液体点滴速度控制系统设计(中英文翻译完整版)
液体点滴速度监控装置的设计
液体点滴速度监控装置[摘要 ] 该装置实时地监测液体点滴速度,通过单片机对信息地分析和处理,由主机发出相应地指令, 调整系统地工作平稳,构成了一个高性能地闭环控制系统 .实现了对点滴输液速度地直观监测,同时对一些异常情况地出现可实施报警 .利用该装置还能通过主控平台对各个分立系统信息实施自动化、智能 化地集中处理 .能方便、简易地操作和使用,对医疗具有很强地实用性.[ 关键词 ] 实时监控 红外传感 闭环控制 步进电机一、方案设计与论证根据题目要求和原输液装置地特点,提出以下三种方案:1、方案一 直接在滴斗处用两电极棒地方法 .与受液瓶地高度,达到改变点滴速度,从而进行控制2、方案二把通过电机改变系统装置高度地方法, 改为控制步进电机对输液管进行压缩或缓松, 从而实现对点 滴速度地改变 .采用交流电动机控制 H2 地高度 .即采用红外传感器测量滴斗滴液, 送至单片机接口计数, 通过数字模拟转换,将其转换为 4— 20MA 标准电流值,同时通过键盘输入给定每分钟地滴数,再将此 滴数将其转换为 4—20MA 标准电流值,将此两个信息同时进入数字 PID 调节器 .通过偏差计算再输出一 组4— 20MA 标准电流值,通过变频调速器控制电动机调节H2 地高度,来控制滴斗滴数 .此方案地优点是,完全按目前电气工程标准化运作,可以在很短时间完成 .文档收集自网络,仅用于个人学习2、 方案三根据点滴装置地特点, 通过对装置地某一位置进行监测和控制, 达到对整个系统液体点滴速度地监 控 . (如图 1).文档收集自网络,仅用于个人学习通过控制输液软管夹头地松紧来控制点滴速度,采用红外传感器测量滴斗滴数,送至单片机接口 计数并显示,首先标定两个脉冲(两滴间)间地时间间隔(以 10MS 为时基单位) .然后计算给定滴斗 滴数(通过键盘)地时间间隔(以 10MS 为时基单位) .将此两个时间间隔进行比较,以决定步进电机 运行地方向 .该步进电机通过丝杠控制输液软管夹头地松紧,来控制滴斗滴数 文档收集自网络,仅用于个人学习4、方案比较 方案一地特点是:实现比较简单容易,原理上也是可行地,但由于本装置用于医疗,电弧地产生, 可能对不同地药物有影响,同时传感器(电极)不能重复使用,以防止传染 .文档收集自网络,仅用于. 文档收集自网络,仅用于个人学习个人学习方案二通过改用红外传感器,弥补了方案一地不足.但是还存在问题,利用改变高度地方法虽然容易实现,但可控性不好.由此,我们采用了第三种方案,通过挤压输液管地办法来实现对点滴速度地控制.文档收集自网络,仅用于个人学习二、系统原理框图如图 2 所示.图2本系统最主要地是充分利用单片机编程地灵活性和其强大地功能,使一些小地系统实现自动化和智能化成为了现实.其中地器件都比较简单,尽大可能地利用各集成芯片地功能,如系统地键盘和显示原理电路.通过红外传感器对水滴滴落地动态信息地感应,单片机对数据地采集分析和处理,同时使用小功率地步进电机进行机械调整,使装置能机智、即时地响应操作者地使用.文档收集自网络,仅用于个人学习三、主要电路原理与设计1 、AT89C51 单片机基本系统控制与数值信号处理地核心采用AT89C51 单片机,采用串口工作方式.电路如图 3.文档收集自网络,仅用于个人学习2、显示与键盘如图4利用74LS164 进行串行动态9 位数码管显示,74LS164 地主要功能是8bits 地串入并出数据处理.电路结构简单,功能强大.采用中断和查询地方法,设计地 4 键键盘地形式,利用单片机地灵活图43、红外传感和信号处理采用红外线地发射和接收装置,它可用来检测包括液体在内地各种透明体、半透明体、不透明体,从而可以灵敏地反应水滴滴下.利用光电耦合器对电信号进行处理,减少干扰.文档收集自网络,仅用于个人学习4、步进电机驱动和控制如图5图55、声光报警当检测到液面低于3cm 时由单片机采集到报警信号,由报警芯片发出声光报警5 、主控制平台可以组建一个小型地网络系统,由主机控制和监视各个从机地工作状态和各个装置地信息. 如图 6 文档收集自网络,仅用于个人学习图6四、系统软件工作流程如图7 到图121、软件设计:软件部分参考流程图,这里主要讲述一下软件编写过程中地几个细节部分.如前所述,我们计算滴水速度地原理是通过求出 2 个水滴之间地时间差,通过分析,我们通过定时器建立一个基准时钟,该基准时钟有 2 个字节单元,分别秒单位和10 毫秒单位地数值.在每次传感器送来中断地时候调用“传感测量”子程序,在该子程序中,我们在取当前触发时间时,先把上一个脉冲发生地时间保存在“历史寄存器”中,然后再更新“当前寄存器”地值,即取当前脉冲地发生时间.这样我们就记录下了 2 个时间(连续)值.文档收集自网络,仅用于个人学习历史寄存器当前寄存器基准时钟7由于基准时钟是以10 毫秒为最小单位地,而对于频率范围在20Hz~150Hz 地脉冲而言,因为我们在后边地求滴速中要用到10 毫秒单位值,而水滴地下落并不能保证绝对地规则,经测试发现,每一次求差后地值总有几个单位毫秒地变动,这个变动就导致了最终运算出来地滴速值地大幅度变化,后来惊观察发现这种误差可以归为周期性误差,所以为了消除这个误差,我们不是简单地只取一个差值,相反,我们是取了10 个差值,然后再求平均值,这样处理地最大一个好处是可以使周期性误差地正、负偏差互相抵消,在很大程度上消除上述误差.文档收集自网络,仅用于个人学习前面地处理虽然可以提供一个比较接近真值,对于最终显示出来地影响不大,但当要用这个值去控制滴速夹时,很明显这样处理地结果降低了控制地响应度;而另一方面,对于滴速夹地控制,因为我们采用地是步进电机,而且我们对步进电机地转轴又进行了改造,加了一个螺纹栓,可以保持滴速夹控制端地位置,所以我们在每采集一个脉冲间隔时就进行滴速地更改控制,这样可以提高控制设备地响应速度.所以在本系统中对于建立一个科学合理地系统模型是很有必要地.文档收集自网络,仅用于个人学习在对滴速进行控制时,我们借鉴了PID 算法,建立了一个闭环控制状态,利用类似于锁相环地模型:即把设定地滴速和当前地滴速进行比较,输出一个差值,利用这个差值地极性来决定电机地正反转,并拉小这个差值直至最小.因为每检测到一个传感信号,我们就把设定值和当前值进行比较,这样不仅提高了设备地响应速度,而且由于我们这个系统地基准时钟是以10 毫秒为单位了,因为我们能分辨到10 毫秒地数量级,可以使当前值非常接近我们所设定地设定值.文档收集自网络,仅用于个人学习这一点可以参照电机控制地流程图.(图12)1、运算过程:因为我们系统地基准时钟是以10 毫秒为单位了,虽然加大了系统地精度,但是却给系统地数值运算带来了麻烦,直接用四则运算(特别是乘除地运算)很容易带来无法避免地运算误差,即在运算是因为运算位数地限制而带来地数据尾数地丢失. 前面说过这种误差将对我们对信号地处理和显示产生很大了影响,甚至会得到一个误差很大地最终输出,为避免这种情况,我们在保证精度地基础上采用了查表法,并且在建立表格时对数据进行一定地折中处理,使得最终得到了结果地误差能尽量小,实践证明我们这种方法还是有一定地实用性地.而且查表法地结果便于以后系统误差地自我校正,因为它保存了一个恒值.文档收集自网络,仅用于个人学习2 、对数据表格地处理:前面说过我们这个系统地基准时钟有两个字节单元,而即使采用题目要求地滴速(20~150 分/滴)也将需要260 个字节,这已经超过了8 位单片机地查表范围,所以怎样建立一个合理地查表算法是很有必要地.通过对数据地观察,我们发现虽然每个时间量有两个字节,但是在秒字节地单元里,总共只能出现4种取值,即1、2和3以及0 ,所以我们可以以这4个值为标量对表格地数据进行划分,由于有了秒字节单元来做区分,我们只要在表格中写入10 毫秒字节单元地值就行了,通过综合处理,在保证精度地基础上,我们所建立地表格地字节数为100 多个,这样不仅满足了8 位单片机地查表范围,而且大大了节省了内存,有利于系统资源地优化分配. 文档收集自网络,仅用于个人学习3、通信地建立:在选择方案时,考虑到通信线地多少,我们采用了串行通信,直接利用单片机本身地串行通信口,在软件上我们考虑用串行通信地方式0 来进行通信.通信协议如下:先发送握手信号,然后发送被呼叫地从机号,每个从机在接收到地址时跟自身地地址进行比较,如果不是被呼叫机,则关闭通信链路;如果是则发送响应信号.当确定了通信地链路后,就按照预定地数据包格式进行通信.数据包格式如下:文档收集自网络,仅用于个人学习操作码2、程序流程图个人收集整理仅做学习参考图8个人收集整理仅做学习参考传感测量:学习时钟:文档收集自网络,仅用于个人图9 图10个人收集整理仅做学习参考步进电机控制:文档收集自网络,仅用于个人学习键盘:个人收集整理仅做学习参考图11 图12 3、源程序:时间基准缓冲区:秒55h 0.01 秒56h键盘设置缓冲区:秒57h 0.01 秒58h传感测量缓冲区:前次—秒51h 0.01 秒52h 当前—秒53h 0.01秒54h 差值—秒4fh 0.01秒50h文档收集自网络,仅用于个人学习最终显示缓冲区:选择值:54h 测定值5ah 5bh 5ch 设置值5dh 5eh 5fh R4 用于步进电机地步进记忆org 0000hajmp mainorg 0003hajmp jpint org 000bh ajmp times org 0013h ajmp cgint org 0040h ;int0 ;t0 ;int1main:mov sp,#60h ;设置堆栈mov 5eh,#00hmov 5fh,#00hmov r7,#00hsetb f0clr p2.1mov tmod,#01h ;T0 为工作方式0mov tl0,#0f0h ; 计数器初值mov th0,#0d8hmov ie,#87h ;中断设置,除T1,ES 外全开中断mov 41h,#00h mov 42h,#00h mov 43h,#00h mov 44h,#00h mov 45h,#00h mov 46h,#00h mov 47h,#00h mov 48h,#00h mov 4fh,#00h mov 50h,#00h mov 51h,#00h mov 52h,#00h mov 53h,#00hmov 54h,#00h mov 55h,#00h mov 56h,#00h mov 54h,#00h mov 57h,#00h mov 58h,#00h mov 59h,#00h mov 5ah,#00h mov 5bh,#00h mov 5ch,#00h mov 5dh,#00h ;初值设置;以上为时间初值;初值显示为00mov ip,#02h setbit0 setb it1 setb tr0setb p1.4 disp:acalldisp0ajmp disp;中断优先级;脉冲触发方式;启动定时;调用显示子程序disp0: push accmov dptr,#tablejnb f0,disp1 mova,54h cjnea,#01h,zzz1movc a,@a+dptrmov sbuf,a jnbti,$ clr ti mova,#0ffh movsbuf,a jnb ti,$ clrti acall dealy;选择值显示ajmp disp1 zzz1:cjne a,#02h,zzz2 movca,@a+dptr mov sbuf,a jnb ti,$ clr ti mova,#0ffh mov sbuf,a jnb ti,$ clr ti acall dealy ajmp disp1 zzz2:cjne a,#03h,zzz3 movca,@a+dptr mov sbuf,a jnb ti,$ clr ti mova,#0ffh mov sbuf,a jnb ti,$ clr ti acall dealy ajmp disp1 zzz3:mov 54h,#00hdisp1:mov a,5ah ;测定值显示cjne a,#00h,disp2 ajmp disp3 disp2:cjnea,#01h,disp4 disp3:movc a,@a+dptr mov sbuf,a jnb ti,$ clr ti mov a,#0feh mov sbuf,a jnb ti,$ clr ti acall dealydisp4:mov a,5bh movc a,@a+dptr mov sbuf,a jnb ti,$ clr timov a,#0fdh mov sbuf,a jnb ti,$ clr ti acall dealymov a,5ch movc a,@a+dptr mov sbuf,a jnbti,$ clr ti mov a,#0fbh mov sbuf,a jnb ti,$ clr ti acall dealymov a,5dh ;设置值显示movc a,@a+dptr mov sbuf,a jnb ti,$ clr ti mov a,#0dfh mov sbuf,a jnb ti,$ clr ti acall dealymov a,5eh movc a,@a+dptr mov sbuf,a jnbti,$ clr ti mov a,#0bfh mov sbuf,a jnb ti,$ clr ti acall dealymov a,5fh movc a,@a+dptr mov sbuf,a jnb ti,$clr ti mov a,#7fh mov sbuf,a jnb ti,$ clr ti acall dealy pop acc retdealy: mov r0,#0fah lll: nop nop djnz r0,lll ret table:db 03h db 9fh db 25h db 0dh db99h db 49h db 41h db 1fh db 01h db 09hjpint: ;键盘控制子程序push acc push 07h mov r2,#0ah zzz:acall dealy djnz r2,zzzjb p1.0,x2 ;选择键子程序inc 54h clr ex1 setb f0 mov a,54h cjnea,#04h,x1 mov 54h,#01h x1:ajmp ret0 x2:jb p1.1,x3 ;加 1 键子程序mov a,54h cjne a,#00h,lll1ajmp ret0 lll1:cjne a,#01h,lll2 inc 5fh mov a,5fh cjne a,#0ah,zhongju mov 5fh,#00h ajmp ret0 lll2:cjne a,#02h,lll3 inc 5eh mov a,5eh cjne a,#0ah,ret0 mov 5eh,#00h ajmp ret0 lll3:inc 5dh mov a,5dh cjne a,#0ah,ret0 mov 5dh,#00h ajmp ret0 x3:jb p1.2,x4 ;减 1 键子程序mov a,54h cjne a,#00h,llll1 ajmp ret0llll1:cjne a,#01h,llll2 dec 5fh mov a,5fh cjne a,#0ffh,ret0 mov 5fh,#09h ajmp ret0 zhongju:ajmp ret0 llll2:cjne a,#02h,llll3 dec 5eh mov a,5eh cjne a,#0ffh,ret0 mov5eh,#09h ajmp ret0 llll3:dec 5dh mov a,5dh cjne a,#0ffh,ret0 mov 5dh,#09h ajmp ret0x4:jb p1.3,x5 ;确定键子程序clr f0 acall enter ; 因指令而修改ret01: ;对整数进行修正mov a,r7cjne a,#14,ccc1mov 57h,#03h ;为20 置 3setb ex1ajmp ret0ccc1:cjne a,#1eh,ccc2mov 57h,#02h ;为30 置 2setb