人工智能 2[1]5语义网络表示法PPT课件

合集下载

人工智能知识表示方法第四章

人工智能知识表示方法第四章

清华大学
VISITING TEAM
篮球比赛
ISA SCORE
G25
HOME TEAM
北京大学
85:89
语义网络法
❖ 连接词和量词的表示
✓ 合取和析取的表示:可通过
增加合取节点和析取节点来实 现
✓ 例如:用语义网络表示:“参 赛者有教师有学生,参赛者的 身高有高有低”
✓ 分析参赛者的不同情况,可得 到以下四种情况:
✓ 蕴含的表示:通过增加蕴含关系节点来实现。在蕴含关系中,有 两条指向蕴含节点的弧,一条代表前提条件(Antecedent) ,标记为 ANTE;另一条代表结论(Consequence) ,标记为CONSE
✓ 例如:用语义网络表示:“如果学校组织大学生机器人竞赛活动, 那么李强就参加比赛”
智能机器
比赛 AKO
Artificial Intelligence (AI)
人工智能
第4章:知识 表示
内容提要
第4章:知识表示
1.状态空间法 2.问题归约法 3.谓词逻辑法 4.语义网络法 5.其他方法
语义网络法
❖语义网络法( Semantic Network Representation )
✓ 语义网络是奎廉(J. R. Quillian) 1968年在研究人类联想 记忆时提出的一种心理学模型,认为记忆是由概念间的 联系实现的。随后,奎廉又把它用作知识表示。
Can
Can
运动
动物

语义网络法
❖ 二元关系:二元语义网络表示
✓ 可用二元谓词P(x,y)表示的关系。其中,x,y为实体,P为实 体之间的关系。
✓ 单个二元关系可直接用一个基本网元来表示 ✓ 对复杂关系,可通过一些相对独立的二元或一元关系的组合

2.4--语义网络表示法

2.4--语义网络表示法
华中师范大学 Located-at 桂子山
图2.10 位置关系实例 2013-7-24 人工智能 丁世飞
2.4 语义网络表示法
人工智能
6. 相近关系 相近关系,又称相似关系,是指不同事物在形状、 内容等方面相似和接近。常用的相近关系有: Similar-to:表示一事物与另一事物相似。 Near-to: 表示一事物与另一事物接近。 例如,“狗长得像狼” 其对应的语义网络表示 如图2.11所示。
人工智能
第2章 知识表示
2.1 概 述 2.2 谓词逻辑表示法 2.3 产生式表示法
2.4 语义网络表示法
2013-7-24
人工智能 丁世飞
2.4 语义网络表示法
人工智能
语义网络是J.R.Quillian 1968年在研究人类联 想记忆时提出的一种心理学模型,他认为记忆是由 概念间的联系实现的。随后在他设计的可教式语言 理解器(Teachable Language Comprehendent)中 又把它用作为知识表示方法。1972年,西蒙(Simon) 在他的自然语言理解系统中也采用了语义网络知识 表示法。1975年,亨德里克(G .G .Hendrix) 又对全 称量词的表示提出了语义网络分区技术。目前,语 义网络已经成为人工智能中应用较多的一种知识表 示方法,尤其是在自然语言处理方面的应用。
鸟 Have 翅膀 电视机 Can 电视节目
图2.8 属性关系实例
2013-7-24
人工智能 丁世飞
2.4 语义网络表示法
4.时间关系
人工智能
时间关系是指不同事件在其发生时间方面的先后关系,节 点间的不具备属性继承性。常用的时间关系有: Before:表示一个事件在一个事件之前发生。 After:表示一个事件在一个事件之后发生。 例如,“香港回归之后,澳门也会回归了”,“王芳在黎 明之前毕业”。其对应的语义网络表示如图2.9所示

