两定点A ,B ,动点P 满足P A →·PB→=λ确定隐形圆; 策略四:两定点A ,B ,动点P 满足P A 2+PB 2是定值确定隐形圆;策略五:两定点A ,B ,动点P 满足AP =λBP (λ>0,λ≠1)确定隐形圆(阿波罗尼斯圆).(2)“隐形圆”发掘出来以后常考查点和圆、直线和圆、圆和圆的位置关系等相关知识点,一般解决思路可从“代数角度”或“几何角度”入手.【训练2】 在△ABC 中,边BC 的中点为D ,若AB =2,BC =2AD ,则△ABC 的面积的最大值是________. 解+析 以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系.则A (-1,0),B (1,0),由BD =CD ,BC =2AD 知,AD =2BD ,D 的轨迹为阿波罗尼斯圆,方程为(x -3)2+y 2=8.设C (x ,y ),得D ⎝ ⎛⎭⎪⎫x +12,y 2,所以点C 的轨迹方程为⎝ ⎛⎭⎪⎫x +12-32+⎝ ⎛⎭⎪⎫y 22=8,即(x -5)2+y 2=32.所以S △ABC =12×2|y |=|y |≤32=42,故S △ABC 的最大值是4 2.答案 4 2热点三 含“隐形圆”的定点与定值问题【例3】 已知圆C :x 2+y 2=9,点A (-5,0),在直线OA上(O 为坐标原点)存在定点B (不同于点A )满足:对圆C 上任一点P ,都有PB P A 为一常数,试求所有满足条件的点B 的坐标.解 法一 假设存在满足条件的点B (t ,0),当P 为圆C 与x 轴的左交点(-3,0)时,PB P A =|t +3|2;当P 为圆C 与x 轴的右交点(3,0)时,PB P A =|t -3|8,依题意|t +3|2=|t -3|8,解得t =-5(舍去)或t =-95.下面证明点B ⎝ ⎛⎭⎪⎫-95,0对于圆C 上任一点P ,都有PB P A 为常数. 设P (x ,y ),则y 2=9-x 2,所以PB 2P A 2=⎝ ⎛⎭⎪⎫x +952+y 2(x +5)2+y 2=x 2+185x +8125+9-x 2x 2+10x +25+9-x 2=1825(5x +17)2(5x +17)=925,从而PB P A =35为常数.故满足条件的点B 的坐标为⎝ ⎛⎭⎪⎫-95,0. 法二 假设存在满足条件的点B (t ,0),使得PB P A为常数λ(λ>0),则PB 2=λ2P A 2, 所以(x -t )2+y 2=λ2[(x +5)2+y 2],将y 2=9-x 2代入得,x 2-2xt +t 2+9-x 2=λ2(x 2+10x +25+9-x 2),即2(5λ2+t )x +34λ2-t 2-9=0对x ∈[-3,3]恒成立,所以⎩⎨⎧5λ2+t =0,34λ2-t 2-9=0,解得⎩⎪⎨⎪⎧λ=35,t =-95或⎩⎨⎧λ=1,t =-5(舍去), 故满足条件的点B 的坐标为⎝ ⎛⎭⎪⎫-95,0. 探究提高 本题以阿波罗尼斯圆为背景构建定点问题,体现了阿波罗尼斯圆在解+析几何中的经典地位.【训练3】 已知⊙O :x 2+y 2=1和点M (4,2).(1)过点M 向⊙O 引切线l ,求直线l 的方程;(2)求以点M 为圆心,且被直线y =2x -1截得的弦长为4的⊙M 的方程;(3)设P 为(2)中⊙M 上任一点,过点P 向⊙O 引切线,切点为Q ,试探究:平面内是否存在一定点R ,使得PQ PR 为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.解 (1)直线l 的斜率存在,设切线l 的方程为y -2=k (x -4),易得|4k -2|k 2+1=1,解得k =8±1915. ∴切线l 的方程为y -2=8±1915(x -4).(2)圆心到直线y =2x -1的距离为5,设圆的半径为r ,则r 2=22+(5)2=9,∴⊙M 的方程为(x -4)2+(y -2)2=9.(3)假设存在满足条件的点R (a ,b ),设点P 的坐标为(x ,y ),相应的定值为λ(λ>0).根据题意可得PQ =x 2+y 2-1,∴x 2+y 2-1(x -a )2+(y -b )2=λ, 即x 2+y 2-1=λ2(x 2+y 2-2ax -2by +a 2+b 2).(*)又点P 在圆M 上,∴(x -4)2+(y -2)2=9,即x 2+y 2=8x +4y -11,代入(*)式得8x +4y -12=λ2[(8-2a )x +(4-2b )y +(a 2+b 2-11)].若系数对应相等,则等式恒成立,∴⎩⎨⎧λ2(8-2a )=8,λ2(4-2b )=4,λ2(a 2+b 2-11)=-12,解得a =2,b =1,λ=2或a =25,b =15,λ=103,∴存在定点R ,使得PQ PR 为定值,点R 的坐标为(2,1)时,定值为2;点R 的坐标为⎝ ⎛⎭⎪⎫25,15时,定值为103. 【新题感悟】 (2019·南京、盐城高三二模)在平面直角坐标系xOy 中,已知点 A (-1,0),B (5,0).若圆M :(x -4)2+(y -m )2=4上存在唯一点P ,使得直线P A ,PB 在y 轴上的截距之积为5,则实数m 的值为________. 解+析 根据题意,设P 的坐标为(a ,b ),则直线P A 的方程为y =b a +1(x +1),其在y 轴上的截距为b a +1,直线PB 的方程为y =b a -5(x -5),其在y 轴上的截距为-5b a -5.若点P 满足使得直线P A ,PB 在y 轴上的截距之积为5,则有b a +1×⎝ ⎛⎭⎪⎫-5b a -5=5,变形可得b 2+(a -2)2=9,则点P 在圆(x -2)2+y 2=9上.若圆M :(x -4)2+(y -m )2=4上存在唯一点P ,则圆M 与(x -2)2+y 2=9有且只有一个公共点,即两圆内切或外切,又由圆心距为(4-2)2+m 2≥2,则两圆只能外切,则有4+m 2=25,解可得:m =±21.答案 ±21一、填空题1.在平面直角坐标系xOy 中,已知B ,C 为圆x 2+y 2=4上两点,点A (1,1),且AB ⊥AC ,则线段BC 的长的取值范围为________.解+析 如图,设BC 的中点为M (x ,y ).连接OB ,OM ,AM ,则BC =2BM =2AM ,所以OB 2=OM 2+BM 2=OM 2+AM 2,即4=x 2+y 2+(x -1)2+(y -1)2,化简得⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=32, 所以点M 的轨迹是以⎝ ⎛⎭⎪⎫12,12为圆心,62为半径的圆, 所以AM 的取值范围是⎣⎢⎡⎦⎥⎤6-22,6+22, 所以BC 的取值范围是[6-2,6+2].答案 [6-2,6+2]2.在平面直角坐标系xOy 中,已知圆C :(x -a )2+(y -a +2)2=1,点A (0,2),若圆C 上存在点M ,满足MA 2+MO 2=10,则实数a 的取值范围是________. 解+析 设点M (x ,y ),由MA 2+MO 2=10,即x 2+(y -2)2+x 2+y 2=10,整理得x 2+(y -1)2=4,即点M 在圆E :x 2+(y -1)2=4上.圆C 上存在点M 满足MA 2+MO 2=10等价于圆E 与圆C 有公共点, 所以|2-1|≤CE ≤2+1,即1≤a 2+(a -3)2≤3,整理得1≤2a 2-6a +9≤9,解得0≤a ≤3,即实数a 的取值范围是[0,3].答案 [0,3]3.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则实数a 的取值范围为________.解+析 由题意得圆心M (a ,a -4)在直线x -y -4=0上运动,所以动圆M 是圆心在直线x -y -4=0上,半径为1的圆.又因为圆M 上存在点P ,使经过点P 作圆O 的两条切线,切点为A ,B ,使∠APB =60°,所以OP =2,即点P 也在x 2+y 2=4上,于是2-1≤a 2+(a -4)2≤2+1,即1≤a 2+(a -4)2≤3,解得实数a 的取值范围是⎣⎢⎡⎦⎥⎤2-22,2+22. 答案 ⎣⎢⎡⎦⎥⎤2-22,2+22 4.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-4x =0.若直线y =k (x +1)上存在一点P ,使过P 所作的圆的两条切线相互垂直,则实数k 的取值范围是________.解+析 由题意知原命题等价于直线上存在点P 使得PC =22,从而(PC )min ≤22,即圆心C (2,0)到直线y =k (x +1)的距离d =|3k |1+k 2≤22,解得-22≤k ≤2 2.答案 [-22,22]5.在平面直角坐标系xOy 中,设点A (1,0),B (3,0),C (0,a ),D (0,a +2),若存在点P ,使得P A =2PB ,PC =PD ,则实数a 的取值范围是________. 解+析 设P (x ,y ),则(x -1)2+y 2=2·(x -3)2+y 2,整理得(x -5)2+y 2=8,即动点P 在以(5,0)为圆心,22为半径的圆上运动.另一方面,由PC =PD 知动点P 在线段CD 的垂直平分线y =a +1上运动,因而问题就转化为直线y =a +1与圆(x -5)2+y 2=8有交点.所以|a +1|≤22,故实数a 的取值范围是[-22-1,22-1].答案 [-22-1,22-1]6.如图,在等腰△ABC 中,已知AB =AC ,B (-1,0),AC 边的中点为D (2,0),则点C 的轨迹所包围的图形的面积等于________.解+析 因为AB =2AD ,所以点A 的轨迹是阿波罗尼斯圆,易知其方程为(x -3)2+y 2=4(y ≠0).设C (x ,y ),由AC 边的中点为D (2,0),知A (4-x ,-y ),所以C 的轨迹方程为(4-x -3)2+(-y )2=4,即(x -1)2+y 2=4(y ≠0),所求的面积为4π.答案 4π7.(2019·宿迁模拟)已知A ,B 是圆C 1:x 2+y 2=1上的动点,AB =3,P 是圆C 2:(x -3)2+(y -4)2=1上的动点,则|P A →+PB→|的取值范围为________. 解+析 设AB 的中点为C ,由垂径定理可得CC 1⊥AB ,则CC 1=1-⎝ ⎛⎭⎪⎫322=12,即点C 的轨迹方程是x 2+y 2=14,C 1C 2=32+42=5,则PC max =5+1+12=132,PC min =5-1-12=72,所以|P A →+PB→|=|2PC →|∈[7,13]. 答案 [7,13]8.(2019·苏、锡、常、镇调研)在平面直角坐标系xOy 中,已知圆C :(x +1)2+y 2=2,点A (2,0),若圆C 上存在点M ,满足MA 2+MO 2≤10,则点M 的纵坐标的取值范围是________.解+析 设M (x ,y ),因为MA 2+MO 2≤10,所以(x -2)2+y 2+x 2+y 2≤10,化简得x 2+y 2-2x -3≤0,则圆C :x 2+y 2+2x -1=0与圆C ′:x 2+y 2-2x -3=0有公共点,将两圆方程相减可得两圆公共弦所在直线的方程为x =-12,代入x 2+y 2-2x -3≤0可得-72≤y ≤72,所以点M 的纵坐标的取值范围是⎣⎢⎡⎦⎥⎤-72,72. 答案 ⎣⎢⎡⎦⎥⎤-72,72 二、解答题9.在x 轴正半轴上是否存在两个定点A ,B ,使得圆x 2+y 2=4上任意一点P 到A ,B 两点的距离之比为常数12?如果存在,求出点A ,B 坐标;如果不存在,请说明理由.解 假设在x 轴正半轴上存在两个定点A ,B ,使得圆x 2+y 2=4上任意一点P到A ,B 两点的距离之比为常数12.设P (x ,y ),A (x 1,0),B (x 2,0),其中x 2>x 1>0, 则(x -x 1)2+y 2(x -x 2)2+y 2=12对满足x 2+y 2=4的任何实数对(x ,y )恒成立, 整理得,2x (4x 1-x 2)+x 22-4x 21=3(x 2+y 2),将x 2+y 2=4代入得,2x (4x 1-x 2)+x 22-4x 21=12,这个式子对任意x ∈[-2,2]恒成立,所以一定有⎩⎨⎧4x 1-x 2=0,x 22-4x 21=12,因为x 2>x 1>0, 所以解得x 1=1,x 2=4.所以在x 轴正半轴上存在两个定点A (1,0),B (4,0),使得圆x 2+y 2=4上任意一点P 到A ,B 两点的距离之比为常数12.10.如图,已知平面α⊥平面β,A ,B 是平面α与平面β的交线上的两个定点,DA ⊂β,CB ⊂β,且DA ⊥α,CB ⊥α,AD =4,BC =8,AB =6,在平面α上有一个动点P ,使得∠APD =∠BPC ,求△P AB 的面积的最大值.解由题意知DA⊥α,又P A⊂α,∴DA⊥P A,∴在Rt△P AD中,tan∠APD=ADAP=4AP,同理tan∠BPC=BCBP=8BP.∵∠APD=∠BPC,∴BP=2AP.在平面α上以线段AB的中点为原点,AB所在的直线为x轴,建立平面直角坐标系,则A(-3,0),B(3,0),设P(x,y),则有(x-3)2+y2=2(x+3)2+y2(y≠0).化简得(x+5)2+y2=16,∴y2=16-(x+5)2≤16.∴|y|≤4.∴△P AB的面积为S△P AB =12|y|·AB=3|y|≤12,当且仅当x=-5,y=±4时取得等号,故△P AB的面积的最大值是12.11.已知点A(-3,0),B(3,0),动点P满足P A=2PB.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求QM的最小值,并求此时直线l2的方程.解(1)设点P的坐标为(x,y),则(x+3)2+y2=2(x-3)2+y2,化简可得(x-5)2+y2=16即为所求.(2)由(1)知曲线C是以点(5,0)为圆心、4为半径的圆,如图,则直线l2是此圆的切线,连接CQ,CM,则QM=CQ2-CM2=CQ2-16,当CQ ⊥l 1时,CQ 取最小值,CQ min =|5+3|2=42, 此时QM 的最小值为32-16=4,这样的直线l 2有两条,设满足条件的两个公共点为M 1,M 2,易证四边形M 1CM 2Q 是正方形,所以l 2的方程是x =1或y =-4.。
潘成华数学工作室——解答中等数学上一道几何题
潘成华数学工作室——解答中等数学上一道几何题人梯巧搭登攀路,心血勤浇栋梁材解答中等数学上一道几何题潘成华数学工作室潘成华数学工作室专集潘成华——另证一个三元不等式潘成华——2017年摩尔多瓦不等式另证潘成华数学工作室学员——2020年泰国奥林匹克不等式解答黄锦锐——解答一个几何不等式潘胤旭——证明Gerretsen不等式潘成华数学工作室学员——一个不等式的多种证法潘成华数学工作室初三女学员——解答一个不等式潘成华——2020年摩尔多瓦IMO选拔赛不等式潘成华数学工作室初三女学员——解答一个不等式潘成华数学工作室初二学员——解答叶中豪老师几何题潘成华——2017年伊朗数学奥林匹克几何题解答潘成华——数学奥林匹克训练题(381):一道新编几何题潘成华——数学奥林匹克训练题(378):一道新编几何题严彬玮——解答一道几何题詹子鹏、黄梓洵——解答一道几何不等式潘成华——证明一个三元条件不等式潘成华——竞赛生每日一题(357):一道自编几何题潘成华——单墫老师几何题两个解答潘成华——老题新证潘成华数学工作室——解答一道几何题潘成华数学工作室——张云勇教授征解题解答潘成华数学工作室——解答一道几何题潘成华数学工作室——解答许康华老师的不等式唐晨皓——解答2018年9月根源杯几何题潘成华——竞赛生每日一题(263):一道新编几何题徐在宥——2020年5月根源杯考试一道题的解答潘成华,徐在宥——竞赛生每日一题261解答唐晨皓,黄梓洵——2018年“根源杯”数学奥林匹克邀请赛五月几何题的两个解答潘成华——竞赛生每日一题255解答潘成华数学工作室——竞赛生每日一题252解答潘成华——证明一个三元不等式戴熙越——解答一道几何题黄梓洵,黄翔庭——中等数学奥林匹克高657和高649解答潘成华——MR数学杂志2020第二期问题(高中组)516解答于浩洋——MR杂志2020第2期问题(高中组)512解答潘成华数学工作室——2018年乌克兰数学奥林匹克一个不等式简证潘成华——竞赛生每日一题(236):一道新编几何题潘成华数学工作室——加拿大CRUX数学杂志4535解答潘成华,杨阳——竞赛生每日一题232两个解答潘成华——竞赛生每日一题(232):一道新编几何题李心宇——韦东奕不等式的证明潘成华数学工作室学员解答一个三元不等式潘成华数学工作室——解答一道几何题詹子鹏——解答一道几何题潘成华数学工作室——竞赛生每日一题(219):一道新编几何题潘成华数学工作室——竞赛生每日一题217解答解答2019哈佛-麻省理工数学竞赛几何题潘成华——竞赛生每日一题(217):一道新编几何题潘成华——解答一道新编几何题潘成华——竞赛生每日一题(214):一道新编几何题严彬玮——竞赛生每日一题210解答詹子鹏——竞赛生每日一题210又一解答俞然枫——解答万喜人老师一道新编几何题潘成华——蝴蝶定理解答一道几何题唐晨皓——竞赛生每日一题205解答唐晨皓,尹子彧——竞赛生每日一题204解答潘成华数学工作室——面积方法解答一道平面几何题李心宇——一道代数加强题目的解答李浩铖,唐晨皓——一道新编几何题的解答潘成华——解答一道网传几何题丁力煌——解答2016年哈佛-麻省理工数学竞赛几何题吴雨桐——解答潘成华老师一道新编几何题邱宸豪——一个不等式的另证严彬玮——证明一个三角不等式夏一航——解答潘成华老师一道新编几何题邱宸豪,詹子鹏——一个三角不等式的两个解答潘成华数学工作室学员解答的一道几何题严彬玮——一个四元条件不等式的证明潘成华数学工作室学员解答的一道几何题邱宸豪,冯建波——竞赛生每日一题194的两个解答吴雨桐——解答2012年土耳其奥林匹克几何题夏一航——解答一道几何题俞然枫——解答一道几何题潘成华数学工作室学员解答杨运新老师一道几何题丁力煌——一道2008美国数学奥林匹克国家队选拔考试题的解答罗千雅,李浩铖——一个三角不等式的两个证明丁力煌——2015年解答的一道IMO几何题严彬玮——竞赛生每日一题187解答李心宇——解答江苏省数学集训队一道数论题詹子鹏——2019年拉普拉塔河数学奥林匹克一道数论题解答潘成华——解答一道新编几何题李心宇——证明一个四元不等式严彬玮——解答一道几何不等式戴熙越——证明一个三角不等式黄梓洵——解答杨运新老师一道几何题严彬玮——一个不等式的证明严彬玮,方星竹——竞赛生每日一题181的两个解答。
