函数的定义域PPT教学课件
合集下载
函数完整版PPT课件
16
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程
3.1.1函数的概念 课件(共23张PPT)
3
十 八 世 纪
伯努利称其为变量与常量的组合 欧拉认为其是某些变量依赖另一些变量的变化
4
十 九 世 纪
柯西,傅里叶,狄利克雷提出“对应关系”,也就是我们 初中学习到的函数的定义
5
一.知识回顾
初中学习的函数概念是什么?
设在某一变化过程中有两个变量x与y,如果 对于x的每一个值,y都有唯一确定的值与它对应, 则称y是x的函数。x是自变量,y是因变量。
22
例题六:已知函数 f (x) x 3 1
x2
(1)求该函数的定义域 (2)求当x=-3时该函数的值
答案:1.{x|x≥-3且x≠-2}
2.f (-3)= -1
23
例题五:
(1){x|x≤-3}用区间表示为
答案: (1)(-∞,-3]
(2)数集{x|x>5}用区间表示为
(2)(5,+∞)
(3)数集{x|1<x≤7}用区间表示为
(3)(1,7]
(4)数集{x|x<-2或x≥6}用区间表示为 (4)(-∞,-2)∪[6,+∞)
21
注意:
1.区间是集合 2.区间的左端点必须小于右端点 3.区间中的元素都是实数,可以在数轴上表示出来 4.以-∞或+∞为区间的一端时,这一端必须是小括号
值域也就随之确定了.如果两个函数的 这两个
完全相同就称
15
例题三:判断下列各组中两个函数是否为同一个函数
(1) f ( x) x 与g(x)= x 2;
(2)f ( x) x与g( x) 3 x3 ; (3) f ( x) x 1 x 1与g( x) x2 1; (4) f ( x) x2 2 x 1与g(t) t 2 2t 1.
十 八 世 纪
伯努利称其为变量与常量的组合 欧拉认为其是某些变量依赖另一些变量的变化
4
十 九 世 纪
柯西,傅里叶,狄利克雷提出“对应关系”,也就是我们 初中学习到的函数的定义
5
一.知识回顾
初中学习的函数概念是什么?
设在某一变化过程中有两个变量x与y,如果 对于x的每一个值,y都有唯一确定的值与它对应, 则称y是x的函数。x是自变量,y是因变量。
22
例题六:已知函数 f (x) x 3 1
x2
(1)求该函数的定义域 (2)求当x=-3时该函数的值
答案:1.{x|x≥-3且x≠-2}
2.f (-3)= -1
23
例题五:
(1){x|x≤-3}用区间表示为
答案: (1)(-∞,-3]
(2)数集{x|x>5}用区间表示为
(2)(5,+∞)
(3)数集{x|1<x≤7}用区间表示为
(3)(1,7]
(4)数集{x|x<-2或x≥6}用区间表示为 (4)(-∞,-2)∪[6,+∞)
21
注意:
1.区间是集合 2.区间的左端点必须小于右端点 3.区间中的元素都是实数,可以在数轴上表示出来 4.以-∞或+∞为区间的一端时,这一端必须是小括号
值域也就随之确定了.如果两个函数的 这两个
完全相同就称
15
例题三:判断下列各组中两个函数是否为同一个函数
(1) f ( x) x 与g(x)= x 2;
(2)f ( x) x与g( x) 3 x3 ; (3) f ( x) x 1 x 1与g( x) x2 1; (4) f ( x) x2 2 x 1与g(t) t 2 2t 1.
函数的定义域 PPT
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月共续 取发享费 消放文, 。一档前次下往,载我持特的续权账有,号效-自
其他特 VIP专享精彩活动
权
VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
此函数的定义域是 X 〉0,
而不是全体实数。
2021/8/16
十堰市郧阳中学高一数学组
S2.2 函数的定义域
7.复合函数f[g(x)] 例:(1)已知函数f(x)的定义域为(0,1)
求f(x2)的定义域。
(2)已知函数f(2x+1)的定义域为(0,1) 求f(x)的定义域。
(3)已知函数f(x+1)的定义域为[-2,3] 求f(2x2-2)的定义域。
函数的定义域
2021/8/16
十堰市郧阳中学高一数学组
S2.2 函数的定义域
1.f(x)是整式,那么函数的定义域
是实数R。
2021/8/16
十堰市郧阳中学高一数学组
S2.2 函数的定义域
2.f(x)是分式,函数的定义域是使 分母不等于0的实数的集合。
2021/8/16
xxx+2≠|-4x|≠2≠00
函数的概念与表示法课件(共19张PPT)
( x 1) 1 x 的定义域为_____ (2)函数 y ( x 1)
解题回顾:求函数f(x)的定义域,只需使解析式有 意义,列不等式组求解.
抽象函数定义域问题:
抽象函数 :没有给出具体解析式的函数 2. (1)已知函数 y
1 y f ( x 1) 的定义域为______ 2
探究提高: 分段函数是一类重要的函数模型.解决分段函数问题,
关键要抓住在不同的段内研究问题.
如本例,需分x>0时,f(x)=x的解的个数
和x≤0时,f(x)=x的解的个数.
“分段函数分段考察”
五 抽象函数
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),
f(1)=2,则f(-3)等于( C ) A.2 B.3 C.6
推广,函数是一种特殊的映射,要注意构成函数 的两个集合A、B必须是非空数集.
典型例题:
一:函数的基本概念:
1.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面 的4个图形中,能表示集合M到集合N的函数关系的有 ( )
A.①②③④
B.①②③
C.②③
D.②
解析:由函数的定义,要求函数在定义域上都有图 象,并且一个x对应着一个y,据此排除①④,选C.