ex1ajmp ret0ccc2:cjne a,#3ch,ret02mov 57h,#01h ;为60 置 1setb ex1ajmp ret0x5:jb p2.0,ret0 ;报警监测setb p2.1 ;送报警声音ajmp ret0 ret02:setb ex1 ret0:pop acc pop 07h reti enter:mov 54h,#00h clr cmov a,5dh ;求时间段程序mov b,#64h ;百位数mul abmov r7,amov a,5ehmov b,#0ah ;十位数mul abadd a,r7mov r7,amov a,5fhadd a,r7mov r7,a ;此时r7 中为设定值clr csubb a,#14h ; 查表前减20mov dptr,#table1 ;由数值查时间段表movc a,@a+dptrmov 58h,arettimes: ;时间设置push accmov tl0,#0f0hmov th0,#0d8hsetb tr0 inc 56h mov a,56h cjnea,#64h,quit0 mov 56h,#00h inc 55hquit0:pop acc reticgint: ;传感测量mov r2,#0ah zzzz:acall dealy djnz r2,zzzz jnb p3.3,cgint1 reticgint1:push acc push 03h push 04h push 05h push 06h inc r7cjne r7,#0ah,zhongju1mov r7,#00hmov a,53h ;数值转移mov 51h,amov a,54hmov 52h,amov a,55h ;读取当前时间mov 53h,amov a,56hmov 54h,aclr c ;求10 个脉冲差值子程序mov 47h,#00h ;10 差值寄存区mov 48h,#00hmov a,53hsubb a,51hmov 47h,aclr cmov a,54hsubb a,52hjnc zero ;如果当前值大就跳转dec 47hclr cmov a,#00h mov a,54h add a,#64h subb a,52hzero:mov 48h,a mov a,47h mov b,#0ah div ab mov4fh,a mov a,b mov r3,a mov a,48h mov b,#0ah div ab mov 50h,a mov a,b movr4,a mov a,r3 mov b,#0ahmul ab add a,50h mov50h,a zhongju1:mov a mov42h,a mov a,43h mov 41h,amov a,55h mov 43h,a mova,56h mov 44h,a clr c ;求差值子程序,供电机使用mov 45h,#00h mov46h,#00h mov a,43h subba,41h mov 45h,a clr c mova,44h subb a,42h jnc zero1 ;如果当前值大就跳转dec 45h clr c mov a,#00h mov a,44hadd a,#64h subb a,42h zero1:mov 46h,a mov a,45h mov a,4fhcjne a,#03,ddd1 mov 5ah,#00h mov 5bh,#02h mov 5ch,#00h ajmp exit ddd1:cjne a,#02h,ddd2 mov a,50h jnz ddd01 mov 5ah,#00h mov5bh,#03h mov 5ch,#00h ajmp exit ddd01:mov b,#0ah div ab mov dptr,#table2 ;秒值为 2 地表movc a,@a+dptr mov r5,a anl a,#0fh mov 5ch,a mov 5bh,#02h mov 5ah,#00h ajmp exit ddd2:cjne a,#01h,ddd3 mov a,50h jnz ddd02 mov 5ah,#00h mov 5bh,#06h mov 5ch,#00h ajmp exit ddd02: mov b,#0ah div ab mov dptr,#table3 ;秒值为 1 地表movc a,@a+dptr mov r5,a anl a,#0fh mov 5ch,a mov a,r5 swap a anl a,#0fh mov 5bh,a mov5ah,#00h ajmp exit ddd3: mov a,50h cjnea,#3ch,ddd03 mov 5ah,#01h mov 5bh,#00h mov 5ch,#00h ajmp exit ddd03:clr csubb a,#3chjc lar100 ;大于100 跳转mov 5ah,#00h ;小于100mov dptr,#table4 ;60 到99 地表movc a,@a+dptrmov r5,aanl a,#0fhmov 5ch,amov a,r5swap aanl a,#0fhmov 5bh,aajmp exitlar100:mov 5ah,#01hclr cmov r5,50hmov a,#3chsubb a,r5mov dptr,#table5 ;100 到150 地表movc a,@a+dptrmov r5,aanl a,#0fhmov 5ch,amov a,r5swap aanl a,#0fhmov 5bh,aexit:jb f0,exit1 ;F0为 1 时电机不工作acall dianjic ;送步进电机子程序exit1:pop 05hpop 03h pop 04h pop acc pop 06h reti dianjic: ;电机控制子程序.zhengzh 为前进,fanzh 为后退push accclr cmov a,57hsubb a,45hjz lowdc ;如果高位相等则进行低位比较;平均差值;秒余数暂存;0.01 秒暂存,44h ;送动态显示缓冲区;整值判断jc jcc1 ;当前滴速小于设定滴速,须反转放松acall zhengzh ;当前滴速大于设定滴速,须正转挤压ajmp outjcc1:acall fanzhajmp outlowdc:clr cmov a,58hsubb a,46hjz outjc jcc2acall zhengzhajmp outjcc2:acall fanzhout:pop accretzhengzh: ;前进挤压mov dptr,#table0inc r4mov a,r4cjne a,#06h,zhengzmov r4,#00hmov a,#00hzhengz:movc a,@a+dptrmov p1,aretfanzh: ; 反转放松mov dptr,#table0dec r4mov a,r4 cjnea,#0ffh,fanz movr4,#05h mov a,#05h fanz:movc a,@a+dptr mov p1,a ret table0: db 80h db 0c0h db40h db 60h db 20h db 0a0h table1: dB 00H dB 86H dB 73H dB 61H dB 50H dB 40H dB 31H dB 22H dB 14H dB 07H dB 00H dB 94H dB 88H dB 82H dB 76H dB 71H dB 67H dB 62H dB 58H dB 54H dB 50H dB 46H dB 43H dB 40H dB 36H dB 33H dB 30H dB 28H dB 25H dB 22H dB 20H dB 18H dB 15H dB 13H dB 11H dB 09H dB 07H dB 05H dB 03H dB 02H dB 00H dB 98H dB 97H dB 95H dB 94H dB 92H dB 91H dB 90H dB 88H dB 87H dB 86H dB 85H dB 83H dB 82H dB 81H dB 80H dB 79H dB 78H dB 77H dB 76H dB 75H dB 74H dB 73H dB 72H dB 71H dB 71H dB 70H dB 69H dB 68H dB 67H dB 67H dB 66H dB 65HdB 65H dB 64H dB 63H dB 63H dB 62H dB 61H dB 61H dB 60H dB 59H dB 59H dB 58H dB 58H dB 57H dB 57H dB 56H dB 56H dB 55H dB 55H dB 54H dB 54H dB 53H dB 53H dB 52H dB 52H dB 51H dB 51H dB 50H dB 50H dB 50H dB 49H dB 49H dB 48H dB 48H dB 48H dB 47H dB 47H dB 47H dB 46H dB 46H dB 45H dB 45H dB 45H dB 44H dB 44H dB 44H dB 43H dB 43H dB 43H dB 43H dB 42H dB 42H dB 42H dB 41H dB 41H dB 41H dB 41H dB 40H dB 40H table2: db 29h db 28h db 27h db 26h db 25h db 24h db 23h db 22h db 21h table3: db 57h db 52h db 49h db 45h db 42h db 39h db 37h db 35h db 33h db 31h table4: db 99h db 98h db 97h db 95h db 94h db 93h db 91h db 89hdb 88h db 87h db 86h db 84h db 83h db 82h db 81h db 80h db 79h db 78h db 77h db 76h db 75h db 74h db 73h db 72h db 72h db 71h db 70h db 69h db 68h db 68h db 67h db 66h db 65h db 65h db 64h db 63h db 63h db 62h db 61h table5: db 00h db 02h db 04h db 06h db 08h db 10h db 12h db 14h db 16h四、 系统测试1、仪器1) 数字示波器 2) 信号发生器 3) 数字计数器2、 波形测试 利用示波器观察红外传感电信号是否规则 .若不规则,说明传感器转化地电信号需要进一步处理, 或者是传感器本身有问题, 需要检查 .直到有规则地方波输出为止 .文档收 集自网络,仅用于个人学习用数字计数器对液滴计数 .在系统电路工作时,用数字计数器地表笔从传感器转化 地电信号输出端相接, 对点滴数计数与系统显示做比较, 从而进一步校正电路测量地准 确度 .文档收集自网络,仅用于个人学习3、 测量数据单机测量: 与计数器比较:db 18h db 20h db 22h db 25h db 28h db 30h db 33h db 36h db 39h db 43h db 46h db 49h end。
液体点滴速度监控装置毕业设计(高)
前言目前医院使用的点滴输液装置是将液体容器挂在一定的高度上,利用势能差将液体输入到病人的体内(图1),通过软管口径的压紧和放松来控制点滴速度。
有经验的医护人员可以根据药剂的特性对点滴速进行控制,但是一般的病人却无法做到,控制不好还有一定的危险性。
在一些大医院一个护士常常需要负责十几个、甚至几十个床位的液体点滴,很容易出现混乱局面,导致工作效率降低。
为了提高医院本身的管理水平和工作效率,减轻医护人员的劳动强度,对于可以进行自助式护理的病人来说,需要一种可以由病人自己操作,自动定时、定量向病人进行输液的装置;而对于医护人员来说,需要一种可以对所有的病人进行统一监控的智能监控装置。
本设计就是针对以上问题而做的智能型液体点滴速度监控装置。
设计要求为能有以下几种功能:(1)检测输液点滴速度(2)检测输液点滴高度(3)控制点滴速度(4)显示点滴速度(5)能设置点滴速度图1第一章硬件设计说明1.1 系统简介本设计分为主机控制,从机测量,主从通信三个框架。
由从机测量并控制点滴速度,得到的数据送到单片机进行处理,再通过RS485通信将数据反馈给主机进行显示处理,主机也可以通过RS485通信对从机进行控制。
本人负责点滴速度检测及控制部分。
系统框图(图2)如下:图2 系统框图1.2方案设计过程及实现方法1.2.1 点滴速度检测电路设计点滴速检测是整个系统的核心,检测精度是衡量系统精确性的一个最重要指标。
这样就不会因为点滴速度异常而使患者面临危险。
出于安全性考虑,在检测点滴速度时不能使原胶管破损,否则就会对输液造成严重感染而影响患者,因此在检测点滴速度时要用非接触的方式。
方案一:利用发射型光电传感器,传感器工作时,当物体经过射程之内,就会对红外光进行反射,传感器接受到这个感反射信号后动作,以检测物体稳定动作的最大距离。
但是光电传感器对各种介质的反射程度不同,对水的动作距离近,对玻璃的动作距离远。
而且光电传感器体积较大,需要距离滴斗一定距离才能分辨不同介质,无法安装在合适的位置上,所以最终放弃这种方案。
智能输液系统设计英语作文
智能输液系统设计英语作文Title: Designing an Intelligent Infusion System。
Introduction:The advent of technology has revolutionized various sectors, including healthcare. One such innovation is the intelligent infusion system, which enhances patient care by ensuring precise medication administration and monitoring. In this essay, we will delve into the design aspects of an intelligent infusion system and its significance in modern healthcare.System Architecture:The intelligent infusion system comprises several interconnected components designed to automate and optimize the infusion process. At its core is the infusion pump, equipped with advanced sensors and actuators for accurate drug delivery. The pump interfaces with a central controlunit, which coordinates the infusion parameters and communicates with external devices such as electronic medical records (EMRs) and bedside monitors. Additionally, the system incorporates a user interface for healthcare providers to input dosage information and monitor patient responses in real-time.Key Features:1. Dose Calculation: The system