二次函数与三角形综合

合集下载

二次函数与相似三角形综合

二次函数与相似三角形综合

第10讲:二次函数中因动点产生的相似三角形问题• 二次函数中因动点产生的相彳以三角形问题一般有三个解题途径:①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。

根据未知三角形中已知边与已知三角形的可能对应边分类讨论。

②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角比、对称、旋转等知识来推导边的大小。

③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

例题1:已知抛物线的顶点为A (2, 1),且经过原点O,与X轴的另一个交点为B.1 2y = --x~ +x(1)求抛物线的解析式:(用顶点式求得抛物线的解析式为 4 )(2)连接OA、AB.如图2,在x轴下方的抛物线上是否存在点P,使得二OBP与二OAB 相似?若存在,求出P点的坐标:若不存在,说明理由。

解:如图2,由抛物线的对称性可知:AO=AB二AOB=CABO.若二BOP与匚A0B相似,必须有二POB = OBOA =匚BPO设0P交抛物线的对称轴于A•点,显然AX2-1)1y = --x二直线OP的解析式为2一一x =一一x・ +由2 4 得x 1 = 0, x 2 =6-JP(6,~3)过P 作PE二x 轴,在RtZBEP 中,BE=2,PE=3, 二PB=厢拜.二PB=OB,HBOP* 二BPO、ZOPB0与匚BAO不相似,同理可说明在对称轴左边的抛物线上也不存在符合条件的P点. 所以在该抛物线上不存在点R使得ZBOP与ZAOB相似.例题2:如图所示,已知抛物线与兀轴交于A、B两点,与y轴交于点c.(1)求A、B、C三点的坐标.(2)过点A作APZCB交抛物线于点P,求四边形ACBP的面积.(3)在x轴上方的抛物线上是否存在一点过M作MG丄兀轴于点G,使以A、M. G三点为顶点的三角形与APCA相似.若存在,请求岀M点的坐标;解:(1)令尸°,得»-1=0 解得“±1令x=o,得〉‘=一1二A(70)B(I,°)c(°,j)(2)匚OA=OB=OC= 1 □ ZBAC=厶ACO= ZBCO= 45ZAPZCB, E Z PAB=45过点P作PE丄x轴于E,则△ APE为等腰直角三角形令OE=" > 贝iJPE=Q + l + 0::点p在抛物线上“+1=/_i 解得5=2,心=一1 (不合题意,舍去)二PE=31 1 1 「1———x2xl + —x2x3 = 4二四边形ACBP的而积S = 2 A B・OC+ 2 A B・PE=2 2(3).假设存在二Z PAB= Z BAC =45 匚PA 丄ACZMG丄 * 轴于点G, □ Z MGA= Z PAC = 90在Rt 二AOC 中,OA=OC= 1 二AC=Q 在Rt 二PAE 中,AE=PE= 3 ZAP= 3^2 设M点的横坐标为m ,则M(加,m~ -1)□点M在y轴左侧时,贝0VT图2AG MG(I)当A AMG S A pc A时,有PA = CA一加一1 _ m2 -1匸AG= 一〃7一1, MG=" jR卩3血迈2解得(舍去)・3 (舍去)AG MG(匚)当AMAG s A PC A 时有C4 =PA一〃2-1 _ nr -1即V2 3近解得:m = -\(舍去)rt1i =-二M(-2,3)二点M在歹轴右侧时,则加>iAG MG(匚)当△AMG s A PC A 时有PA = CA=AG=〃?+I, MG=〃『jm + \ _ m2一1 4二3© 迈解得叫=一1 (舍去)~ 3(±?)ZM 3 9AG MG(匚)当A M AGS ApCA 时有CA = PAm +1 _ nr -1即41 3>/2解得:-(舍去)叫"二M(4,⑸二存在点M,使以A、M、G三点为顶点的三角形与APCA相似M点的坐标为(-2‘3),(亍6), (4,⑸练习:如图,已知抛物线yF+bx+c与x轴交于A. B两点,与y轴交于点C, D为0C的中点,直线交抛物线于点E (2, 6),且ZU恥与3C的而积之比为3 :2.(1)求直线和抛物线的解析式:(2)抛物线的对称轴与尤轴相交于点F,点Q为直线上一点,且3Q与厶3尸相似,求出点Q 点的坐标.【随堂练】: ________ 班级: ________1.已知抛物线)=-,+伽-2)兀-3加的顶点在_>,轴上,那么加的值等于_______________ .1 32•如图,已知二次函数y=--x2+-x + 4的图象与y轴交于点A,与x轴交于B、C两点,4 2其对称轴与x轴交于点D,连接AC.(1)_______________ 点A的坐标为__________ ,点C的坐标为 :(2)线段AC上是否存在点E,使得AEDC与△AOC相似?若存在,求岀所有符合条件的点E 的坐标;若不存在,请说明理由:3.抛物线加+ °的图象如图所示,已知该抛物线与X轴交于A、3两点,顶点为C(1,4),(1)根据图象所给信息,求出抛物线的解析式;(2)求直线与y轴交点D的坐标:(3)点P是直线上的一点,且与ADOB相似.求点P的坐标.。

二次函数与三角形面积的综合

二次函数与三角形面积的综合

二次函数与三角形面积的综合寻找类1、重点:中考压轴题的重点在于寻找分析问题,解决问题的思路和方法。

能应对这部分题的关键需要熟练几部分知识点:(1)二次函数与一次函数,反比例函数的解析式(2)勾股定理(3)四边形(4)相似三角形和三角形全等(5)锐角三角函数(6)轴对称和中心对称(7)求交点的方法(8)知识的综合运用2、难点:寻找联系是这部分内容的一个关键所在,也是一个难点。

尤其是遇到二次函数与三角形面积的综合题的解题思路。

运用面积求坐标等等的合理运用,以及运用的重要因素在哪里?3、易错点:面积中涉及求面积的方法,坐标漏找或错找,坐标与线段长度之间的联系,坐标在不在二次函数的图像上。

这些都是在考试中容易失分的地方。

4、切入点:例如:根据已有条件求坐标,首先要想到平面直角坐标系与锐角三角函数的联系,尤其是正切的运用。

这样直观的可以求出坐标(前提必须建立直角三角形),如果不是直角三角形可以想法构建直角三角形,这是求坐标的最好方法,此方法不通的情况下可以运用勾股定理进行求解,很少运用相似求。

掌握了求解方法再做题的时候就知道如何下手了。

而次部分求面积的时候要先找到点的坐标的具体位置以及如何通过面积求坐标。

5.求面积常用的方法a.直接法b。

简单的组合c。

面积不变同底等高或等底等高的转换d.相似e.三角函数f。

找面积的最大最小值利用二次函数的性质(1)直接法若题已经给出或能由已知条件推出个边的长度并且通过坐标能找到对应的的高,那么三角形的面积能直接用公式算出来。

此题中的三角形的面积就能直接求出。

(2)通过简单的重新组合就能求出面积。

第6题(2009年贵州安顺市)27、(本题满分12分)如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。

(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。

二次函数与三角形的综合-中考数学函数考点全突破

二次函数与三角形的综合-中考数学函数考点全突破

二次函数与三角形的综合-中考数学函数考点全突破一、考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。

这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。

一解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3.根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。

例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。

注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。

4.利用点坐标表示线段长度时注意要用大的减去小的。

5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。

6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。

二、二次函数问题中三角形面积最值问题(一)例题演示1.如图,已知抛物线(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)P为直线BD下方的抛物线上的一点,连接PD、PB,求△PBD面积的最大值.DBOAyxC解答:(1)抛物线令y=0,解得x=-2或x=4,∴A(-2,0),B(4,0).∵直线经过点B(4,0),∴,解得,∴直线BD解析式为:当x=-5时,y=3,∴D(-5,3)∵点D(-5,)在抛物线上,∴,∴.∴抛物线的函数表达式为:.(2)设P(m,)∴∴△BPD面积的最大值为.【试题精炼】2.如图,在平面直角坐标系中,抛物线()与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:与y轴交于点C,与抛物线的另一个交点为D,且.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;HF解答:1)A(-1,0)∵CD=4AC,∴点D的横坐标为4∴,∴.∴直线l的函数表达式为y=ax+a(2)过点E作EH∥y轴,交直线l于点H设E(x,ax2-2ax-3a),则H(x,ax+a).∴∴.∴△ADE的面积的最大值为,∴,解得.∴抛物线的函数表达式为.【中考链接】3.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;解答:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B (0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;二、二次函数问题中直角三角形问题(一)例题演示如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=1上的一个动点,求使△BPC为直角三角形的点P的坐标.解答:(1)依题意得:,解得,∴抛物线解析式为.把B(,0)、C(0,3)分别代入直线y=mx+n,得,解得,∴直线y=mx+n的解析式为y=x+3;(2)设P(,t),又∵B(-3,0),C(0,3),∴BC2=18,PB2=(+3)2+t2=4+t2,PC2=()2+(t-3)2=t26t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2-6t+10解得:t=;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2-6t+10=4+t2解得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2-6t+10=18解得:,.综上所述P的坐标为(,)或(,4)或(,)或(,).【试题精炼】如图,二次函数(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2))求证:为定值;(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【答案】(1);(2)证明见解析;(3)以线段GF、AD、AE 的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.【解析】试题分析:(1)将C点代入函数解析式即可求得.(2)令y=0求A、B的坐标,再根据,CD∥AB,求点D的坐标,由△ADM∽△AEN,对应边成比例,将求的比转化成求比,结果不含m即为定值.(3)连接FC并延长,与x轴负半轴的交点即为所求点G..过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中根据同角的同一个三角函数相等,可求OG(用m表示),然后利用勾股定理求GF和AD(用m表示),并求其比值,由(2)是定值,所以可得AD∶GF∶AE=3∶4∶5,由此可根据勾股定理逆定理判断以线段GF、AD、AE的长度为三边长的三角形是直角三角形,直接得点G的横坐标.试题解析:解:(1)将C (0,-3)代入函数表达式得,∴.(2)证明:如答图1,过点D、E分别作x轴的垂线,垂足为M、N.由解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE.∴∠DAM=∠EAN.∵∠DMA=∠ENA=900,∴△ADM∽△AEN,∴.设点E的坐标为(x,),∴,∴x=4m.∴为定值.(3)存在,如答图2,连接FC并延长,与x轴负半轴的交点即为所求点G.由题意得:二次函数图像顶点F的坐标为(m,-4),过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH 中,∵tan∠CGO=,tan∠FGH=,∴=.∴OG=“3m,“由勾股定理得,GF=,AD=∴.由(2)得,∴AD∶GF∶AE=3∶4∶5.∴以线段GF、AD、AE的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.考点:1.二次函数综合题;2.定值和直角三角形存在性问题;3.曲线上点的坐标与方程的关系;4.二次函数的性质;5.勾股定理和逆定理;6相似三角形的判定和性质;7.锐角三角函数定义.【中考链接】如图所示,在平面直角坐标系中,将一块等腰直角三角板ABC斜靠在两坐标轴上放在第二象限,点C的坐标为(-1,0).B点在抛物线y=x2+x-2的图像上,过点B作BD⊥x轴,垂足为D,且B点的横坐标为-3.(1)求BC所在直线的函数关系式.(2)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.解答:(1)∵C点坐标为(-1,0),∴BD=CO=1.∵B点的横坐标为-3,∴B点坐标为(-3,1)设BC所在直线的函数关系式为y=kx+b,则有,解得∴BC所在直线的函数关系式为y=x.(2)①若以为AC直角边,点C为直角顶点,如图所示,作CP1⊥AC,因为BC⊥AC,所以点P1为直线BC与对称轴直线的交点,即点P1的横坐标为-。