人工智能PPT课件

人工智能PPT课件

2)泛化联系:用于表示一种类节点(如鸟)与更抽象 的类节点(如动物)之间的联系,用 AKO 表示。
• AKO: 偏序联系,可将问题领域中的所有类节点组织 成一个AKO层次网络。下图为动物分类系统中部分概 念的AKO联系描述。
动物
AKO 哺乳动物
AKO 鸟类动物
AKO 猎豹
AKO 老虎
AKO 长颈鹿
Artificia(l Icn)t同e2,2n2-2)
第一次分割 (2n2-1,2n2-3)
(a)原始问题
第2n2-2次分割 (2,0)
(b)同构问题
目标状态 (0,0)
(c)同态问题
Artificial Intelligence
3 知识表示的方法
• 产生式系统
–状态空间表示法 –问题归约表示法(与或图)
• 谓词逻辑表示法 • 语义网络 • 框架 • 其它
Artificial Intelligence
1) 语义网络
1 语义网络的概念和特性 是一种采用网络形式表示人类知识的方法. 形式: 是带标识的有向图.
节点: 表示物体、概念、事件、动作或态势; 有向弧(也带有标识): 节点之间的语义联系.
2 语义网络的知识表达
2.1 基本命题的语义网络表示 节点: 分为实例节点和类节点两种. 有向弧: 刻画节点之间的语义联系.
(1) 以个体为中心的语义联系 1)实例联系. 用于表示类节点与所属实例节点之间
的联系,标识为ISA。例如 “燕子是一只鸟”
燕子 ISA

Artificial Intelligence
初始状态 (2n2,2n2-2)
第一次分割 (2n2-1,2n2-3)
2.目标:(0,0);

人工智能概述ppt课件

人工智能概述ppt课件
人工智能概述ppt 课件
目录
• 人工智能基本概念与发展历程 • 基础知识体系与技术框架 • 智能算法模型与优化方法 • 数据驱动与知识表示方法 • 伦理、隐私和安全问题探讨 • 未来发展趋势与挑战
01
人工智能基本概念与 发展历程
人工智能定义及特点
定义
人工智能是一门研究、开发用于 模拟、延伸和扩展人的智能的理 论、方法、技术及应用系统的新 技术科学。
自然语言处理技术及应用
自然语言处理定义
研究人与计算机交互的语言问题的一 门学科,包括文本处理、语义理解、 机器翻译等方面。
常见自然语言处理技术
分词、词性标注、命名实体识别、句 法分析等。
自然语言处理应用
智能客服、智能问答、情感分析、文 本摘要等。
发展趋势
深度学习在自然语言处理中的应用越 来越广泛,推动着自然语言处理技术 的不断发展。
面临挑战及解决思路
数据安全与隐私保护
加强数据安全管理,研究隐私保护算法与技术, 保障用户数据安全与隐私权益。
技术可靠性与鲁棒性
提高模型可靠性与鲁棒性,降低对特定数据或场 景的依赖,人工智能伦理问题,建立监管机制与标准规 范,促进人工智能健康发展。
在自然语言处理中,数据驱动方法通 过统计语言模型、深度学习等技术处 理海量文本数据,实现自然语言理解 和生成。
在机器学习领域,数据驱动思想体现 在通过大量数据训练模型,使模型自 动学习并改进。
知识表示和推理机制
知识表示是将现实世界中的知识转化为计算机可理解和处理的形式,如逻辑表示法 、语义网络、框架表示法等。
推理机制是基于知识表示进行逻辑推理、归纳推理等,以得出新的知识和结论。
在专家系统中,知识表示和推理机制是实现自动化决策和问题求解的关键技术。

人工智能原理及其应用 ppt课件

人工智能原理及其应用  ppt课件
知识的属性真假性与相对性不确定性矛盾性和相容性可表示性与可利用性第二章知识表示叙述性知识如问题当前状态和目标状态等过程性知识如引起状态改变的操作算子等控制性知识如从多个操作中选择最佳操作的知识等第二章知识表示叙述性知识过程性知识控制性知识例
ARTIFICIAL INTELLIGENCE
人工智能原理及其应用
1. 1990年至今:又一个低潮期 乐观派和反对派 挑战
第二章 知识表示
知识是一切智能行为的基础。知 识表示方法是人工智能的中心内容之一。 知识、知识表示的概念 各种知识表示方法及其特点
1、状态空间法 2、谓词表示法 3、产生式表示法 4、语义网络法 5、框架表示法 6、脚本表示法 7、过程表示法 8、面向对象表示法
1) 连接主义 起源于仿生学,特别是人脑模型的研究。 从神经元开始进而研究神经网络模型和 脑模型,目前比较热门。
第一章 人工智能概述
1) 行为主义 源于控制论。早期的研究工作重点是模 拟人在控制过程中的智能行为和作用, 后来偏重于智能控制和智能机器人系统 的研究。代表作是布鲁克斯(Brooks)的 六足机器人。
第二章 知识表示
1) 表示能力 2) 可利用性 3) 可组织性与可维护性 4) 可实现性 5) 自然性与可理解性
第二章 知识表示
1. 知识表示观点 1) 陈述性观点 2) 过程性观点
第二章 知识表示
1) 表示能力 2) 可利用性 3) 可组织性与可维护性 4) 可实现性 5) 自然性与可理解性
第一章 人工智能概述
一、研究目标
1. 计算机与人脑(硅脑与碳脑) 人脑可以通过自学习、自组织、自适应来
不断提高信息处理能力;而存储程序式计算 机的所有能力都是人们通过编制程序赋予它 的,与人脑相比是机械的、死板的和无法自 我提高的。