2023-2024学年江苏省南京市高中数学苏教版 必修二立体几何初步专项提升-7-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年江苏省南京市高中数学苏教版必修二立体几何初步专项提升(7)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)∥ ,1. 已知直线与平面, 则能使成立的一个充分条件是( )A. B.C. D. 平面 平面和 与平面 所成的角相等异面直线 与 所成的角和异面直线 与 所成的角相等2. 如图,四棱锥 的底面为正方形, 底面 ,则下列结论中错误的是( )A.B. C. D. 3. 在《九章算术》中,将四个面都是直角三角形的四面体称为鳖膈,在鳖膈A-BCD 中,AB ⊥平面BCD ,BC ⊥CD ,且AB=BC=CD ,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为( )A. B. C. D.2π4π16π4. 如图,某几何体由共底面的圆锥和圆柱组合而成,且圆柱的两个底面和圆锥的顶点均在体积为36π的球面上,若圆柱的高为2,则圆锥的侧面积为()A. B. C. D.5. 已知球的半径为1,则该球的体积是( )A. B. C. D.35676. 圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A. B. C. D. 7. 蜂巢是由工蜂分泌蜂蜡建成的,从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是 , 这样的设计含有深刻的数学原理.我著名数学家华罗庚曾专门研究蜂巢的结构,著有《谈谈与蜂房结构有关的数学问题》一书.用数学的眼光去看蜂巢的结构,如图,在六棱柱的三个顶点处分别用平面 , 平面 , 平面截掉三个相等的三棱锥 ,平面, 平面 , 平面交于点 , 就形成了蜂巢的结构.如图,设平面与正六边形底面所成的二面角的大小为 , 则()A. B. C. D.8. 在正方体中,三棱锥的表面积为,则正方体外接球的体积为( )A. B. C. D.9. 已知圆锥的底面半径为, 高为 , 在它的所有内接圆柱中,全面积的最大值是( )A. B. C. D.若,,,则若,,,则若,,,则若,,,则10. 设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是( )A. B. C. D.11. 已知圆锥的底面半径为4,母线长为5,则该圆锥的侧面积为()A. B. C. D.12. A,B,C,D是半径为4的球面上的四点,已知AB=5,BC=3,cos∠BAC=,当AD取得最大值时,四面体ABCD的体积为()A. B. C. D.13. 宁波老外滩天主教堂位于宁波市新江桥北堍,建于清同治十一年(公元1872年).光绪二十五年(1899年)增建钟楼,整座建筑由教堂、钟楼、偏屋组成,造型具有典型罗马哥特式风格.其顶端部分可以近似看成由一个正四棱锥和一个正方体所组成的几何体,若正四棱锥的侧棱长、底面边长与正方体的棱长均为,则顶端部分的体积为14. 我国古代数学名著《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”.现有一“阳马”(如图所示),其中底面,,,,则该“阳马”的外接球的表面积为.15. 已知正方体的棱长为3,则到平面的距离为 .16. 如图所示,平面平面,,四边形为正方形,且,则异面直线与所成角的余弦值为.17. 如图,在四棱锥中,底面,是直角梯形,,,,点E是的中点.(1) 证明:平面平面;(2) 若,求二面角的余弦值.18. 如图,四边形ABCD为正方形,PD⊥平面ABCD,E、F分别为BC和PC的中点(1) 求证:EF∥平面PBD.(2) 如果AB=PD,求异面直线EF与BD所成角的正切值19. 如图,四边形ABCD为正方形,QA⊥平面ABCD , PD∥QA,QA=AB= PD.(1) 证明:平面PQC⊥平面DCQ;(2) 求直线DQ与面PQC成角的正弦值20. 如图,在长方体中,,,点P为棱的中点.(1) 证明:平面PAC;(2) 求异面直线与AP所成角的大小.21. 已知正方体.(1) G是的重心,求证:直线平面;(2) 若,动点E、F在线段、上,且, M为的中点,异面直线与所成的角为,求a的值.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.(1)(2)(1)(2)19.(1)(2)20.(1)(2)(1)(2)。
平面几何讲义之四点共圆(内容很详实)
BB高中数学联赛平面几何讲义之四点共圆平面几何中证四点共圆的几个基本方法 方法一:平面上有四点A B C D 、、、,若A D ∠=∠, 则A B C D 、、、四点共圆方法二 线段AC BD 、交于E ,若AE EC BE ED ⋅=⋅,则方法三 线段AC BD 、交于E ,若AE BE CE ED ⋅=⋅, 则A B C D 、、、四点共圆方法四:若四边形ABCD ,180A C ∠+∠=︒, 则A B C D 、、、四点共圆DCBPB方法四、已知 AD 是ABC △内角或外角平分线,AB AC ≠,且BD DC =,则A B C 、、证明 设BAD α∠=,因为AD AD DB DC =,所以sin sin sin sin B C BAD CAD=∠∠,所以sin sin B C =,内角时180B C +=︒,外角时B C =,所以A B C D 、、、四点共圆托勒密定理:Tolemy(托勒密定理)若四边形ABCD 是圆O 内接四边形,则AD •BC+AB •CD=AC •BD证明 在AC 上取点E,使∠EDC=∠ADB,因为∠ABD=∠ACD,所以△ABD ∼△EDC,△ADE ∼△BDC ,于是(AB/CE)=(DB/DC),(AD/AE)=(DB/BC),于是AD •BC+AB •DC=AE •BD+BD •CE=AC •BD例1、(等角共轭点性质)已知 点D E 、在ABC ∆内,ABD CBE ∠=∠,BAE CAD ∠=∠.求证ACD BCE ∠=∠.BCBB证明(一)(文武光华数学工作室南京潘成华)作E关于BC AB AC、、对称点P R Q、、,易知BRD∆≌BPD∆,ARD∆≌AQD∆,于是DP DR DQ==,所以DCP∆≌DCQ∆,得到PCD QCD∠=∠,进而BCE ACD∠=∠.证明(二)作BDS∆外接圆交AD延长线于S,可知ASC DBC ABE∠=∠=∠,得到ABE∆∽ASC∆,所以ABS∆∽AEC∆,得到ACE ASB DSB∠=∠=∠,所以BCE ACD∠=∠.南京潘成华)E是ABC∆内一点,点D在BC上,且BAE DAC∠=∠,EDB ADC∠=∠.则180AEC BED∠+∠=︒证明先证明AB BEAC EC=,过E作AB AC BC、、垂线EF EG EL、、交AB AC BC、、分别于F G L、、,直线EL AD、交于J,取AF中点K,易知B F E L、、、四点共圆,E G C L、、、四点共圆,所以sinsinFLAB C FL CEBEAC B LG LG BECE===⋅(1),(B C、是ABC∆的内角),因为EDB ADC∠=∠,所以EL LJ=,于是//KL AJ,易知A F E G、、、四点共圆,B圆心是K,BAE DAC∠=∠,所以AD FG⊥,进而//KL FG,得到KL是FG中垂线,所以FL LG=,(1)得AB BEAC EC=下面我们证明180AEC BED∠+∠=︒,因为sin sin,ACAEC EACAE∠=∠sin sin,ABBAE BAEBE∠=∠,两式相除得sin sin sinsin sin sinAEC EAC BADBAE BAE DAC∠∠∠==∠∠∠sin sinsin sinAB BAD EC BD EC BEDAC DAC BE CD BE DEC∠∠=⋅=⋅=∠∠,因为360AEC BAE BED DEC∠+∠+∠+∠=︒所以,180AEC BED∠+∠=︒证明(二)在AB取H,使得AHB PDB∠=∠,所以AHD∆∽APC∆,易知H P D B、、、四点共圆,所以180APC BPD BHD AHD∠+∠=∠+∠=︒例3、叶中豪老师2013年国庆讲义一几何题我的解答已知,D是ABC∆底边BC上任一点,P是形内一点,满足12∠=∠,34∠=∠。
【21套模拟试卷合集】2020届江苏省南京市南师附中集团新城中学中考数学模拟试卷含解析
2020届江苏省南京市南师附中集团新城中学中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A .3(2)29x x -=+ B .3(2)29x x +=- C .9232x x -+= D .9232x x +-=2.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( ) A .55×105B .5.5×104C .0.55×105D .5.5×1053.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元4.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F.已知AB =1,BC =3,DE =2,则EF 的长为( )A .4B ..5C .6D .85.如图是某个几何体的三视图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥6.已知函数y=(k-1)x 2-4x+4的图象与x 轴只有一个交点,则k 的取值范围是( ) A .k≤2且k≠1 B .k<2且k≠1 C .k=2D .k=2或17.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =41°,∠D =30°,斜边AB =4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A.13B.5C.22D.48.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3 9.一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.610.已知方程组2728x yx y+=⎧⎨+=⎩,那么x+y的值()A.-1 B.1 C.0 D.511.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )A.2πcm B.4πcm C.6πcm D.8πcm12.如果关于x的分式方程1311a xx x--=++有负数解,且关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩…无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.14.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.15.函数y=1x-中,自变量x的取值范围是________.16.如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为_____.17.如图,在△OAB中,C是AB的中点,反比例函数y=kx(k>0)在第一象限的图象经过A,C两点,若△OAB面积为6,则k的值为_____.18.如图,在Y ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=42cm,则EF+CF的长为cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.求证:EM是⊙O的切线;若∠A=∠E,BC=3,求阴影部分的面积.(结果保留π和根号).20.(6分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC 上作等速运动,到达C点、B点后运动停止.求证:△ABE≌△ACD;若AB=BE,求∠DAE的度数;拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.21.(6分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=kx(x>0)的图象经过AO的中点C,交AB于点D,且AD=1.设点A的坐标为(4,4)则点C的坐标为;若点D的坐标为(4,n).①求反比例函数y=kx的表达式;②求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.22.(8分)如图,点是反比例函数与一次函数在轴上方的图象的交点,过点作轴,垂足是点,.一次函数的图象与轴的正半轴交于点.求点的坐标;若梯形的面积是3,求一次函数的解析式;结合这两个函数的完整..图象:当时,写出的取值范围.23.(8分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.求证:BF=BC;若AB=4cm,AD=3cm,求CF的长.24.(10分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.25.(10分)某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台) 7 5每台日产量(个) 100 60(1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?26.(12分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:本次调查中,王老师一共调查了名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.27.(12分)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A、B两班学生测试成绩在80≤x<90这一组的数据如下:A班:80 80 82 83 85 85 86 87 87 87 88 89 89B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89 ③A、B两班学生测试成绩的平均数、中位数、方差如下:平均数中位数方差A班80.6 m 96.9B班80.8 n 153.3根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m、n的值;请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x-2)=2x+1.故选:A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.2.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将度55000用科学记数法表示为5.5×1.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C【解析】【详解】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DEBC EF=,即123EF =,解得EF=6,故选C.5.A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.考点:由三视图判定几何体.6.D【解析】【分析】当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.【详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,综上可知k的值为1或2,故选D.【点睛】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.7.A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1故选A.考点: 1.旋转;2.勾股定理.8.A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.9.B【解析】【分析】n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n,则(n-2)•180°=900°,解得:n=1.则这个正多边形是正七边形.所以,从一点引对角线的条数是:1-3=4.故选B【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.10.D【解析】【详解】解:2728x yx y+=⎧⎨+=⎩①②,①+②得:3(x+y)=15,则x+y=5,故选D11.B【解析】【分析】首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.【详解】解:如图,连接OC,AO,∵大圆的一条弦AB与小圆相切,∴OC⊥AB,∵OA=6,OC=3,∴OA=2OC,∴∠A=30°,∴∠AOC=60°,∴∠AOB=120°,∴劣弧AB的长=1206180π⨯⨯=4π,故选B.