(完整)二次函数与三角形综合

(完整)二次函数与三角形综合

二次函数综合提升卷【类型一】二次函数之面积最值求与函数图像相关的三角形的面积:(1)结合方程组用待定系数法求函数的解析式;(2)根据坐标求出三角形面积;①公式法:三角形一边与坐标轴平行或重合时可以直接根据三角形面积公式求解;②割补法:公式法无法使用是,把三角形补成矩形或梯形或直角三角形,然后根据矩形或梯形或直角三角形的面积公式解决;③等积转化法;④铅锤法;利用S=铅垂高⨯水平宽÷2,可以避免求一些比较复杂的点的坐标;⑤特殊情况下可以利用反比例函数的几何意义进行解答。

*遇到动点最值问题时,需要利用未知数将实际问题中的情形代数化,利用二次函数性质解答1.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x,y应分别为()A.x=10,y=14 B。

x=14,y=10 C.x=12 ,y=15 D.x=15 ,y=12(第1题)(第2题)2.如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).(1)求过O、B、A三点的抛物线的解析式.(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M 的坐标.(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.3.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.【类型二】二次函数与全等三角形在实际考试中会出现全等三角形点的存在性问题,解题的关键在于全等三角形对应边相等或对应角相等,利用某一个特殊角度角展开分类讨论,将所有的情形都讨论到位.4. ★如图,在第一象限内作射线OC,与x 轴的夹角为︒30,在射线OC 上取一点A,过点A 作AH ⊥x 轴于点H.在抛物线2x y =)0(>x 上取点P,在y 轴上取点Q,使得以P,O ,Q 为顶点的三角形与∆AO H 全等,则符合条件的点A 的坐标是_____.5. 如图,抛物线c bx ax y ++=2的顶点为D ,与y 轴交于点C,直线CD 的解析式为323+=x y .(1)求b 、c 的值;(2)过C作CE x//轴交抛物线于点E,直线DE交x轴于点F,且F)0,4(,求抛物线的解析式;(3)在(2)条件下,抛物线上是否存在点M,使得∆CDM∆≅CEA若存在,求出点M的坐标;若不存在,请说明理由.6. 如图,抛物线)0(2≠+=a c ax y 与y 轴交于点A,与x 轴交于B,C 两点(点C 在x 轴正半轴上),∆ABC 为等腰直角三角形,且面积为4,现将抛物线沿BA 方向平移,平移后的抛物线过点C 时,与x 轴的另一点为E,其顶点为F ,对称轴与x 轴的交点为H 。

二次函数与三角形的综合

二次函数与三角形的综合

专题二二次函数与三角形的综合一、技巧提炼1、等腰三角形、直角三角形综合PAB为等腰三角形PAB为角形2、与相似三角形、全等三角形综合△ABC与△DEF相似或全等在没指明对应点的情况下,理论上应分六种情况讨论,但实际二、全能突破1、二次函数与等腰三角形的综合1、如下图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4,以AB所在直线为x轴,过点D且垂直于AB的直线为y轴建立平面直角坐标系。

(1)求∠DAB的度数及A、D、C三点的坐标;(2)求过A、D、C三点的抛物线的解析式及其对称轴L;(3)若P是抛物线的对称轴L上的点,那么使△PDB为等腰三角形的点P有几个?若能求点P的坐标;若不能,请说明理由。

2、在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如下图所示,抛物线y=ax2+ax-2经过点B。

(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.3、如下图所示,已知直线112y x =+ 与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++ 交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0). (1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△P AE 是直角三角形时,求点P 的坐标.(3)若点Q 在抛物线上,且△CEQ 为直角三角形时,请直接写出点Q 的坐标。

4、如下左图所示,在平面直角坐标系中,O 为坐标原点,抛物线y =ax 2+8ax +16a +6 经过点B (0,4)。

(1)求抛物线的解析式;(2)设抛物线的顶点为D ,过点D 、B 作直线交x 轴于A ,点C 在抛物线的对称轴上,且C 点的纵坐标为-4,连接BC 、AC ,求证:△ABC 是等腰直角三角形。

中考数学总复习《二次函数与三角形》综合题(含答案)

中考数学总复习《二次函数与三角形》综合题(含答案)

二次函数与三角形一 、填空题(本大题共2小题)1.已知二次函数交轴于,两点,交轴于点,且是等腰三角形,请写出一个符合要求的二次函数的解析式 .2.二次函数的图象的顶点为,与轴正方向从左至右依次交于,两点,与轴正方向交于点,若和均为等腰直角三角形(为坐标原点),则 .二 、解答题(本大题共9小题)3.如图,抛物线与轴交与,两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交轴与点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点,使的面积最大?,若存在,求出点的坐标及的面积最大值.若没有,请说明理由.4.如图,已知二次函数的图象经过点、和原点.为二次函数图象上的一个动点,过点作轴的垂线,垂足为,并与直线交于点.2y ax bx c =++x A B y C ABC △2y x bx c =++D x A B y C ABD △OBC △O 2b c +=2y x bx c =-++x ()10A ,()30B -,y C Q QAC △Q P PBC △P PBC△()33A ,()40B ,O P P x ()0D m ,OA C(1)求出二次函数的解析式;(2)当点在直线的上方时,求线段的最大值;(3)当时,探索是否存在点,使得为等腰三角形,如果存在,求出的坐标;如果不存在,请说明理由.5.已知二次函数22(2)4y m x mx n =--+的图象的对称轴是直线2x =,且它的最高点在直线 112y x =+上. ⑴ 求此二次函数的解析式;⑵ 若此二次函数的图象开口方向不变,定点在直线112y x =+上移动到M 点时,图象与x 轴恰好交于A 、B 两点,且8ABM S ∆=,求这时的二次函数的解析式.6.已知二次函数212y x bx c =++的图象经过点(36)A -,并且与x 轴相交于点(10)B -,和点C ,顶点为P(1)求二次函数的解析式;(2)设D 为线段OC 上一点,满足DPC BAC ∠=∠,求点D 的坐标P OA PC m >0P PCO △P7.如图,已知二次函数图象的顶点为原点,直线的图象与该二次函数的图象交于点,直线与轴的交点为,与轴的交点为. (1)求点的坐标与这个二次函数的解析式;(2)为线段上的一个动点(点与、不重合),过点作轴的垂线与这个二次函数的图象交于点,与轴交于点.设该线段的长为,点的横坐标为,求与之间的函数解析式,并写出自变量的取值范围; (3)在(2)的条件下,在线段上是否存在点,使得以点、、为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.142y x =+A ()88,x C y B B P AB P A B P x D x E PD h P t h t t AB P P D B BOC △P8.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.9.已知二次函数图象的对称轴是直线,且过点.(1)求、的值;(2)求出该二次函数图象与轴的交点、的坐标;(3)如果某个一次函数图象经过坐标原点和该二次函数图象的顶点.问在这个一次函数图象上是否存在点,使得是直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.10.如图,抛物线2122y x bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且()10A -,. (1)求抛物线的解析式及顶点D 的坐标;) (2)判断ABC △的形状,证明你的结论;(3)点(0)M m ,是x 轴上的一个动点,当MC MD +的值最小时,求m 的值.2y x bx c =++2x =()03A ,b c x B C O M P PBC △P11.如图,在平面直角坐标系中,已知矩形的三个顶点、、.抛物线过、两点.(1) 直接写出点的坐标,并求出抛物线的解析式;(2) 动点从点出发.沿线段向终点运动,同时点从点出发,沿线段向终点运动.速度均为每秒1个单位长度,运动时间为秒.过点作交于点.① 过点作于点,交抛物线于点当为何值时,线段最长? ② 连接.在点、运动的过程中,判断有几个时刻使得是等腰三角形?请直接写出相应的值.ABCD ()40B ,()80C ,()88D ,2y ax bx =+A C A P A AB B Q C CD D t P PE AB ⊥AC E E EF PE ⊥F G t EG EQ P Q CEQ △t二次函数与三角形答案解析一 、填空题1.等(答案不唯一);∵二次函数交轴于,两点,交轴于点,且是等腰三角形∴当时,点坐标为只要不为即可.2.2;由已知,得、、、. 过作于点,则,即,得:. 又∵.又∵,即:,得:.故答案为:2.【解析】二次函数综合题.此题主要考查了二次函数与坐标轴交点的表示方法,以及等腰直角三角形的性质等知识,得出,是解决问题的关键.22y x =-2y ax bx c=++x A B y C ABC △AO BO =C 0C ()0c ,0A ⎫⎪⎪⎝⎭0B ⎫⎪⎪⎝⎭2424b b c D ⎛⎫--- ⎪⎝⎭,D DE AB ⊥E 2DE AB =2424b c-⨯=24b c -=02=240b c ->2OC OB =c =22b c +=2DE AB =二 、解答题3.(1)将,代中得,,∴∴抛物线解析式为:(2)存在理由如下:由题知、两点关于抛物线的对称轴对称. ∴直线与的交点即为点,此时周长最小∵ ∴C 的坐标为:∵直线解析式为:.∴点坐标即为的解,∴∴ (3)存在.理由如下:设点且 ∵,若有最大值,则就最大. ∴当时,.∴ 当时, ∴点坐标为【解析】二次函数与三角形综合,轴对称与线段和差最值问题,坐标与面积4.(1)设,把代入得:,函数的解析式为,()10A ,()30B -,2y x bx c =-++10930b c b c -++=⎧⎨--+=⎩23b c =-⎧⎨=⎩223y x x =--+A B 1x =-BC 1x =-Q QAC △223y x x =--+()03,BC 3y x =+Q 13x y x =-⎧⎨=+⎩12x y =-⎧⎨=⎩()12Q -,P ()223x x x --+,()30x -<<92BPC BOC BPCO BPCO S S S S =-=-△△四边形四边形BPCO S 四边形BPC S △=Rt BPE BPCO PEOC S S S +△四边形直角梯形()11=22BE PE OE PE OC ⋅++()()()()221132323322x x x x x x =+--++---++2339272228x ⎛⎫=-+++ ⎪⎝⎭32x =-927=+28BPCO S 四边形最大值927927=+2828BPC S -=△最大值32x =-215234x x --+=P 31524⎛⎫- ⎪⎝⎭,()4y ax x =-()33A ,1a =-24y x x =-+(2),,∵,开口向下,∴有最大值,当时,,当点在直线的上方时,线段的最大值是. (3)当时,仅有, 所以, 解得,∴; 当时,,, 由勾股定理得:,①当时,,解得:,∴; ②当时,,解得:,(舍去),∴;③当时,,解得:,∴,综上所述:存在,的坐标是或或或.5.(1)242y x x =-+-;(2)2(6)4y x =--+【解析】⑴ 由已知条件2222422(2)124(2)(4)1214(2)2mm m n m n m m ⎧=⎪-=-⎧⎪⇒⎨⎨=---⎩⎪=⋅+⎪⋅-⎩, ∴所求二次函数的解析式为242y x x =-+-. ⑵ 设定点1(1)2M a a +,,(0)A a t -,,(B a t +,0), 则所求二次函数形如2()12a y x a =--++, 又由已知8AMB S ∆=,∴182AB y ⋅=,03m <<2239324PC CD PD m m m ⎛⎫=-=-+=--+ ⎪⎝⎭-1<0302D ⎛⎫⎪⎝⎭,max 94PC =P OA PC 9403m <<OC PC=23m m -+=3m =(31P +3m ≥23PC CD PD m m =-=-+OC ()2222224OP OD DP m m m =+=+-OC PC=23m m -3m =(31P +-OC OP=)()22224m m m =+-15m =23m =()55P -,PC OP =()()2222234m m m m m -=+-4m =()40P ,P (31+(31-()55-,()40,∴2112(1)82226102t a t a a t ⎧⋅⋅+=⎪=⎧⎪⇒⎨⎨=⎩⎪-++=⎪⎩, ∴所求二次函数为2(6)4y x =--+.6.(1)21322y x x =--;(2)503⎛⎫⎪⎝⎭, 【解析】(1)函数图象经过点(36)(10)A B --,,,,∴2216(3)3210(1)2b cb c ⎧=⨯--+⎪⎪⎨⎪=⨯--+⎪⎩,解得312b c ⎧=-=-⎨⎩,。