人工智能_知识表示ppt课件

人工智能_知识表示ppt课件

D n { x 1 ,( x 2 ,,x n )|x 1 ,x 2 ,,x n D }
则称P是一个n元谓词,记为
P(x1,x2,…,xn)
其中,x1,x2,…,xn为个体,可以是个体常量、变元和函数。
例如:GREATER(x,6)
x大于6
STUDENT(wanghong )
王红是一名学生
TEACHER(father(zhang)) 张的父亲是一位教师
知识表示的要求(难度很大)
表示能力:能否正确、有效地将问题求解所需的各种知识表示出来
表示范围的广泛性
领域知识表示的高效性
对非确定性知识表示的支持程度
可利用性:利用这些知识进行推理,可以求得待解决问题的解
对推理的适应性:推理是根据已知事实利用知识导出结果的过程
对高效算法的支持程度:知识表示要有较高的处理效率
一阶谓词逻辑表示的逻辑基础 ----命题与真值
命题的定义: 断言:一个陈述句称为一个断言 命题:具有真假意义的断言成为命题
可以用大写字母表示命题,如:
A: 天在下雨。 B: 天晴 C: 人是会死的 D: 他在哭
命题的真值: T:表示命题的意义为真 F:表示命题的意义为假
表达单一意义的命题称为“原子命题”。 命题逻辑就是研究命题和命题之间关系的符号逻辑系统。
辖域:指位于量词后面的单个谓词或者用括弧括起来的合式公式
约束变元:辖域内与量词中同名的变元称为约束变元
自由变元:不受约束的变元称为自由变元
例子:(x)(P(x,y)→Q(x,y))VR(x,y)
其中,(P(x,y)→Q(x,y))是(x)的辖域
辖域内的变元x是受( x)约束的变元
R(x,y)中的x和所有的y都是自由变元

人工智能及其应用完整版本ppt课件

人工智能及其应用完整版本ppt课件

精选ppt
32
2.2 问题规约法
梵塔问题归约图
•数据结构介绍
(111)(333)
•思考题:四圆盘问题
(111)(122) (122)(322)
()(333)
(111)(113) (113)(123) (123)(122) (322)(321) (321)(331) (331)(333)
精选ppt
精选ppt
19
解题过程
将原始问题归约为一个较简单问题集合 将原始梵塔难题归约(简化)为下列子
难题
– 移动圆盘A和B至柱子2的双圆盘难题 – 移动圆盘C至柱子3的单圆盘难题 – 移动圆盘A和B至柱子3的双圆盘难题
详细过程参看下图
精选ppt
20
2.2 问题规约法
解题过程(3个圆盘问题)
123
123
叫做从节点ni1至节点nik的长度为k的路径
代价 用c(ni,nj)来表示从节点ni指向节点nj
的那段弧线的代价。两点间路径的代价等于连
接该路径上各节点的所有弧线代价之和.
精选ppt
6
图的显示说明 对于显式说明,各节点及其具
有代价的弧线由一张表明确给出。此表可能列出 该图中的每一节点、它的后继节点以及连接弧线 的代价
问题归约的实质:
–从目标(要解决的问题)出发逆向推理,建立 子问题以及子问题的子问题,直至最后把初 始问题归约为一个平凡的本原问题集合。
精选ppt
18
2.2 问题规约法
2.2.1 问题归约描述 (Problem Reduction Description)
梵塔难题
1
2
3
A B C
思考:用状态空间法有多少个节点?为什么?