【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.12.B【解析】【分析】解关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩…,结合解集无解,确定a的范围,再由分式方程1311a xx x--=++有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩„,可整理得242y ay+⎧⎨<-⎩…∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵1311a xx x--=++得x=42a-而关于x的分式方程1311a xx x--=++有负数解∴a﹣4<1∴a<4于是﹣3≤a<4,且a 为整数∴a=﹣3、﹣2、﹣1、1、1、2、3则符合条件的所有整数a的和为1.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.8 5【解析】试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD 的长:根据勾股定理得:5AC==,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC•BD=12×5BD,∴12×5BD=4,解得:BD=85.考点:1.网格型问题;2.勾股定理;3.三角形的面积.14.240.【解析】【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.15.x≤1【解析】分析:根据二次根式有意义的条件解答即可.详解:∵二次根式有意义,被开方数为非负数,∴1 -x≥0,解得x≤1.故答案为x≤1.点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键. 16.4x=5(x-4)【解析】按照面积作为等量关系列方程有4x=5(x ﹣4).17.4【解析】【分析】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,根据C 是AB 的中点得到CN 为AMB V 的中位线,然后设MN NB a ==,CN b =,2AM b =,根据OM AM ON CN ⋅=⋅,得到OM a =,最后根据面积32236a b ab =⋅÷==求得2ab =,从而求得224k a b ab =⋅==.【详解】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,如图Q 点C 为AB 的中点,∴CN 为AMB V 的中位线,∴MN NB a ==,CN b =,2AM b =,Q OM AM ON CN ⋅=⋅,∴()2OM b OM a b ⋅=+⋅,∴OM a =,∴32236AOB S a b ab =⋅÷==V ,∴2ab =,∴224k a b ab =⋅==.故答案为:4.【点睛】本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,关键是正确作出辅助线,掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是2k ,且保持不变.18.5【解析】分析:∵AF 是∠BAD 的平分线,∴∠BAF=∠FAD .∵Y ABCD 中,AB ∥DC ,∴∠FAD =∠AEB .∴∠BAF=∠AEB .∴△BAE 是等腰三角形,即BE=AB=6cm .同理可证△CFE 也是等腰三角形,且△BAE ∽△CFE .∵BC= AD=9cm ,∴CE=CF=3cm .∴△BAE 和△CFE 的相似比是2:1.∵BG ⊥AE , BG=,∴由勾股定理得EG=2cm .∴AE=4cm .∴EF=2cm .∴EF +CF=5cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(2)12π 【解析】【分析】(1)连接OC ,根据垂直的定义得到∠AOF=90°,根据三角形的内角和得到∠ACE=90°+∠A ,根据等腰三角形的性质得到∠OCE=90°,得到OC ⊥CE ,于是得到结论;(2)根据圆周角定理得到∠ACB=90°,推出∠ACO=∠BCE ,得到△BOC 是等边三角形,根据扇形和三角形的面积公式即可得到结论.【详解】:(1)连接OC ,∵OF ⊥AB ,∴∠AOF=90°,∴∠A+∠AFO+90°=180°,∵∠ACE+∠AFO=180°,∴∠ACE=90°+∠A ,∵OA=OC ,∴∠A=∠ACO ,∴∠ACE=90°+∠ACO=∠ACO+∠OCE ,∴∠OCE=90°,∴OC ⊥CE ,∴EM 是⊙O 的切线;(2)∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠ACO+∠BCO=∠BCE+∠BCO=90°,∴∠ACO=∠BCE ,∵∠A=∠E ,∴∠A=∠ACO=∠BCE=∠E ,∴∠ABC=∠BCO+∠E=2∠A ,∴∠A=30°,∴∠BOC=60°,∴△BOC 是等边三角形,∴∴阴影部分的面积1122π= 【点睛】本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC 是解题的关键. 20.(1)证明见解析;(2)40︒;拓展:5090BDA ︒<∠<︒【解析】【分析】(1)由题意得BD=CE ,得出BE=CD ,证出AB=AC ,由SAS 证明△ABE ≌△ACD 即可;(2)由等腰三角形的性质和三角形内角和定理求出∠BEA=∠EAB=70°,证出AC=CD ,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE 的度数;拓展:对△ABD 的外心位置进行推理,即可得出结论.【详解】(1)证明:∵点D 、点E 分别从点B 、点C 同时出发,在线段BC 上作等速运动,∴BD=CE ,∴BC-BD=BC-CE ,即BE=CD ,∵∠B=∠C=40°,∴AB=AC ,在△ABE 和△ACD 中,AB AC B C BE CD =⎧⎪∠∠⎨⎪=⎩=,∴△ABE ≌△ACD (SAS );(2)解:∵∠B=∠C=40°,AB=BE ,∴∠BEA=∠EAB=12(180°-40°)=70°, ∵BE=CD ,AB=AC ,∴AC=CD ,∴∠ADC=∠DAC=12(180°-40°)=70°, ∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;拓展:解:若△ABD 的外心在其内部时,则△ABD 是锐角三角形.∴∠BAD=140°-∠BDA <90°.∴∠BDA >50°,又∵∠BDA <90°,∴50°<∠BDA <90°.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键.21. (1)C(2,2);(2)①反比例函数解析式为y =4x ;②直线CD 的解析式为y =﹣12x+1;(1)m =1时,S △OEF 最大,最大值为14. 【解析】【分析】(1)利用中点坐标公式即可得出结论;(2)①先确定出点A 坐标,进而得出点C 坐标,将点C ,D 坐标代入反比例函数中即可得出结论; ②由n=1,求出点C ,D 坐标,利用待定系数法即可得出结论;(1)设出点E 坐标,进而表示出点F 坐标,即可建立面积与m 的函数关系式即可得出结论.【详解】(1)∵点C 是OA 的中点,A(4,4),O(0,0),∴C 4040,22++⎛⎫ ⎪⎝⎭, ∴C(2,2);故答案为(2,2);(2)①∵AD=1,D(4,n),∴A(4,n+1),∵点C是OA的中点,∴C(2,3 2n+),∵点C,D(4,n)在双曲线kyx=上,∴3224nkk n+⎧=⨯⎪⎨⎪=⎩,∴14nk=⎧⎨=⎩,∴反比例函数解析式为4yx=;②由①知,n=1,∴C(2,2),D(4,1),设直线CD的解析式为y=ax+b,∴2241a ba b+=⎧⎨+=⎩,∴123ab⎧=-⎪⎨⎪=⎩,∴直线CD的解析式为y=﹣12x+1;(1)如图,由(2)知,直线CD的解析式为y=﹣12x+1,设点E(m,﹣12m+1),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y轴交双曲线4yx=于F,∴F(m,4m ),∴EF=﹣12m+1﹣4m,∴S△OEF=12(﹣12m+1﹣4m)×m=12(﹣12m2+1m﹣4)=﹣14(m﹣1)2+14,∵2<m<4,∴m=1时,S△OEF最大,最大值为1 4【点睛】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m的函数关系式.22.(1)点的坐标为;(2);(3)或.【解析】【分析】(1)点A在反比例函数上,轴,,求坐标;(2)梯形面积,求出B点坐标,将点代入即可;(3)结合图象直接可求解;【详解】解:(1)∵点在的图像上,轴,.∴,∴∴点的坐标为;(2)∵梯形的面积是3,∴,解得,∴点的坐标为,把点与代入得解得:,.∴一次函数的解析式为.(3)由题意可知,作出函数和函数图像如下图所示:设函数和函数的另一个交点为E,联立,得点E的坐标为即的函数图像要在的函数图像上面,可将图像分割成如下图所示:由图像可知所对应的自变量的取值范围为:或.【点睛】本题考查反比例函数和一次函数的图形及性质;能够熟练掌握待定系数法求函数的表达式,数形结合求的取值范围是解题的关键.23.(1)见解析,(2)CF=65cm.【解析】【分析】(1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE=∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于12BD•CE=12BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.【详解】证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD2222435AB AD++=.又∵BD•CE=BC•DC,∴CE=·125 BC DCBD=.∴BE95 ==.∴EF=BF﹣BE=3﹣96 55 =.∴CF==.【点睛】本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.24.(1)32;(2)1.【解析】【分析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH=KD=x,得出AK=12﹣x,EF=32(12﹣x),再根据S=32x(12﹣x)=﹣32(x﹣6)2+1,可得当x=6时,S有最大值为1.【详解】解:(1)∵△AEF∽△ABC,∴EF AK BC AD=,∵边BC长为18,高AD长为12,∴EF BCAK AD==32;(2)∵EH=KD=x,∴AK=12﹣x,EF=32(12﹣x),∴S=32x(12﹣x)=﹣32(x﹣6)2+1.当x=6时,S有最大值为1.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.25.(1)有3种购买方案①购乙6台,②购甲1台,购乙5台,③购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台,【解析】(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.【详解】解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台依题意,得7x+5(6-x)≤34解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器l1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台(2)根据题意,100x+60(6-x)≥380解之得x>1 2由(1)得x≤2,即12≤x≤2.∴x可取1,2俩值.即有以下两种购买方案:购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.∴为了节约资金应选择购买甲种机器1台,购买乙种机器5台,.【点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案.26.(1)20;(2)作图见试题解析;(3)12.【解析】【分析】(1)由A类的学生数以及所占的百分比即可求得答案;(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D 男A1男D 男A2男D 女A男D女D 男A1女D 男A2女D 女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:31 62 .27.(1)见解析;(2)m=81,n=85;(3)略.【解析】【分析】(1)先求出B班人数,根据两班人数相同可求出A班70≤x<80组的人数,补全统计图即可;(2)根据中位数的定义求解即可;(3)可以从中位数和方差的角度分析,合理即可.【详解】解:(1)A、B两班学生人数=5+2+3+22+8=40人,A班70≤x<80组的人数=40-1-7-13-9=10人,A、B两班学生数学成绩频数分布直方图如下:(2)根据中位数的定义可得:m=80822+=81,n=85852+=85;(3)从中位数的角度看,B班学生的数学成绩比A班学生的数学成绩好;从方差的角度看,A班学生的数学成绩比B班学生的数学成绩稳定.【点睛】本题考查了条形统计图、求中位数以及利用平均数、中位数、方差作决策等知识,能够从统计图中获取有用信息是解题关键.2020届山西农业大学附属学校中考数学模拟试卷一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有()A.6个B.7个C.8个D.9个2.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-83.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.114.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为()A.B.C.D.5.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④6.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E7.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.8.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.25B.35C.5 D.69.等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是()A.9 cm B.12 cm C.9 cm或12 cm D.14 cm10.下列各式:①33+3=63;②177=1;③2+6=8=22;④243=22;其中错误的有().A.3个B.2个C.1个D.0个二、填空题(共7小题,每小题3分,满分21分)11.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC =1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为_____.12.如图所示,在长为10m、宽为8m的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是______m.13.因式分解:3a2-6a+3=________.14.如图,点A(m,2),B(5,n)在函数kyx(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为.15.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为__________2cm.16.函数y=13x-+1x-的自变量x的取值范围是_____.17.如图,把一个面积为1的正方形分成两个面积为12的长方形,再把其中一个面积为12的长方形分成两个面积为14的正方形,再把其中一个面积为14的正方形分成两个面积为18的长方形,如此进行下去……,试用图形揭示的规律计算:111111248163264+++++11128256++=__________.三、解答题(共7小题,满分69分)18.(10分)关于x的一元二次方程ax2+bx+1=1.当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.19.(5分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=13,(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)20.(8分)2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了25%.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.21.(10分)在平面直角坐标系xOy 中,若抛物线2y x bx c =++顶点A 的横坐标是1-,且与y 轴交于点()B 0,1-,点P 为抛物线上一点.()1求抛物线的表达式;()2若将抛物线2y x bx c =++向下平移4个单位,点P 平移后的对应点为Q.如果OP OQ =,求点Q 的坐标.22.(10分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.。
多元视角剖析高中数学几何对称题
实 现 举 一 反 三 ,触 类 旁 通 ,这也是高 三 复 习 中 的 高 效 学
习 高 效 复 习 的 基 本 要 求 •0
5 0 十 7 龙 * ? 高中
2018年 8 月
解法探究
教学 参谋
轴方程,将引入的未知参量6 消去,进而得出所求参量a 的取值范围.