A
B
x
f ( x)
(2)函数的定义域、值域: 在函数 y f ( x ), x A 中,x叫做自变量,x的取 值范围A叫做函数的定义域;与x的值相对应的y值 叫做函数值,函数值的集合f ( x) x A 叫做函数的 值域。 (3)函数的三要素:定义域、值域和对应法则 . (4)相等函数:如果两个函数的定义域和对应法则完 全一致,则这两个函数相等,这是判断两函数相等的 依据.
函数的定义域课件
反证法
总结词
通过假设自变量取值不在指定范围内,然后推导出矛 盾的方法。
详细描述
反证法是一种间接证明方法,常用于求解函数的定义 域。首先假设自变量取值不在指定范围内,然后根据 函数表达式推导出矛盾,从而证明假设不成立,确定 自变量的取值范围。例如,对于函数$f(x) = sqrt{x}$ ,假设$x$不在非负实数范围内,即$x < 0$,则函数 无意义,因此假设不成立,函数的定义域为${ x | x geq 0 }$。
几何问题
在几何问题中,函数的定义域可以用来确定图形的形状和大小,例 如在求解圆的方程时,需要确定圆心的位置和半径的范围。
概率统计问题
在概率统计问题中,函数的定义域常常用来确定随机变量的取值范围 ,从而计算概率分布和统计特征。
在其他领域的应用
工程领域
在工程设计中,函数的定义域可以用来确定 设计参数的范围,例如在机械设计中,需要 确定零件的尺寸范围以满足设计要求。
对于函数$f(x) = x^n$,其定义域为全体实数集$R$,因为任何实数的n次方都是实数。
幂函数性质
幂函数在定义域内是增函数或减函数,取决于指数n的正负。当$n > 0$时,函数是增函数;当$n < 0$时,函数是减函数。
对数函数
对数函数定义域
对于函数$f(x) = log_a{x}$,其定义域为$(0, +infty)$,因为对数函数的输入必须大于 零。
排除法
总结词
通过排除自变量不在定义域内的取值, 逐一筛选出在定义域内的取值的方法。
VS
详细描述
排除法是通过逐一排除自变量不在定义域 内的取值,最终确定定义域的方法。这种 方法适用于自变量取值范围较广或较为复 杂的情况。例如,对于函数$f(x) = log_2(x - 1)$,首先排除$x$取值小于等 于1的情况,因为此时函数无意义;然后 排除$x$取值大于等于2的情况,因为此 时函数值为无穷大。通过排除法,可以得 出函数的定义域为${ x | 1 < x < 2 }$。
《函数的定义域和值域》中职数学拓展模块5.1ppt课件2【语文版】
温馨提醒:函数表达式有意义的准则一般有:①分式中 的 分
母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0;
④对数式中的真数大于0,底数大于0且不等于1. 2.基本初等函数的值域
(1)y=kx+b(k≠0)的值域是R____. (2)y=ax2+bx+c(a≠0)的值域是:
4ac-b2
【解析】(1)函数有意义需满足2x- -x1> >00, , 即 1<x<2,所以,函数的定义域为(1,2).
0≤x2≤2
(2)由x+1>0
,得
1+lg(x+1)≠0
- 2≤x≤ x>-1 x≠-190
2 ,∴-1<x<-190或
-190<x≤ 2.故函数 g(x)的定义域为(-1,-190)∪(-190, 2].
【解析】由 22xx- --+xx11>≠≠≥1000,, ,,得xxx≥≠<- 12,,1,
则- x≠11≤,x<2,所以定义域是{x|-1≤x<1 或 1<x<2}.
2.(2014·山东济南模拟)若函数 y=ax2+ax2+ax1+3的定义域为
R,则实数 a 的取值范围是__[0_,__3_)__.
•
低着头,心情就放松了,但那种放松对学习一点好处也没有,之所以会放松,就是因为觉得即便是自己开小差,老师也不知道。如果你往前看,不时地和老师眼神交会一下,注意力必然会集中起来。和老师眼神交汇的那种紧张感会让你注意力集中,并充
【解析】因为函数 y=ax2+ax2+ax1+3的定义域为 R, 所以 ax2+2ax+3=0 无实数解, 即函数 y=ax2+2ax+3 的图象与 x 轴无交点. 当 a=0 时,函数 y=3 的图象与 x 轴无交点; 当 a≠0 时,则 Δ=(2a)2-4·3a<0,解得 0<a<3. 综上所述,a 的取值范围是[0,3).
函数的定义域课件
函数的定义域ppt课件
了解函数的定义域对于理解函数的性质和应用至关重要。本课程将介绍定义 域的基础知识、分类以及实际应用。
函数的定义域是什么?
• 函数的定义域是指能使函数有意义的输入元素的集合。 • 定义域的概念对于研究函数的性质和范围至关重要。
基础知识
1
实数集与有理数集
实数集由所有的有理数和无理数组成,在函数的定义域中起着重要作用。
有理函数、根式函数和三角 函数的定义域的确定需要考 虑分母、根号内的实数范围 以及角度的限制。
复合函数的定义域
复合函数的定义域由其各个 组成函数的定义域决定,需 要注意定义域的匹配性。
实际应用
1 函数的定义域在数学中的应用
定义域对于解方程、求极限、绘制图像等数 学问题有着重要的应用。
2 函数的定义域在计算机科学中的应用
在计算机科学领域,定义域常用于函数的输 入验证、数据处理和算法设计。
总结
• 通过本课程的学习,我们了解了函数的定义域的重要性和应用。 • 为了巩固所学内容,提供一些练习题供学生进行进一步练习和理解。 • 在问答环节中,回答学生的问题,加深他们对定义域的理解。
参考资料学课本、高等数学等
2
闭区间、开区间、半开区间的概念
不同类型的区间对于定义域的确定具有不同的含义和影响。
3
无定义域的函数
了解无定义域的函数能够避免定义错误和错误的应用。
分类
一次函数和二次函数的 定义域
一次函数和二次函数的定义 域的确定需要数、根式函数、 三角函数的定义域
了解函数的定义域对于理解函数的性质和应用至关重要。本课程将介绍定义 域的基础知识、分类以及实际应用。
函数的定义域是什么?