二次函数综合题--二次函数与直角三角形有关的问题(解析版)-中考数学重难点题型专题汇总

二次函数综合题--二次函数与直角三角形有关的问题(解析版)-中考数学重难点题型专题汇总

二次函数综合题-中考数学重难点题型二次函数与直角三角形有关的问题(专题训练)1.(2022·山东滨州)如图,在平面直角坐标系中,抛物线223y x x =--与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接,AC BC .(1)求线段AC 的长;(2)若点Р为该抛物线对称轴上的一个动点,当PA PC =时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当BCM 为直角三角形时,求点M 的坐标.【答案】()11,-(3)()14-,或()25-,或⎝⎭或⎫⎪⎪⎝⎭【分析】(1)根据解析式求出A ,B ,C 的坐标,然后用勾股定理求得AC 的长;(2)求出对称轴为x=1,设P (1,t ),用t 表示出PA 2和PC 2的长度,列出等式求解即可;(3)设点M(m,m 2-2m-3),分情况讨论,当222CM BC BM +=,222BM BC CM +=,222BM CM BC +=分别列出等式求解即可.(1)223y x x =--与x 轴交点:令y=0,解得121,3x x =-=,即A (-1,0),B (3,0),223y x x =--与y 轴交点:令x=0,解得y=-3,即C (0,-3),∴AO=1,CO=3,∴AC ==(2)抛物线223y x x =--的对称轴为:x=1,设P (1,t ),∴()()22221104PA t t =++-=+,()()()222210313PC t t =-++=++,∴24t +()213t =++∴t=-1,∴P (1,-1);(3)设点M (m,m 2-2m-3),()()()()22222223230323BM m m m m m m =-+---=-+--,()()()222222202332CM m m m m m m =-+--+=+-,()()222300318BC =-++=,①当222CM BC BM +=时,()()()222222218323m m m m m m +-+=-+--,解得,10m =(舍),21m =,∴M (1,-4);②当222BM BC CM +=时,()())222222323182m m m m m m-+--+=+-,解得,12m =-,23m =(舍),∴M (-2,5);③当222BM CM BC +=时,()()()222222323218m m m m m m -+--++-=,解得,m =,∴M ⎝⎭或⎫⎪⎪⎝⎭;综上所述:满足条件的M 为()14-,或()25-,或1522⎛+ ⎪ ⎪⎝⎭或1522⎛⎫⎪ ⎪⎝⎭.【点睛】本题是二次函数综合题,考查了与坐标轴交点、线段求值、存在直角三角形等知识,解题的关键是学会分类讨论的思想,属于中考压轴题.2.(2021·四川中考真题)如图1,在平面直角坐标系中,抛物线与x 轴分别交于A 、B 两点,与y 轴交于点C (0,6),抛物线的顶点坐标为E (2,8),连结BC 、BE 、CE .(1)求抛物线的表达式;(2)判断△BCE 的形状,并说明理由;(3)如图2,以C 为半径作⊙C ,在⊙C 上是否存在点P ,使得BP +12EP 的值最小,若存在,请求出最小值;若不存在,请说明理由.【答案】(1)y=12-x 2+2x+6;(2)直角三角形,见解析;(3)存在,2【分析】(1)用待定系数法求函数解析式;(2)分别求出三角形三边的平方,然后运用勾股定理逆定理即可证明;(3)在CE 上截取CF=2(即CF 等于半径的一半),连接BF 交⊙C 于点P ,连接EP ,则BF 的长即为所求.【详解】解:(1)∵抛物线的顶点坐标为E (2,8),∴设该抛物线的表达式为y=a (x-2)2+8,∵与y 轴交于点C (0,6),∴把点C (0,6)代入得:a=12-,∴该抛物线的表达式为y=12-x 2+2x+6;(2)△BCE 是直角三角形.理由如下:∵抛物线与x 轴分别交于A 、B 两点,∴当y=0时,12-(x-2)2+8=0,解得:x 1=-2,x 2=6,∴A (-2,0),B (6,0),∴BC 2=62+62=72,CE 2=(8-6)2+22=8,BE 2=(6-2)2+82=80,∴BE 2=BC 2+CE 2,∴∠BCE=90°,∴△BCE 是直角三角形;(3)如图,在CE 上截取CF=2(即CF 等于半径的一半),连接BF 交⊙C 于点P ,连接EP ,则BF 的长即为所求.连接CP ,∵CP 为半径,∴12CF CP CP CE ==,又∵∠FCP=∠PCE ,∴△FCP ∽△PCE ,∴12CF FP CP PE ==,FP=12EP ,∴BF=BP+12EP ,由“两点之间,线段最短”可得:BF 的长即BP+12EP 为最小值.∵CF=14CE ,E (2,8),∴F (12,132),∴2【点睛】本题考查二次函数综合,待定系数法,二次函数图象和性质,勾股定理及其逆定理,圆的性质,相似三角形的判定和性质等,题目综合性较强,属于中考压轴题,熟练掌握二次函数图象和性质,圆的性质,相似三角形的判定和性质等相关知识是解题关键.3.(2021·湖北中考真题)在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点C ,顶点D 的坐标为()1,4-.(1)直接写出抛物线的解析式;(2)如图1,若点P 在抛物线上且满足PCB CBD ∠=∠,求点P 的坐标;(3)如图2,M 是直线BC 上一个动点,过点M 作MN x ⊥轴交抛物线于点N ,Q 是直线AC 上一个动点,当QMN 为等腰直角三角形时,直接写出此时点M 及其对应点Q 的坐标【答案】(1)223y x x =--;(2)()14,5P ,257,24P ⎛⎫- ⎪⎝⎭;(3)154,33M ⎛⎫- ⎪⎝⎭,154,93Q ⎛⎫-- ⎪⎝⎭;2134,33M ⎛⎫ ⎪⎝⎭,2134,93Q ⎛⎫- ⎪⎝⎭;(35,2M ,()35,12Q -;()42,1M -,()40,3Q -;()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.【分析】(1)由()1,0A -和D ()1,4-,且D 为顶点列方程求出a 、b 、c ,即可求得解析式;(2)分两种情况讨论:①过点C 作1//CP BD ,交抛物线于点1P ,②在BC 下方作BCF BCE ∠=∠交BG 于点F ,交抛物线于2P ;(3)QMN 为等腰直角三角形,分三种情况讨论:当90QM MN QMN =∠=︒,;②当90QN MN QNM =∠=︒,;③当90QM QN MQN =∠=︒,.【详解】解:(1)将()1,0A -和D ()1,4-代入2y ax bx c=++得04a b c a b c -+=⎧⎨++=-⎩又∵顶点D 的坐标为()1,4-∴12ba-=-∴解得123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线的解析式为:223y x x =--.(2)∵()3,0B 和()1,4D -∴直线BD 的解析式为:26y x =-∵抛物线的解析式为:223y x x =--,抛物线与y 轴交于点C ,与x 轴交于点()1,0A -和点B,则C 点坐标为()0,3-,B 点坐标为()3,0.①过点C 作1//CP BD ,交抛物线于点1P ,则直线1CP 的解析式为23y x =-,结合抛物线223y x x =--可知22323x x x --=-,解得:10x =(舍),24x =,故()14,5P .②过点B 作y 轴平行线,过点C 作x 轴平行线交于点G ,由OB OC =可知四边形OBGC 为正方形,∵直线1CP 的解析式为23y x =-∴1CP 与x 轴交于点3,02E ⎛⎫⎪⎝⎭,在BC 下方作BCF BCE ∠=∠交BG 于点F ,交抛物线于2P ∴OCE FCG∠=∠又∵OC=CG ,90COE G ∠=∠=︒∴OEC △≌()GFC ASA ,∴32FG OE ==,33,2F ⎛⎫- ⎪⎝⎭,又由()0,3C -可得直线CF 的解析式为132y x =-,结合抛物线223y x x =--可知212332x x x --=-,解得10x =(舍),252x =,故257,24P ⎛⎫- ⎪⎝⎭.综上所述,符合条件的P 点坐标为:()14,5P ,257,24P ⎛⎫- ⎪⎝⎭.(3)∵()3,0B ,()0,3C -∴直线BC 的解析式为3BC y x =-设M 的坐标为()3m m -,,则N 的坐标为()223m m m --,∴()22=3233MN m m m m m----=-∵()1,0A -,()0,3C -∴直线BC 的解析式为33AC y x =--∵QMN 为等腰直角三角形∴①当90QM MN QMN =∠=︒,时,如下图所示则Q 点的坐标为33m m ⎛⎫-- ⎪⎝⎭,∴4=33m mQM m ⎛⎫--=⎪⎝⎭∴24=33mm m -解得:10m =(舍去),2133m =,353m =∴此时154,33M ⎛⎫- ⎪⎝⎭,154,93Q ⎛⎫-- ⎪⎝⎭;2134,33M ⎛⎫ ⎪⎝⎭,2134,93Q ⎛⎫- ⎪⎝⎭;②当90QN MN QNM =∠=︒,则Q 点的坐标为222233m m m m ⎛⎫--- ⎪⎝⎭,∴222=33m m m mQM m -+-=∴22=33m mm m +-解得:10m =(舍去),25m =,32m =∴此时()35,2M ,()35,12Q -;()42,1M -,()40,3Q -;③当90QM QN MQN =∠=︒,时,如图所示则Q 点纵坐标为()()22211113236=32222m m m m m m m -+--=----∴Q 点的坐标为22111136622m m m m ⎛⎫--- ⎪⎝⎭,∴Q 点到MN 的距离=221151+6666m m m m m--=∴22511+=3662m m m m ⋅-(直角三角形斜边上的中线等于斜边的一半)解得:10m =(舍去),27m =,31m =∴此时()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.综上所述,点M 及其对应点Q 的坐标为:154,33M ⎛⎫- ⎪⎝⎭,154,93Q ⎛⎫-- ⎪⎝⎭;2134,33M ⎛⎫ ⎪⎝⎭,2134,93Q ⎛⎫- ⎪⎝⎭;()35,2M ,()35,12Q -;()42,1M -,()40,3Q -;()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.【点睛】本题主要考查二次函数与几何图形.该题综合性较强,属于中考压轴题.4.(2021·湖北中考真题)抛物线22y ax bx b =-+(0a ≠)与y 轴相交于点()0,3C -,且抛物线的对称轴为3x =,D 为对称轴与x 轴的交点.(1)求抛物线的解析式;(2)在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E 、F 两点,若DEF 是等腰直角三角形,求DEF 的面积;(3)若()3,P t 是对称轴上一定点,Q 是抛物线上的动点,求PQ 的最小值(用含t 的代数式表示).