方法2:拋 物线产似2-1上 存 在
4"+1 2 ^ 2
事 实 上 很 多 题 目 本 身 并 不 难 ,只 是 我 们 对 解 题 方 法
掌 握 得 不 全 面 不 熟 练 才 感 觉 棘 手 ,茫 茫 题 海 中 有 很 多 类
似的问题等待我们去克服,要想顺 利 地 到 达 胜 利 彼 岸 ,
就 必 须 通 晓 很 多 类 型 题 目 的 解 题 方 法 和 解 题 套 路 ,从 而
教学
参谋 1
解法贼
2018年 8 月
多元视角剖析高中数学几何对称题
@江苏省南京市东山外国语学校王玉清
对称的本质是指两个物体或两个图形相究 对 称 问 题 是 高 中 数 学 教 学 内 容 的 重 要 应 用 ,也 是 处 理 高 中 数 学 几 何 问 题 的 思 维 方 法 ,几 何 对 称 问 题 是 高 考 数 学 中 重 要 题 型 之 一 ,一直受到一线教师的关注.
1.求 证 :l + 4 r + 4 r + _ " + 4 r >-^--- — (n e N *B .n ^2).
22 32
n2 2 Ti+l
2■对于任意正整数n ,求 证 :
--4-- 1--4--2--1-4-3----h**H-4-°--->71-1-1--1;----•
南京学大教育高一数学每日一练5.30——立体几何(答案)
学大教育高一数学每日一练——立体几何课后练习题答案撰稿老师:浮桥校区宋晓红审核人:朱广灿
1、证明∵在三棱柱ABC-A1B1C1中,F为A1C1的中点,
∴A1F綊1
2 AC,
∵D,E分别是棱AB,BC的中点,
∴DE綊1
2 AC,
∴A1F綊DE,
则四边形A1DEF为平行四边形,
∴EF∥A1D.
又EF⊄平面A1CD且A1D⊂平面A1CD,∴EF∥平面A1CD.
2、解:设AB,CD确定平面γ,
因为γ∩α=AC,γ∩β=BD,且α∥β,所以AC∥BD,所以△SAC∽△SBD,
所以
SC
SC+CD=
SA
SB,即
SC
SC+34=
8
9,
所以SC=272.
3、证明如图,过点A作AE∥CD交平面β于点E,
连结DE,BE.
∵AE∥CD,∴AE,CD确定一个平面,设为γ,
则α∩γ=AC,β∩γ=DE.
又α∥β,∴AC∥DE(面面平行的性质定理),
取AE的中点N,连结NP,MN,
∴M,P分别为AB,CD的中点,
∴NP∥DE,MN∥BE.
又NP⊄β,DE⊂β,MN⊄β,BE⊂β,∴NP∥β,MN∥β,
∵NP∩MN=N,∴平面MNP∥β.
∵MP⊂平面MNP,MP⊄β,∴MP∥β.。
南京市南京市行知实验中学 人教版初中七年级数学上册第四章《几何图形初步》模拟检测题(有答案解析)
一、选择题1.(0分)[ID :68655]如图,∠AOB =12∠BOD ,OC 平分∠AOD ,下列四个等式中正确的是( )①∠BOC =13∠AOB ;②∠DOC =2∠BOC ;③∠COB =12∠BOA ;④∠COD =3∠COB .A .①②B .②③C .③④D .①④2.(0分)[ID :68649]将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是( )A .AB .BC .CD .D3.(0分)[ID :68640]α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对4.(0分)[ID :68637]观察下列图形,其中不是正方体的表面展开图的是( )A .B .C .D .5.(0分)[ID :68636]平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ).A .点C 在线段AB 上 B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定6.(0分)[ID :68633]已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm7.(0分)[ID :68630]如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处8.(0分)[ID :68624]如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°9.(0分)[ID :68616]α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ). A .不互余且不相等 B .不互余但相等 C .互为余角但不相等D .互为余角且相等10.(0分)[ID :68597]已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( ) A .①② B .③④C . ①②④D .①②③④11.(0分)[ID :68594]如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .412.(0分)[ID :68579]如图,图中射线、线段、直线的条数分别为( )A .5,5,1B .3,3,2C .1,3,2D .8,4,113.(0分)[ID :68575]高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是()A.两点确定一条直线B.两点之间,线段最短C.两条直线相交,只有一个交点D.直线是向两个方向无限延伸的14.(0分)[ID:68568]如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确15.(0分)[ID:68561]小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A.B.C.D.二、填空题16.(0分)[ID:68712]长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.17.(0分)[ID:68725]同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.18.(0分)[ID:68722]如图,记以点A为端点的射线条数为x,以点D为其中一个端点的的值为________.线段的条数为y,则x y19.(0分)[ID:68710]看图填空.(1)AC=AD-_______=AB+_______,(2)BC+CD=_______=_______-AB,(3)AD=AC+___.20.(0分)[ID:68706]如图,点C,M,N在线段AB上,且M是AC的中点,CN:NB=1:2,若AC=12,MN=15,则线段AB的长是_______.21.(0分)[ID:68671]如图,小颖从家到超市共有4条路可走,小颖应选择第________条路才能使路程最短,用数学知识解释为________________.22.(0分)[ID:68667]魏老师去农贸市场买菜时发现,若把10千克的菜放在秤上,则指针盘上的指针转了180︒,第二天魏老师请同学们回答以下两个问题:(1)若把0.5千克的菜放在秤上,则指针转过________度;(2)若指针转了243︒,则这些菜共有________千克. 23.(0分)[ID:68666]填空:(1)8.76︒=________︒________'________'';(2)︒'''=________︒;(3)36000''=________'=________︒;(4)413480.15︒=________'=________''.24.(0分)[ID:68754]如图所示,若∠AOC=90°,∠BOC=30°,则∠AOB=________;若∠AOD=20°,∠COD=50°,∠BOC=30°,则∠BOD=______,∠AOC=________,∠AOB =________.25.(0分)[ID:68746]下面的几何体中,属于柱体的有______个.26.(0分)[ID:68743]已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是__和___.27.(0分)[ID :68740]在同一平面内,如果15AOB ∠=︒,75AOC ∠=︒,那么BOC ∠=_______. 三、解答题28.(0分)[ID :68809]如图,在数轴上有A ,B 两点,点A 在点B 的左侧.已知点B 对应的数为2,点A 对应的数为a .(1)若a =﹣1,则线段AB 的长为 ;(2)若点C 到原点的距离为3,且在点A 的左侧,BC ﹣AC =4,求a 的值.29.(0分)[ID :68806]如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.30.(0分)[ID :68766]如图,直角三角形ABC 的两条直角边AB 和BC 分别长4厘米和3厘米,现在以斜边AC 为轴旋转一周.求所形成的立体图形的体积.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.C3.C4.B5.A6.A7.A8.B9.D10.C11.C12.D13.B14.C15.A二、填空题16.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)17.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D18.【分析】先根据射线和线段的定义求出xy的值再代入求解即可【详解】以点为端点的射线有射线AC和射线AB共两条故点为其中一个端点的线段有线段ADODBDCD共四条故将代入中原式故答案为:【点睛】本题考查19.CDBCBDADCD【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC(2)BC+CD=BD=AD-AB(3)AD=AC+CD故答案为:CD;BC;BD;AD20.39【分析】根据中点的定义可求出MC的长根据MN=MC+CN可得CN的长根据CN:NB=1:2可求出NB的长根据AB=AC+CN+NB即可得答案【详解】∵M是AC的中点AC=12∴MC=AC=6∵M21.②两点之间线段最短【分析】结合两点之间线段最短以及图形信息即可解答本题【详解】根据题意可把家与超市看作两个点结合两点之间线段最短即可得出第②条为最短距离即数学知识为两点之间线段最短【点睛】本题考查两22.135【分析】(1)算出秤上放1千克菜转过的角度为多少乘以05即可;(2)让243°除以1千克菜转过的角度即可【详解】解:(1)=18°05×18°=9°05千克的菜放在秤上指针转过9°;(2)2423.4536423600109540【分析】根据题意可知(1)(2)(3)(4)都是度分秒的计算由度化度分秒的运算法则整数的度数直接填入度数小数部分乘以60即可得到分分的小数部分乘以60得到秒;度分秒化24.120°80°70°100°【分析】利用角度的和差计算求各角的度数【详解】若∠AOC=90°∠BOC=30°则∠AOB=∠AOC+∠BOC=90°+30°=120°;若∠AOD=20°∠COD=5025.4【分析】解这类题首先要明确柱体的概念然后根据图示进行解答【详解】柱体分为圆柱和棱柱所以柱体有:第1356故答案为4个【点睛】本题考查的知识点是认识立体图形解题的关键是熟练的掌握认识立体图形26.4【分析】从图形进行分析结合正方体的基本性质得到底面的数字即可求得结果【详解】第一个正方体已知235第二个正方体已知245第三个正方体已知124且不同的面上写的数字各不相同可求得第一个正方体底面的数27.或【分析】分别讨论射线OBOC在射线OA同侧和异侧的情况问题可解【详解】解:如图(1)当OBOC在射线OA同侧时如图(2)当OBOC在射线OA异侧时故答案为或【点睛】本题考查了角的加减运算解答关键是三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【分析】根据∠AOB=12∠BOD,OC平分∠AOD,得到∠AOB=13∠AOD,∠AOC=∠DOC=12∠AOD,进而得到∠BOC=12∠AOB,∠DOC=3∠BOC从而判断出①②错误,③④正确.【详解】解:因为∠AOB=12∠BOD,所以∠AOB=13∠AOD,因为OC平分∠AOD,所以∠AOC=∠DOC=12∠AOD,所以∠BOC=∠AOC-∠AOB=12∠AOD-13∠AOD=16∠AOD=12∠AOB,故①错误,③正确;因为∠DOC=12∠AOD,∠BOC=16∠AOD,所以∠DOC=3∠BOC 故②错误,④正确.【点睛】本题考查了角的和差倍数关系,根据题意表示∠AOB=13∠AOD,∠AOC=∠DOC=12∠AOD,进而根据角的关系即可作出判断.2.C解析:C【解析】根据折叠的性质,结合折叠不变性,可知剪下来的图形是C,有四个直角三角形构成的特殊四边形.故选C.3.C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.4.B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.5.A解析:A【分析】本题没有给出图形,在画图时,应考虑到A 、B 、C 三点之间的位置关系,再根据正确画出的图形解题. 【详解】 如图:从图中我们可以发现AC BC AB +=, 所以点C 在线段AB 上. 故选A . 【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.6.A解析:A 【分析】根据C 点为线段AB 的中点,D 点为BC 的中点,可知AC=CB=12AB ,CD=12CB ,AD=AC+CD ,又AB=4cm ,继而即可求出答案. 【详解】∵点C 是线段AB 的中点,AB=20cm , ∴BC=12AB=12×20cm=10cm , ∵点D 是线段BC 的中点, ∴BD=12BC=12×10cm=5cm , ∴AD=AB-BD=20cm-5cm=15cm . 故选A . 【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.7.A解析:A 【详解】要想4个人到工具箱的距离之和最短,据图可知:•位置在A 与B 之间时,距离之和;AD BC >+‚位置在B 与C 之间时,距离之和;AD BC =+ƒ位置在C 与D 之间时,距离之和.AD BC >+则工具箱在B 与C 之间时,距离之和最短. 故选A .8.B解析:B 【解析】∵OC ⊥OD ,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B .9.D解析:D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与β∠互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.10.C解析:C【分析】分三种情况: C 在线段AB 上,C 在线段BA 的延长线上以及C 不在直线AB 上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:当C 在线段AB 上时,BC=AB-AC= 8-6=2;当C 在线段BA 的延长线上时,BC=AB+AC =8+6=14;当C 不在直线AB 上时,AB 、AC 、BC 三边构成三角形,则2<BC <14,综上所述①②④正确故选:C .【点睛】本题考查两点间的距离和三角形三边的关系,理解题意,进行正确的分类求解是关键. 11.C解析:C【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.12.D解析:D【分析】直线没有端点,射线有一个端点,线段有两个端点.【详解】以A点为端点的射线有2条,以B为端点的射线有3条,以C为端点的射线有2条,以D 为端点射线有1条,合计射线8条.线段:AB,BC,AC,BD ,合计4条.直线:AC,合计1条故本题 D.【点睛】直线没有端点,射线有一个端点,线段有两个端点.13.B解析:B【分析】本题为数学知识的应用,由题意将弯曲的道路改直以缩短路程,就用到两点间线段最短定理.【详解】解:弯曲的道路改直,使两点处于同一条线段上,两点之间线段最短.故选B.【点睛】本题考查了两点之间线段最短的性质,正确将数学定理应用于实际生活是解题关键.14.C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB,直线a.故选C.【点睛】本题考查了几何中直线的表示方法,是最基本的知识.15.A解析:A【分析】对面图案均相同的正方体礼品盒,则两个相同的图案一定不能相邻,据此即可判断.【详解】解:根据分析,图A折叠成正方体礼盒后,心与心相对,笑脸与笑脸相对,太阳与太阳相对,即对面图案相同;图B、图C和图D中对面图案不相同;故选A.【点睛】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题16.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)解析:几何体体面平曲【解析】【分析】几何体又称为体,包围着体的是面,分为平的面和曲的面两种【详解】长方体、四面体、圆柱、圆锥、球等都是几何体,几何体也简称为体,包围着体的是面,面有平面和曲面两种.故答案为:(1). 几何体(2). 体 (3). 面(4). 平(5). 曲【点睛】此题考查认识立体图形,解题关键在于掌握其性质定义.17.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C 在BA 的延长线时,如图2,∵点D 是线段BC 的中点,CD =3,∴BC =2CD =6,∵BC =3AB ,∴AB =13BC =13×6=2, ∴AC =BC -AB =6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.18.