• 函数的定义域是指能使函数有意义的输入元素的集合。 • 定义域的概念对于研究函数的性质和范围至关重要。
基础知识
1
实数集与有理数集
实数集由所有的有理数和无理数组成,在函数的定义域中起着重要作用。
有理函数、根式函数和三角 函数的定义域的确定需要考 虑分母、根号内的实数范围 以及角度的限制。
复合函数的定义域
复合函数的定义域由其各个 组成函数的定义域决定,需 要注意定义域的匹配性。
实际应用
1 函数的定义域在数学中的应用
定义域对于解方程、求极限、绘制图像等数 学问题有着重要的应用。
2 函数的定义域在计算机科学中的应用
在计算机科学领域,定义域常用于函数的输 入验证、数据处理和算法设计。
总结
• 通过本课程的学习,我们了解了函数的定义域的重要性和应用。 • 为了巩固所学内容,提供一些练习题供学生进行进一步练习和理解。 • 在问答环节中,回答学生的问题,加深他们对定义域的理解。
参考资料学课本、高等数学等
2
闭区间、开区间、半开区间的概念
不同类型的区间对于定义域的确定具有不同的含义和影响。
3
无定义域的函数
了解无定义域的函数能够避免定义错误和错误的应用。
分类
一次函数和二次函数的 定义域
一次函数和二次函数的定义 域的确定需要数、根式函数、 三角函数的定义域
2.2 函数的定义域和值域.pptx
k 0 ∴ =36-4k(k 8) 0 , 解得: k 1 ,选 B. (4)下列函数中,最小值是 2 的是 ③_(正确的序号都填上).
① y x 1 x 2) ;② y x2 3 ;③ y x 9 1;④ y tan x cot x .
x
x2 2
4x
(5)若 x 2 y 2 1 , 则 3x 4 y 的最大值是
f (1) 4 a 3 ,解得: a 7 .
综合(1)(2)(3)可得:a=±7.
学海无 涯
【课内练习】
1.函数 f (x) 3x x 2 的定义域为( B )
3 A.[0,2 ]
B.[0,3]
C.[ 3,0]
D.(0,3)
提示:由 3x x2 0 得: 0 x 3 ,答案为B.
F
=I [1,+∞],答案为 C.
2.已知函数 f (x) 的定义域为[0,4],求函数 y f (x 3) f (x 2 ) 的定义域为(C)
A.[2, 1]
B.[1, 2]
C.[2, 1]
D.[1, 2]
0 x 3 4
提示:由题意有0 x 2 4 解得 2 x 1,故此函数的定义域为[-2,1],答案为 C.
4.函数 y 3 2x x2 的值域为[0, 2]
提示: y 3 2x x2 = 4 (x 1)2 , ∴ 0 y 2
5.函数 y | x 1| | x 2 |的值域为[3, ) 提示:作出函数的图象,可以看出函数值域为[3,)
6.求函数 y 2x2 2x 3 的值域 x2 x 1
解: f (x) (x 1)2 2 ,
(1)当
a 2
1,即
a
2
时,
f f
(1) 2 (a) a
抽象函数的定义域课件
抽象函数定义域的特性
掌握抽象函数定义域的特性,如域的纯粹性、域的依赖性等。
抽象函数定义域的求法
学会如何根据函数的解析式和上下文信息,求出抽象函数的定义域。
对于抽象函数定义域的应用的展望
数学学科中的应用
了解抽象函数定义域在数学学科 中的应用,如代数、分析、拓扑等。
其他学科中的应用
探讨抽象函数定义域在其他学科中 的应用,如物理、例函数是指形如$y=cx$的函数,此时函数的定义域通常为全体实数。
03
确定根式函数的定义域
根式函数是指形如$y=√x$的函数,此时函数的定义域通常为非负实数。
抽象函数定义域的应用
在数学建模中的应用
数学建模中的抽象函数定义域通常用来描述变量 之间的函数关系,帮助我们更好地理解问题的本 质和规律。
之间的关系。
通过定义域,我们可以确定算法 的输入和输出范围,从而更好地
理解和设计算法。
此外,抽象函数定义域在算法设 计中还可以帮助我们更好地理解 算法的复杂度和效率,以及优化
算法的性能。
总结与展望
对于抽象函数定义域的理解和掌握
定义域的基本概念
了解定义域是什么,如何确定定义域,以及定义域在函数中的重 要性。
限制定义域在确定函数性质和 运算规则时具有重要作用。
抽象函数定义域的求法
根据函数的性质求定义域
01 确定性
函数中的映射关系应明确,不能含糊不清。
02 互异性
函数的定义域中的每一个元素,在函数的值域中 只能对应一个元素。
03 任意性
函数中的对应关系可以在定义域的任意子集上进行。
根据实际应用求定义域
抽象函数的特性
01 非具体性
抽象函数没有具体的解析表达式,不能通过解析 表达式来表达函数关系。
掌握抽象函数定义域的特性,如域的纯粹性、域的依赖性等。
抽象函数定义域的求法
学会如何根据函数的解析式和上下文信息,求出抽象函数的定义域。
对于抽象函数定义域的应用的展望
数学学科中的应用
了解抽象函数定义域在数学学科 中的应用,如代数、分析、拓扑等。
其他学科中的应用
探讨抽象函数定义域在其他学科中 的应用,如物理、例函数是指形如$y=cx$的函数,此时函数的定义域通常为全体实数。
03
确定根式函数的定义域
根式函数是指形如$y=√x$的函数,此时函数的定义域通常为非负实数。
抽象函数定义域的应用
在数学建模中的应用
数学建模中的抽象函数定义域通常用来描述变量 之间的函数关系,帮助我们更好地理解问题的本 质和规律。