employs algorithms to calculate precise medication doses based on patient weight, medical history, and prescribed treatment protocols. This feature minimizes the risk of dosage errors and ensures patient safety.2. Continuous Monitoring: Integrated sensors continuously monitor vital signs and infusion parameters, enabling immediate detection of anomalies or adverse reactions. Alerts are generated to notify healthcare providers of any deviations from the expected parameters, facilitating prompt intervention.3. Wireless Connectivity: The system utilizes wireless technology to seamlessly integrate with hospital networks and EMRs, enabling remote monitoring and data sharing. This connectivity streamlines workflow efficiency and promotes interdisciplinary collaboration among healthcare teams.4. Adaptive Control: Advanced control algorithms adjust infusion rates in real-time based on patient responses and physiological changes. This dynamic adaptation optimizes therapy effectiveness while minimizing the risk of over or under-dosing.5. Comprehensive Data Analytics: The system collects and analyzes infusion data over time to identify trends, patterns, and potential areas for improvement. Data visualization tools provide insights into medication utilization, patient outcomes, and adherence to clinical protocols, facilitating evidence-based decision-making.Design Considerations:In designing an intelligent infusion system, severalfactors must be carefully considered to ensure efficacy, safety, and usability. These include:1. Reliability and Redundancy: Robust hardware and software redundancy mechanisms are essential to mitigate the risk of system failures or malfunctions, especially in critical care settings.2. Usability and User Interface Design: The user interface should be intuitive, ergonomic, and customizable to accommodate the diverse needs and preferences of healthcare providers. Human-centered design principles should be employed to enhance user satisfaction and minimize the likelihood of user errors.3. Interoperability and Standards Compliance: The system should adhere to industry standards and interoperability protocols to facilitate seamless integration with existing healthcare IT infrastructure and interoperability with other medical devices.4. Security and Privacy: Stringent security measuresmust be implemented to safeguard patient data and prevent unauthorized access or tampering. Encryption, authentication, and access control mechanisms are essential to protect the confidentiality and integrity of sensitive medical information.Conclusion:In conclusion, the design of an intelligent infusion system represents a convergence of engineering, healthcare, and information technology, aimed at enhancing patient safety, treatment efficacy, and clinical workflow efficiency. By leveraging advanced technologies such as automation, connectivity, and data analytics, these systems empower healthcare providers to deliver personalized, evidence-based care while minimizing the risk of medication errors and adverse events. As the healthcare landscape continues to evolve, intelligent infusion systems will play an increasingly integral role in optimizing patient outcomes and advancing the quality of care delivery.。
液位控制系统论文中英文资料对照外文翻译
液位控制系统论文中英文资料对照外文翻译The liquid level control system based ondde\matlab\simulinkProcess control is an important application field of automatic technology, it is to point to the level, temperature, flow control process variables, such as in metallurgy, machinery, chemical, electric power, etc can be widely used. Especially liquid level control technology in real life, played an important role in production, for example, the water supply, civil water tower if low water levels, can affect people's lives in water; Industrial enterprises with water, if the drainage water drainage or controlled properly or not, in relation to the workshop of condition; Boiler drum, if the control level boiler is too low, can make level boiler overheating, possible accident; Jing flow, liquid level control tower control accuracy and level of the craft can influence the quality of the products and the cost, etc. In these production field, are basically labor strength or the operation has certain risk nature of work, extremely prone to accidents caused by operating error, the losses, killing manufacturer. Visible, in actual production, liquid level control accuracy and control effects directly affect the factory production cost and economic benefit of safety coefficient. Even equipment So, in order to ensure safety, convenient operation, you have to research the development of a d v a n c e d l e v e l c o n t r o l m e t h o d s a n d s t r a t e g i e s.The graduation design topic is the liquid level control system based on dde\matlab\simulink\force control, Among them was controlled object for tank level, Communication mode for DDE communications , Matlab is mainly used in the simulation test ,And force control software used for modeling, This system mainly through combination of hardware and software device to achieve precise control of liquid level , In modern industry level control of important component, it influence upon production not allow to ignore, in order to ensure safety in production and the product quality and quantity, the level and perform effective control is very necessary, The following is a description of all aspects:一PID controllerA proportional–integral–derivative controller (PID controller) is a generic .control loop feedback mechanism widely used in industrial control systems.A PID controller attempts to correct the error between a measured process variable and a desired set point by calculating and then outputting a corrective action that can adjust the process accordingly.The PID controller calculation (algorithm) involves three separate parameters; the Proportional, the Integral and Derivative values. The Proportional value determines the reaction to the current error, the Integral determines the reaction based on the sum of recent errors and the Derivative determines the reaction to the rate at which the error has been changing. The weighted sum of these three actions is used to adjust the process via a control element such as the position of a control valve or the power supply of a heating element. By "tuning" the three constants in the PID controller algorithm the PID can provide control action designed for specific process requirements. The response of the controller can be described in terms of the responsiveness of the controller to an error, the degree to which the controller overshoots the set point and the degree of system oscillation. Note that the use of the PID algorithm for control does not guarantee optimal control of the system or system