【分析】先根据射线和线段的定义求出xy 的值再代入求解即可【详解】以点为端点的射线有射线AC 和射线AB 共两条故点为其中一个端点的线段有线段ADODBDCD 共四条故将代入中原式故答案为:【点睛】本题考查解析:2-【分析】先根据射线和线段的定义求出x ,y 的值,再代入求解即可.【详解】以点A 为端点的射线有射线AC 和射线AB ,共两条,故2x =点D 为其中一个端点的线段有线段AD 、OD 、BD 、CD ,共四条,故4y =将2x =,4y =代入x y -中原式242=-=-故答案为:2-.【点睛】本题考查了代数式的运算,掌握射线和线段的定义是解题的关键.19.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB,(3)AD=AC+CD,故答案为:CD;BC;BD;AD;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.20.39【分析】根据中点的定义可求出MC的长根据MN=MC+CN可得CN的长根据CN:NB=1:2可求出NB的长根据AB=AC+CN+NB即可得答案【详解】∵M 是AC的中点AC=12∴MC=AC=6∵M解析:39【分析】根据中点的定义可求出MC的长,根据MN=MC+CN可得CN的长,根据CN:NB=1:2,可求出NB的长,根据AB=AC+CN+NB即可得答案.【详解】∵M是AC的中点,AC=12,∴MC=1AC=6,2∵MN=MC+CN,MN=15,∴CN=15-6=9,∵CN:NB=1:2,∴NB=18,∴AB=AC+CN+NB=12+9+18=39.故答案为39【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.21.②两点之间线段最短【分析】结合两点之间线段最短以及图形信息即可解答本题【详解】根据题意可把家与超市看作两个点结合两点之间线段最短即可得出第②条为最短距离即数学知识为两点之间线段最短【点睛】本题考查两解析:② 两点之间,线段最短【分析】结合“两点之间线段最短”以及图形信息即可解答本题.【详解】根据题意,可把家与超市看作两个点,结合“两点之间线段最短”即可得出第②条为最短距离,即数学知识为“两点之间线段最短”.【点睛】本题考查两点之间的最短距离,熟练掌握“两点之间线段最短”的性质是解题关键. 22.135【分析】(1)算出秤上放1千克菜转过的角度为多少乘以05即可;(2)让243°除以1千克菜转过的角度即可【详解】解:(1)=18°05×18°=9°05千克的菜放在秤上指针转过9°;(2)24解析:13.5【分析】(1)算出秤上放1千克菜转过的角度为多少,乘以0.5即可;(2)让243°除以1千克菜转过的角度即可.【详解】解:(1)18010︒=18°,0.5×18°=9°, 0.5千克的菜放在秤上,指针转过9°;(2)243°÷18°=13.5(千克),答:共有菜13.5千克.故答案为9,13.5【点睛】本题考查了角度计算的应用,解决本题的关键是得到秤上放1千克菜转过的角度为多少. 23.4536423600109540【分析】根据题意可知(1)(2)(3)(4)都是度分秒的计算由度化度分秒的运算法则整数的度数直接填入度数小数部分乘以60即可得到分分的小数部分乘以60得到秒;度分秒化解析:45 36 4.23 600 10 9 540【分析】根据题意可知,(1)(2)(3)(4)都是度分秒的计算,由度化度分秒的运算法则,整数的度数直接填入,度数小数部分乘以60,即可得到分,分的小数部分乘以60得到秒;度分秒化度的运算法则为分别除以60,即可得到答案;【详解】解:(1)0.766045.6'⨯=,0.6'6036⨯="∴8.76845'36︒=︒";(2)48600.8'"÷=,'13.8600.23÷=︒∴'41348 4.23"︒=︒;(3)3600060600'"÷=,'6006010÷=︒∴'3600060010"==︒;(4)0.15609'︒⨯=,9'60540⨯="∴0.159540'︒==".故答案为(1)8,45,36;(2)4.23;(3)600,10;(4)9,540.【点睛】本题考查了度分秒之间的换算,解题的关键是掌握度分秒的运算法则.24.120°80°70°100°【分析】利用角度的和差计算求各角的度数【详解】若∠AOC =90°∠BOC =30°则∠AOB =∠AOC +∠BOC =90°+30°=120°;若∠AOD=20°∠COD=50解析:120° 80° 70° 100°【分析】利用角度的和差计算求各角的度数.【详解】若∠AOC=90°,∠BOC=30°,则∠AOB=∠AOC+∠BOC=90°+30°=120°;若∠AOD=20°,∠COD=50°,∠BOC=30°,则∠BOD=∠COD+∠BOC=50°+30°=80°;∠AOC=∠AOD+∠DOC=20°+50°=70°;∠AOB=∠AOD+∠COD+∠BOC=20°+50°+30°=100°;故答案为:120°,80°,70°,100°.【点睛】此题考查几何图形中角度的和差计算,根据图形确定各角度之间的数量关系是解题的关键.25.4【分析】解这类题首先要明确柱体的概念然后根据图示进行解答【详解】柱体分为圆柱和棱柱所以柱体有:第1356故答案为4个【点睛】本题考查的知识点是认识立体图形解题的关键是熟练的掌握认识立体图形解析:4【分析】解这类题首先要明确柱体的概念,然后根据图示进行解答.【详解】柱体分为圆柱和棱柱,所以柱体有:第1、3、5、6,故答案为4个.【点睛】本题考查的知识点是认识立体图形,解题的关键是熟练的掌握认识立体图形.26.4【分析】从图形进行分析结合正方体的基本性质得到底面的数字即可求得结果【详解】第一个正方体已知235第二个正方体已知245第三个正方体已知124且不同的面上写的数字各不相同可求得第一个正方体底面的数解析:4【分析】从图形进行分析,结合正方体的基本性质,得到底面的数字,即可求得结果.【详解】第一个正方体已知2,3,5,第二个正方体已知2,4,5,第三个正方体已知1,2,4,且不同的面上写的数字各不相同,可求得第一个正方体底面的数字为3,5对应的底面数字为4.故答案为3,4.27.或【分析】分别讨论射线OBOC在射线OA同侧和异侧的情况问题可解【详解】解:如图(1)当OBOC在射线OA同侧时如图(2)当OBOC在射线OA异侧时故答案为或【点睛】本题考查了角的加减运算解答关键是解析:60︒或90︒【分析】分别讨论射线OB、OC在射线OA同侧和异侧的情况,问题可解【详解】解:如图(1)当OB、OC在射线OA同侧时,∠=∠-∠=︒-︒=︒BOC AOB AOC701560如图(2)当OB、OC在射线OA异侧时,∠=∠+∠=︒+︒=︒701590BOC AOB AOC故答案为60︒或90︒【点睛】本题考查了角的加减运算,解答关键是应用分类讨论思想,找到不同情况分别求解.三、解答题28.(1)3;(2)﹣2【分析】(1)根据点A、B表示的数利用两点间的距离公式即可求出AB的长度;(2)设点C表示的数为c,则|c|=3,即c=±3,根据BC﹣AC=4列方程即可得到结论.【详解】(1)AB=2﹣a=2﹣(﹣1)=3,故答案为:3;(2)∵点C到原点的距离为3,∴设点C表示的数为c,则|c|=3,即c=±3,∵点A在点B的左侧,点C在点A的左侧,且点B表示的数为2,∴点C 表示的数为﹣3,∵BC ﹣AC =4,∴2﹣(﹣3)﹣[a ﹣(﹣3)]=4,解得a =﹣2.【点睛】本题主要考查数轴上两点之间的距离,解此题的关键在于熟练掌握其知识点.29.(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时: 11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.30.6π立方厘米【解析】试题分析:先根据勾股定理求出斜边为5厘米,再用“3×4÷5=2.4厘米”求出斜边上的高,绕斜边旋转一周后所得到的就是两个底面半径为2.4厘米,高的和为5厘米的圆锥体,由此利用圆锥的体积公式求得这两个圆锥的体积之和即可.试题过B作BD⊥AC,∵直角边AB和BC分别长4厘米和3厘米,∴AC=2234=5(厘米),斜边上的高为“3×4÷5=2.4(厘米),所形成的立体图形的体积:132.42 5 =9.6π(立方厘米).。
一道向量数量积考题解法的多角度探究
一道向量数量积考题解法的多角度探究潘成银【期刊名称】《中学数学月刊》【年(卷),期】2013(000)012【总页数】3页(P46-48)【作者】潘成银【作者单位】江苏省南京实验学校 210019【正文语种】中文波利亚曾说:“一个专心认真备课的老师能够拿出一个有意义但又不太复杂的题目,去帮助学生发掘问题的各个方面,使得通过这道题,就好像一道门,把学生引入一个完整的理论领域.”在浩瀚无垠的数学题海里,教师要寻找这样的题目,学习和借鉴当然少不了,但用心去研题是关键.教师不仅要研究和发掘教材中例题、习题的教学价值,更要分析和研究学生在作业和考试中的解题思维活动,特别是解题的切入点和思维受阻原因,并在评讲和订正时通过一题多解探究、变式拓展训练,培养和提高学生的解题能力.下面通过对一道高三模拟试题解法的多角度探究,抛砖引玉,希望能引起更多的同仁关注,展示更多优秀的探究案例.图1考题 (2013年江苏省常州市高三第一次模拟)在平面直角坐标系xOy中,圆C:x2+y2=4分别交x轴正半轴及y轴负半轴于M,N两点,点P为圆C上任意一点,则的最大值为.大多数学生的解法:设P(x,y),由题意x2+y2=4,所以面对二元最值,因不能进一步消元,解题受阻.其实本题的切入点较多,并且同一个切入点之后的进一步化简方法也不唯一.经过探究,发现本题是一道典型的关于向量数量积的好题,作为习题教学,是一个十分优秀的案例.师:平面向量本身具有“数”、“形”二重性,利用向量的坐标形式是解决向量问题的基本策略之一.本题在已经给出坐标系的前提下,向量的代数运算更易让人接受,所以以坐标法为切入点方向正确.请同学们思考,能否从代数式的特征出发,多角度分析,充分联想,找到进一步的转化方法,突破思维受阻.另外向量的数量积还有几何运算,结合图形特征,能否找到非坐标解题方法?请发挥你的聪明才智,看谁的解法多、解法好.在独立思考的前提下可以进行适当交流.经过学生的独立思考、探究和相互交流,以及教师的适时引导,得到以下解法.(只整理解法,探究过程不再呈现)1 在向量坐标形式下的探究探究1 逆向思维,反向代入消元,将代数法进行到底.设2-x+y=t,得y=t+x-2.代入圆C:x2+y2=4,整理得2x2+2(t-2)x+(t2-4t)=0.此方程有解,Δ=4(t-2)2-8(t2-4t)≥0.解得当且仅当即P的坐标为时,有最大值评注将数量积转化为函数最值后,由于条件中圆方程为二次,不能代入目标函数的一次式进行继续消元.此时采用逆向代入,把目标函数的一次式代入圆方程,使得求函数最值问题转化为方程有解问题,利用一元二次方程有解条件建立不等式,解不等式求得函数最值.探究2 借助直线与圆位置关系,呼应条件设2-x+y=t,则直线2-x+y=t与圆C:x2+y2=4有公共点P,于是化简得所以的最大值为评注通过坐标法将数量积的最值转化为关于变量x,y的二元一次函数最值,利用二元一次方程表示直线,且这条直线与题设中的圆有公共点,与题设条件呼应,有“回家”的感觉.探究3 数形反复转化,构造出一片新天地设P(x,y),则设点C(1,-1),则(x-1)2+(y+1)2的几何意义为P,C两点间距离的平方.因为P(x,y)在圆C:x2+y2=4上,所以评注通过坐标法将平面向量数量积转化为代数中的函数最值问题,针对函数解析式具有的几何特征,构造几何图形求解函数最值.由几何到代数然后回到几何的解题过程,充分体现数学解题的转化思想和数形结合思想.探究4 二元最值,基本不等式相助,出奇制胜由基本不等式(a+b)2≤2(a2+b2),得当且仅当-x=y>0,即时等号成立,所以故的最大值为评注对二元最值问题,除了消元和数形结合外,有时可以适当改变函数表达式结构,使之符合利用基本不等式求最值条件.探究5 借助参数式,别样的风韵,格外的精巧因点P在圆C:x2+y2=4上,故设P(2cos θ,2sin θ),则当即点P坐标为时,等号成立.所以的最大值为点评设圆上点坐标为参数式,能使数量积的表达式避免出现两个变量的困扰,并且利用三角函数变换很好地解决了代数运算所不能实现的解题意图,解题过程十分精巧.通过建立坐标系,将向量数量积坐标化,运用解析法将几何问题转化成基本代数问题,即求解一类代数式的最值.将代数式的抽象与几何图形直观相结合,是数形结合思想的体现,从而使问题轻松获解.2 在向量转化中探究利用已知向量(位置确定、长度确定或夹角确定)表示动向量,实施向量转化,是解决几何图形中向量问题的常用方法.探究6 有困难找圆心,实施向量转化,向量共线一锤定音图2因为OM⊥ON,OP=2,所以设如图当P坐标为时,与同向,有最大值所以取最大值点评借助几何图形中定向量对所求向量进行分解转化,以定向量来表示动向量,从而减少运算量、思维量,达到事半功倍、以静制动的效果,最终使问题轻松解决.探究7 牵手弦中点,结合相反向量,解题再次提速图3如图3,设MN的中点为Q,则由圆的性质,当线段PQ过圆心时,线段PQ长达到最大值,最大值为所以的最大值为点评三角形及其中线,是平行四边形的“一半”,所以借助其进行向量合成(加法)或分解,是向量转化的一种常用方法.通过这种模式,把数量积转化为平方差,解题十分简捷.3 在向量数量积的公式a·b=|a||b|cos θ下探究向量数量积使用向量的几何元素(长度、夹角)定义,所以求解与几何图形有关的向量数量积自然少不了这种思路.探究8 联想迁移,借力余弦定理,别样的风味,一样的精美由圆的性质,在第四象限时,不能达到最大),所以在三角形PMN中,由余弦定理,所以当且仅当PM=PN,即P坐标为时取等号,解得所以即取最大值点评圆心角与圆周角关系、余弦定理、向量数量积、基本不等式,知识巧妙交汇处,思想驰骋飞扬时.解题是一种锻炼,解题也是一种享受,我们应该感谢数学带给我们的精彩.探究9 面积、数量积公式联姻,别样的风貌,一样的经典由探究又所以当S△PMN最大时,最大.在三角形PMN中,当点P坐标为时,点P到MN边距离为最大,此时所以的最大值为点评由三角形面积公式和向量数量积公式特点,我们可以得到他们之间关系:或者当求解三角形面积比较容易时,可以借助上述公式进行向量数量积的求解.4 在数量积几何意义下探究数学概念都兼有数和形两方面的意义,利用向量数量积的几何意义——投影,解决与几何有关的向量数量积问题,有时能避免复杂的向量转化或代数运算,达到一招取胜的效果.探究10 构造向量“投影”,剑走偏锋,一招取胜图4如图4,过M作ME⊥PN于E点,则向量在上的投影长为线段PE的长度,因为所以ME=PE,于是以下同探究9.点评由于该题特有的结构和多方位的入手视角,为我们提供了丰富的思维空间和展示平台.通过对该题的深入探究,丰富多彩的解题方法既有效地强化了我们对数量积的思路、方法的真正领会和理解,使我们的思维在灵活性、广阔性、深刻性、创造性等方面得到了很好的锻炼,提高了分析问题和解决问题的能力.5 变式拓展,扩大解题成果我们不仅要懂得如何处理问题、解决问题,还要懂得如何发现问题、提出问题.解题后要思考对题目进行演变拓展、特殊到一般的推广等.通过拓展延伸找到不同知识板块间的相关性,形成知识链条,拓宽视野,培养探索意识和创新精神.(1)特殊推广到一般变式1 P是圆C:(x-a)2+(y-b)2=r2上任意一点,定点M(x1,y1),N(x2,y2),求的最大值和最小值可以使用探究1~7的任何一种方法,不过以探究7最为简单:图4如图5,设MN的中点为Q,连结CQ,交圆于A,B两点,并且AQ>BQ,则当P点在A处时,最大,最大值为当P点在B处时,最小,最小值为(2)把圆类比到直线或区域变式2 P点是直线l:ax+by+c=0上任意一点,定点M(x1,y1),N(x2,y2),求的最大值和最小值.变式3 P点是区域内任意一点,定点M(1,0),N(-1,0),求的最大值和最小值.(3)把平面向量类比到空间向量变式4 P点是球面x2+y2+z2=R2上任意一点,定点M(x1,y1,z1),N(x2,y2,z2),求的最大值和最小值.当然也可以把球面改为空间中的直线、平面或一个几何体.以上问题都可以用探究7的思路求解,本文不再探讨.6 反思(1)精选例题的主体性解题教学是为了巩固数学基本知识,培养学生掌握数学思想和方法、解题技能和技巧,并逐步提高运用数学知识和数学思想解决具体问题的能力,所以例题的选择要从学生实际出发,为了学生发展,以学生为主体,教师备课时应结合学生实际情况选择例题,特别是在学生最近发展区中选题,这样才是有效的解题教学.(2)对问题全方位探究的必要性解题过程中常常换一个角度试试,可以克服思维定势的消极影响,形成创新思维的源泉.通过对本题多角度、全方位、深层次的思考与探究,以不同知识内容为切入点,探究出不同的解题方案,能开拓思路,沟通知识,掌握规律,权衡解法优劣,提高解题效率,积累解题经验,深化思维活动;通过将题目从特殊推广到一般,类比拓广延伸,挖掘潜在的一般结论,使得内容更具有广泛性和拓展空间,深刻揭示了问题的本质,让我们的思维在发散性、广阔性、求异性、创造性、灵活性、深刻性等方面都得到了很好的锻炼和发展.(3)一题多解研究和训练的重要性一题多解探究过程就是深入理解数学的过程,是沟通已有知识经验更深刻联系的过程,能让知识结构有效重组与整合,构建有序的网络化知识体系;一题多解探究的过程也是深化数学理性认识,自觉建构认知结构并积极优化的过程,是解题智慧得到开发、创新思维和创造能力得到培养和提高的过程.平时在数学学习和解题活动中应从典型的基础问题入手,从不同方位、不同角度探索和思考问题,综合应用各部分知识开拓思路,进行多解探究训练,并在解题过程中不断总结经验,积累解题的思维方法.只有牢固树立起在知识与方法的立体网络中思考并解决问题的观念,养成一题多解探究习惯,摒弃“一题一法”大量操练的“题海战术”,把数学学活,让头脑变活,我们在解题时才会思绪飞转,各种方法和技巧才会迅速闪现在脑海中,常规的解法、简捷的解法、创造性的优美解法便会接踵而至,并在多解中不断求简和优化.。
南京师范大学附属中学七年级数学上册第四单元《几何图形初步》-解答题专项复习题(含解析)