人工智能ppt课件

人工智能ppt课件

精选ppt
14
解:第一步: 定义问题状态的描述形式:
设Sk=(M,C,B)表示传教士和野人在河右岸 的状态。
其中:
M表示传教士在右岸的人数。
C表示野人在右岸的人数。
B用来表示船是不是在右岸。
(B=1表示在右岸,B=0表示在左岸)。
初始状态集:S={(3,3,1)}
目标状态集:G={(0,精0选,0pp)t }
精选ppt
19
的实质。
2.2 问题归约法
➢问题归约法的组成部分 (1)一个初始问题描述; (2)一套把问题变换为子问题的操 作符; (3)一套本原问题描述。
精选ppt
20
2.3 谓词逻辑法
➢ 一阶谓词逻辑表示法适于表示确定 性的知识。它具有自然性、精确性、严 密性及易实现等特点。
精选ppt
21
2.3 谓词逻辑法
精选ppt
18
2.2 问题归约法
➢问题归约法的概念
❖已知问题的描述,通过一系列变换把此 问题最终变为一个子问题集合;这些子 问题的解可以直接得到,从而解决了初 始问题。
❖该方法也就是从目标(要解决的问题)出发
逆向推理,建立子问题以及子问题的子
问题,直至最后把初始问题归约为一个
平凡的本原问题集合。这就是问题归约
L(1,0), L(2,0), L(精1选,1ppt), L(0,1), L(0,2) 16
第三步:求解过程。
R(2,0)
1,1,0 R(1,1)
L(2,0) 3,1,1 L(0,1) R(0,1)
3,0,0 L(0,2) R(0,2)
L(1,1) 2,2,1
L(2,0) R(2,0)
L(1,0)
所代表的对象的特性。弧线用于表示节点

人工智能讲义培训课件

人工智能讲义培训课件

选用知识表达旳原因
表达范围是否广泛 是否适于推理 是否适于计算机处理 是否有高效旳算法 能否表达不精确知识 能否模块化
知识和元知识能否用统一 旳形式表达
是否加入启发信息 过程性表达还是阐明性表达 表达措施是否自然
总之 ………
选用知识表达旳原因
……….. 总之,人工智能问题旳求解是以知识表达 为基础旳。怎样将已取得旳有关知识以计 算机内部代码形式加以合理地描述、存储、 有效地利用便是知识表达应处理旳问题。
存储旳数据是构成产生式旳基本元素,又 是产生式作用旳对象。
4.2.2 产生式系统构造
2.规则集
相当于系统旳知识库,它采用“IF <前件> THEN <后件>”旳形式,来体现求解问题所 需要旳知识。
规则
客观规律知识 求解策略知识
每条规则分为左右两个部分。左部表达激活该规 则旳条件,右部表达调用该规则后所作旳动作。
4.2.4 产生式表达旳特点
优点
模块性。 规则与规则之间相互独立
灵活性。 知识库易于增长、修改、删除
自然性。 以便地表达教授旳启发性知识与经验
透明性。 易于保存动作所产生旳变化、轨迹
4.2.4 产生式表达旳特点
缺陷:
效率低。 不能表达构造性旳知识。因为规则彼此之间不能调
用。
4.2.4 产生式表达旳特点
旳 知识。它旳处理规模和方式从封闭式扩大为开 放式,从小手工作坊式旳知识工程扩大为能进 行海量知识处理旳大规模工程。返回
知识旳种类
事实性知识:采用直接表达旳形式。 如:但凡猴子都有尾巴
过程性知识:描述做某件事旳过程。 如:红烧肉做法
行为性知识:不直接给出事实本身,只给出它在 某方面旳行为。 如:微分方程、(事物旳内涵)