【答案】(1)263y x x =-+-;(2)4;(3)6(6)116(6)211()2t t PQ t t t ⎧⎪-≥⎪⎪=-<<⎨≤【分析】(1)与y 轴相交于点()0,3C -,得到3b =-,再根据抛物线对称轴,求得1a =-,代入即可.(2)在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E 、F 两点,可知E 、F 两点关于对称轴对称,DEF 是等腰直角三角形得到45FED ∠=︒,设(,)(0)E m n n >,根据等腰直角三角形的性质求得E 点坐标,从而求得DEF 的面积.(3)(,)(6)Q p q q ≤,根据距离公式求得222(21)6PQ q t q t =-+++,注意到q 的范围,利用二次函数的性质,对t 进行分类讨论,从而求得PQ 的最小值.【详解】解:(1)由抛物线22y ax bx b =-+(0a ≠)与y 轴相交于点()0,3C -得到3b =-抛物线的对称轴为3x =,即232b a--=,解得1a =-∴抛物线的方程为263y x x =-+-(2)过点E 作EM AB ⊥交AB 于点M ,过点F 作FN AB ⊥,交AB 于点N ,如下图:∵DEF 是等腰直角三角形∴DE DF =,45FED ∠=︒又∵EF x ∥轴∴45EDM ∠=︒∴EMD 为等腰直角三角形∴EM DM=设(,)(0)E m n n >,则(,0)M m ,3,DM m EM n=-=∴3n m=-又∵263n m m =-+-∴2363m m m -=-+-2760m m -+=解得1m =或6m =当1m =时,2n =,符合题意,2,4DM EM MN ===142DEF S MN EM =⨯=△当6m =时,30n =-<,不符合题意综上所述:4DEF S = .(3)设(,)(6)Q p q q ≤,Q 在抛物线上,则263q p p =-+-222222(3)()692PQ p q t p p q tq t =-+-=-++-+将263q p p =-+-代入上式,得222(21)6PQ q t q t =-+++当112t >时,2162t +>,∴6q =时,2PQ 最小,即PQ 最小22223612661236(6)PQ t t t t t =--++=-+=-PQ =6(6)6116(6)2t t t t t -≥⎧⎪-=⎨-<<⎪⎩当112t ≤时,2162t +≤,∴212t q +=时,2PQ 最小,即PQ 最小22344t PQ -=,2PQ =综上所述6(6)116(6)211()2t t PQ t t t ⎧⎪-≥⎪⎪=-<<⎨≤【点睛】此题考查了二次函数的对称轴、二次函数与三角形面积、等腰直角三角形的性质以及距离公5.(2020•泸州)如图,已知抛物线y =ax 2+bx+c 经过A (﹣2,0),B (4,0),C (0,4)三点.(1)求该抛物线的解析式;(2)经过点B 的直线交y 轴于点D ,交线段AC 于点E ,若BD =5DE .①求直线BD 的解析式;②已知点Q 在该抛物线的对称轴l 上,且纵坐标为1,点P 是该抛物线上位于第一象限的动点,且在l 右侧,点R 是直线BD 上的动点,若△PQR 是以点Q 为直角顶点的等腰直角三角形,求点P 的坐标.【分析】(1)根据交点式设出抛物线的解析式,再将点C坐标代入抛物线交点式中,即可求出a,即可得出结论;(2)①先利用待定系数法求出直线AC的解析式,再利用相似三角形得出比例式求出BF,进而得出点E坐标,最后用待定系数法,即可得出结论;②先确定出点Q的坐标,设点P(x,−12x2+x+4)(1<x<4),得出PG=x﹣1,GQ=−12x2+x+3,再利用三垂线构造出△PQG≌△QRH(AAS),得出RH=GQ=−12x2+x+3,QH=PG=x﹣1,进而得出R(−12x2+x+4,2﹣x),最后代入直线BD的解析式中,即可求出x的值,即可得出结论.【解析】(1)∵抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),∴设抛物线的解析式为y=a(x+2)(x﹣4),将点C坐标(0,4)代入抛物线的解析式为y=a(x+2)(x﹣4)中,得﹣8a=4,∴a=−12,∴抛物线的解析式为y=−12(x+2)(x﹣4)=−12x2+x+4;(2)①如图1,设直线AC的解析式为y=kx+b',将点A(﹣2,0),C(0,4),代入y=kx+b'中,得−2k+b'=0b'=4,∴k=2b'=4,∴直线AC的解析式为y=2x+4,过点E作EF⊥x轴于F,∴OD∥EF,∴△BOD∽△BFE,∴OB BF=BD BE,∵B(4,0),∴OB=4,∵BD=5DE,∴BD BE=BD BD+DE=5DE5DE+BE=56,∴BF=BE BD×OB=65×4=245,∴OF=BF﹣OB=245−4=45,将x=−45代入直线AC:y=2x+4中,得y=2×(−45)+4=125,∴E(−45,125),设直线BD的解析式为y=mx+n,∴4m+n=0−45m+n=125,∴m=−12n=2,∴直线BD的解析式为y=−12x+2;②∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图2,设点P(x,−12x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x﹣1,GQ=−12x2+x+4﹣1=−12x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ =∠HQR ,∴△PQG ≌△QRH (AAS ),∴RH =GQ =−12x 2+x+3,QH =PG =x ﹣1,∴R (−12x 2+x+4,2﹣x ),由①知,直线BD 的解析式为y =−12x+2,∴x =2或x =4(舍),当x =2时,y =−12x 2+x+4=−12×4+2+4=4,∴P (2,4).6.(2020·甘肃兰州?中考真题)如图,抛物线24y ax bx =+-经过A (-3,6),B (5,-4)两点,与y 轴交于点C ,连接AB ,AC ,BC .(1)求抛物线的表达式;(2)求证:AB 平分CAO ∠;(3)抛物线的对称轴上是否存在点M ,使得ABM ∆是以AB 为直角边的直角三角形.若存在,求出点M 的坐标;若不存在,说明理由.【答案】(1)215466y x x =--;(2)详见解析;(3)存在,点M 的坐标为(52,-9)或(52,11).【解析】【分析】(1)将A (-3,0),B (5,-4)代入抛物线的解析式得到关于a 、b 的方程组,从而可求得a 、b 的值;(2)先求得AC 的长,然后取D (2,0),则AD=AC ,连接BD ,接下来,证明BC=BD ,然后依据SSS 可证明△ABC ≌△ABD ,接下来,依据全等三角形的性质可得到∠CAB=∠BAD ;(3)作抛物线的对称轴交x 轴与点E ,交BC 与点F ,作点A 作AM′⊥AB ,作BM ⊥AB ,分别交抛物线的对称轴与M′、M ,依据点A 和点B 的坐标可得到tan ∠BAE=12,从而可得到tan ∠M′AE=2或tan ∠MBF=2FM 和M′E 的长,故此可得到点M′和点M 的坐标.【详解】解:(1)将A (-3,0),B (5,-4)两点的坐标分别代入,得9340,25544a b a b --=⎧⎨+-=-⎩,解得1,65,6a b ⎧=⎪⎪⎨⎪=-⎪⎩故抛物线的表达式为y =215466y x x =--.(2)证明:∵AO=3,OC=4,∴.取D (2,0),则AD=AC=5.由两点间的距离公式可知=5.∵C (0,-4),B (5,-4),∴BC=5.∴BD=BC .在△ABC 和△ABD 中,AD=AC ,AB=AB ,BD=BC ,∴△ABC ≌△ABD ,∴∠CAB=∠BAD ,∴AB 平分∠CAO ;(3x 轴与点E ,交BC 与点F .抛物线的对称轴为x=52,则AE=112.∵A (-3,0),B (5,-4),∴tan ∠EAB=12.∵∠M′AB=90°.∴tan ∠M′AE=2.∴M′E=2AE=11,∴M′(52,11).同理:tan ∠MBF=2.又∵BF=52,∴FM=5,∴M (52,-9).∴点M 的坐标为(52,11)或(52,-9).【点睛】本题考查了二次函数的综合应用,主要应用了待定系数法求二次函数的解析式,全等三角形的性质和判定、锐角三角函数的定义,求得FM 和M′E 的长是解题的关键7.(2020·内蒙古通辽?中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于点,A B ,与y 轴交于点C ,且直线6y x =-过点B ,与y 轴交于点D ,点C 与点D 关于x 轴对称.点P 是线段OB 上一动点,过点P 作x 轴的垂线交抛物线于点M ,交直线BD 于点N .(1)求抛物线的函数解析式;(2)当MDB △的面积最大时,求点P 的坐标;(3)在(2)的条件下,在y 轴上是否存在点Q ,使得以,,Q M N 三点为顶点的三角形是直角三角形,若存在,直接写出点Q 的坐标;若不存在,说明理由.【答案】(1)256y x x =-++;(2)(2,0);(3)存在,(0,12)或(0,-4)或(0,4+)或(0,4-).【解析】【分析】(1)根据直线6y x =-求出点B 和点D 坐标,再根据C 和D 之间的关系求出点C 坐标,最后运用待定系数法求出抛物线表达式;(2)设点P 坐标为(m ,0),表示出M 和N 的坐标,再利用三角形面积求法得出S △BMD =231236m m -++,再求最值即可;(3)分当∠QMN=90°时,当∠QNM=90°时,当∠MQN=90°时,三种情况,结合相似三角形的判定和性质,分别求解即可.【详解】解:(1)∵直线6y x =-过点B ,点B 在x 轴上,令y=0,解得x=6,令x=0,解得y=-6,∴B (6,0),D (0,-6),∵点C 和点D 关于x 轴对称,∴C (0,6),∵抛物线2y x bx c =-++经过点B 和点C ,代入,03666b c c =-++⎧⎨=⎩,解得:56b c =⎧⎨=-⎩,∴抛物线的表达式为:256y x x =-++;(2)设点P 坐标为(m ,0),则点M 坐标为(m ,256m m -++),点N 坐标为(m ,m-6),∴MN=256m m -++-m+6=2412m m -++,∴S △BMD =S △MNB +S △MND =()2141262m m ⨯-++⨯=231236m m -++=-3(m-2)2+48当m=2时,S △BMD 最大=48,此时点P 的坐标为(2,0);(3)存在,由(2)可得:M (2,12),N (2,-4),设点Q 的坐标为(0,n ),当∠QMN=90°时,即QM ⊥MN ,如图,可得,此时点Q 和点M 的纵坐标相等,即Q (0,12);当∠QNM=90°时,即QN ⊥MN ,如图,可得,此时点Q 和点N 的纵坐标相等,即Q (0,-4);当∠MQN=90°时,MQ⊥NQ,如图,分别过点M和N作y轴的垂线,垂足为E和F,∵∠MQN=90°,∴∠MQE+∠NQF=90°,又∠MQE+∠QME=90°,∴∠NQF=∠QME,∴△MEQ∽△QFN,∴ME EQQF FN=,即21242nn-=+,解得:n=4+或4-,∴点Q(0,4+)或(0,4-),综上:点Q的坐标为(0,12)或(0,-4)或(0,4+)或(0,4-).【点睛】本题是二次函数综合题,考查了二次函数的表达式,相似三角形的判定和性质,直角三角形的性质,二次函数的最值,解一元二次方程,解题时要注意数形结合,分类讨论思想的运用.。