一、解答题1.如图是由7个相同的小立方体组成的几何体,请画出从正面看、从左面看、从上面看的平面图形.解析:画图见详解.【分析】分别画出从正面看、左面看、上面看的图形,注意所有看到的棱都要表示到三视图中.【详解】如图所示:【点睛】本题主要考查了三视图的画法,所有看到的棱都要在三视图中表示出来是画图的关键. 2.直线l上有A,B两点,AB=24cm,点O是线段AB上的一点,OA=2OB.(1)OA=__________cm,OB=___________cm;(2)若C点是线段AO上的一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发向右运动,点P的速度为2cm/s,点Q的速度为1cm s⁄,设运动时间为t(s),当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP−OQ=8;②当点P经过点O时,动点M从点O出发,以3cm s⁄的速度向右运动.当点M追上点Q后立即返回.以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为___________cm.解析:(1)16,8;(2)83;(3)①t=165或16s;②48.【解析】【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16-x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16-2t)-(8+t)=8,当点P在点O右边时,2(2t-16)-(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2-1)=16由此即可解决.【详解】(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(2)设CO的长为x cm.由题意,得x+(x+8)=24−8−x.解得x=83.所以CO的长为83cm.(3)①当点P在点O左边时,2(16−2t)−(8+t)=8,t=165,当点P在点O右边时,2(2t−16)−(8+t)=8,t=16,∴t=165或16s时,2OP−OQ=8.②设点M运动的时间为ts,由题意:t(2−1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.【点睛】此题考查一元一次方程的应用,两点间的距离,解题关键在于根据题意列出方程.3.如图所示,长度为12cm的线段AB的中点为点M,点C将线段MB分成:1:2MC CB=,求线段AC的长度.解析:8cm【解析】【分析】设MC=xcm,由MC:CB=1:2得到CB=2xcm,则MB=3x,根据M点是线段AB的中点,AB=12cm,得到AM=MB12=AB12=⨯12=3x,可求出x的值,又AC=AM+MC=4x,即可得到AC的长.【详解】设MC=xcm,则CB=2xcm,∴MB=3x.∵M点是线段AB的中点,AB=12cm,∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC ,∴AC =3x +x =4x =4×2=8(cm ).故线段AC 的长度为8㎝.【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.4.(1)如图,AC =DB ,请你写出图中另外两条相等的线段.(2)在一直道边植树8棵,若相邻两树之间距离均为1.5m ,则首尾两颗大树之间的距离是_____.解析:(1)AB=CD ;(2)10.5m.【分析】(1)根据等式的性质即可得出结论;(2)8棵树之间共有7段距离,从而计算即可.【详解】(1)因为AC =BD ,∴AC -BC =DB -BC ,即AB =CD .(2)设首尾之间的距离为x ,由8棵树之间共有7段间隔,可得x =7×1.5=10.5(m ). 故答案为:10.5m .【点睛】本题考查了等式的性质及线段的计算,属于基础题,明白8棵树之间的间隔是关键. 5.蜗牛爬树 一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?解析:蜗牛需41天才爬到树顶不下滑.【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x 天,爬到树顶不下滑,列出方程即可解答.【详解】设蜗牛需x 天才爬到树顶不下滑,即爬到九丈八需x 天,可列方程(10-7.8)(x -1)+10=98,解得x =41.答:蜗牛需41天才爬到树顶不下滑.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程. 6.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)解析:(1)27.5°;(2) 135°或10°;(3) 2135︒-︒m 或45+︒︒m 或1352︒-︒m .【分析】(1)根据题目已知条件OM 平分AOC ∠,得出∠COM=∠MOA ,因35m =即可求出.(2)∠AOB 和∠BOD 互补,分两种情况讨论,第一种情况是∠AOB 和∠BOD 没有重合部分时,第二种情况是∠AOB 和∠BOD 有重合部分时,再根据题目已知条件求解.(3)根据题目要求画出符合题目的图,在根据题目给出的已知条件求解.【详解】解:(1)∠AOB=35°∵OM 平分AOC ∠∴∠COM=∠MOA=()9035227.5︒-︒÷=︒(2)当∠AOB 和∠BOD 没有重合部分时如图所示∵∠AOB=35°,∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∵ON 平分BOD ∠∴∠BON=∠NOD=()18035272.5︒-︒÷=︒∴∠MON=∠NOB+∠BOA+∠AOM=72.5+35+27.5=135︒︒︒︒当∠AOB 和∠BOD 有重合部分时由(1)知∠MOA=27.5°,∠AOB=35°∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∠BOD=180°-35°=145°同理可得:∠NOB=72.5°∠MON=72.5°-27.5°-35°=10°∴∠MON=135°或10°(3)如图所示因为∠AOB ∠AOC 互余,AOB m ∠=∴∠AOC=90︒-m∵OM 平分AOC ∠∴∠COM=∠MOA=()902=452︒︒-÷︒-m m ∵∠OB 与∠BOD 互补∴∠AOB+∠BOD=180°ON 平分BOD ∠∴∠CON=∠NOD=()1802902︒︒-÷=︒-m m ∴∠NAO=3909022︒︒--︒=︒-m m m ∴∠MON=390+45135222︒-︒-=︒-︒m m m同理可得∠MON=45+︒︒m同理可得∠MON=2135︒-︒m∴∠MON=2135︒-︒m 或45+︒︒m 或1352︒-︒m【点睛】本题主要考查的是余角和补角的定义以及角平分线的应用,再做题之前一定要思考清楚需要分几个情况,再根据已知条件解出每种情况.7.(1)已知一个角的补角比它的余角的3倍多10︒,求这个角的度数.(2)已知α∠的余角是β∠的补角的13,并且32βα∠=∠,试求a β∠+∠的度数. 解析:(1)50°;(2)150°【分析】(1)设这个角为α,则补角为(180°-α),余角为(90°-α),再由补角比它的余角的3倍多10°,可得方程,解出即可;(2)根据互余和互补的定义,结合已知条件列出方程组,解方程组得到答案.【详解】(1)设这个角为α,根据题意,得 18039010()a α︒-=︒-+︒.解得:50α=︒.答:这个角的度数为50︒.(2)根据题意,得190(180)3αβ︒︒-∠=⨯-∠且32βα∠=∠, ∴60α∠=︒,90β∠=︒.∴ 150αβ∠+∠≡︒.【点睛】本题考查的是余角和补角的概念,掌握若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补是解题的关键.8.将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE 的度数;(2)如图②,若∠ACE =2∠BCD ,请求出∠ACD 的度数.解析:(1)∠CAE =18°;(2)∠ACD =120°.【分析】(1)由题意根据∠BAC =90°列出关于∠1、∠2的方程求解即可得到∠2的度数,再根据同角的余角相等求出∠CAE =∠2,从而得解;(2)根据∠ACB和∠DCE的度数列出等式求出∠ACE﹣∠BCD=30°,再结合已知条件求出∠BCD,然后由∠ACD=∠ACB+∠BCD并代入数据计算即可得解.【详解】解:(1)∵∠BAC=90°,∴∠1+∠2=90°,∵∠1=4∠2,∴4∠2+∠2=90°,∴∠2=18°,又∵∠DAE=90°,∴∠1+∠CAE=∠2+∠1=90°,∴∠CAE=∠2=18°;(2)∵∠ACE+∠BCE=90°,∠BCD+∠BCE=60°,∴∠ACE﹣∠BCD=30°,又∠ACE=2∠BCD,∴2∠BCD﹣∠BCD=30°,∠BCD=30°,∴∠ACD=∠ACB+∠BCD=90°+30°=120°.【点睛】本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.9.如图,平面上有四个点A,B,C,D.(1)根据下列语句画图:①射线BA;②直线AD,BC相交于点E;③延长DC至F(虚线),使CF=BC,连接EF(虚线).(2)图中以E为顶点的角中,小于平角的角共有__________个.解析:(1)见解析;(2)8【分析】(1)根据直线、射线、线段的特点画出图形即可;(2)有公共端点的两条射线组成的图形叫做角,根据角的概念数出角的个数即可.【详解】解:(1)画图如下:(2)(前面数过的不再重数)以EF 为始边的角有4个,以EC 为始边的角有1个,以EA 为始边的角有1个,以EC 的反向延长线为始边的有1个,以EA 的反向延长线为始边的有1个,所以以E 为顶点的角中,小于平角的角共有8个.【点睛】此题主要考查了角、直线、射线、线段,关键是掌握角的概念及直线、射线、线段的特点.10.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.解析:(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时: 11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.11.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .解析:90,90,∠BOD ,40,同角的余角相等【分析】根据同角的余角相等即可求解.【详解】解:因为∠AOC+∠COB = 90 °,∠COB+∠BOD = 90 ° -﹣﹣﹣①所以∠AOC = ∠BOD .﹣﹣﹣﹣②-因为∠AOC =40°,所以∠BOD = 40 °.在上面①到②的推导过程中,理由依据是:同角的余角相等.故答案为:90,90,∠BOD ,40,同角的余角相等.【点睛】本题考查了余角的性质:同角(或等角)的余角相等,及角的和差关系.12.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数.解析:120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.【详解】∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE= 15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.13.已知长方形纸片ABCD ,点E 在边AB 上,点F ,G 在边CD 上,连接EF ,EG .将BEG ∠对折,点B 落在直线BG 上的点B '处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN .(1)如图(1),若点F 与点G 重合,求MEN ∠的度数;(2)如图(2),若点G 在点F 的右侧,且30FEG ︒∠=,求MEN ∠的度数; (3)若MEN α∠=,请直接用含α的式子表示FEG ∠的大小.解析:(1)90︒;(2)105︒;(3)若点G 在点F 的右侧,2180FEG α︒∠=-;若点G 在点F 的左侧,1802FEG α︒∠=-【分析】(1)由题意根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)由题意根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题. (3)根据题意分点G 在点F 的右侧以及点G 在点F 的左侧两种情形分别求解即可.【详解】解:(1)因为EN 平分AEF ∠,EM 平分BEF ∠, 所以12NEF AEF ∠=∠,12MEF BEF ∠=∠, 所以1111()2222MEN NEF MEF AEF BEF AEF BEF AEB ∠=∠+∠=∠+∠=∠+∠=∠. 因为180AEB ︒∠=, 所以1180902MEN ︒︒∠=⨯=. (2)因为EN 平分AEF ∠,EM 平分BEG ∠, 所以12NEF AEF ∠=∠,12MEG BEG ∠=∠, 所以1111()()2222NEF MEG AEF BEG AEF BEG AEB FEG ∠+∠=∠+∠=∠+∠=∠-∠. 因为180AEB ︒∠=,30FEG ︒∠=, 所以()118030752NEF MEG ︒︒︒∠+∠=-=, 所以7530105MEN NEF FEG MEG ︒︒︒∠=∠+∠+∠=+=.(3)因为EN 平分AEF ∠,EM 平分BEG ∠, 所以12NEF AEF AEN ∠=∠=∠,12MEG BEG BEM ∠=∠=∠, 若点G 在点F 的右侧,MEN NEF FEG MEG α∠=∠+∠+∠=, ()()(180)2180FEG NEF MEG AEN BEM ααααα︒︒∠=-∠+∠=-∠+∠=-=--;若点G 在点F 的左侧,MEN NEF MEG FEG α∠=∠+∠-∠=1801802FEG NEF MEG AEN BEM ααααα︒︒∠=∠+∠-=∠+∠-=--=-.【点睛】本题考查角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.14.如图是由几个完全相同的小立方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的形状图.解析:见解析.【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为1,4,2;从左面看有3列,每列小正方形数目分别为3,4,2.据此可画出图形.【详解】解:如图所示.【点睛】本题考查了作图-三视图, 由三视图判断几何体,能根据俯视图对几何体进行推测分析,有一定的挑战性,关键是从俯视图中得出几何体的排列信息.15.如图,已知点O 为直线AB 上一点,将一个直角三角板COD 的直角顶点放在点O 处,并使OC 边始终在直线AB 的上方,OE 平分BOC ∠.(1)若70DOE ∠=︒,则AOC ∠=________;(2)若DOE α∠=,求AOC ∠的度数.(用含α的式子表示)解析:(1)140︒;(2)2α【分析】(1)由70DOE ︒∠=,90COD ︒∠=,可以推出COE ∠的度数,又因为OE 平分BOC ∠,所以可知BOC ∠的度数,180BOC ︒-∠的度数即可解决;(2)由DOE α∠=,90COD ︒∠=,可以推出COE ∠=90α︒-,又因为OE 平分BOC ∠,以可知BOC ∠=2COE ∠=1802α︒-,180BOC ︒-∠即可解决.【详解】解:(1)∵70DOE ︒∠=,90COD ︒∠=,∴907020COE ︒︒︒∠=-=.∵OE 平分BOC ∠,∴20COE BOE ︒∠=∠=,∴1801802140AOC BOC COE ︒︒︒∠=-∠=-∠=.故答案为140︒.(2)∵DOE α∠=,90COD ︒∠=,∴90COE α︒∠=-.∵OE 平分BOC ∠,∴21802BOC COE α︒∠=∠=-,∴()180********AOC BOC αα︒︒︒∠=-∠=--=.【点睛】本题主要考查了角平分线的定义,平角和直角,熟练各概念是解决本题的关键. 16.已知:如图,在∠AOB 的内部从O 点引3条射线OC ,OD ,OE ,图中共有多少个角?若在∠AOB 的内部,从O 点引出4条,5条,6条,…,n 条不同的射线,可以分别得到多少个不同的角?解析:角的个数分别为10,15,21,28,…,(2)(1)2n n ++. 【分析】 1、在锐角∠AOB 的内部以O 为顶点作3条射线,由此你能得到以O 为顶点的射线共有多少条吗2、根据以一条射线为边,以其余n+1条射线为另一边可作n+1个角,相信你能求得5条射线共多少个锐角;3、由于任意两射线所得的角都多计一次,所以当在∠AOB 的内部从O 点引3条射线共有1452⨯⨯个角; 4、结合作3条射线得到的角的个数,可以推出以O 为顶点共有n 条射线时,得到的角的个数为(1)(2)2n n ++,继而将n=5、6、7代入即可. 【详解】解:顺时针数,与射线OA构成的角有4个,与射线OC构成的角有3个,与射线OD构成的角有2个,与射线OE构成的角有1个,故共有角4+3+2+1=10(个). 类似地,引4条射线有角5+4+3+2+1=15(个),引5条射线有角6+5+4+3+2+1=21(个),引6条射线有角7+6+5+4+3+2+1=28(个),…,以此类推,引n条射线有角(n+1)+n+(n-1)+…+2+1=(1)(2)2n n++(个) .【点睛】本题中,根据以点O为顶点的射线有n+2条,再求这n+2条射线可形成的角的个数.要求同学们能够准确利用题目中的已知信息,灵活运用所学知识进行解答.本题还可以采用顺序枚举法进行解答,按一定顺序,把所有元素一一列举出来,要做到不重不漏,适合元素(射线)个数较少情况,如果图中有n条射线这时无法逐一列举,可用规律归纳法.17.