人工智能知识表示方法ppt课件

人工智能知识表示方法ppt课件
2024/2/15
2.2.2 谓词逻辑表示知识举例
例3
用谓词逻辑表示下列知识: 人人爱劳动。 自然数都是大于零的整数。 所有整数,不是偶数就是奇数。
第一步
定义谓词如下: MAN(x):x是人 LOVE(x,y):x爱y N(x): x是自然数 I(x):x是整数 E(x): x是偶数 O(x): x是奇数 GZ(x): x大于零
效率低,过程冗长 灵活性差,不确定知识
组合爆炸
优点
缺点
2024/2/15
返回
2.3 产生式表示法1943年由美国数学家Fra bibliotek.Post提出。
产生式知识 表示方法
它使用类似文法的规则。用该方法求解 问题时的思路与人类很相似。目前大部 分的专家系统都采用产生式系统的结构 来构建。
2024/2/15
产生式系统的组成
例1
张三是学生,李四也是学生。
第一步
定义谓词如下: ISStudent(x):x是一个学生 张三是个体 李四也是个体
第二步
将个体代入谓词中,得到 ISStudent(张三), ISStudent(李四)
第三步
根据语义,用逻辑连接符连接 ISStudent(张三) ∧ISStudent(李四)
2024/2/15
能否在同一层次上和不同层次上模块化
是否适于推理
知识和元知识能否用统一的形式表示
是否适于计算机处理
是否适合于加入启发信息
是否有高效的求解算法 能否表示不精确知识
过程性表示还是说明性表示 表示方法是否自然
2024/2/15
返回
2.2 一阶谓词逻辑表示法
一阶谓词逻 辑表示法
一种重要的知识表示方法,它以数理逻辑 为基础,是到目前为止能够表达人类思维 和推理的一种最精确的形式语言。它的表 现方式和人类自然语言非常接近,它能够 被计算机进行精确推理。

人工智能介绍最新PPT课件

人工智能介绍最新PPT课件
场景解析
对图像中的场景进行解析和理解,包括场景分类 、场景布局、物体间关系等任务,有助于机器人 导航、自动驾驶等应用。
文字识别
从图像中识别出文字信息,包括印刷体文字识别 和手写文字识别等任务,广泛应用于文档数字化 、自然语言处理等领域。
05
CATALOGUE
人工智能伦理与安全问题
数据隐私保护政策解读
、建立监督机制、加强员工培训等。
算法偏见和歧视问题探讨
01
算法偏见和歧视的定义和表现
解释算法偏见和歧视的概念,以及在人工智能系统中可能出现的形式,
如性别、种族、年龄等方面的歧视。
02
算法偏见和歧视的原因分析
探讨导致算法偏见和歧视的主要原因,如数据不平衡、算法设计缺陷、
人类偏见等。
03
消除算法偏见和歧视的方法
智能客服系统能够实现多轮对话管理,根据用户的反馈和 问题进行持续的交流和解答,提高用户满意度和问题解决 效率。
智能化知识库
智能客服系统通过构建智能化知识库,整合企业内外部的 知识和信息,为用户提供全面、准确的问题解答和信息服 务。
智能推荐系统设计与实现
个性化推荐算法
智能推荐系统采用个性化推荐算法,根据用户的历史行为、兴趣偏 好和社交关系等信息,为用户推荐符合其需求的产品、服务和内容 。
自动驾驶算法
智能驾驶系统利用自动驾驶算法进行车辆控制决策和路径规划,实现车辆的自动导航和驾驶。
安全性与可靠性保障
智能驾驶系统通过多重安全保障机制,如冗余设计、故障预测与处理等,确保车辆在行驶过程中的安全 性和可靠性。同时,系统不断学习和优化自身性能,提高驾驶的准确性和稳定性。
THANKS
感谢观看
介绍消除算法偏见和歧视的技术和方法,如增加数据多样性、改进算法