之间的关系。
通过定义域,我们可以确定算法 的输入和输出范围,从而更好地
理解和设计算法。
此外,抽象函数定义域在算法设 计中还可以帮助我们更好地理解 算法的复杂度和效率,以及优化
算法的性能。
总结与展望
对于抽象函数定义域的理解和掌握
定义域的基本概念
了解定义域是什么,如何确定定义域,以及定义域在函数中的重 要性。
限制定义域在确定函数性质和 运算规则时具有重要作用。
抽象函数定义域的求法
根据函数的性质求定义域
01 确定性
函数中的映射关系应明确,不能含糊不清。
02 互异性
函数的定义域中的每一个元素,在函数的值域中 只能对应一个元素。
03 任意性
函数中的对应关系可以在定义域的任意子集上进行。
根据实际应用求定义域
抽象函数的特性
01 非具体性
抽象函数没有具体的解析表达式,不能通过解析 表达式来表达函数关系。
函数的概念ppt课件
在经济学、社会学等领域中, 函数图像被用来描述和分析各 种数据之间的关系和变化趋势
。
THANKS
感谢观看
插值法
利用已知的离散数据点,通过数学计算得到更多的数据点,从而绘制出 更精确的函数图像。
03
பைடு நூலகம்计算几何法
利用几何知识,将函数表达式转换为几何图形,从而得到函数的图像。
函数图像的性质
01
02
03
04
连续性
函数图像在定义域内连续不断 ,没有间断点。
单调性
函数在某个区间内单调增加或 单调减少。
奇偶性
函数图像关于原点对称或关于 y轴对称。
周期性
函数图像呈现周期性变化。
函数图像的应用
数学分析
通过函数图像分析函数的性质 和变化规律,解决数学问题。
自然科学
在物理学、化学、生物学等自 然科学领域中,函数图像被广 泛应用于实验数据的分析和解 释。
工程学
在工程学中,函数图像可以用 来描述各种实际问题的变化规 律,如机械运动、电路电流等 。
经济和社会科学
函数的乘法
总结词
函数乘法是指将两个函数的输出值相乘,得到一个新的函数。
详细描述
函数乘法是一种数学运算,其操作是将两个函数的输出值逐一对应相乘。假设有 两个函数f(x)和g(x),函数乘法就是将f(x)和g(x)的输出值相乘,得到一个新的函 数h(x)=f(x)*g(x)。
函数的除法
总结词
函数除法是指将一个函数的输出值除以另一个函数的输出值,得到一个新的函数。
函数的实际应用
生活中的函数
总结词:无处不在
详细描述:函数的概念在日常生活中随处可见,如物品价格与数量的关系、时间 与路程的关系等。这些关系都可以通过函数来描述和预测。
。
THANKS
感谢观看
插值法
利用已知的离散数据点,通过数学计算得到更多的数据点,从而绘制出 更精确的函数图像。
03
பைடு நூலகம்计算几何法
利用几何知识,将函数表达式转换为几何图形,从而得到函数的图像。
函数图像的性质
01
02
03
04
连续性
函数图像在定义域内连续不断 ,没有间断点。
单调性
函数在某个区间内单调增加或 单调减少。
奇偶性
函数图像关于原点对称或关于 y轴对称。
周期性
函数图像呈现周期性变化。
函数图像的应用
数学分析
通过函数图像分析函数的性质 和变化规律,解决数学问题。
自然科学
在物理学、化学、生物学等自 然科学领域中,函数图像被广 泛应用于实验数据的分析和解 释。
工程学
在工程学中,函数图像可以用 来描述各种实际问题的变化规 律,如机械运动、电路电流等 。
经济和社会科学
函数的乘法
总结词
函数乘法是指将两个函数的输出值相乘,得到一个新的函数。
详细描述
函数乘法是一种数学运算,其操作是将两个函数的输出值逐一对应相乘。假设有 两个函数f(x)和g(x),函数乘法就是将f(x)和g(x)的输出值相乘,得到一个新的函 数h(x)=f(x)*g(x)。
函数的除法
总结词
函数除法是指将一个函数的输出值除以另一个函数的输出值,得到一个新的函数。
函数的实际应用
生活中的函数
总结词:无处不在
详细描述:函数的概念在日常生活中随处可见,如物品价格与数量的关系、时间 与路程的关系等。这些关系都可以通过函数来描述和预测。
初中函数的概念ppt课件
二次函数的定义
形如y=ax^2+bx+c(a, b,c是常数,a≠0)的函 数称为二次函数。
二次函数的图像
二次函数y=ax^2+bx+c 的图像是一个抛物线。
二次函数的性质
当a>0时,抛物线开口向 上,有最小值;当a<0时 ,抛物线开口向下,有最 大值。
03 函数的应用
函数在生活中的实际应用
人口增长模型
提供工具。
04 函数的扩展知识
复合函数的概念
定义
如果y是u的函数,而u是x的函数,那么y关于x的函数叫做由基本函 数f(u)和g(x)构成的复合函数。
表示方法
y = f(u),u = g(x)
分解
把一个复合函数分解成若干个基本初等函数,并分别指出各基本初等 函数在复合函数中的作用。
函数的奇偶性
THANKS 感谢观看
微积分
函数是微积分的基础,可以用来研 究物体的运动、变化和趋势等。
统计学
函数可以用来描述数据的分布特征 ,为统计分析提供工具。
函数在物理问题中的应用
力学
函数可以用来描述物体的运动状 态,如速度、加速度等。
热力学
函数可以用来描述温度、压力等 物理量的变化情况,为热力学研
究提供工具。
电学
函数可以用来描述电流、电压等 物理量的变化情况,为电学研究