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.18.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.解析:120°【分析】此题可以设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOB=120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.19.如图,直线AB与CD相交于点O,∠AOE=90°.(1)如图1,若OC平分∠AOE,求∠AOD的度数;(2)如图2,若∠BOC=4∠FOB,且OE平分∠FOC,求∠EOF的度数.解析:(1)135°;(2)54°【分析】(1)利用OC平分∠AOE,可得∠AOC=12∠AOE=12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE平分∠COF,可得∠COE=∠EOF=12∠COF=32x°,即可得出.【详解】(1)∵∠AOE=90°,OC平分∠AOE,∴∠AOC=12∠AOE=12×90°=45°,∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF 的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.20.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.21.已知90AOB ∠=︒,OC 为一条射线,OE ,OF 分别平分AOC ∠,BOC ∠,求EOF ∠的度数.解析:45︒【分析】本题需要分类讨论,当OC 在AOB ∠内部时,根据OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠,即可求出EOF ∠的度数;当OC 在AOB ∠外部时,OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠,所以1122EOF FOC EOC BOC AOC ∠=∠-∠=∠-∠,即可解决. 【详解】解:①如图,当OC 在AOB ∠内部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠, 所以1122COE COF AOC BOC ∠+∠=∠+∠, 即12EOF AOB =∠∠.又因为90AOB ︒∠=,所以45EOF ︒∠=.②如图,当OC 在AOB ∠外部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠, 所以1111()452222EOF FOC EOC BOC AOC BOC AOC AOB ︒∠=∠-∠=∠-∠=∠-∠=∠=.综上所述,45EOF ︒∠=.【点睛】本题主要考查了角度的计算和角平分线的定义,熟练分类讨论思想,并且画出图形是解决本题的关键.22.线段12cm AB =点C 在线段AB 上,点D ,E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长;(2)若4cm AC =,求DE 的长;(3)若点C 为线段AB 上的一个动点(点C 不与A ,B 重合),求DE 的长. 解析:(1)6cm ;(2)6cm ;(3)6cm【分析】(1)根据中点的定义,进行计算即可求出答案;(2)由中点的定义,先求出DC 和CE 的长度,然后求出DE 即可;(3)利用中点的定义,即可得到结论.【详解】解:(1)因为点C 是AB 中点,所以16cm 2AC BC AB ===. 又因为D ,E 分别是AC 和BC 的中点, 所以1116cm 222DE DC CE AC BC AB =+=+==, 故DE 的长为6cm .(2)因为12cm AB =,4cm AC =,所以8cm BC =.因为点D ,E 分别是AC 和BC 的中点,所以12cm 2DC AC ==,14cm 2CE BC ==, 所以6cm DE =.(3)因为111222DE DC CE AC BC AB =+=+=, 且12cm AB =,所以6cm DE =.【点睛】本题考查了线段中点的定义,解题的关键是熟练掌握线段之间的数量关系进行解题. 23.如图,长度为12cm 的线段AB 的中点为M ,点C 将线段MB 分成两部分,且:1:2MC CB =,则线段AC 的长度为________.解析:8cm【分析】先由中点的定义求出AM ,BM 的长,再根据MC :CB=1:2的关系,求MC 的长,最后利用AC=AM+MC 得其长度.【详解】∵线段AB 的中点为M ,∴AM=BM=6cm设MC=x ,则CB=2x ,∴x+2x=6,解得x=2即MC=2cm .∴AC=AM+MC=6+2=8cm .故答案为:8cm .【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.24.如图所示,已知O 是直线AB 上一点,90BOE FOD ∠=∠=︒,OB 平分COD ∠.(1)图中与DOE ∠互余的角有________________;(2)图中是否有与DOE ∠互补的角?如果有,直接写出全部结果;如果没有,说明理由.解析:(1)EOF ∠,BOD ∠,BOC ∠;(2)BOF ∠,COE ∠.【分析】(1)由∠BOE=90°,则∠DOE+∠BOD=90°,要求与∠DOE 互余的角,只要找到与∠BOD 相等的角即可,即∠BOC ,∠EOF ;(2)根据同角的余角相等,结合OB 平分∠COD ,可得∠DOE=∠AOF ,∠EOF=∠BOD=∠BOC ,则∠DOE 的补角与∠AOF 的补角相等,即∠DOE 互补的角:∠BOF 、∠EOC ;【详解】解:(1)∵∠BOE=∠FOD=90°,∴∠AOF+∠EOF=90°,∠BOD+∠DOE=90°,∠DOE+∠EOF=90°,∵OB 平分∠COD ,∴∠BOD=∠BOC ,∠AOF=∠DOE ,∴与∠DOE 互余的是:∠EOF 、∠BOD 、∠BOC ;故答案为:∠EOF 、∠BOD 、∠BOC ;(2)由(1)以及同角的余角相等可知,∠AOF=∠DOE ,∠EOF=∠BOD=∠BOC , ∴∠DOE 的补角与∠AOF 的补角相等,∵∠AOF+∠BOF=180°,∠BOF=∠EOC ,∴∠AOF+∠EOC=180°,∴∠DOE 的补角有:∠BOF 和∠EOC .【点睛】本题考查了补角和余角的定义,以及角平分线的定义,解题的关键是根据同角或等角的余角相等,同角或等角的补角相等进行解答.25.如图,射线ON ,OE ,OS ,OW 分别表示以点O 为中心的北,东,南,西四个方向,点A 在点O 的北偏东45︒方向,点B 在点O 的北偏西30方向.(1)画出射线OB ,若BOC ∠与AOB ∠互余,请在图(1)或备用图中画出BOC ∠; (2)若OP 是AOC ∠的平分线,直接写出AOP ∠的度数.(不需要计算过程) 解析:(1)见解析;(2)45︒或30.【分析】(1)根据题意作出图形即可;(2)根据角平分线的定义即可得到结论.【详解】(1)如图所示,BOC ∠与BOC '∠即为所求.(2)AOP ∠的度数为45︒或30︒.∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC 与∠AOB 互余,∴∠BOC=∠BOC′=15°,∴∠AOC=90°,∠AOC=60°,∵OP 是∠AOC 的角平分线,∴∠AOP=45°或30°.【点睛】本题主要考查了方向角的定义,余角的定义,作出图形,正确掌握方向角的定义是解题关键.26.射线OA ,OB ,OC ,OD ,OE 有公共端点O .(1)若OA 与OE 在同一直线上,如图(1),试写出图中小于平角的角.(2)如图(2),若108AOC ︒∠=,(072)COE n n ︒∠=<<,OB 平分AOE ∠,OD平分COE ∠,求BOD ∠的度数.解析:(1)AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠;(2)54︒【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE ,进而求出即可. 【详解】(1)题图(1)中小于平角的角有AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠.(2)因为OB 平分AOE ∠,OD 平分COE ∠,108AOC ︒∠=,(072)COE n n ︒∠=<<, 所以1111()2222BOD BOE DOE AOE COE AOE COE AOC ∠=∠-∠=∠-∠=∠-∠=∠. 因为108AOC ∠=︒,所以54BOD ∠=︒【点睛】 本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,27.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.解析:(1)80°;(2)50°;(3)50︒或150︒,图见解析【分析】(1)直接根据邻补角的概念即可求解;(2)直接根据角平分线的性质即可求解;(3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.【详解】解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;(2)由(1)得80AOC ∠=︒,90COD ∠=︒,10AOD COD AOC ∴∠=∠-∠=︒, OM 是AOC ∠的平分线,11804022AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;(3)由(2)得40AOM ∠=︒,BOP ∠与AOM ∠互余,90BOP AOM ∴∠+∠=︒,90904050BOP AOM ∴∠=︒-∠=︒-︒=︒,①当射线OP 在BOC ∠内部时(如图3-1),1005050COP BOC BOP ∠=∠-∠=︒-︒=︒;②当射线OP 在BOC ∠外部时(如图3-2),10050150COP BOC BOP ∠=∠+∠=︒+︒=︒.综上所述,COP ∠的度数为50︒或150︒.【点睛】此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.28.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.29.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?解析:(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.30.仓库里有以下四种规格且数量足够多的长方形、正方形的铁片(单位:分米).从中选5块铁片,焊接成一个无盖的长方体(或正方体)铁盒(不浪费材料),甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的铁盒,乙型盒是容积最小的铁盒.(1)甲型盒的容积为________立方分米;乙型盒的容积为________立方分米;(直接写出答案)(2)现取两个装满水的乙型盒,再将其内部所有的水都倒入一个水平放置的甲型盒,甲型盒中水的高度是多少分米?(铁片厚度忽略不计)解析:(1)40,8;(2)甲型盒中水的高度是2分米【分析】(1)甲型盒是由2块规格①、1块规格②和2块规格③焊接而成的铁盒,可得一个长为2分米,宽为4分米,高为5分米的长方体,其中规格②为长方体的底,可求体积为40立方分米,乙型盒是容积最小,即长宽高最小,可得到长宽高都为2分米的正方体,体积为8立方分米,(2)甲盒的底面为长2分米,宽为4分米的长方形,根据体积相等,可求出高度.【详解】(1)因为甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的,⨯⨯=(立方分米).所以甲型盒的容积为24540乙型盒容积最小,即长、宽、高最小,因此乙型盒为长、宽、高均为2分米的正方体,⨯⨯=(立方分米),容积为2228故答案为40,8.⨯=(平方分米),(2)甲型盒的底面积为248⨯=(立方分米),两个乙型盒中的水的体积为8216÷=(分米).所以甲型盒内水的高度为1682答:甲型盒中水的高度是2分米.【点睛】考查长方体、正方体的展开与折叠,长方体、正方体的体积的计算方法,掌握折叠后的长方体或正方体的棱长以及体积相等是解决问题的关键.。
2020-2021南京市南京市行知实验中学 高三数学下期末一模试题附答案
2020-2021南京市南京市行知实验中学高三数学下期末一模试题附答案一、选择题1.函数ln||()xxf xe=的大致图象是()A.B.C.D.2.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是()A.①③④B.②④C.②③④D.①②③3.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b分别为14,18,则输出的a=()A .0B .2C .4D .144.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙5.已知()3sin 30,601505αα︒+=︒<<︒,则cos α为( ) A .31010B .31010-C .43310- D .34310- 6.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于A 、B )且PA =AC ,则二面角P -BC -A 的大小为( )A .60︒B .30°C .45︒D .15︒7.函数()sin(2)2f x x π=-的图象与函数()g x 的图象关于直线8x π=对称,则关于函数()y g x =以下说法正确的是( )A .最大值为1,图象关于直线2x π=对称B .在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为偶函数 D .周期为π,图象关于点3,08π⎛⎫⎪⎝⎭对称 8.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .9.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A .2B .3C .2D .510.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .32411.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32B .0.2C .40D .0.2512.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为( )A .43π B .83π C .163πD .203π二、填空题13.设n S 是等差数列{}*()n a n N ∈的前n 项和,且141,7a a ==,则5______S =14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.15.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.16.复数()1i i +的实部为 .17.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 18.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________.19.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. 20.设α 为第四象限角,且sin3sin αα=135,则 2tan =α ________. 三、解答题21.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值.22.为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差,以频率值作为概率的估计值.(I )为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率): ①; ②; ③.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望;②从样本中随意抽取2个零件,求其中次品个数的数学期望.23.如图,在四棱锥P ABCD -中,已知PC ⊥底面ABCD ,AB AD ⊥,//AB CD ,2AB =,1AD CD ==,E 是PB 上一点.(1)求证:平面EAC ⊥平面PBC ;(2)若E 是PB 的中点,且二面角P AC E --的余弦值是6,求直线PA 与平面EAC 所成角的正弦值.24.随着移动互联网的发展,与餐饮美食相关的手机APP 软件层出不穷,现从某市使用A 和B 两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:(1)已知抽取的100个使用A 未订餐软件的商家中,甲商家的“平均送达时间”为18分钟,现从使用A 未订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;(2)试估计该市使用A 款订餐软件的商家的“平均送达时间”的众数及平均数;(3)如果以“平均送达时间”的平均数作为决策依据,从A 和B 两款订餐软件中选择一款订餐,你会选择哪款?25.如图:在ABC ∆中,10a =,4c =,5cos 5C =-.(1)求角A ;(2)设D 为AB 的中点,求中线CD 的长.26.(辽宁省葫芦岛市2018年二模)直角坐标系xOy 中,直线l 的参数方程为21x tcos y tsin αα=+⎧⎨=+⎩ (t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点为极点,以x 轴正半轴为极轴)中,圆C 的方程为6cos ρθ=.