stability.Some applications may require using only one or two modes to provide the appropriate system control. This is achieved by setting the gain of undesired control outputs to zero. A PID controller will be called a PI, PD, P or I controller in the absence of the respective control actions. PI controllers are particularly common, since derivative action is very sensitive to measurement noise, and the absence of an integral value may prevent the system from reaching its target value due to the control action.1.Control loop basicsA familiar example of a control loop is the action taken to keep one's shower water at the ideal temperature, which typically involves the mixing of two process streams, cold and hot water. The person feels the water to estimate its temperature. Based on this measurement they perform a control action: use the cold water tap to adjust the process. The person would repeat this input-output control loop, adjusting the hot water flow until the process temperature stabilized at the desired value.Feeling the water temperature is taking a measurement of the process value or process variable (PV). The desired temperature is called the set point (SP). The output from the controller and input to the process (the tap position) is called the manipulated variable (MV). The difference between the measurement and the set point is the error (e), too hot or too cold and by how much. As a controller, one decides roughly how much to change the tap position (MV) after one determines the temperature (PV), and therefore the error. This first estimate is the equivalent of the proportional action of a PID controller. The integral action of a PID controller can be thought of as gradually adjusting the temperature when it is almost right. Derivative action can be thought of as noticing the water temperature is getting hotter or colder, and how fast, and taking that into account when deciding how to adjust the tap,Making a change that is too large when the error is small is equivalent to a high gain controller and will lead to overshoot. If the controller were to repeatedly make changes that were too large and repeatedly overshoot the target, this control loop would be termed unstable and the output would oscillate around the set point in either a constant, growing, or decaying sinusoid. A human would not do this because we are adaptive controllers, learning from the process history, but PID controllers do not have the ability to learn and must be set up correctly. Selecting the correct gains for effective control is known as tuning the controller.If a controller starts from a stable state at zero error (PV = SP), then further changes by the controller will be in response to changes in other measured or unmeasured inputs to the process that impact on the process, and hence on the PV. Variables that impact on the process other than the MV are known as disturbances and generally controllers are used to reject disturbances and/or implement set point changes. Changes in feed water temperature constitute a disturbance to the shower process.In theory, a controller can be used to control any process which has a measurable output (PV), a known ideal value for that output (SP) and an input to the process (MV) that will affect the relevant PV. Controllers are used in industry to regulate temperature, pressure, flow rate, chemical composition, speed and practically every other variable for which a measurement exists. Automobile cruise control is an example of a process which utilizes automated control.Due to their long history, simplicity, well grounded theory and simple setup and maintenance requirements, PID controllers are the controllers of choice for many ofthese applications.2.PID controller theoryNote: This section describes the ideal parallel or non-interacting form of the PID controller. For other forms please see the Section "Alternative notation and PID forms".The PID control scheme is named after its three correcting terms, whose sum constitutes the manipulated variable (MV). Hence:where Pout, Iout, and Dout are the contributions to the output from the PID controller from each of the three terms, as defined below.2.1. Proportional termThe proportional term makes a change to the output that is proportional to the current error value. The proportional response can be adjusted by multiplying the error by a constant Kp, called the proportional gain.The proportional term is given by:WherePout: Proportional outputKp: Proportional Gain, a tuning parametere: Error = SP − PVt: Time or instantaneous time (the present)Change of response for varying KpA high proportional gain results in a large change in the output for a given change in the error. If the proportional gain is too high, the system can become unstable (See the section on Loop Tuning). In contrast, a small gain results in a small output response to a large input error, and a less responsive (or sensitive) controller. If the proportional gain is too low, the control action may be too small when responding to system disturbances.In the absence of disturbances, pure proportional control will not settle at its target value, but will retain a steady state error that is a function of the proportional gain and the process gain. Despite the steady-state offset, both tuning theory and industrial practice indicate that it is the proportional term that should contribute the bulk of the output change.2.2.Integral termThe contribution from the integral term is proportional to both the magnitude of the error and the duration of the error. Summing the instantaneous error over time (integrating the error) gives the accumulated offset that should have been corrected previously. The accumulated error is then multiplied by the integral gain and added to the controller output. The magnitude of the contribution of the integral term to the overall control action is determined by the integral gain, Ki.The integral term is given by:Iout: Integral outputKi: Integral Gain, a tuning parametere: Error = SP − PVτ: Ti me in the past contributing to the integral responseThe integral term (when added to the proportional term) accelerates the movement of the process towards set point and eliminates the residual steady-state error that occurs with a proportional only controller. However, since the integral term is responding to accumulated errors from the past, it can cause the present value to overshoot the set point value (cross over the set point and then create a deviation in the other direction). For further notes regarding integral gain tuning and controller stability, see the section on loop tuning.2.3 Derivative termThe rate of change of the process error is calculated by determining the slope of the error over time (i.e. its first derivative