第02章知识表示人工智能课件

第02章知识表示人工智能课件

系统组成
DB:状态数据库,描述当前求解状态(初始事 实、推出的结论)
RB:状态转换规则库 IE:推理机( Inference Engine )
按一定策略从RB中选择规则,作用于DB, 直到DB变为目标状态(如推出特定结论)。
控制策略
如何找出可用于当前状态的规则(匹配) 如何选出最佳规则(消除冲突)
职务
助教
年龄
位于
郭杜镇
25岁
属于
长安区
属于
西安市
多元关系表示法
例: “a队与b队比赛,比分为1∶3” 用谓词表示为:game(a,b,1∶3) 用语义网表示如下:
game
主队
ISA 客队
a
g1
b
SCORE 1:3
多元关系表示法
student
read
book
ISA subject
John
ISA object
read1
ISA 三国演义
实现语义网
具体实现一个语义网: 利用实体——特性——特性值 对象——属性——值 三元组
( OAV:Object—attribute—value )
例:
用PROLOG子句(谓词)也可以方便地表 示语义网:
ISA(氧气,单质). 化学性质(氧气,RA_1). 化学性质(氧气,RA_2).
框架
认知模式
框架系统:包括框架、子框架。 通常组织成层次结构或网状结构。 可以借助类层次描述。
框架的表示方法
特性值: ① 可为另一个知识表示子结构。
如谓词逻辑、子框架、规则集等。 ② 可为特殊处理过程。
(注视特定条件的守护程序) 如: if—needed if—added if—denied if—fail 可实现微观控制机制,数据驱动,随机应变。

人工智能课件第二章 知识表示(修改)

人工智能课件第二章 知识表示(修改)

19
• 接上一页
TABLE(a)
TABLE(a)
SETWODN(b) TABLE(b) GOTO( b,c) TABLE(b)
=======>状态5 ON(box,b) =======>状态6 ON(box,b)
EMPTY(robot)
EMPTY(robot)
AT(robot , a)
AT(robot ,b)
则称P是一个n元谓词,记为P(x1,x2,…,xn),其中, x1,x2,…,xn为个体。
7
定义2.2 设D是个体域,f:Dn→D是一个映射,则称 f是D上的一个n元函数,记作f(x1,x2,…,xn) 其中,x1,x2,…,xn为个体。
• 谓词与函数的区别: 谓词是D到{T,F}的映射,函数是D到D的映射; 谓词的真值是T和F,函数的值(无真值)是D中 的元素; 谓词可独立存在,函数只能作为谓词的个体。
5
二、谓词逻辑表示法
1. 基本概念
• 命题:具有真假意义的断言称为命题。 • 命题的真值:
T:表示命题的意义为真 F:表示命题的意义为假 • 命题真值的说明: 一个命题不能同时既为真又为假 一个命题可在一定条件下为真,而在另一条件下为假
6
• 论域:由所讨论对象的全体构成的集合。 • 个体:论域中的元素。 • 谓词:在谓词逻辑中命题是用形如P(x1,x2,…,xn)的谓词
是一种“一直往前走”不回头的方式,该方式是利用问 题给定的局部知识来决定选用的规则,就像动物识别系统一 样,选取一条与综合数据库进行匹配,然后作用到综合数据 库,再选取一条新的规则进行匹配,此时在选择上不再考虑 已经用过的规则了。
动物有暗斑点,有长脖子,有长腿,有奶,有蹄
• 该例子的部分推理网络如下:

人工智能知识表示方法

人工智能知识表示方法

2020/8/15
相关概念
命题逻辑 所谓命题就是具有真假意义的陈述句。如“今天下雨”、 “1+100=101”,真或假用符号T或F表示。
命题的分类
•原子命题:不能分解成更简单的陈述语句。 •复合命题:由联结词、标点符号和原子命题等复合构成的命题。
命题逻辑
命题逻辑就是研究命题和命题之间关系的符号逻辑系统。通常用大写字母P、Q 、R、S等来表示命题。如: P:今天下雨 P是命题的名或命题标识符 命题常量:命题标识符表示一个确定的命题。 命题变元:命题标识符只表示任意命题的位置标志。当命题变元P用一个特定的 命题取代时,P才能确定真值,这时称为对P进行指派。
2020/8/15
举例
产生式系统 设计
(1)帽色(聪明人A,红)∧帽色(聪明人B,红) ∧ AǂB → 帽色(自己,白)
(2)帽色(聪明人A,红) ∧帽色(聪明人B,白) ∧答不出(聪明人B) → 帽色(自己,白)
(3)帽色(聪明人A,红) ∧帽色(聪明人B,白) ∧答出(聪明人B) → 帽色(自己,红)
元知识 有关知识的知识,是知识库中的高层知识。例如,怎样使用规则,解释 规则、校验规则、解释程序结构等知识。 它可以决定哪一个知识库适 用。
2020/8/15
2.1.1 知识
知识分类
事实性知识 过程性知识 行为性知识 实例性知识 类比性知识
元知识
例如
北京是中国的首都;太湖在苏州的西边 怎样制作松鼠桂鱼;手机维修法。 微分方程刻划了一个函数的行为。 燕子低飞;南京是江苏省的省会。
第二步
将个体代入谓词中,得到 BCity(wuhan), HCity(wuhan), Boy(mal), Girl(zhangh), High(mal,zhangh)