二次函数综合(动点与三角形)问题方法与解析

二次函数综合(动点与三角形)问题方法与解析

二次函数综合(动点与三角形)问题一、知识准备:抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常见的基本形式。

(1)抛物线上的点能否构成等腰三角形;(2)抛物线上的点能否构成直角三角形;(3)抛物线上的点能否构成相似三角形;解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。

二、例题精析㈠【抛物线上的点能否构成等腰三角形】例一.(2013•铜仁地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c 经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.的坐标为(﹣得:解得:,OB=×时,解得:))时,,,,),﹣)㈡【抛物线上的点能否构成直角三角形】(2013鞍山)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c 例二.的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.考点:二次函数综合题.分析:(1)根据y=0.5x+2交x轴于点A,与y轴交于点B,即可得出A,B两点坐标,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.得出可设二次函数y=ax2+bx+c=a (x﹣2)2,进而求出即可;(2)根据当B为直角顶点,当D为直角顶点,以及当P为直角顶点时,分别利用三角形相似对应边成比例求出即可.解答:解:(1)∵y=0.5x+2交x轴于点A,∴0=0.5x+2,∴x=﹣4,与y轴交于点B,∵x=0,∴y=2∴B点坐标为:(0,2),∴A(﹣4,0),B(0,2),∵二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2∴可设二次函数y=a(x﹣2)2,把B(0,2)代入得:a=0.5∴二次函数的解析式:y=0.5x2﹣2x+2;(2)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴=,∴=,得:OP1=1,∴P1(1,0),(Ⅱ)作P2D⊥BD,连接BP2,将y=0.5x+2与y=0.5x2﹣2x+2联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时∵∠DAP2=∠BAO,∠BOA=∠ADP2,∴△ABO∽△AP2D,∴=,=,解得:AP2=11.25,则OP2=11.25﹣4=7.25,故P2点坐标为(7.25,0);(Ⅲ)当P为直角顶点时,过点D作DE⊥x轴于点E,设P3(a,0)则由Rt△OBP3∽Rt△EP3D得:,∴,∵方程无解,∴点P3不存在,∴点P的坐标为:P1(1,0)和P2(7.25,0).点评:此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.㈢【抛物线上的点能否构成相似三角形】例三.(2013•恩施州)如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB 沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.(﹣((×﹣三、形成训练1.(2013•湘西州)如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由.x=)根据﹣∴﹣,x+x x+4=(,﹣+,即﹣+,,y=,=AQ====,==±﹣4+2 :已知:直线12y x =+与y 轴交于A ,与x 轴交于D ,抛物线22y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).(1)求抛物线的解析式;(2)动点P 在x 轴上移动,当△P AE 是直角三角形时,求点P 的坐标.3、如图,抛物线21222y x x =-++与x 轴交于A B 、两点,与y 轴交于C 点.(1)求A B C 、、三点的坐标;(2)证明ABC △为直角三角形;(3)在抛物线上除C 点外,是否还存在另外一个点P ,使ABP △是直角三角形,若存在,请求出点P 的坐标,若不存在,请说明理由.4、如图,已知抛物线224233y x x =-++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D . 点M 从O 点出发,以每秒1个单位长度的速度向B 运动,过M 作x 轴的垂线,交抛物线于点P ,交BC 于Q .(1)求点B 和点C 的坐标;(2)设当点M 运动了x (秒)时,四边形OBPC 的面积为S ,求S 与x 的函数关系式,并指出自变量x 的取值范围.(3)在线段BC 上是否存在点Q ,使得△DBQ成为以.BQ ..为一腰...的等腰三角形?若存在, 求出点Q 的坐标,若不存在,说明理由.5、(09年成都)在平面直角坐标系xOy 中,已知抛物线y=2(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M,若直线MC 的函数表达式为3y kx =-,与x 轴的交点为N ,且COS ∠BCO =10。

二次函数与特殊三角形存在性综合问题(原卷版)-九年级数学上册《重难点题型-高分突破》(人教版)

二次函数与特殊三角形存在性综合问题(原卷版)-九年级数学上册《重难点题型-高分突破》(人教版)

专题2.6二次函数与特殊三角形存在性综合问题(三大题型)【题型1等腰三角形的存在性问题】【题型2直角三角形的存在性问题】【题型3等腰直角三角形存在性问题】等腰三角形的存在性问题【方法1几何法】“两圆一线”(1)以点A 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C,有AB=AC;(2)以点B 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C,有BA=BC;(3)作AB 的垂直平分线,与x 轴的交点即为满足条件的点C,有CA=CB.注意:若有重合的情况,则需排除.以点C 1为例,具体求点坐标:过点A 作AH⊥x 轴交x 轴于点H,则AH=1,又32121131311==-=∴=HC AC ,()03211,坐标为故点-C 类似可求点C 2、C 3、C 4.关于点C 5考虑另一种方法.【方法2代数法】点-线-方程表示点:设点C 5坐标为(m ,0),又A (1,1)、B (4,3),表示线段:11-m 225+=)(AC 94-m 225+=)(BC 联立方程:914-m 1-m 22+=+)()(,623m =解得:,),坐标为(故点06232C 直角三角形的存在性【方法1几何法】“两线一圆”(1)若∠A 为直角,过点A 作AB 的垂线,与x 轴的交点即为所求点C ;(2)若∠B 为直角,过点B 作AB 的垂线,与x 轴的交点即为所求点C ;(3)若∠C 为直角,以AB 为直径作圆,与x 轴的交点即为所求点C .(直径所对的圆周角为直角)如何求得点坐标?以C2为例:构造三垂直.),坐标为(故代入得:坐标得、由易证0213232222C C C BN AM B A N MB BN AM BN AMB ===∆≈∆()),坐标为(,,坐标为故或故又即代入得:,设,坐标得、由易证求法相同,如下:、040231a ,4a ,3ab ,3a b 1N a,31,4333333343C C C C C C C CCC b bM BN AM B A NB M N AM NB AM ==+=======∆≈∆【方法2代数法】点-线-方程23m 20352235110,m 135-m 1-m 35-m 11-m 22222122111=+=+=+=+==,解得:)代入得方程(,,,)表示线段:();,()、,(),又坐标为()表示点:设(:不妨来求下)()()()(BC C C C A AB B A 【题型1等腰三角形的存在性问题】【典例1】(2023•兴庆区校级模拟)如图,已经抛物线经过点O (0,0),A (5,5),且它的对称轴为x =2.(1)求此抛物线的解析式;(2)若点B 是x 轴上的一点,且△OAB 为等腰三角形,请直接写出B 点坐标.【变式1-1】(2023•青海)如图,二次函数y=﹣x2+bx+c的图象与x轴相交于点A和点C(1,0),交y轴于点B(0,3).(1)求此二次函数的解析式;(2)设二次函数图象的顶点为P,对称轴与x轴交于点Q,求四边形AOBP 的面积(请在图1中探索);(3)二次函数图象的对称轴上是否存在点M,使得△AMB是以AB为底边的等腰三角形?若存在,请求出满足条件的点M的坐标;若不存在,请说明理由(请在图2中探索).【变式1-2】(2022秋•亳州期末)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;【变式1-3】(2023春•中山市期中)已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.【变式1-4】(2022秋•怀远县期末)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;【变式1-5】(2023•兴宁区校级模拟)如图,抛物线y=﹣x2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P的坐标;【变式1-6】(2023•隆昌市校级三模)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.(1)求此抛物线的表达式:(2)过点P作PN⊥BC,垂足为点N,请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由.【变式1-7】(2023春•沙坪坝区校级月考)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)求出四边形ABPC的面积最大时的P点坐标和四边形ABPC的最大面积;(3)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.【变式1-8】(2022秋•朔州期末)如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.【变式1-9】(2022秋•港南区期末)如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,8),点P为直线BC上方抛物线上的动点,连接CP,PB,直线BC与抛物线的对称轴l交于点E.(1)求抛物线的解析式;(2)求△BCP的面积最大值;(3)点M是抛物线的对称轴l上一动点.是否存在点M,使得△BEM为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.【题型2直角三角形的存在性问题】【典例2】(2022秋•云阳县期末)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线得解析式;(2)若点P为第三象限内抛物线上的一点,设△P AC的面积为S,求S的最大值并求此时点P的坐标.(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上确定一点M,使得△ADM是直角三角形,写出所有符合条件的点M的坐标,并任选其中一个点的坐标,写出求解过程.【变式2-1】(2023春•兴宁区校级月考)如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=﹣2相交于点D,点A是直线l2上的动点,过点A 作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A的纵坐标为t,△ABC的面积为s.(1)当点B的坐标为时,直接写出t的值;(2)s关于t的函数解析式为,其图象如图2所示,结合图1、2的信息,求出a与b的值;(3)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC的面积;若不存在,请说明理由.【变式2-2】(2023•庄浪县三模)如图:已知二次函数y=ax2+x+c的图象与x 轴交于A,B点,与y轴交于点C,其中B(2,0),C(0,4).(1)求该抛物线的解析式;(2)P是第一象限抛物线的一个动点,当P点运动到何处时,由点P,B,C 构成的三角形的面积最大,求出此时P点的坐标;(3)若M是抛物线上的一个动点,当M运动到何处时,△MBC是以BC为直角边的直角三角形,求出此时点M的坐标.【变式2-3】(2023•喀喇沁旗一模)如图①,已知抛物线y=﹣x2+bx+c与x轴交于点A、B(3,0),与y轴交于点C(0,3),直线l经过B、C两点.抛物线的顶点为D.(1)求抛物线和直线l的解析式;(2)判断△BCD的形状并说明理由.(3)如图②,若点E是线段BC上方的抛物线上的一个动点,过E点作EF ⊥x轴于点F,EF交线段BC于点G,当△ECG是直角三角形时,求点E的坐标.【变式2-4】(2023•铁岭模拟)如图,一次函数的图象与x轴交于点A,与y轴交于点B,二次函数y=的图象与一次函数y=﹣的图象交于B、C两点,与x轴交于D、E两点,且点D坐标为(﹣1,0).(1)求二次函数的解析式;(2)求四边形BDEC的面积S;(3)在x轴上是否存在点P,使得△PBC是直角三角形?若存在,请直接写出所有满足条件的点P的坐标,若不存在,请说明理由.【变式2-5】(2023•怀化二模)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于点A、B,抛物线y=x2+bx+c经过点A、B,E是线段OA的中点.(1)求抛物线的解析式;(2)点F是抛物线上的动点,当∠OEF=∠BAE时,求点F的横坐标;(3)在抛物线上是否存在点P,使得△ABP是以点A为直角顶点的直角三角形,若存在,请求出P点坐标,若不存在,请说明理由;【变式2-6】(2023•金湾区一模)如题22图,抛物线y=ax2+bx+3的对称轴为直线x=2,并且经过点A(﹣2,0),交x轴于另一点B,交y轴于点C.(1)求抛物线的解析式;(2)在直线BC上方的抛物线上有一点P,求点P到直线BC距离的最大值及此时点P的坐标;(3)在直线BC下方的抛物线上是否存在点Q,使得△QBC为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【题型3等腰直角三角形存在性问题】【典例3】(2023•增城区校级一模)如图,在平面直角坐标系中,抛物线y=ax2+bx ﹣3(a>0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.【变式3-1】(2023•抚远市二模)如图,抛物线y=x2+bx+c与x轴相交于点A (﹣1,0)和点B(2,0).(1)求抛物线的解析式;(2)在抛物线上有一点P,过点P作x轴的垂线交x轴于点Q,若△APQ是等腰直角三角形,求点P的坐标.【变式3-2】(2023•富锦市校级一模)如图,是抛物线y=x2+bx+c与x轴相交于点A(﹣1,0)和点B(2,0).(1)求抛物线的解析式;(2)在抛物线上有一点P,过点P作x轴的垂线交x轴于点Q,若△APQ是等腰直角三角形,求点P的坐标.【变式3-3】(2023•碑林区校级模拟)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)点M为该抛物线的对称轴l上一点,点P为该抛物线上的点且在l左侧,当△AMP是以M为直角顶点的等腰直角三角形时,求符合条件的点M的坐标.【变式3-4】(2023•西安一模)如图,在平面直角坐标系中,抛物线y=ax2+bx ﹣1的顶点A的坐标为,与y轴交于点B.(1)求抛物线的函数表达式;(2)点P是抛物线上的动点,过点P作PM⊥x轴于点M,以PM为斜边作等腰直角三角形PMN,当点N恰好落在y轴上时,求点P的坐标.【变式3-5】(2023•惠民县自主招生)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△P AB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.。