函数的定义通常包括定义域和值域,定义域是指自变量的取值范围,值域是指因变 量的取值范围。
函数的表示方法
函数的表示方法有三种:表格法、图 象法和解析式法。
图象法是用图形来表示函数关系,它 直观形象,可以反映函数的单调性、 增减性等性质。
表格法是最简单的一种表示方法,它 将自变量和因变量的对应关系列成表 格,适用于简单的函数关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 巴山楚水凄凉地 , 第一个意象:忆昔,凄凉经历 • 二十三年弃置身。 • 怀旧空吟闻笛赋, 第二个意象:抚今,悲痛感受 • 到乡翻似烂柯人。 • 沉舟侧畔千帆过, 第三个意象:想事,沉重比喻 • 病树前头万木春。 • 今日听君歌一曲, 第四个意象:听歌,精神一振 • 暂凭杯酒长精神。
• 诗词中的“象”一般有四指:人、事、 物、景;“意”则有四涵:情、志、理、 趣。于是便可以组合成16种基本意象, 就全篇而言,即为16种基本意境。 如 下表
通过对这一个个意象的把握及联缀,我们就可以 把这首词的整体意境描述为:上阙写作者酒后望月 驰思,对天上人间的无限感慨;下阙写辗转不寐思 念亲人,又感悟到万事万物自古难全的道理,由此 得以自慰和宽解,并表达对亲人的美好祝愿。
一般说来,诗词多以一个完整的韵句为一个 意象,表达一个完整的形象及意思。如:
第二环节 弄懂字词,理顺语句
—疏通作品
• 初读之时,眼在字面上跑,嘴从字面上说, 字面的意思未必连贯得起来,诗面的形象未必 形成得起来。这是由古典诗词的高度凝练、精 辟,加之语言组织的特殊性造成的。这就需要 停顿下来,尝试着把每个词语的意思弄清楚, 把词与词的意思联系起来,以求把大致意思搞 清楚。就像叶老所说:先自行思考求解,不得 其解再看注解;看了注解仍不懂再与同学商量; 同学间商量不出再问老师。
例8、若函数y=lg(4-a•2x)的定义域为R, 则实数a的取值范围是_______
综合3: 已知函数f(x)=lg(mx2-4mx+m+3) 1)若f(x)的定义域为R,则实数m的取 值范围是_______ 2)若f(x)的值域为R,则实数m的取值 范围___________
例9、渔场中鱼群的最大养殖量为m吨,为保 证鱼群的生长空间,实际养殖量不能达到最 大养殖量,必须留出适当的空闲量,已知鱼 群的年增长量y吨和实际养殖量x吨与空闲率 成正比,比例系数为k(k>0)。
• 但是,每一个阅读者的经历、经验、知识、认知方式和个性心理 都不同,其对诗的意境及作者情思的感受也必然有所不同。正所 谓有一千个读者,就有一千个哈姆雷特。这不仅是正常的合理的, 而且是最具价值的。这价值对自身来说,就是生成了与已往经验 相对接的真实可靠的感受,它有助于阅读者的精神成长;对他人 来说,在于一经交流,各具特色的感受必然带来分享、碰撞或启 迪,于是在彼此交流和吸纳中促进了公共认知和共同发展。
D
C
2x
A
B
综合1:
1)使解析式 义
log 2
x 4
2 x
x2 4x 3 无意
的x的取值范围是______________
2)已知y是x的函数x=2t+2-t,y=4t+4-t-2t+2-22-t, 其中t∈R,求y=f(x)的函数解析式及其定义域
二、由y=f(x)的定义域,求复合函数 y=f(g(x))的定义域;或者反过来。
• —骆宾王
触景生情: 绘景言志:
• 昔人已乘黄鹤去, • 此地空余黄鹤楼。 • 黄鹤一去不复返, • 白云千载空悠悠。 • 晴川历历汉阳树, • 芳草凄凄鹦鹉洲。 • 日暮乡关何处是? • 烟波江上使人愁。 • —崔颢《黄鹤楼》
• 东临碣石,以观沧海。 • 水何澹澹,山岛竦峙。 • 树木丛生,百草丰茂。 • 秋风萧瑟,洪波涌起。 • 日月之行,若出其中, • 星汉灿烂,若出其里。 • 幸甚至哉,歌以咏志。 • —曹操《观沧海》
追溯作品意象之成因,有利于启发、 引导学生去观察和体验生活,培养这方面 意识和习惯;追溯作者的心理历程和写作 动机、目的,有利于引导学生去发现写作 之本源:情动于衷而发于外。任何文章都 是由感而发的。
三个层次,一层比一层深入,而以“ 画意”为核心。
第四环节 自我感受,独特体验
——感受作品
• 理解作品,是将作品作为一种客观事物加以认识,得到的主要是 关于作品内容的客观的共性的认识,其衡量标准是愈接近权威结 论,其认识水平愈高。
⑴写出y关于x的函数关系式并指出这个函数 的定义域;⑵求鱼群年增长量的最大值;⑶ 当鱼的年增长量达到最大值时,求实数k的取 值范围。
课堂回顾: 求定义域的几种类型: 一类重要的数学问题:
初三语文组
基本目标
• 感受诗词经典,追溯文化渊源; • 提高审美品位,积蓄典雅语言。
要点与方法:
• 节律是特征,朗读以凸显之。 • 意象是风景,想像以再现之。 • 情感是灵魂,体验以沟通之。 • 语言是珍品,玩味以珍藏之。
log 2
x x
1 1
log
2
(
x
1)
log
2
(
p
x)
⑴求f(x)的定义域;
⑵问f(x)是否存在最大值和最小值?如果存在, 请把它写出来;如果不存在,说明理由。
四:定义域为R的数学问题
等价于对于一切实数恒成立问题
例7:若函数y
ax 1 的定义域为R,
3 ax2 4ax 3
则实数a的取值范围。
不应有恨, 何时偏向别时圆?