with respect to time) and multiplying this rate of change by the derivative gain Kd. The magnitude of the contribution of the derivative term to the overall control action is termed the derivative gain, Kd.The derivative term is given by:Dout: Derivative outputKd: Derivative Gain, a tuning parametere: Error = SP − PVt: Time or instantaneous time (the present)The derivative term slows the rate of change of the controller output and this effect is most noticeable close to the controller setpoint. Hence, derivative control isused to reduce the magnitude of the overshoot produced by the integral component and improve the combined controller-process stability. However, differentiation of a signal amplifies noise and thus this term in the controller is highly sensitive to noise in the error term, and can cause a process to become unstable if the noise and the derivative gain are sufficiently large.2.4 SummaryThe output from the three terms, the proportional, the integral and the derivative terms are summed to calculate the output of the PID controller. Defining u(t) as the controller output, the final form of the PID algorithm is:and the tuning parameters areKp: Proportional Gain - Larger Kp typically means faster response since thelarger the error, the larger the Proportional term compensation. An excessively large proportional gain will lead to process instability and oscillation.Ki: Integral Gain - Larger Ki implies steady state errors are eliminated quicker. The trade-off is larger overshoot: any negative error integrated during transient response must be integrated away by positive error before we reach steady state.Kd: Derivative Gain - Larger Kd decreases overshoot, but slows down transient response and may lead to instability due to signal noise amplification in the differentiation of the error.二Matlab IntroductionThe MATLAB® environment is well suited to rapid prototyping and application development. The interactive programming environment, built-in math functions, toolboxes, editing and debugging tools, and deployment options all contribute to reducing your overall development time.By using the built-in math functions and the many specialized functions contained within our toolboxes, MATLAB can significantly reduce the time it takes you to develop prototypes. In addition to integrated editing and debugging tools, MATLAB provides a performance profiler to help you further optimize your code when programming in MATLAB.Building applications around complex algorithms and graphics is easier than everwith the GUI builder, GUIDE. GUIDE was redesigned in MATLAB 6 to save you time. It offers all the drag and drop interface options you would expect, such as text boxes, radio buttons, check boxes, listboxes, sliders, pop-up menus, frames and more.When you're ready to deploy your application, the MathWorks offers a number of different options that allow you to either convert or interface your MATLAB application to other environments including C/C++ and the Web. MATLAB is the most productive development environment for creating scientific and engineering applications because it offers powerful tools for every step in the process to reduce your overall development time.MATLAB is a high-performance language for technical computing. It integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation. Typical uses include• Math and computation• Algorithm development• Data acquisition• Modeling, simul ation, and prototyping• Data analysis, exploration, and visualization• Scientific and engineering graphics• Application development, including graphical user interface building三DDE IntroductionDynamic data exchange (DDE, Dynamic data exchange) is real-time exchange data between applications, it is the effective method between different applications to share data a agreement. DDE agreement is a kind of open, and language unrelated, based on protocol, it allows multiple applications to any human agreed format data exchange or command. It is application through Shared memory process of the communication between a form, also need not user intervention of good data exchange method.DDE applications can be divided into four types: client and server and client/server and the monitor. Conversation is a basic concept of DDE. DDE conversation happened in client applications and server application between. Customer is responsible for initializing and attendant session and control conversation flow, from the server application request data or services; The server applicationresponse client applications of data or service request. Client/server applications is both client applications and server application request, it can be and can provide information. Monitor application for debugging purposes. DDE applications can have multiple burst conversation, a service applications can also have multiple client applications, a client applications can to multiple requests data service applications, and an application can also act as client applications and services applications, when don't need the service application data or service, the customer will terminate session. DDE agreement must be synchronous control the news session, but in different application can switch between asynchronous session.DDE Application using the three layer identification system: Application name apply), theme name (from) and project name (Item). Application name (also called service name) is located at the top of the hierarchical structure, the service application registration for pointed out that particular DDE server application name, customer the application wants to establish session with the server application must be specified application name when this string marks; Name in every conversation topics is one and to identify logical data connection string, is the total classification, data it defines a server application conversation theme content, the server application can support one or more theme name; Project name identifies exchange unit of data string, furthermore confirm the conversation of detailed information, every theme name may have one or more project name. Example: for a database interface applications, will it supports database name as a theme name, and will all sorts of SQL commands as project name, because the server application can support one or more theme, and each theme name name may have one or more project name; So, when to change or reconstruct a conversation, just changing the subject name or project name can.