人教版中考数学一轮复习--二次函数与三角形的综合应用(精品课件)

人教版中考数学一轮复习--二次函数与三角形的综合应用(精品课件)

若不存在,请说明理由.
(图1)
解:存在.∵PD∥OB,
∴∠DPC=∠BOC,∠PDC=∠OBC,
∴△DPC∽△BOC,∴CCOP=CCDB=OPDB.
∵SS12=CCDB,SS23=CCOP,∴SS12+SS23=2CCOP.
(答图3)
如答图 3,过点 P 作 PH⊥x 轴,垂足为 H,PH 交 AB 于点
①若-1≤a≤- 1 ,求线段MN长度的取值范围; 2
解:由(2)知ax2+(a-2)x-2a+2=0, ∵a≠0,∴x2+1-2ax-2+2a=0, ∴(x-1)x-2a-2=0,解得 x=1 或 x=2a-2,
将 x=2a-2 代入 y=2x-2,得 y=4a-6, ∴N 点的坐标为2a-2,4a-6. ∴MN2=2a-2-12+(4a-6)2=2a02 -6a0+45=20(1a-32)2. ∵-1≤a≤-12,∴-2≤1a≤-1, ∴易知 MN2 随1a的增大而减小,
ax+b有一个公共点M(1,0),且a<b. (3)直线与抛物线的另一个交点记为N.
②求△QMN面积的最小值.
解:如答图
1,作抛物线的对称轴
x=-12交直线
(答图1) y=2x-2 于 E
点,将 x=-12代入 y=2x-2,得 y=-3,∴E-12,-3.
设△QMN 的面积为 S,
∵M(1,0),N2a-2,4a-6,a<0, ∴S=S△QEN+S△QEM=12|(2a-2)-1|·|-94a-(-3)|=247-3a-278a, ∴易得 27a2+(8S-54)a+24=0, ∴Δ=(8S-54)2-4×27×24≥0,即(8S-54)2≥(36 2)2. ∵a<0,∴S=247-3a-278a>247,

二次函数综合(动点与三角形)问题方法与解析

二次函数综合(动点与三角形)问题方法与解析

二次函数综合(动点与三角形)问题一、 知识准备:抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其 能构成某些特殊三角形,有以下常见的基本形式。

(1) 抛物线上的点能否构成等腰三角形; (2) 抛物线上的点能否构成直角三角形; (3) 抛物线上的点能否构成相似三角形;解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。

二、 例题精析㈠【抛物线上的点能否构成等腰三角形】例一 .(2013?铜仁地区)如图,已知直线y=3x - 3分别交x 轴、y 轴于A 、B 两点,抛物线y=x 2+bx+c 经过A 、B 两点,点C 是抛物线与x 轴的另一个交点(与 A 点不重合). (1) 求抛物线的解析式; (2) 求厶ABC 的面积; (3)在抛物线的对称轴上,是否存在点 M ,使△ ABM 为等腰三角形?若不存在,请说明理 由;若存在,求出点 M 的坐标.专题:综合题.(1 )根据直线解析式求出点 A 及点B 的坐标,然后将点 A 及点B 的坐标代入抛物线 解析式,可得出b 、c 的值,求出抛物线解析式;(2)由(1)求得的抛物线解析式,可求出点 C 的坐标,继而求出 AC 的长度,代入三 角形的面积公式即可计算;(3) 根据点M 在抛物线对称轴上,可设点 M 的坐标为(-1, m ),分三种情况讨论, ①MA=BA ,②MB=BA ,③MB=MA ,求出m 的值后即可得出答案.解答:解:(1)v 直线y=3x - 3分别交x 轴、y 轴于A 、B 两点,•••可得 A (1, 0), B (0,- 3),一2fl+b+c=O把A 、B 两点的坐标分别代入 y=x 2+bx+c 得:」-,分析: 考点:二次函数综合题l c=_3解得:.c= - 3 抛物线解析式为:y=x2+2x - 3.2(2)令y=0 得:0=x +2x - 3,解得:x i=l,X2=- 3,则C点坐标为:(-3, 0), . AC=4 ,故可得S^A BC=2A C >OB=丄>4 >3=6 .」2 2(3)抛物线的对称轴为:x= - 1,假设存在M (- 1, m)满足题意:讨论:①当MA=AB时,解得:昨±旋,二M i (- 1,航),M2 ( - 1,-竝);②当MB=BA时,「..[ •—J」解得:M3=0, M4=- 6,•M3 (- 1, 0) , M4 (- 1,- 6),③当MB=MA时,-,/V ::解得:m= - 1,•M5 ( - 1, - 1),答:共存在五个点M1 (- 1, V6) , M2 (- 1,-后),M3 (- 1, 0), M4 (- 1, - 6), M5 (- 1, -1)使4 ABM为等腰三角形.点评:本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解.㈡【抛物线上的点能否构成直角三角形】2例二.(2013鞍山)如图,已知一次函数y=0.5x+2的图象与x轴交于点A ,与二次函数y=ax +bx+c 的图象交于y轴上的一点B,二次函数y=ax +bx+c的图象与x轴只有唯一的交点C,且0C=2 .2(1)求二次函数y=ax +bx+c的解析式;2(2)设一次函数y=0.5x+2的图象与二次函数y=ax +bx+c的图象的另一交点为D ,已知P为x轴上的一个动点,且△ PBD为直角三角形,求点P的坐标.考点:二次函数综合题.分析:(1)根据y=0.5x+2交x轴于点A,与y轴交于点B,即可得出A , B两点坐标,二次2 2函数y=ax +bx+c的图象与x轴只有唯一的交点C,且0C=2 .得出可设二次函数y=ax +bx+c=a (x- 2) 2,进而求出即可;(2)根据当B为直角顶点,当D为直角顶点,以及当P为直角顶点时,分别利用三角形相似对应边成比例求出即可.解答:解:(1 )••• y=0.5x+2交x轴于点A,••• 0=0.5x+2 ,/• x= - 4,与y轴交于点B,•/ x=0 ,•y=2•B点坐标为:(0, 2),• A (- 4, 0), B (0, 2),2•••二次函数y=ax +bx+c的图象与x轴只有唯一的交点C,且0C=2•可设二次函数y=a (x - 2) 2,把B (0, 2)代入得:a=0.5•二次函数的解析式:y=0.5x2- 2x+2;(2) ( I)当B为直角顶点时,过B作BP i丄AD交x轴于P i点由Rt△ AOB s Rt△ BOPi •—BO P L0•=•,2 OP i得:OP i=i ,•P i (i , 0),(n)作P2D 丄BD ,连接BP2 ,将y=0.5x+2与y=0.5x2- 2x+2联立求出两函数交点坐标:D点坐标为:(5 , 4.5),贝y AD='——2当D为直角顶点时•••/ DAP2=Z BAO , / BOA= / ADP2 ,•△ ABO AP2D ,•「= .「’2^5 41 一= •匸,解得:AP 2=11.25 ,则OP2=11.25 - 4=7.25 ,故P2点坐标为(7.25 , 0);(川)当P为直角顶点时,过点D作DE丄x轴于点E ,设P3 (a , 0)则由Rt△ OBP3S Rt △ EP3D0P3 OB 得:• 二?4. 5~5- a•••方程无解,•••点P3不存在,•••点P 的坐标为:P1(1, 0)和P2( 7.25, 0).点评:此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.㈢【抛物线上的点能否构成相似三角形】例三.(2013?恩施州)如图所示,直线I: y=3x+3与x轴交于点A,与y轴交于点B .把△ AOB 沿y轴翻折,点A落到点C,抛物线过点B、C和D (3, 0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与厶MCD相似,求所有满足条件的点N的坐标.(3)在抛物线上是否存在点P,使S^PBD=6?若存在,求出点P的坐标;若不存在,说明理由.y* 7t *A ! O1!:考 占: 二次函数综合题. 分析: (1) 由待定系数法求出直线 BD 和抛物线的解析式; (2)首先确定△ MCD 为等腰直角三角形,因为 △ BND 与厶MCD 相似,所以△ BND 也 是等腰直角三角形•如答图 1所示,符合条件的点 N 有3个;(3)如答图2、答图3所示,解题关键是求出 △ PBD 面积的表达式,然后根据 PBD =6解 解:(1)v 直线|: y=3x+3与x 轴交于点A ,与y 轴交于点B , 答:••• A (- 1 , 0), B (0, 3);•••把△ AOB 沿y 轴翻折,点 A 落到点C ,「. C (1, 0). 设直线BD 的解析式为:y=kx+b , •••点 B (0, 3), D (3, 0)在直线 BD 上,•;3k+b=0,解得 k= - 1, b=3,•直线BD 的解析式为:y= - x+3 .设抛物线的解析式为:y=a (x - 1) (x - 3), •••点B (0, 3)在抛物线上,• 3=a x ( - 1) x ( - 3),解得:a=1,•抛物线的解析式为: y= (x - 1) (x - 3) =x 2- 4x+3 .2 2(2)抛物线的解析式为: y=x - 4x+3= (x - 2) - 1, •••抛物线的对称轴为直线 x=2,顶点坐标为(2,- 1). 直线BD : y= - x+3与抛物线的对称轴交于点 M ,令x=2,得y=1,• M (2, 1).设对称轴与 x 轴交点为点 F ,贝U CF=FD=MN=1 , •△ MCD 为等腰直角三角形.•••以点N 、B 、D 为顶点的三角形与 △ MCD 相似, •△ BND 为等腰直角三角形. 如答图1所示:(I )若BD 为斜边,则易知此时直角顶点为原点O ,二N i (0, 0);(II)若BD为直角边,B为直角顶点,则点N在x轴负半轴上,■/ OB=OD=ON 2=3,二N2 (- 3, 0);(III )若BD为直角边,D为直角顶点,则点N在y轴负半轴上,■/ OB=OD=ON 3=3,••• N3 (0, - 3).•••满足条件的点N坐标为:(0, 0), (- 3, 0 )或(0,- 3).(3)假设存在点P,使S^ PBD=6,设点P坐标为(m, n).(I)当点P位于直线BD上方时,如答图2所示:过点P作PE丄x轴于点E,则PE=n , DE=m - 3.S APBD=S梯形PEOB-BOD- SA PDE== (3+n) ?m -二>3X3-= (m - 3) ?n=6,s s s化简得:m+n=7①,••• P (m, n)在抛物线上,2•n=m - 4m+3 ,2代入① 式整理得:m - 3m- 4=0,解得:m1=4, m2= - 1,•- n1=3, n2=8,•- P1 (4, 3) , P2 (- 1 , 8);(II)当点P位于直线BD下方时,如答图3所示:过点P作PE丄y轴于点E,则PE=m , OE= - n, BE=3 - n.S^PBD=S梯形PEOD+S ABOD- SAPBE== (3+m) ? (- n) + 二X3 X3-—(3 - n) ?m=6,2 2 2化简得:m+n= - 1②,••• P (m, n)在抛物线上,2•n=m —4m+3 ,代入②式整理得:m2- 3m+4=0 , △ = - 7 v 0,此方程无解.故此时点P不存在.综上所述,在抛物线上存在点P,使S APBD=6,点P的坐标为(4, 3)或(-1, 8).点本题是中考压轴题,综合考查了二次函数的图象与性质、待定系数法、相似三角形的判定评:与性质、图形面积计算、解一元二次方程等知识点,考查了数形结合、分类讨论的数学思想•第(2) (3)问均需进行分类讨论,避免漏解.三、形成训练21.( 2013?湘西州)如图,已知抛物线y= -—x+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A (- 2, 0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△ AOC与厶COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点0,使厶ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线解析式,利用配方法或利用公式x=-上求出对称轴2a 方程;(2)在抛物线解析式中,令x=0,可求出点C坐标;令y=0,可求出点B坐标•再利用待定系数法求出直线BD的解析式;(3)根据鱼兰,/ AOC- / BOC-90 ° 可以判定△ AOCCOB ;OC~OB(4)本问为存在型问题.若△ ACQ为等腰三角形,则有三种可能的情形,需要分类讨论,逐解答:解: (1)T抛物线y=-丄x2+bx+4的图象经过点A (- 2, 0),41 2 •••-7X(-2) +b X(- 2) +4=0 ,解得:b二,2••抛物线解析式为y= - —x +—x+4 ,4 2 ,匸.. 1 2 3 1 、2 25又- y=『+ 产4= $ (x 3) +—,•••对称轴方程为:x=3 .1 2 Fi(2)在y= -—x + 亏x+4 中,令x=0,得y=4 , • C ( 0, 4);令y=0,即-丄x2+卫x+4=0,整理得x2- 6x - 16=0,解得:x=8 或x= - 2, 4 2•A (- 2, 0), B ( 8, 0).设直线BC的解析式为y=kx+b ,把B (8, 0), C (0, 4)的坐标分别代入解析式,得:业+Z0(口,解得k= —, b=4,2•••直线BC的解析式为:y=・_x+4 .2(3)可判定△ AOC s\COB成立. 理由如下:在△ AOC与厶COB中,•/ OA=2 , OC=4 , OB=8 ,mr又•••/ AOC= / BOC=90 °• △ AOC COB .(4)•••抛物线的对称轴方程为:x=3 ,可设点Q (3, t),则可求得:AC"显二十=:,AQ= 7s2+t^^+t2,CQ=-「;. i =.--_:「—i)当AQ=CQ 时,有■■/ ,■!.■■:「= i. •丿I - t2 225+t =t - 8t+16+9 ,解得t=0,•- Q i ( 3, 0);ii)当AC=AQ 时,有匕〉",2t =- 5,此方程无实数根,•此时△ ACQ不能构成等腰三角形;iii )当AC=CQ 时,有「「-! 〕••二整理得:t - 8t+5=0 ,解得:t=4 土—,•••点Q 坐标为:Q2 (3, 4+d), Q3 (3, 4-d).综上所述,存在点Q,使△ ACQ为等腰三角形,点Q的坐标为:Q i (3, 0) , Q2 ( 3, 4+Vi!), Q3 (3, 4-VH).点评:本题考查了二次函数与一次函数的图象与性质、待定系数法、相似三角形的判定、勾股定理、等腰三角形的判定等知识点. 难点在于第(4)问,符合条件的等腰三角形△ ACQ 可能有多种情形,需要分类讨论.1 1 22 :已知:直线y x 1与y轴交于A,与x轴交于D,抛物线y x bx c与直线交2 2于A、E两点,与x轴交于B、C两点,且B点坐标为动点P在x轴上移动,当△ PAE是直角三角形时,求点A、B、C三点的坐标;(2)证明△ ABC为直角三角形;(3)在抛物线上除C点外,是否还存在另外一个点P,使△ ABP是直角三角形,若存在,请求出点P的坐标,若不存在,请说明理由.(1 , 0) . (1)求抛物线的解析式; P的坐标.(2)3、如图,抛物线2与x轴交于A、B两点,与y轴交于C点. (1 )求22244、如图,已知抛物线y x X的图象与x轴交于A, B两点,与y轴交于点C,抛33物线的对称轴与x轴交于点D.点M从0点出发,以每秒1个单位长度的速度向B运动,过M作x轴的垂线,交抛物线于点P,交BC于Q(1)求点B和点C的坐标;(2)设当点M运动了x (秒)时,四边形OBPC勺面积为S,求S与x的函数关系式,并指出自变量x 的取值范围.(3)在线段BC上是否存在点Q,使得△ DBQ 成为以BQ为一腰的等腰三角形?若存在,求出点Q的坐标,若不存在,说明理由.5、(09年成都)在平面直角坐标系xOy中,已知抛物线y=a(x • 1)2• c(a 0)与x轴交于AB两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC勺函数表达式为y = kx - 3,与x轴的交点为N,且COZ BCO=10(1)求此抛物线的函数表达式;(2)在此抛物线上是否存在异于点C的点P,使以N P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由;(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?。