第五个意象;感慨月圆。 缘情写景, 别有滋味。
人有悲欢离合, 月有阴晴圆缺, 此事古难全。
第六个意象:领悟圆缺。 自古皆然, 万物一理。
但愿人长久, 千里共婵娟。
第七个意象:祝愿康健。 亲人平安,千里共享。
显然,这里是“象”为实体,“意”为灵魂。作 品正是用形象、画面来表达情思的 。展现在我们面 前的既不是纯粹的自然景物或人物的写照,也不是 单纯的情感抒发或观点表达,而是生动具体、饱含 感情的艺术形象。
第一个意象,把酒问天:一问明月几时 才有,二问天宫今是何年。面对青天明 月,心中无限怅惘。
我欲ቤተ መጻሕፍቲ ባይዱ风归去, 又恐琼楼玉宇, 高处不胜寒。
第二个意象:欲归又恐。想追求又害怕, 矛盾心理。
起舞弄清影, 何似在人间。
第三个意象:起舞自娱。作出选择: 还是在人间好。
转朱阁, 低绮户, 照无眠。
第四个意象:月照无眠。月光 流转照离人 ,离人辗转思亲人。
叙事抒情: 叙事表志:
• 剑外忽传收蓟北, • 初闻涕泪满衣裳。 • 却看妻子愁何在, • 漫卷诗书喜欲狂。 • 白日纵歌须纵酒, • 青春作伴好还乡。 • 即从巴峡穿巫峡, • 便下襄阳向洛阳。
• 辛苦遭逢起一经, • 干戈寥落四周星。 • 山河破碎风飘絮, • 身世浮沉雨打萍。 • 惶恐滩头说惶恐, • 零丁洋里叹零丁。 • 人生自古谁无死, • 留取丹心照汗青。
认真听讲,及时总结,温故旧知 第十讲 函数的定义域
函数的独立元素:解析式;定义域 值域,性质
一、由函数解析式求定义域
非空
明晰函数的约束条件→细致
数集
求下列函数的定义域: 1、 y=lg(4x+3) 2、y=1/lg(4x+3) 3、y=(5x-4)0 4、y=x2/lg(4x+3)+(5x-4)0
叙事含理: 叙事谐趣:
• 昨日入城市, • 归来泪满巾。 • 遍身罗绮者, • 不是养蚕人 。
• 常记溪亭日暮, • 沉醉不知归路。 • 兴尽晚回舟, • 误入藕花深处。 • 争渡,争渡 • 惊起一滩鸥鹭。
托物寄情 : 托物言志:
• 驿外断桥边, • 寂寞开无主。 • 已是黄昏独自愁, • 更著风和雨。 • —陆游《咏梅》
例2、设函数f(x)的定义域为[-2,9),求下 列函数的定义域:
1) f(x+2) 2) f(3x)
3) f(x2)
4) f(lgx+5) 5) g(x)=f(-x)+f(x) 实质:已知中间变量u=g(X)的值域,
求x的 范围。 练习:已知函数f(x)的定义域为[-1,1),则 F(x)=f(1―x)+f(1―x2)的定义域为__。
情
志
理
趣
意象
人 写人传情 写人明志 写人达理 写人寄趣
事 叙事抒情 叙事表志 叙事含理 叙事谐趣
物 托物寄情 托物言志 咏物寓理 及物成趣
景 情景相生 绘景寄志 观景得理 描景得趣
写人传情: 写人明志:
• 故园东望路漫漫, • 双袖龙钟泪不干。 • 马上相逢无纸笔, • 凭君传语报平安。 • —岑参《逢入京使》
例3、函数f(2x)的定义域是[-1,1],则 f(log2x)的定义域为______
例4、已知函数f(x)=1/(x+1),则f[f(x)]的定义 域为_____
由值域求定义域:
函数
y
2x 5 x3
的值域是{y|y≤0或y≥4}则
此函数的定义域是_____
三、含参的函数的定义域 注意:对参数的一切值分类讨论 如求函数y=log2(1-ax)的定义域?