四force control IntroductionForce control is Beijing SANWEI force control technology and "soft" control strategy software, real-time database and its management system, Web portal of tools and other products. These products are not isolated, and the force control is an application scale can free the system structure, the whole expansion force control system and its various products are made from some components procedures according to certain combinations and become. So this guide is not specifically targeted specific products separately describes the use of method, but the common use of all products introduced method. Force control configuration software is a can run on Windows 98/2000 / NT environment, and can run on Windows CE, DOSembedded environment control fu- nctions such as software modules. It USES function diagram way for users provide interface, possess and real-time database, graphical interface system and communication function.Force charged with monitoring configuration software is to the field production data acquisition and process control of specialized software, the biggest characteristic is to flexible "configuration mode" instead of programming approach to system integration, and it provides a good user interface and simple engineering development, as long as the realization method of software module of pre-settings simple "configuration", it can easily realization and complete monitoring layer each function, shorten the automation engineer system integration time, greatly improve the efficiency of integration.Force charged with monitoring configuration software is in the automatic control system monitoring layer level software platform, it can also and the domestic and foreign various industrial control network communication equipment manufacturer, it is ok with high reliable industrial controlling computer and network system integration, can achieve the purpose of the centralized management and monitoring, and can also be convenient to control layer and management for software and hardware to implement all the interface, with "third party" hardware and software systems for integration.The control strategy in the force control, an application in generator may have a lot of control strategy, but only one main strategy. The Lord, the Lord was first execution strategy calls. Other strategies strategy Strategy nested grade 4, namely for most 0 ~ 3 level, in this category 4, grade 3 0 level supreme, the lowest. Senior strategy can call low-level strategy, and low-level strategy can't call senior strategy. In addition to tier 3 most can have 127 strategy outside, other three grades maximum respectively are 255 strategy. Control strategy of by some basic function blocks, a function blocks represent an operation, algorithm or variables. Function blocks basic execution element is strategy, similar to an integrated circuit blocks, have several input and output, each input and output tube feet all have the only name.Force control control strategy is in control strategy, edited generated generators in automatic control strategy for strategies when inventory compiled, and check grammar mistakes, compile can also manually. Control strategy, and you can also call between if A strategy was B strategy calls, says A is B son strategy. A functional block can be repeated calls, each calls are automa- tically entitled to a name by. The executive order and function block in the position of screen on the upper left, position relevant function block, according to priority execution left after the first order under implementation.Force control control strategy of basic function blocks generator was divided into five categories: variable function blocks, mathematical operation function blocks, program control function blocks, logic function blocks function block and control algorithm.基于matlab\dde\simulink\力控的液位控制系统过程控制是自动技术的重要应用领域,它是指对液位、温度、流量等过程变量进行控制,在冶金、机械、化工、电力等方面得到了广泛应用。
液体点滴速度监控装置
题目一、悬挂运动控制系统一、任务设计一个电机控制系统,控制滑块竖板上运动。
在一个白色的底板上固定2个滑轮,2只电机(固定在板上)通过穿过滑轮的吊绳控制一个滑块在板上运动,运动范围为50cm×50cm。
滑块的形状不限,质量大于100克。
滑块上固定有浅色画笔,以便运动时能在板上画出运动轨迹。
板上标有间距为1cm的浅色坐标线(不同于画笔颜色),左下角为直角坐标原点, 示意图1所示。
图1 电机控制系统二、要求1、基本要求:(1)控制系统能够通过键盘或其他方式任意设定坐标点参数;(2)控制滑块在50cm×50cm的范围内作自行设定的运动,运动轨迹长度不小于50cm,滑块在运动时能够在板上画出运动轨迹,限150秒内完成;(3)控制滑块作圆心可任意设定、直径为30cm的圆周运动,限200秒内完成;(4)滑块从左下角坐标原点出发,在100秒内到达设定的一个坐标点(两点间直线距离不小于40cm)。
2、发挥部分(1)能够显示滑块中画笔所在位置的坐标;(2)控制滑块沿板上标出的任意曲线运动(见示意图),曲线在测试时现场标出,线宽1.5cm~1.8cm,总长度约50cm,颜色为黑色;曲线的前一部分是连续的,长约30cm;后一部分是两段总长约20cm的间断线段,间断距离不大于1cm;沿连续曲线运动限定在150秒内完成,沿间断曲线运动限定在300秒内完成;(3)控制滑块在板上绘出一个数字字符,如“2”、“3”、“5”“6”、“8”、“9”等,限定在300秒内完成;(4)其他。
三、评分标准四、说明(1)滑块的运动轨迹以画笔画出的痕迹为准,应尽量使滑块运动轨迹与预期轨迹吻合,同时尽量缩短运动时间;(2)若在某项测试中运动超过限定的时间,该项目不得分;(3)运动轨迹与预期轨迹之间的偏差超过4cm时,该项目不得分;(4)在基本要求(3)、(4)和发挥部分(2)、(3)中,滑块开始运动前,允许手动将滑块定位;开始运动后,不能再人为干预滑块运动。
基于单片机的输液滴速控制系统设计 -毕业论文
毕业设计题目:基于单片机的输液滴速控制系统设计系:电气与信息与工程系专业:自动化班级:XX学号:XX学生姓名:XX导师姓名:XX完成日期:20XX.XX.XX毕业设计(论文)任务书设计(论文)题目:基于单片机的输液滴速控制系统设计姓名XX系部电气与信息工程系专业自动化班级XX学号XX指导老师XX 职称高级实验师教研室主任XX本任务及要求:以单片机为核心,设计一个液体点滴速度监测与控制的系统,能检测点滴速度,控制点滴速度,并能发出报警信号。
系统采用主站控制从站的有线监控系统方式实现医疗输液过程的群控。
设计的主要内容是完成群控系统控制装置的软、硬件设计及调试。
设计包括:1、总体方案的确定;2、单片机的选择;3、各模块电路的设计;4、软件设计;5、各模块调试;6、编写设计说明书等。
一、进度安排及完成时间:1、第二周:明确课题任务及要求,搜集课题所需资料,掌握资料查阅方法,了解本课题研究现状、存在问题及研究的实际意义。
2、第三周至第四周:查阅相关资料,自学相关内容,确定课题总体方案,明确课题任务,确定个人研究重点,做好文献综述、开题报告。
3、第七周至第十周:根据自己研究的方向,确定自己的总体设计方案,设计硬件总体模块图及软件模块图。
4、第十一周至第十三周:完成本系统的软、硬件设计及调试。
5、第十四周至第十七周:整理资料,撰写毕业设计论文。
6、第十八周答辩。
目录摘要 (1)Abstract (2)第1章单片机及多单片机应用系统 (1)1.1单片机的概述 (1)1.2单片机的特点与应用 (1)1.3MCS-51单片机的基本组成 (3)1.3.1MCS-51单片机的内部结构及管脚功能 (3)1.3.2 单片机最小系统构成 (5)1.4多单片机控制系统的概述 (7)1.5单片机在输液点滴的研究现状 (8)1.6 课题的主要内容及发展前景 (9)1.6.1 课题的主要内容 (9)1.6.2 课题的发展现状与前景展望 (9)第2章系统方案确定 (11)2.1系统设计要求 (11)2.2系统设计总体方案 (12)2.3系统各模块方案选择 (12)2.3.1单片机型号的选择 (12)2.3.2点滴速度检测和液面检测方案的论证与比较 (13)2.3.3滴速控制方案的论证与比较 (13)2.3.4电机控制算法的选择 (14)2.3.5键盘、显示及声光报警部分 (15)2.3.6主从站协议部分 (15)第3章硬件设计 (16)3.1系统硬件设计 (16)3.2主站及通信网络的设计 (17)3.2.1主站硬件电路设计 (17)3.2.2通信网络设计 (20)3.3从站电路设计 (21)3.3.1滴速检测与液面检测电路设计 (21)3.3.2键盘显示电路设计 (22)3.3.3步进电机驱动电路设计 (24)3.3.4报警电路和通讯网络设计 (26)第4章软件设计 (27)4.1主站软件设计 (27)4.1.1主站总体流程设计 (27)4.1.2键盘显示程序设计 (27)4.1.3 报警程序设计 (28)4.1.4与从站通讯 (29)4.2从站软件设计 (30)4.2.1系统定义和总体流程 (30)4.2.2滴速和液面判断及报警 (32)4.2.3滴速控制程序设计 (33)4.2.4键盘及显示程序设计 (34)4.2.5与主站通信 (35)第5章系统调试、抗干扰及制板 (36)5.1系统调试 (36)5.2单片机应用系统中常见的干扰现象及影响 (36)5.2.1常用硬件抗干扰与保护措施 (37)5.2.2软件抗干扰 (37)5.3PCB板设计 (37)结束语 (38)参考文献 (39)致谢 (40)附录 (41)附录A主站程序 (41)附录B从站程序 (48)附录C主站硬件电路总图 (58)附录D从站硬件电路总图 (59)附表E3D效果图 (60)基于单片机的输液滴速控制系统的设计摘要:近年来随着科技的飞速发展,单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。
基于单片机的液体点滴控制系统设计说明书论文
南京工程学院毕业设计说明书(论文)院系:计算机工程学院专业:电子信息科学与技术题目:基于单片机的液体点滴控制系统设计2013年5 月南京毕业设计说明书(论文)中文摘要毕业设计说明书(论文)外文摘要目录前言1第一章背景知识介绍41.1光电传感器介绍41.2单片机介绍51.3P OTEL99介绍71.4K EIL介绍71.5P ROTUES介绍8第二章方案比较与论证92.1方案一102.2方案二102.3方案比较与选择10第三章液体点滴速度监控装置的理论分析与参数计算113.1液体检测113.2影响测量精度的因素分析133.3系统设计思路13第四章液体点滴速度监控装置硬件电路设计144.1系统硬件框图144.2单片机主机系统电路154.3按键输入电路194.4液晶显示204.5报警电路244.6光电传感器电路24第五章液体点滴速度监控装置系统软件设计265.1系统主程序流程图265.2初始化程序265.3中断程序275.4按键程序295.5显示程序315.6延时子程序33第六章液体点滴速度监控装置仿真与实现346.1软件仿真346.2硬件实现356.3测试结果与误差分析38 第七章优化与改进407.1系统的问题407.2系统的改进方法41 参考文献41结束语42致43附录一中英文技术资料翻译44附录二:程序清单56附录三:PROTEL电路图63附录四:PROTEUS仿真图64附录五:基于单片机的液体点滴控制系统实物图65前言问题的提出随着现在社会医疗水平的提高,医院的的智能化水平也越来越高,很多医疗设备都需要无人照看或者说需要照看的精力变少。