ai人工智能人工智能介绍PPT

ai人工智能人工智能介绍PPT

(三)人工智能新技术
计算智能
神经计算; 模糊计算; 进化计算; 自然计算
01
02
人工生命
人工脑; 细胞自动机
03
分布智能 多Agent , 群体智能
04
数据挖掘 知识发现; 数据挖掘
一、人工智能的基本内容
(四)物质、能量、信息、知识和智能
1、构成宇宙的三大要素: 三大要素:物质、能量与信息 信息:是物质和能量的表现形式,是以物质和能量为载体的客观存在
AI的定义 Turing测试
AI的研究目标
二、AI的定义及其研究目标
(一)AI的定义
1、AI的一般解释 人工智能就是用人工的方法在机器(计算机)上实现的智能,或称机器智能
人工智能的严格定义依赖于对智能的定义
AI无形式化 定义的理由
即要定义人工智能,首先应该定义智能
但智能本身也还无严格定义
二、AI的定义及其研究目标
1976年,斯坦福大学的杜达(R.D.Duda)等人开始研制地质勘探专家系统PROSPECTOR 这一时期,与专家系统同时发展的重要领域还有计算机视觉和机器人,自然语言理解与机 器翻译等。 新的问题: 专家系统本身所存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、没 有分布式功能、不能访问现存数据库等问题被逐渐暴露出来。
对智能的严格定义 有待于人脑奥秘的揭示,进一步认识
二、AI的定义及其研究目标
(一)AI的定义
2、认识智能的观点
思维理论 智能来源于思维活动,智能的核 心是思维,人的一切知识都是思 维的产物。可望通过对思维规律 和思维方法的研究,来揭示智能 的本质。
知识阈值理论 智能取决于知识的数量及其可运用程 度。一个系统所具有的可运用知识越
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(节点1,弧,节点2)
可用如图2.3所示的有向图来表示。其中A和B分别代表节 点,而R则表示A和B之间的某种语义联系。
当把多个语义基元用相应的语义联系关联在一起的时候,就
形成了一个语义网络。如图2.4所示。
R
A
B
R1
B
R4
A
R3
R2
C
D
R5
图2.3 语义基元结构
图2.4 语义网络结构
人工智能 丁世飞
Quillian(奎廉), M. R. (1968). Semantic memory. In Minsky, M., editor, Semantic
Information Processing, pages 216--270. MIT Press. 模拟人对事物的认识,表示事物之间的关系。 主要应用于自然语言理解系统中。
标签表示节点间的关系
Ako 超类-子类
Sex
Man
任意关系 Sex性别
Male
Ako
Isa 类-个体
Male Student
Course
Isa
Isa
Lining
CS-100
Register
人工智能 丁世飞
任意关系 Register 注册课程
人工智能
语义网络的概念及结构
关系弧只能表示二元关系
二元关系(二元谓词)便于表示为语义网络的形式
人工智能 丁世飞
2.5 语义网络表示法 人工智能
1. 类属关系 类属关系是指具体有共同属性的不同事物间的分类关系、
成员关系或实例关系,它体现的是“具体与抽象”、“个体 与集体”的层次分类。其直观意义是“是一个”,“是一 种”,“是一只”……。在类属关系中,其一个最主要特征 是属性的继承性,处在具体层的节点可以继承抽象层节点的 所有属性。常用的类属关系有: AKO(A-Kind-of):表示一个事物是另一个事物的一种类型。 AMO(A-Member-of):表示一个事物是另一个事物的成员。 ISA(Is-a):表示一个事物是另一个事物的实例。
人工智能 丁世飞
2.5 语义网络表示法 人工智能
2. 包含关系
包含关系也称为聚集关系,是指具有组织或结构特征的“部
分与整体”之间的关系,它和类属关系的最主要的区别就是包
含关系一般不具备属性的继承性。常用的包含关系的有:
Part-of,Member-of,含义为一部分,表示一个事物是另一个事
物的一部分,或说是部分与整体的关系。用它连接的上下层节
(Simon)在他的自然语言理解系统中也采 用了语义网络知识表示法。 1975年,亨德里克(G .G .Hendrix) 又对全称量词的表 示提出了语义网络分区技术。目前,语义网络已经成 为人工智能中应用较多的一种知识表示方法,尤其是 在自然语言处理方面的应用。