中考数学总复习《二次函数与相似三角形综合压轴题》专题训练-附答案

中考数学总复习《二次函数与相似三角形综合压轴题》专题训练-附答案

中考数学总复习《二次函数与相似三角形综合压轴题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,抛物线:y=x2+bx+c的图像与x轴交于A和B(−3,0)两点,与y轴交于C(0,−3),直线y= x+m经过点B,且与y轴交于点D,与抛物线交于点E,与对称轴交于点F.(1)求抛物线的解析式和E点坐标;(2)在y轴上是否存在点P,使得以D、E、P为顶点的三角形与△BOD相似,若存在,直接写出点P的坐标:若不存在,试说明理由.2.如图,在平面直角坐标系中,点A(1,2),B(5,0)抛物线y=ax2−2ax(a>0)交x轴正半轴于点C,连结AO,AB.(1)求点C的坐标和直线AB的表达式;(2)设抛物线y=ax2−2ax(a>0)分别交边BA,BA延长线于点D,E.①若△CDB与△BOA相似,求抛物线表达式;①若△OAE是等腰三角形,则a的值为______(请直接写出答案即可).3.如图,抛物线y=−x2+2x+c经过点P(52,74)且交y轴于点A,点C是x轴正半轴上的动点,OE∥CP交抛物线于点E,EF∥x轴交线段CP的延长线于点F,作直线,EP交x轴于点D,交y轴于点Q(1)求抛物线的解析式.(2)当OD为何值时,点E恰好与点A重合⋅(3)当OC=CD时,请直接写出线段QE︰EP的值.4.如图,抛物线y=−12x2+32x+2与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求点A、B、C的坐标;(2)设x轴上的一个动点P的横坐标为t,过点P作直线PN⊥x轴,交抛物线于点N,交直线BC于点M.①当点P在线段AB上时,设MN的长度为s,求s与t的函数关系式;①当点P在线段OB上时,是否存在点P,使得以O、P、N三点为顶点的三角形与△COB相似?若存在,请求出点P的坐标;若不存在,请说明理由.5.如图,抛物线y=ax2+2x+c(a,c为常数,且a≠0)与x轴交于A、B两点,且与y轴交于点C(0,3),直线y=−x−1经过点A且与抛物线交于另一点D.(1)求抛物线的解析式;(2)Q点在x轴上且位于点B的左侧,连接BD,若以Q、B、C为顶点的三角形与△ABD相似,求点Q的坐标.6.如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x 轴的正半轴和y轴的正半轴上,抛物线y=−x2+bx+c经过A,C两点,与x轴交于另一个点D.(1)①求点A,B,C的坐标;①求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM①AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.x+c与x轴交于点A,B,与y轴交于点C,点A和点7.如图,在平面直角坐标系中,抛物线y=ax2+32C的坐标分别为(−1,0)和(0,2)x+c的函数表达式;(1)求抛物线y=ax2+32(2)将线段CB绕点C顺时针旋转90°,得到线段CD,连接AD,求线段AD的长;S△ABN时,(3)点M是抛物线上位于第一象限图象上的一动点,连接AM交BC于点N,连接BM,当S△BMN=14请直接写出点M的横坐标的值.8.如图1,已知二次函数y=−43(x+1)2+163的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,点D是抛物线的顶点.(1)求点A,点C的坐标;(2)如图2,连结AC,DC,过点C作CE∥AB交抛物线于点E.求证:①DCE=①CAO;(3)如图3,在(2)的条件下,连结BC,在射线EC上有点P,使以点D,E,P为顶点的三角形与①ABC相似,求EP的长.9.如图,在同一直角坐标系中,抛物线L1:y=ax2+bx+8与x轴交于A(−8,0)和点C,且经过点B(−2,12),若抛物线L1与抛物线L2关于y轴对称,点A的对应点为A′,点B的对应点为B′.(1)求抛物线L2的表达式;(2)现将抛物线L2向下平移后得到抛物线L3,抛物线L3的顶点为M,抛物线L3的对称轴与x轴交于点N,试问:在x轴的下方是否存在一点M,使△MNA′与△ACB′相似?若存在,请求出抛物线的L3表达式;若不存在,说明理由.10.在平面直角坐标系xOy中,把与x轴交点相同的二次函数图像称为“共根抛物线”.如图,抛物线L1:y=−x2−2x+3的顶点为D,交x轴于点A,B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,10),求抛物线L2对应的函数关系式;(2)当△BPC的周长最小时,求△BPC的面积;(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的左侧,若△DPQ与△AOC相似,求其“共根抛物线”L2的顶点P的坐标.11.如图,已知二次函数y=−x2+bx+c的图象与x轴交于点A(−4,0)和点B,与y轴相交于点C(0,4).(1)求该二次函数的解析式;(2)点D在线段OA上运动,过点D作x轴的垂线,与AC交于点Q,与抛物线交于点P.①连接AP,CP当三角形ACP的面积最大时,求此时点P的坐标;①探究是否存在点P使得以点P,C,Q为顶点的三角形与△ADQ相似?若存在,求出点P的坐标;若不存在,说明理由.12.如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(−3,0),与y轴交于点C.(1)求抛物线的表达式;(2)如图1,对称轴上是否存在点E,使△ACE周长最小,求出此时点E的坐标和周长最小值;(3)如图2,点F为第二象限抛物线上一动点连接AF交BC于点D,k=S△FDC:S△ADC是否存在点F,使k取最大值,如果存在求出此时点F的坐标和最值;若不存在,请说明理由.(4)已知点M是抛物线对称轴上一点,点N是平面内一点,点P是第二象限抛物线上一点,点Q是线段BC上一点,PQ∥y轴,当线段PQ取得最大值时,是否存在点M,N使得四边形QAMN是菱形,若存在,直接写出点M 的坐标,若不存在,请说明理由.13.如图,抛物线y=3+√36x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.14.如图,直线y=−23x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=−43x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式.(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标.①点M在x轴上自由运动,若M,P,N三个点中恰有一点是其他两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.15.已知抛物线y=ax2+bx−4交x轴于A(−1,0)、B(4,0)交y轴于点C.(1)求抛物线的解析式;(2)如图①,点P 是第四象限内抛物线上的一点,PA 交y 轴于点D ,连接BD ,若∠PDB =90°,求点P 的坐标;(3)在(2)的条件下,连接BP (如图①),在线段BP 上是否存在点Q ,使△OBQ 与△ABP 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由;(4)在(2)的条件下,如图①,在y 轴上有一点R ,当∠RBD =2∠OBD 时,请直接写出点R 的坐标.参考答案:1.【答案】(1)y =x 2+2x −3 E(2,5)(2)(0,5)或(0,7) 2.【答案】(1)C (2,0)(2)①y =1013x 2−2013x ①13.【答案】(1)y =−x 2+2x +3(2)当OD =6时,点E 恰好与点A 重合(3)8−5√27或8+5√27 4.【答案】(1)A(−1,0) B(4,0) C(0,2);(2)①s ={12t 2−2t (−1≤t <0)−12t 2+2t (0≤t ≤4);①点P 的坐标为(−1+√172,0)和(1+√5,0).5.【答案】(1)y =−x 2+2x +3(2)点Q 的坐标为(35,0)或(−92,0)6.【答案】(1)①A (3,0) B (3,3) C (0,3);①{b =2c =3(2)n =−13(m −32)2+34(0≤m ≤3);347.【答案】(1)y =−12x 2+32x +2(2)AD=√5(3)2−√1128.【答案】(1)A (−3,0)(3)43或25129.【答案】(1)抛物线L 2的解析式为y =−12x 2+3x +8.(2)函数L 3的解析式为:y =−12x 2+3x −212或y =−12x 2+3x −263.10.【答案】(1)抛物线L 2对应的函数关系式为y =2x 2+4x −6;(2)S △BPC =2; (3)点P 的坐标为P(−1,3)或(−1,2).11.【答案】(1)解析式为y =−x 2−3x +4(2)①P(−2,6);①存在,P(−3,4)或P(−2,6) 12.【答案】(1)抛物线的表达式为y =−x 2−2x +3(2)E (−1,2);周长最小值√10+3√2 (3)F (−32,154)时,k 取得最大值为916;(4)存在第 11 页 共 11 页 13.【答案】(1)b =−3+√33(2)y =−√33x +√3(3)Q 的坐标为(1−2√33,0)或(−1+4√33,0)或(1−2√3,0)或(5−2√3,0). 