在打点滴的时候点滴没了需要与时告诉医生处理,但是对于一些昏迷的病人就不能即时通知医生来处理,这样就可能导致病人的血液回流进滴管,造成不必要的伤害,同时对于意外状况点滴停止输液了也需要与时报警。
另外对于点滴的输液速度也需要加以监控用来针对不同病人或者不同人群。
本文提出的基于单片机的液体点滴控制系统,只需要操作仪器,便可以对点滴速度进行监控,以与对点滴过程的异常状况进行报警,这装置对输液速度的监控也能进行准确监控。
翻译-中文医用输液监控和保护系统
基于无线通信技术的医用输液监测和保护系统新菱文郑州航空工业管理学院,郑州450015,中国摘要医用输液监控和保护系统是基于光电显示器,调制解调,单片机(SCM)和无线通信,信号等输液用红外光电转换特性收集技术设计的。
单片机AT89C51的监测数据处理和控制领域输液速度和控制无线收发器nRF905的无线通信系统构成来传输数据。
通过串行接口MAX487连接各控制节点的主控制器,上位机可以监视和控制每个实时节点和更新控制计划。
实验表明,输液速度监控误差率小于每分钟是2滴,稳定时间快,有效地完成智能输液系统监控和报警。
1 简介输液是传统医疗护理方法,有效地治疗疾病之一。
在医院治疗期间病人输液,输液滴速度需要合适的选择是根据输液药物及病人的情况。
[1]目前,下降速度控制大多数采用的手表秒针计数下降数量,控制它转动滑轮输液瓶。
由于手工操作,不下降速度监测精度,这是不易发现,当出现针封闭,下降速度异常和输液结束等[2]本文介绍了一种分布式监控网络等对红外线监控技术,无线通信技术的基础上,完成自动监控和调整输液滴速,实现监测滴瓶液位。
并提供方便的医疗输液护士工作。
2 系统组成及原理系统由上位机,无线通信模块,和许多外地监测设备等的监控节点的数量由显示器领域决定。
红外传感器的每个组由红外线发射器和接收器。
我们既解决红外传感器监测区域,实现药品点滴瓶和下降的速度落桶液位的一面。
它的工作原理是:红外照明二极管发出的红外光,通过光线照射墨菲管光电晶体管。
和光信号传送到电信号的光电晶体管。
在经过下跌,红外光路不通,光电晶体管输出高电平。
相反,它输出电平低。
这种形状的例行过程脉冲信号序列。
滴瓶液位监控原理是下降速度,不同的是,药液用完时,接收信号的跳相同。
并声光报警启动。
执行设备由外地键盘设定,声光报警电路,显示电路的速度下降,下降速度和控制电路等单片机主要进行计算和信息处理等领域的执行和IT控制设备,以实现下降速度变化。
液体点滴速度监控系统设计
液体点滴速度监控系统设计摘要:本设计研制了一种液体点滴速度监控系统。
该系统以单片机为核心,可以实现自动检测并显示液体点滴的速度、用键盘设定点滴速度和对异常情况进行声光报警等功能。
采用红外光电传感器检测液位信号,通过硬件滤波和保护装置消除杂散光干扰。
并能通过上位机与下位机之间的串行通信,实现对多台下位机进行远程监控与管理。
该系统工作稳定、操作简便,能有效的解决目前简易液体点滴装置和输液泵之间的空缺,在医疗卫生领域中具有广泛的应用前景。
关键词:点滴速度,单片机,串行通信,步进电机Abstract:The monitoring system for the transfusion was developed with microcontroller unit used as a core. The system realizes auto detection and display of the drip velocity. The drip velocity can be set by keyboard and the abnormal event alarm has achieved. The signal of the liquid level was detected by the infrared photoelectric sensor, and the interference of abnormal light was eliminated by the hardware filter and the protect device. In addition, the remote monitoring and managing of several lower computers was achieved by serial communication. The system is stable in performance and simple in operation. The system has bright application future in medical treatment field.Keywords:Dropping speed, Microcontroller unit, Serial communication, Stepping motor目录1前言 (1)1.1 设计背景 (1)1.2 设计目标 (1)1.3 技术路线 (1)1.4 实施计划 (2)1.5 必备条件 (2)2总体方案设计 (3)2.1 方案比较 (4)2.1.1 滴速检测方案 (4)2.1.2 液位检测方案 (4)2.1.3 滴速控制方案 (4)2.1.4 电机选择方案 (5)2.1.5 点滴速度计算方案 (5)3单元模块设计 (7)3.1 各单元模块功能介绍及电路设计 (7)3.1.1 滴速检测模块设计 (7)3.1.2 液位检测模块设计 (7)3.1.3 电机驱动模块设计 (8)3.1.4 声光报警模块设计 (10)3.1.5 键盘模块设计 (10)3.1.6 显示模块设计 (11)3.1.7 通信模块设计 (12)3.1.8 中央控制模块设计 (13)3.1.9 电源模块设计 (14)3.2 电路参数的计算及元器件的选择 (14)3.2.1 时钟电路 (15)3.2.2 复位电路 (15)3.3 功能器件的介绍 (15)3.3.1 AT89C51介绍 (16)3.3.2 8255A介绍 (18)4软件设计 (24)4.1 软件设计所用工具 (24)4.2 软件结构图 (24)4.3 软件流程框图 (25)4.3.1 上位机软件流程框图 (25)4.3.2 下位机软件流程框图 (26)4.3.3 上、下位机通信软件流程框图 (28)5系统调试 (31)6系统功能、指标参数 (38)6.1 系统能实现的功能 (38)6.2 系统指标参数测试 (38)6.2.1 点滴速度测试 (38)6.2.2 报警功能测试 (39)6.3 系统功能及指标参数分析 (39)7结论 (40)8总结与体会 (42)9谢辞 (43)10参考文献 (44)附1 系统的原理电路图 (45)附2 外文文献翻译-译文 (46)附3 外文文献翻译-原文 (56)1前言随着医院管理系统趋向于电子化、网络化,利用单片机与现代控制技术提高医疗器械的自动化程度成为目前主要应用方向之一。
液体点滴速度监控系统的设计
液体点滴速度监控系统的设计该系统主要由硬件和软件两部分组成。
硬件部分包括传感器、控制器、显示器和报警器;软件部分则负责数据处理和显示。
首先,我们需要选择适合的流速传感器。
传感器可以通过各种方式测量流体的速度,比如利用涡街传感器、超声波传感器或者压力传感器。
根据实际需要以及成本等因素,选择合适的传感器。
在液体点滴管路中添加一个流速传感器,传感器会通过传感器信号转换为电信号,并输入到控制器中进行处理。
控制器会对传感器获得的电信号进行放大、滤波等处理,得到准确的液体流速数据。
为了实现实时监测,监控系统需要进行数据处理和显示。
控制器会将处理好的流速数据传输到计算机或者显示器上,并显示在屏幕上。
同时,系统可以设置不同的报警阈值,当液体的流速超过或者低于设定的范围时,报警器可以发出声音或者进行其他形式的报警,提醒医护人员进行处理。
为了确保系统的准确性和稳定性,我们需要进行校准和稳定性测试。
校准可以通过将已知流速的溶液通过系统,与测量值进行比对来实现。
稳定性测试可以通过长时间的运行和监测,检测系统的稳定性和精度。
设计一个完善的液体点滴速度监控系统还需要考虑以下几个方面:1.系统的可靠性和稳定性:在设计和选择硬件设备时,应注意设备的质量和稳定性。
同时,要保证系统能够长时间稳定运行,以便实时监测液体的流速。
2.软件的易用性:设计一个用户友好的界面和操作系统,使医护人员能够方便地使用和操作该系统。
对于不同的用户,可以提供不同的操作模式和权限。
3.数据的存储和分析:系统应具备将数据存储和分析的功能,以便日后查看和分析。
可以将数据存储在本地或者云端,以便随时调取。
4.系统的可拓展性:系统应具备可拓展的功能,比如可以与其他设备进行数据交互、或者可以设置多个液体点滴的监控等。
综上所述,液体点滴速度监控系统是一种用于监测和保障患者安全的设备。
通过选择合适的硬件和软件,进行适当的校准和测试,可以设计出一个高度可靠和准确的液体点滴速度监控系统。
基于89C51的液体点滴速度监控系统设计 电子技术文集
基于89C51的液体点滴速度监控系统设计1. 引言液体点滴速度控制系统对于大型医院来说是一套能够提高效率和服务质量的控制设备,特别是远程监控功能能使护士站对于病人的点滴状况进行实时监视,并可根据病人状态调节点滴速度。
目前市场上点滴控制系统不少,本文的设计点在于低成本,仅使用最廉价89C51 以及普通的元件实现整套系统。
2. 系统设计要求2.1.从站设计要求A.在滴斗处检测点滴速度,并使用数显装置动态显示点滴速度(滴/分)。
B.通过改变点滴瓶高度控制点滴速度,点滴速度可用键盘设定并显示,设定范围为20—150(滴/分),控制误差范围为设定值+/-10%+/-1 滴。
C.系统调整时间lt;=3 分钟。
D.当点滴瓶里的液面低于警戒值时,能发出报警信号2.2.系统通讯设计要求设计并制作一个由主站控制16 个从站的有线监控系统A.主站功能:具有定点和巡回检测两种方式;可显示从站传输过来的从站号和点滴速度;在巡回检测时,住站能任意设定要查询的从站数量,从站号和各从站的点滴速度;受到从站发来的报警信号后,能声光报警并显示相应的从站号;可用手动方式解除报警状态。
B.从站功能:能输出从站号,点滴速度和报警信号;从站号和点滴速度可以任意设定;接收主站设定的点滴速度信息并显示;对异常情况进行报警。
C.主站和从站间的通信方式不限,通信协议自定,但尽量减少信号传输的数量。
3. 系统设计框图图1 系统设计图4. 硬件设计方案与论证4.1.点滴速度检测方案本文使用槽型光电耦合器。
由KODENSHI 公司的photointerrupterLG-207 的内置的放大器和施密特集成电路和LITEON 公司的加指示灯。
在槽型光耦输出信号口接发光管。
因为该耦合器输出的是经过整形的脉冲信号,单片机很容易就能读到,该脉冲同时驱动的指示发光管,能很直观清晰的了解水滴下落的检测情况,所以此装置十分适合用于水滴滴速的检测。
图2 槽型光耦电路原理图4.2.液面检测报警方案由发光二级管和光电三级管组成的光电传感器。
单片机液体点滴速度控制装置设计
单片机液体点滴速度控制装置设计
本文设计一种基于单片机的点滴速度控制装置,可以根据设定的
参数控制点滴的速度。
它通过单片机调节步进电机的转速,借以控制
点滴速度。
单片机环境中,可以使用用户数据存储,实现温度,流动
量等外部参数设置。
这种装置可以实现在医疗检查中更准确精准的点滴。
该装置具有自动调节功能,可以根据实时的流量更新单片机的参
数设置,以得到更准确的点滴速度控制结果。
采用工控技术和单片机
技术,装置可以满足全天候的操作要求。
此外,装置还可以通过安全
性能提升技术,为病人注入精确控制的点滴药物滴加提供安全保障。
技术方案上,该装置将微控器与半导体器件有机结合,组成控制逻辑
电路进行智能控制,由此实现简单、经济、安全、高效的目的。
此外,它还采用温度保护功能,及时调节滴量,以防止滴完余温对人体的损害。
一种医用液体点滴速度监控系统的设计
J OUR NAL UⅪ I T T OF W NS I UTE OF TE CHN0LOGY
VO . .1 19 No
F b2 1 e.0 0
一
种 医用 液体 点滴 速 度监 控 系 统 的设计
也使现代电子产 品性能进一步提高。生产生活的
自动化程 度 越 来越 高 , 自动 化 控 制 的 程 度 越 来 越 高, 功能越来 越人 性 化 , 这些 自动 化 的产 品 已经 渗 透 到生产生 活 的每 个方 面。液 体 点滴 速 度监 控 装
置在 这个 大背景下 就应运 而生 。
( c aia adEetcl ntue Wu i ntueo eh oo y Wu i 2 4 2 , hn ) Mehncl n lc ia Istt, x Istt f c n lg , x r i i T 1 1 1 C ia
Absr c :The d sg s st e Si g e c i c o o ue o tolp o r m o i e t d m e s r ta t e i n u e h n l- h p Mi r c mp trc n r r g a c mb n d wih mo e s n o t c noo y,e e to i u o to r d cs,c mb nng t eba i u ci n fma y ee to i e i e e h lg lcr n c a t mai n p o u t o i i h scf n to so n lc n c d v c s:U r - sn e mi r c mp trd ai g wi h e o t n d t e e dng t e daa t e e e u i g a e c e ig t co o u e e ln t t e s ns rdaa,a n s n i t o t x c tn g n is h h h h h i r e o a h e e a t mai o to u p e .Th y tm e o e u r i u d so a ebote o ri - n o d rt c i v u o tc c n r lp r os s e s se do sn tr q ie lq i tr g t fa t l i f c a e ltme mo io n ilr a—i n t r g,wh c o s me e tn ,r d c s t e hu n wo k o d,r la e r i g h u s i ih t o x e t e u e h ma r l a ee s swo k n o r , i r ve r i g e ce c mp o s wo k n f i n y. i Ke r y wo ds:d o p n a e;tp rmo o ;p o o lcrc s n o ; igl- h p m c o o r p i g r t se pe t r h t e e ti e s r sn e c i i r c mpue tr
基于单片机系统的液体点滴速度监控装置的设计