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点,A B ,若点P 的坐标为()2,1,求PA PB +的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由函数解析式代值进行排除即可. 【详解】 解:由()xln x f x =e,得()f 1=0,()f 1=0-又()1f e =0e e >,()1f e =0e e--> 结合选项中图像,可直接排除B ,C ,D 故选A 【点睛】本题考查了函数图像的识别,常采用代值排除法.2.A解析:A【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解.【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A.【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.3.B解析:B【解析】【分析】【详解】由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选B.4.A解析:A【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.5.D【解析】分析:先求出()cos 30α︒+的值,再把cos α变形为0cos[(30)30]α+-,再利用差角的余弦公式展开化简即得cos α的值. 详解:∵60150α︒<<︒, ∴90°<30α︒+<180°, ∴()cos 30α︒+=-45, ∵c os α=00cos[(30)30]α+-,∴c os α=-453152⨯=, 故选D.点睛:三角恒等变形要注意“三看(看角看名看式)”和“三变(变角变名变式)”,本题主要利用了看角变角,0(30)30αα=+-,把未知的角向已知的角转化,从而完成解题目标.6.C解析:C 【解析】由条件得:PA ⊥BC ,AC ⊥BC 又PA ∩AC =C ,∴BC ⊥平面P AC ,∴∠PCA 为二面角P -BC -A 的平面角.在Rt △P AC 中,由P A =AC 得∠PCA =45°,故选C .点睛:二面角的寻找主要利用线面垂直,根据二面角定义得二面角的棱垂直于二面角的平面角所在平面.7.B解析:B 【解析】 【分析】先求出函数y=g(x)的解析式,再利用三角函数的图像和性质对每一个选项逐一分析判断. 【详解】设点P(x,y)是函数()y g x =图像上的任意一点,则点Q (x ,)4y π-+在函数y=f(x)的图像上,sin[2(-x+)]sin 2()42y x g x ππ=-=-=, 对于选项A,函数y=g(x)的最大值为1,但是()012g π=≠±,所以图象不关于直线2x π=对称,所以该选项是错误的;对于选项B,()()g x g x -=-,所以函数g(x)是奇函数,解222+22k x k ππππ-≤≤得 +44k x k ππππ-≤≤,)k Z ∈(,所以函数在0,4π⎛⎫⎪⎝⎭上单调递减,所以该选项是正确的; 对于选项C,由前面分析得函数y=g(x)的增区间为3[+,]()44k k k Z ππππ+∈,且函数y=g(x)不是偶函数,故该选项是错误;对于选项D,函数的周期为π,解2,,2k x k x ππ=∴=所以函数图像的对称中心为,0)(k Z)2k π∈(,所以该选项是错误的. 故选:B 【点睛】本题主要三角函数的解析式的求法,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.D解析:D 【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.9.A解析:A 【解析】 【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==Q ,||,2cPA PA ∴=∴为以OF 为直径的圆的半径, A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.2e ∴=,故选A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.10.B解析:B 【解析】 【分析】先由三视图还原出原几何体,再进行计算 【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 故选B. . 【点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心计算11.A解析:A 【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S 则其他十个小长方形面积的和为4S ,所以频率分布直方图的总面积为5S所以中间一组的频率为所以中间一组的频数为160×0.2=32 故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.12.C解析:C 【解析】 【分析】根据三视图知几何体是三棱锥,且一侧面与底面垂直,结合图中数据求出三棱锥外接球的半径,从而求出球的表面积公式. 【详解】由三视图知,该几何体是如图所示的三棱锥,且三棱锥的侧面SAC ⊥底面ABC ,高为3SO =;其中1OA OB OC ===,SO ⊥平面ABC ,其外接球的球心在SO 上,设球心为M ,OM x =,根据SM=MB 得到:在三角形MOB 中,21SM 3x x +=,213x x +=, 解得33x =, ∴外接球的半径为3233R ==;∴三棱锥外接球的表面积为223164(3S ππ=⨯=.故选:C . 【点睛】本题考查了三视图复原几何体形状的判断问题,也考查了三棱锥外接球的表面积计算问题,是中档题.一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.二、填空题13.25【解析】由可得所以解析:25 【解析】由141,7a a ==可得11,2,21n a d a n ===-,所以5(19)5252S +⨯==. 14.18【解析】应从丙种型号的产品中抽取件故答案为18点睛:在分层抽样的过程中为了保证每个个体被抽到的可能性是相同的这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比即ni解析:18 【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .15.2【解析】【详解】当x≤0时由f (x )=x2﹣2=0解得x=有1个零点;当x >0函数f (x )=2x ﹣6+lnx 单调递增则f (1)<0f (3)>0此时函数f (x )只有一个零点所以共有2个零点故答案为:解析:2 【解析】 【详解】当x≤0时,由f (x )=x 2﹣2=0,解得x=1个零点; 当x >0,函数f (x )=2x ﹣6+lnx ,单调递增,则f (1)<0,f (3)>0,此时函数f (x )只有一个零点, 所以共有2个零点. 故答案为:2. 【点睛】判断函数零点个数的方法直接法(直接求零点):令f (x )=0,如果能求出解,则有几个不同的解就有几个零点, 定理法(零点存在性定理):利用定理不仅要求函数的图象在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点,图象法(利用图象交点的个数):画出函数f (x )的图象,函数f (x )的图象与x 轴交点的个数就是函数f (x )的零点个数;将函数f (x )拆成两个函数h (x )和g (x )的差,根据f (x )=0⇔h (x )=g (x ),则函数f (x )的零点个数就是函数y =h (x )和y =g (x )的图象的交点个数,性质法(利用函数性质):若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数16.【解析】复数其实部为考点:复数的乘法运算实部 解析:1-【解析】复数(1)11i i i i +=-=-+,其实部为1-. 考点:复数的乘法运算、实部.17.【解析】试题分析:因为和关于轴对称所以那么(或)所以【考点】同角三角函数诱导公式两角差的余弦公式【名师点睛】本题考查了角的对称关系以及诱导公式常用的一些对称关系包含:若与的终边关于轴对称则若与的终边解析:79-【解析】试题分析:因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=),所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈ ,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则2,k k Z αβππ-=+∈.18.【解析】分析:由对称轴得再根据限制范围求结果详解:由题意可得所以因为所以点睛:函数(A>0ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间;由求减区间解析:6π-. 【解析】分析:由对称轴得ππ()6k k Z ϕ=-+∈,再根据限制范围求结果. 详解:由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππππ()326k k k Z ϕϕ+=+=-+∈,,因为ππ22ϕ-<<,所以π0,.6k ϕ==- 点睛:函数sin()y A x B ωϕ=++(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+;(2)最小正周期2πT ω=;(3)由ππ()2x k k ωϕ+=+∈Z 求对称轴;(4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z 求减区间.19.y=sinx (答案不唯一)【解析】分析:举的反例要否定增函数可以取一个分段函数使得f (x )>f (0)且(02]上是减函数详解:令则f (x )>f (0)对任意的x ∈(02]都成立但f (x )在[02]上不解析:y =sin x (答案不唯一)【解析】分析:举的反例要否定增函数,可以取一个分段函数,使得f (x )>f (0)且(0,2]上是减函数.详解:令0,0()4,(0,2]x f x x x =⎧=⎨-∈⎩,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f(x )在[0,2]上不是增函数.又如,令f (x )=sin x ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.点睛:要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值0x ,使0()p x 不成立即可.通常举分段函数.20.-【解析】因为=====4cos2α-1=2(2cos2α-1)+1=2cos2α+1=所以cos2α=又α是第四象限角所以sin2α=-tan2α=-点睛:三角函数求值常用方法:异名三角函数化为同解析:-34【解析】 因为3sin sin αα=()2sin sin ααα+ =22sin cos cos sin sin ααααα+=()22221sin cos cos sin sin ααααα+-=24sin cos sin sin αααα-=4cos 2α-1=2(2cos 2α-1)+1=2cos 2α+1 =135,所以cos 2α=45. 又α是第四象限角,所以sin 2α=-35,tan 2α=-34.点睛:三角函数求值常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.三、解答题21.(1)见解析;(2)3 -.【解析】【详解】(1)由已知90BAP CDP∠=∠=︒,得AB⊥AP,CD⊥PD.由于AB//CD ,故AB⊥PD ,从而AB⊥平面P AD.又AB⊂平面P AB,所以平面P AB⊥平面P AD.(2)在平面PAD内作PF AD⊥,垂足为F,由(1)可知,AB⊥平面PAD,故AB PF⊥,可得PF⊥平面ABCD.以F为坐标原点,FAu u u v的方向为x轴正方向,ABu u u v为单位长,建立如图所示的空间直角坐标系F xyz-.由(1)及已知可得22A⎛⎫⎪⎪⎝⎭,2P⎛⎝⎭,2,1,02B⎛⎫⎪⎪⎝⎭,22C⎛⎫-⎪⎪⎝⎭.所以22PC⎛=⎝⎭u u u v,)2,0,0CB=u u u v,22PA=⎝⎭u u u v,()0,1,0AB=u u u v.设(),,n x y z=r是平面PCB的法向量,则0,0,n PCn CB⎧⋅=⎨⋅=⎩u u u vru u u vr即220,2220,x y zx⎧-+-=⎪⎨⎪=⎩可取(0,1,2n=--r.设(),,m x y zr=是平面PAB的法向量,则0,0,m PA m AB ⎧⋅=⎨⋅=⎩u uu v r u u u v r 即220,220.x z y ⎧-=⎪⎨⎪=⎩可取()1,0,1m =r. 则3cos ,3n m n m n m ⋅==-r r r rr r ,所以二面角A PB C --的余弦值为3-. 【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面: ①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角; ③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 22.(I )丙级;(Ⅱ)①;②.【解析】 【分析】(I )以频率值作为概率计算出相应概率,再利用判定规则的三个式子得出判断设备的性能等级。
南京市南京市宁海中学 七年级数学上册第四单元《几何图形初步》经典练习题(培优练)
一、选择题1.如图,∠AOB =12∠BOD ,OC 平分∠AOD ,下列四个等式中正确的是( )①∠BOC =13∠AOB ;②∠DOC =2∠BOC ;③∠COB =12∠BOA ;④∠COD =3∠COB . A .①② B .②③ C .③④ D .①④ 2.如图所示,已知直线AB 上有一点O ,射线OD 和射线OC 在AB 同侧,∠AOD =42°,∠BOC =34°,OM 是∠AOD 的平分线,则∠MOC 的度数是( )A .125°B .90°C .38°D .以上都不对 3.如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )A .北偏西30°B .北偏西60°C .北偏东30°D .北偏东60° 4.下列说法错误的是( )A .若直棱柱的底面边长都相等,则它的各个侧面面积相等B .n 棱柱有n 个面,n 个顶点C .长方体,正方体都是四棱柱D .三棱柱的底面是三角形5.如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2αB .45α︒-C .452α︒- D .90α︒-6.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个7.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOC C .∠BOE=2∠COD D .∠DOE 的度数不能确定8.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .6 9.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等 10.已知:∠AOC =90°,∠AOB :∠AOC =2:3,则∠BOC 的度数是( ) A .30° B .60° C .30°或60° D .30°或150° 11.一个小立方块的六个面分别标有字母A ,B ,C ,D ,E ,F ,从三个不同的方向看形如图所示,则字母D 的对面是( )A .字母AB .字母FC .字母ED .字母B 12.已知线段AB=5,C 是直线AB 上一点,BC=2,则线段AC 长为( )A.7 B.3 C.3或7 D.以上都不对13.下列图形中,不可以作为一个正方体的展开图的是()A.B.C.D.14.下列图形中,是圆锥的表面展开图的是()A.B.C.D.15.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A.B.C.D.二、填空题16.请写出图中的立体图形的名称.①_______;②_______;③_______;④_______.17.如图,共有_________条直线,_________条射线,_________条线段.18.下午3:40时,时钟上分针与时针的夹角是_________度.19.若A ,B ,C 三点在同一直线上,线段AB =21cm ,BC =10cm ,则A ,C 两点之间的距离是________.20.如图所示,观察下列图形,在横线上写出几何体的名称及截面形状.(1)①的名称是________,截面形状________;(2)②的名称是________,截面形状是________;(3)③的名称是________,截面形状是________;(4)④的名称是________,截面形状是________;21.按照图填空:(1)图中以点0为端点的射线有______条,分别是____________.(2)图中以点B 为端点的线段有______条,分别是____________.(3)图中共有______条线段,分别是_____________.22.如图,数轴上A ,B 两点表示的数分别为2-和6,数轴上的点C 满足AC BC =,点D 在线段AC 的延长线上.若32AD AC =,则BD =________,点D 表示的数为________.23.8点15分,时针与分针的夹角是______________。