动作主体(海浪,摇);
动作对象(战舰,摇);
动作方式(轻轻,摇);
动作主体 动作对象 动作方式
海浪
战舰
轻轻
人工智能 丁世飞
人工智能
语义网络的概念及结构
例1、命题:海浪把战舰轻轻地摇 表示成谓词:轻轻摇(海浪,战舰) 方案2:
加入理解这个句子时所使用的语法知识; 拆成三个谓词:
动作主体(海浪,摇); 动作对象(战舰,摇); 动作方式(轻轻,摇);
人工智能
语义网络表示为描述事物间关系的有向图
学生注册的语义网络
Sex
Man
Male
节点表示事物 (概念)
Ako
Male Student
Isa
Course
Isa
标签表示节点间的关系 关系弧
Lining
CS-100
Register
节点表示事物 (个体)
人工智能 丁世飞
人工智能
语义网络表示为描述事物间关系的有向图
人工智能 丁世飞
2.5 语义网络表示法 人工智能
2.5.1 语义网络的概念及结构
语义网络是一种通过概念及其语义联系(或语义关系)来 表示知识的有向图,节点和弧必须带有标注。其中有向图的 各节点用来表示各种事物、概念、情况、属性、状态、事件 和动作等,节点上的标注用来区分各节点所表示的不同对象, 每个各节点可以带有多个属性,以表征其所代表的对象的特 性。
战舰

Ako 动作对象
轻轻 动作方式
某港海浪 动作主体 某港战舰
人工智能 丁世飞
2.5 语义网络表示法 人工智能
2.5.2 语义网络的基本语义联系 语义网络除了可以描述事物本身之外,还可以
描述事物之间的错综复杂的关系。基本语义联系是 构成复杂语义联系的基本单元,也是语义网络表示 知识的基础,因此从一些基本的语义联系组合成任 意复杂的语义联系是可以实现的。这里只给出一些 经常使用的最基本语义关系。
例1、命题:海浪把战舰轻轻地摇 方案1:
表示成二元谓词:轻轻摇(海浪,战舰) 过于简单,信息量不够丰富;
海浪
轻轻摇
战舰
人工智能 丁世飞
人工智能
语义网络的概念及结构
例1、命题:海浪把战舰轻轻地摇
表示成谓词:轻轻摇(海浪,战舰)
方案2:
加入理解这个句子时所使用的语法知识;
拆成三个谓词:
明确了海浪、战舰、摇、轻轻等概念之间的关系; 上述关系是命题本身包含的知识;
人工智能 丁世飞
人工智能
语义网络的概念及结构
例1、命题:海浪把战舰轻轻地摇
表示成谓词:轻轻摇(海浪,战舰)
方案3:为进一步描述,给出海浪、战舰、摇、 轻轻等概念本身的含义;
事物
行为
方式
Ako
Ako
Ako
Ako
海浪 Isa
人工智能
第2章 知识表示
2.1 概 述 2.2 谓词逻辑表示法 2.3 产生式表示法 2.4 框架表示法
2.5 语义网络表示法
人工智能 丁世飞
2.5 语义网络表示法 人工智能
语义网络是J.R.Quillian 1968年在研究人类联想记 忆时提出的一种心理学模型,他认为记忆是由概念间 的联系实现的。随后在他设计的可教式语言理解器 (Teachable Language Comprehendent)中又把它用 作为知识表示方法。
在语义网络中,节点还可以是一个语义子网络;弧是有方 向的、有标注的,方向表示节点间的主次关系且方向不能随 意调换。标注用来表示各种语义联系,指明它所连接的节点 间的某种语义关系。
人工智能 丁世飞
2.5 语义网络表示法 人工智能
从结构上来看,语义网络一般由一些最基本的语义单元 组成。这些最基本的语义单元被称为语义基元,可用如下三 元组来表示为
相关文档
最新文档