2 a loga 2 log a a 2
例5、求函数f(x)=lg(ax-k•2x)(a>0且a≠1,
a≠2)的定义域。 例6、已知函数f(x)的定义域是(0,1],
?把2改写成 以a为底的指
数和对数
求g(x)=f(x+a)+f(x-a)(其中-1/2<a≤0) 的定义域。
综合2:
设函数
f
(x)
例1、求下列函数的定义域
1、y 3、y
lg( x 2) x
2、y x 2 (5x 4)0 lg(4x 3)
1
lg(9 3x )
7 | x 2 |
4、f (x) log (2x1) 3 3x 2 5、y 25 x2 lg cosx
5、用长为l的铁丝弯成下部的矩形,上部 分为半圆的框架(如图),若矩形的底边 长为2x,求此框架围成面积y与x的函数, 写出的定义域。
五个环节
• 一、朗读全诗,力求读准——感知作品 • 二、弄懂字词,理顺语句——疏通作品 • 三、揣摩意象,领略意境——领会作品 • 四、自我感受,独特体验——感悟作品 • 五、赏析技巧,品味语言——鉴赏作品
• 诗词中的“象”一般有四指:人、事、 物、景;“意”则有四涵:情、志、理、 趣。于是便可以组合成16种基本意象, 就全篇而言,即为16种基本意境。 如 下表
通过对这一个个意象的把握及联缀,我们就可以 把这首词的整体意境描述为:上阙写作者酒后望月 驰思,对天上人间的无限感慨;下阙写辗转不寐思 念亲人,又感悟到万事万物自古难全的道理,由此 得以自慰和宽解,并表达对亲人的美好祝愿。
一般说来,诗词多以一个完整的韵句为一个 意象,表达一个完整的形象及意思。如:
第二环节 弄懂字词,理顺语句
—疏通作品
• 初读之时,眼在字面上跑,嘴从字面上说, 字面的意思未必连贯得起来,诗面的形象未必 形成得起来。这是由古典诗词的高度凝练、精 辟,加之语言组织的特殊性造成的。这就需要 停顿下来,尝试着把每个词语的意思弄清楚, 把词与词的意思联系起来,以求把大致意思搞 清楚。就像叶老所说:先自行思考求解,不得 其解再看注解;看了注解仍不懂再与同学商量; 同学间商量不出再问老师。
例8、若函数y=lg(4-a•2x)的定义域为R, 则实数a的取值范围是_______
综合3: 已知函数f(x)=lg(mx2-4mx+m+3) 1)若f(x)的定义域为R,则实数m的取 值范围是_______ 2)若f(x)的值域为R,则实数m的取值 范围___________
例9、渔场中鱼群的最大养殖量为m吨,为保 证鱼群的生长空间,实际养殖量不能达到最 大养殖量,必须留出适当的空闲量,已知鱼 群的年增长量y吨和实际养殖量x吨与空闲率 成正比,比例系数为k(k>0)。
• 但是,每一个阅读者的经历、经验、知识、认知方式和个性心理 都不同,其对诗的意境及作者情思的感受也必然有所不同。正所 谓有一千个读者,就有一千个哈姆雷特。这不仅是正常的合理的, 而且是最具价值的。这价值对自身来说,就是生成了与已往经验 相对接的真实可靠的感受,它有助于阅读者的精神成长;对他人 来说,在于一经交流,各具特色的感受必然带来分享、碰撞或启 迪,于是在彼此交流和吸纳中促进了公共认知和共同发展。
D
C
2x
A
B
综合1:
1)使解析式 义
log 2
x 4
2 x
x2 4x 3 无意
的x的取值范围是______________
2)已知y是x的函数x=2t+2-t,y=4t+4-t-2t+2-22-t, 其中t∈R,求y=f(x)的函数解析式及其定义域
二、由y=f(x)的定义域,求复合函数 y=f(g(x))的定义域;或者反过来。
• —骆宾王
触景生情: 绘景言志:
• 昔人已乘黄鹤去, • 此地空余黄鹤楼。 • 黄鹤一去不复返, • 白云千载空悠悠。 • 晴川历历汉阳树, • 芳草凄凄鹦鹉洲。 • 日暮乡关何处是? • 烟波江上使人愁。 • —崔颢《黄鹤楼》
• 东临碣石,以观沧海。 • 水何澹澹,山岛竦峙。 • 树木丛生,百草丰茂。 • 秋风萧瑟,洪波涌起。 • 日月之行,若出其中, • 星汉灿烂,若出其里。 • 幸甚至哉,歌以咏志。 • —曹操《观沧海》
追溯作品意象之成因,有利于启发、 引导学生去观察和体验生活,培养这方面 意识和习惯;追溯作者的心理历程和写作 动机、目的,有利于引导学生去发现写作 之本源:情动于衷而发于外。任何文章都 是由感而发的。
三个层次,一层比一层深入,而以“ 画意”为核心。
第四环节 自我感受,独特体验
——感受作品
• 理解作品,是将作品作为一种客观事物加以认识,得到的主要是 关于作品内容的客观的共性的认识,其衡量标准是愈接近权威结 论,其认识水平愈高。
⑴写出y关于x的函数关系式并指出这个函数 的定义域;⑵求鱼群年增长量的最大值;⑶ 当鱼的年增长量达到最大值时,求实数k的取 值范围。
课堂回顾: 求定义域的几种类型: 一类重要的数学问题:
初三语文组
基本目标
• 感受诗词经典,追溯文化渊源; • 提高审美品位,积蓄典雅语言。
要点与方法:
• 节律是特征,朗读以凸显之。 • 意象是风景,想像以再现之。 • 情感是灵魂,体验以沟通之。 • 语言是珍品,玩味以珍藏之。
log 2
x x
1 1
log
2
(
x
1)
log
2
(
p
x)
⑴求f(x)的定义域;
⑵问f(x)是否存在最大值和最小值?如果存在, 请把它写出来;如果不存在,说明理由。
四:定义域为R的数学问题
等价于对于一切实数恒成立问题
例7:若函数y
ax 1 的定义域为R,
3 ax2 4ax 3
则实数a的取值范围。
不应有恨, 何时偏向别时圆?