14.【答案】(1)B(0,2)(2)①(52,0)或(118,0);①12或−1或−14.15.【答案】(1)y =x 2−3x −4(2)P (2,−6)(3)存在(4)(0,2)或(0,−22)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与三角形综合在直角坐标系中,已知三角形三个顶点的坐标,如果三角形的三条边中有一条边与坐标轴平行,可以直接运用三角形面积公式求解三角形面积.如果三角形的三条边与坐标轴都不平行,则通常有以下方法:1.如图,过三角形的某个顶点作与x 轴或y 轴的平行线,将原三角形分割成两个满足一条边与坐标轴平行的三角形,分别求出面积后相加.1122ABC ACD ADB C B ACE CEB A B S S S AD y y S S CE x x ∆∆∆∆∆=+=⋅-=+=⋅-其中D ,E 两点坐标可以通过BC 或AB 的直线方程以及A 或C 点坐标得到. 2.如图,首先计算三角形的外接矩形的面积,然后再减去矩形内其他各块面积.ABC DEBF DAC AEB CBF S S S S S ∆∆∆∆=---.所涉及的各块面积都可以通过已知点之间的坐标差直接求得.3.如图,通过三个梯形的组合,可求出三角形的面积.该方法不常用.()()()()()()111222ABC ADEB CFEB ADFC A B A B B C B c C A C A S S S S x x y y x x y y x x y y ∆=-++=-++-++-+ 4.如图,作三角形的高,运用三角形的面积公式求解四边形的面积.该方法不常用,如果三角形的一条边,与0x y ±=平行,则可以快速求解.12ABC S h BC ∆=⋅.例题精讲一、二次函数与三角形综合【例1】 二次函数218y x =的图象如图所示,过y 轴上一点(0M ,2)的直线与抛物线交于A ,B 两点,过点A ,B 分别作y 轴的垂线,垂足分别为C ,D . ⑴ 当点A 的横坐标为2-时,求点B 的坐标;⑵ 在⑴的情况下,分别过点A ,B 作AE x ⊥轴于E ,BF x ⊥轴于F ,在EF 上是否存在点P ,使APB ∠为直角.若存在,求点P的坐标;若不存在,请说明理由;⑶ 当点A 在抛物线上运动时(点A 与点O 不重合),求AC BD ⋅的值.【例2】 如图,已知抛物线的顶点为(01)A ,,矩形CDEF 的顶点C F ,在抛物线上,D E ,在x 轴上,CF交y 轴于点(02)B ,,且其面积为8. ⑴ 求此抛物线的解析式;⑵ 如图2,若P 点为抛物线上不同于A 的一点,连结PB 并延长交抛物线于点Q ,过点P Q ,分别作x 轴的垂线,垂足分别为S R ,. ①求证:PB PS =; ②判断SBR ∆的形状;③试探索在线段SR 上是否存在点M ,使得以点P S M ,,为顶点的三角形和以点Q R M ,,为顶点的三角形相似,若存在,请找出M 点的位置;若不存在,请说明理由.【例3】 已知二次函数212y x bx c =++的图象经过点(36)A -,并且与x 轴相交于点(10)B -,和点C ,顶点为P(1)求二次函数的解析式;(2)设D 为线段OC 上一点,满足DPC BAC ∠=∠,求点D 的坐标【例4】 如图,已知平面直角坐标系中三点(20)(02)(0)A B P x ,,,,,(0)x <,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点(2)C y , (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与的交点Q 的坐标。

【例5】 已知一元二次方程210x px q +++=的一根为2.(1)求q 关于p 的解析式;(2)求证:抛物线2y x px q =++与x 轴有两个交点;(3)设抛物线2y x px q =++的顶点为M ,且与x 轴相交于()()1200A x B x ,、,两点,求使AMB ∆面积最小时的抛物线的解析式.【例6】 已知二次函数22(2)4y m x mx n =--+的图象的对称轴是直线2x =,且它的最高点在直线112y x =+上. ⑴ 求此二次函数的解析式; ⑵ 若此二次函数的图象开口方向不变,定点在直线112y x =+上移动到M 点时,图象与x 轴恰好交于A 、B 两点,且8ABMS ∆=,求这时的二次函数的解析式.【例7】 如图,已知抛物线2y x px q =++与x 轴交于点A 、B ,交y 轴负半轴于C 点,点B 在点A 的右侧,90ACB ∠=︒,112OA OB OC-=. (1)求抛物线的解析式;(2)求ABC ∆的外接圆的面积;(3) 在抛物线2y x px q =++上是否存在点P ,使得PAB ∆的面积为 如果有,这样的点有几个;如果没有,请说明理由.【例8】 一开口向上抛物线与x 轴交于A (2m -,0),B (m +2,0)两点,记抛物线顶点为C ,且AC⊥BC .(1)若m 为常数,求抛物线的解析式;(2)若m 为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点? (3)设抛物线交y 轴正半轴于D 点,问是否存在实数m ,使得△BCD 为等腰三角形?若存在,求出m 的值;若不存在,请说明理由.【例9】 在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点A (0,2),点C (-1,0),如图所示,抛物线22y ax ax =+-经过点B . (1)求点B 的坐标; (2)求抛物线的解析式;(3)在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.【例10】 如图所示,抛物线2()y x m =--的顶点为A ,其中0m >.(1)已知直线l :3y x =,将直线l 沿x 轴向 (填“左”或“右”)平移 个单位(用含m 的代数式)后过点A ;(2)设直线l 平移后与y 轴的交点为B ,若动点Q 在抛物线对称轴上,问在对称轴左侧的抛物线上是否存在点P ,使以P 、Q 、A 为顶点的三角形与△OAB 相似,且相似比为2?若存在,求出m 的值,并写出所有符合上述条件的P 点坐标;若不存在,说明理由.【例11】 如图,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C .⑴ 求A 、B 、C 三点的坐标.⑵ 过点A 作AP CB ∥交抛物线于点P ,求四边形ACBP 的面积.⑶ 在x 轴上方的抛物线上是否存在一点M ,过M 作MG x ⊥轴于点G ,使以A 、M 、G 三点为顶点的三角形与PCA ∆相似.若存在,请求出M 点的坐标;否则,请说明理由.xyO PCBA【例12】 已知:m n 、是方程2650x x -+=的两个实数根,且m n <,抛物线2y x bx c =-++的图像经过点(),0A m 、()0,B n .⑴ 求这个抛物线的解析式;⑵ 设⑴中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和BCD ∆的面积; ⑶ P 是线段OC 上的一点,过点P 作PH x ⊥轴,与抛物线交于H 点,若直线BC 把PCH ∆分成面积之比为2:3的两部分,请求出P 点的坐标.【例13】 已知抛物线22y ax bx =++与x 轴相交于点1(0)A x ,,2(0)B x ,12()x x <,且12x x ,是方程2230x x --=的两个实数根,点C 为抛物线与y 轴的交点. (1)求a b ,的值;(2)分别求出直线AC 和BC 的解析式;(3)若动直线(02)y m m =<<与线段AC BC ,分别相交于D E ,两点,则在x 轴上是否存在点P ,使得DEP △为等腰直角三角形?若存在,求出点P 的坐标;若不存在DyxOCBAO-2-13214321xy【例14】 如图,抛物线2122y x bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且()10A -,. (1)求抛物线的解析式及顶点D 的坐标;)(2)判断ABC △的形状,证明你的结论; (3)点(0)M m ,是x 轴上的一个动点,当MC MD +的值最小时,求m 的值.【例15】 如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3) 在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.【例16】 如图,抛物线c bx x y ++-=2与x 轴交与A (1,0),B (- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由. (3)在(1)中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.【例17】 如图,在直角坐标系中,点A 的坐标为()20-,,连结OA ,将线段OA 绕原点O 顺时针旋转120︒,得到线段OB .⑴ 求点B 的坐标;⑵ 求经过A 、O 、B 三点的抛物线的解析式;⑶ 在⑵中抛物线的对称轴上是否存在点C ,使BOC ∆的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.⑷ 如果点P 是⑵中的抛物线上的动点,且在x 轴的下方,那么PAB ∆是否有最大面积?若有,求出此时P 点的坐标及PAB ∆的最大面积;若没有,请说明理由.。

相关文档
最新文档