第五个意象;感慨月圆。 缘情写景, 别有滋味。
人有悲欢离合, 月有阴晴圆缺, 此事古难全。
第六个意象:领悟圆缺。 自古皆然, 万物一理。
但愿人长久, 千里共婵娟。
第七个意象:祝愿康健。 亲人平安,千里共享。
显然,这里是“象”为实体,“意”为灵魂。作 品正是用形象、画面来表达情思的 。展现在我们面 前的既不是纯粹的自然景物或人物的写照,也不是 单纯的情感抒发或观点表达,而是生动具体、饱含 感情的艺术形象。
第一个意象,把酒问天:一问明月几时 才有,二问天宫今是何年。面对青天明 月,心中无限怅惘。
我欲ቤተ መጻሕፍቲ ባይዱ风归去, 又恐琼楼玉宇, 高处不胜寒。
第二个意象:欲归又恐。想追求又害怕, 矛盾心理。
起舞弄清影, 何似在人间。
第三个意象:起舞自娱。作出选择: 还是在人间好。
转朱阁, 低绮户, 照无眠。
第四个意象:月照无眠。月光 流转照离人 ,离人辗转思亲人。
叙事抒情: 叙事表志:
• 剑外忽传收蓟北, • 初闻涕泪满衣裳。 • 却看妻子愁何在, • 漫卷诗书喜欲狂。 • 白日纵歌须纵酒, • 青春作伴好还乡。 • 即从巴峡穿巫峡, • 便下襄阳向洛阳。
• 辛苦遭逢起一经, • 干戈寥落四周星。 • 山河破碎风飘絮, • 身世浮沉雨打萍。 • 惶恐滩头说惶恐, • 零丁洋里叹零丁。 • 人生自古谁无死, • 留取丹心照汗青。
认真听讲,及时总结,温故旧知 第十讲 函数的定义域
函数的独立元素:解析式;定义域 值域,性质
一、由函数解析式求定义域
非空
明晰函数的约束条件→细致
数集
求下列函数的定义域: 1、 y=lg(4x+3) 2、y=1/lg(4x+3) 3、y=(5x-4)0 4、y=x2/lg(4x+3)+(5x-4)0
叙事含理: 叙事谐趣:
• 昨日入城市, • 归来泪满巾。 • 遍身罗绮者, • 不是养蚕人 。
• 常记溪亭日暮, • 沉醉不知归路。 • 兴尽晚回舟, • 误入藕花深处。 • 争渡,争渡 • 惊起一滩鸥鹭。
托物寄情 : 托物言志:
• 驿外断桥边, • 寂寞开无主。 • 已是黄昏独自愁, • 更著风和雨。 • —陆游《咏梅》
例2、设函数f(x)的定义域为[-2,9),求下 列函数的定义域:
1) f(x+2) 2) f(3x)
3) f(x2)
4) f(lgx+5) 5) g(x)=f(-x)+f(x) 实质:已知中间变量u=g(X)的值域,
求x的 范围。 练习:已知函数f(x)的定义域为[-1,1),则 F(x)=f(1―x)+f(1―x2)的定义域为__。
情
志
理
趣
意象
人 写人传情 写人明志 写人达理 写人寄趣
事 叙事抒情 叙事表志 叙事含理 叙事谐趣
物 托物寄情 托物言志 咏物寓理 及物成趣
景 情景相生 绘景寄志 观景得理 描景得趣
写人传情: 写人明志:
• 故园东望路漫漫, • 双袖龙钟泪不干。 • 马上相逢无纸笔, • 凭君传语报平安。 • —岑参《逢入京使》
例3、函数f(2x)的定义域是[-1,1],则 f(log2x)的定义域为______
例4、已知函数f(x)=1/(x+1),则f[f(x)]的定义 域为_____
由值域求定义域:
函数
y
2x 5 x3
的值域是{y|y≤0或y≥4}则
此函数的定义域是_____
三、含参的函数的定义域 注意:对参数的一切值分类讨论 如求函数y=log2(1-ax)的定义域?
2 a loga 2 log a a 2
例5、求函数f(x)=lg(ax-k•2x)(a>0且a≠1,
a≠2)的定义域。 例6、已知函数f(x)的定义域是(0,1],
?把2改写成 以a为底的指
数和对数
求g(x)=f(x+a)+f(x-a)(其中-1/2<a≤0) 的定义域。
综合2:
设函数
f
(x)
例1、求下列函数的定义域
1、y 3、y
lg( x 2) x
2、y x 2 (5x 4)0 lg(4x 3)
1
lg(9 3x )
7 | x 2 |
4、f (x) log (2x1) 3 3x 2 5、y 25 x2 lg cosx
5、用长为l的铁丝弯成下部的矩形,上部 分为半圆的框架(如图),若矩形的底边 长为2x,求此框架围成面积y与x的函数, 写出的定义域。
五个环节
• 一、朗读全诗,力求读准——感知作品 • 二、弄懂字词,理顺语句——疏通作品 • 三、揣摩意象,领略意境——领会作品 • 四、自我感受,独特体验——感悟作品 • 五、赏析技巧,品味语言——鉴赏作品