基于单片机系统的液体点滴速度监控装置的设计滕春阳;孙长江;随顺科【期刊名称】《信息安全与技术》【年(卷),期】2011(000)008【摘要】This system design AT89S52 SCM is as the core,with the keyboard and infrared sensor system in 1602 as input,liquid crystal display and motor as the output of the system of intelligent control and testing system.Infusion The system consists of water droplets speed test system,water speed control system,display device and single-chip microcomputer system,wireless transmission system,the keyboard and the alarm system components,etc.%本系统设计是以AT89S52单片机为核心,以键盘及红外对射式传感器作为输入系统,以1602液晶显示屏及电动机作为输出系统的智能化输液控制及检测系统。
该系统主要由水滴速度测试系统、水速控制系统、显示装置、单片机系统、无线传输系统、键盘和报警等系统组成。
【总页数】3页(P81-83)【作者】滕春阳;孙长江;随顺科【作者单位】中国矿业大学信息与电气工程学院,江苏徐州221116;中国矿业大学信息与电气工程学院,江苏徐州221116;中国矿业大学信息与电气工程学院,江苏徐州221116【正文语种】中文【中图分类】TP277【相关文献】1.基于单片机的液体点滴速度监控装置设计 [J], 丛德辉2.基于单片机的液体点滴速度监控装置设计 [J], 陈珏晓;程显佳;杨雪莲;薛建飞;董鑫3.基于89C51的液体点滴速度监控系统设计 [J], 汪国桢4.基于单片机系统的液体点滴速度监控装置设计 [J], 宋雪丽;王虎林;万金领5.基于单片机的液体点滴速度监测与控制设计 [J], 李刚因版权原因,仅展示原文概要,查看原文内容请购买。
基于单片机系统的液体点滴速度监控装置设计(1)
分为投光器和受光器两部分, 两者光轴重合在同一直 线上。工作时, 投光器发出调制光, 被受光器接收, 变为 电信号。 当被测体进入检测区时, 光被遮挡, 受光器无 光可受, 传感器输出状态改变。该传感器因为检测无接
一根 I O 接口线, 每个 I O 接口的工作状态互不影 响, 此类键盘采用端口直接扫描方式。缺点是当按键较
滴速度。 由此方案所选定的装置也可用于判断液位是
否到达警戒线。 1. 2. 3 键盘方案的选择
图 3 三相步进电动机与M CS251 单片机的接口电路
红外传感部分选用对射式红外传感器, 该传感器
方案一: 采用矩阵式键盘, 采用矩阵式行列扫描方 式, 优点是当按键较多时可降低占用单片机的 I O 接 口数目, 缺点为电路复杂且会加大编程难度。
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
·44· (总 334)
基于单片机系统的液体点滴速度监控装置设计
2007 年
能, 如果要求准确停在一个位置, 其闭环算法较复杂。 计简单, 且编程及其简单。综合考虑以上两种方案, 由
whentheheightofwa2terlevelisdecreasedtothealarmingvalue23cmitgivesthealarmsignalatthesametimekeywordsdroppingspeedsteppingenginemcu目前各类医院中所使用的静脉输液器都是悬挂在病人的身体水平线以上才能输液这种传统的输液设施的输液速度难以准确控制这对特护病人和对输液速度有较严格要求的病人是不方便的也会加重医护人员的工作强度
【完整版】液体点滴速度监控系统的设计毕业论文设计
液体滴落检测与计数摘要输液是医院常用的治疗手段,传统输液过程中存在着输液速度不精确、需要人工监护等弊端。
本文的目标就是设计一种输液监控系统以解决此问题。
本文设计的液体点滴速度监控装置系统,实现了对输液速度的检测与控制,实现了对储液瓶中液面高度的检测报警,并且动态显示输液速度。
使用者可以通过按键设置输液速度,系统将自动对输液速度进行控制。
当输液结束或输液速度发生异常时,使用发光二极管和蜂鸣器进行报警,继而实现对输液瓶的控制。
系统以80C52单片机为核心,实现对输液瓶控制及液体点滴速度的显示和液体点滴速度的键盘控制;通过外围电路检测储液瓶中液面高度和液体点滴速度;通过实现对步进电机控制以实现对储液瓶高低的控制,来实现控制液体点滴速度。
在整体方案设计中,在保证设计系统能达到的题目要求的精度和稳定度的前提下,考虑到系统的轻便性、实用性、可靠性,经济性,对电路系统进行了优化。
关键词:点滴速度;光电传感器;步进电机;单片机目录任务与要求 (5)一、绪论 (5)1.1课题背景 (5)1.2课题研究的目的和意义 (6)1.3课题的思路及主要框图结构 (6)二、方案比较与论证 (7)2.1控制方案的比较 (7)2.2点滴检测方案比较 (7)2.3液位监测方案比较 (7)2.4速度控制方案 (8)2.5电机的选择 (8)三、系统的硬件设计 (9)3.1系统的硬件设计 (9)3.2.1中央处理单元 (9)3.2.2点滴信号检测单元 (10)3.2.3点滴信号的比较、滤波、整形电路 (11)3.2.4液位检测单元 (11)3.2.5检测电路的抗干扰措施 (12)3.2.6声光报警电路 (13)3.2.7步进电机驱动单元(高度调整单元) (14)3.2.8键盘单元 (14)3.2.9数码管显示单元 (16)3.3芯片时钟电路 (17)3.5复位单元 (17)3.6供电单元 (18)四、液体点滴监控系统的软件设计 (19)4.1各模块软件设计 (19)4.1.1主控模块设计 (19)4.1.2点滴速度测量模块设计 (19)4.1.3电机控制算法 (21)4.1.3.1电机控制原理 (21)4.1.3.2点滴速度控制 (21)4.1.5报警模块设计 (23)4.2.2输入键盘模块的设计 (24)4.4.3数码管显示模块的设计 (24)参考文献 (27)附录 (28)液体滴落检测与计数难度系数:1.0一、任务医用吊瓶注射如图所示,需要检测液体滴落速度和数量。
液体点滴速度监控系统的设计
毕业设计(论文)液体点滴速度监控系统的设计系别自动化工程系专业自动化班级50603学号5060331姓名刘营营指导教师顾德英教授2010 年 6 月17 日液体点滴速度监控系统的设计摘要随着现代科技的发展,自动化设备已经应用到我们生活中的各个领域,然而传统的医疗输液设备效率较低,因此我们有必要提高医疗设备的自动化水平,给护士输液工作提供方便,给输液病人提供可靠的安全保证。
因此本文本着适用、可靠、操作方便、节省劳力、降低劳动强度、提高操作准确性的原则,利用SPCE061A凌阳单片机组成了一个主从局域网络,实现了对液体点滴速度的自动监测与调节,并能实时监测剩余药液。
该控制系统由水滴速度检测环节、水滴速度控制环节、显示装置、单片机系统、键盘和报警等系统组成。
本文硬件部分用SPCE061A单片机,传感器,直流伺服电动机,键盘,数码管等实现。
软件程序使用C语言与汇编语言共同编写。
通过软硬件的结合,较好的实现了控制系统的控制要求。
此单片机控制系统具有自动化程度高、成本低、体积小、控制精确等优点,有很好的经济效益和广阔的发展前景。
关键词:液体点滴速度,模糊控制,直流伺服电动机,SPCE061A单片机The design for the liquid drop speed monitoring systemAuthor:liuyingyingTutor:gudeyingAbstractWith the development of modern science and technology,automation equipment has bee- n applied in all areas of our lives,however,the devices of traditional medical transfusion are more efficient.Therefore, we need to improve the automation level of medical equipment, to facilitate the work of nurses and provide guarantees that are reliable and security for partients. This article depends on the principle tihat is reliable,easy to operate, saving labor,reducing la- bor intensity and improving the accuracy of operation, formming a master-local area network used by single chip of Sunplus of SPCE061A , which achieve automatic monitoring and regu- lation to the liquid dropping speed and monitoring the remaining liquid constantly.The control system consists of liquid dropping speed detection tache, water dropping speed control tache, display devices, microcontroller systems, keyboard and alarm system. This hardware implem- entation include SPCE061A MCU , sensors, DC servo motors,keyboards, digital tubes and so on. Software program use C language and assembly language co-written.Through a combinat- ion of hardware and software,to achieve a better control of the control system requirements.T- his single chip control system has the merit of high degree of automation, low cost, small size, precise control and so on.The system has good economic and broad prospects for developme- nt.Keywords:liquid dropping speed, sensor,DC servo motor, SPCE061A single chip目录1 绪论 (1)1.1 课题研究背景及意义 (1)1.1.1 课题研究背景 (1)1.1.2 课题研究意义 (2)1.2 凌阳十六位单片机的应用及特点 (2)1.2.1 凌阳单片机总述 (2)1.2.2 凌阳单片机的性能 (3)1.2.3 SPCE061A开发方法 (4)1.2.4 凌阳单片机应用领域 (4)1.3 本文主要讨论的内容及总体安排 (4)2 方案对比与论证 (6)2.1 液体点滴控制系统的总体方案 (6)2.2 方案的对比与确定 (7)2.2.1 从站控制模块 (7)2.2.2 点滴速度检测模块 (8)2.2.3 液位检测模块 (9)2.2.4 电机模块 (9)2.2.5 电机驱动模块 (10)2.2.6 键盘和显示模块 (10)2.2.7 通讯模块 (10)2.2.8 声光报警 (10)2.3 方案算法 (10)2.3.1 闭环系统 (11)2.3.2 算法的选择 (11)2.3.3 模糊控制 (11)3系统硬件设计 (16)3.1 点滴速度检测模块 (16)3.2 储液瓶液位高度检测模块 (16)3.3 电机控制模块 (16)3.4 键盘设置模块 (17)3.5 数码管显示模块 (18)3.6 通讯模块 (19)3.7 声光报警 (19)4系统软件设计 (21)4.1 凌阳单片机的编程环境 (21)4.2 I/O分配 (21)4.3 从站系统程序 (21)4.3.1 从站程序流程图 (21)4.3.2 从站各部分实现方法 (22)4.4 主站系统程序 (28)4.4.1 主站系统性能分析 (28)4.4.2 主站程序流程图 (29)4.4.3 主站各部分实现方法 (29)4.5 软件算法的实现 (30)5实验结果及分析 (33)5.1 测试仪器及环境 (33)5.2 测试方法 (33)5.3 误差产生的原因分析 (34)结论 (35)致谢 (36)参考文献 (37)附录 (38)附录A (38)附录B (51)1 绪论1.1 课题研究背景及意义1.1.1 课题研究背景输液又名打点滴或者挂水。
输液速度监控器的设计
摘要在人工点滴输液方式中,对输液速度的测量和控制很不方便,基于此,提出一种新型智能输液速度测控装置。
该装置采用红外光电传感器实现了自动检测并显示液体的点滴速度、用键盘设定点滴速度和对异常情况进行声光报警等功能。
本系统采用红外光电传感器检测液位信号,通过硬件滤波和保护装置消除杂散光干扰,实现输液速度的计算和显示。
该系统工作稳定、响应速度快、操作简便,在医疗卫生领域中具有广泛的应用前景。
关键词:输液速度;自动控制;单片机;报警AbstractTo overcome the shortages of fluid measurement and speed control of transfusion in the therapy,an intelli-gent speed control system for transfusion is present.The device is the use of infrared photoelectric sensor to achievethe measurement of droplet and the liquid level,and use a total collector capacitance amplifier circuit,filtering circultand hysteresis comparision circuit in order to realize signal processing.The system is able to achieve the fluid speed of calculation and display.As well as forced alarm at the process of transfusion and automatic alarm at the end of transfusion.The main structure is of character novel design and small size easy to operate. the system has the following advantages,such as less power consumption and safe and reliable usage.Key words:infusion rate;Auto-detection and auto-control;single-chip microcomputer;alarm目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 国内外智能点滴输液控制系统的研究现状 (1)1.2 本设计所要完成的主要工作 (1)第2章系统硬件方案的设计 (3)2.1 系统硬件组成 (3)2.2系统部分硬件分析 (3)2.3系统组成模块分析 (7)2.4滴速检测模块 (7)2.4.1液滴探测原理 (7)2.4.2液滴滴速检测电路 (9)2.5液面检测 (11)2.6键盘及显示模块 (11)2.7 步进电机控制模块 (14)2.7.1 步进电机控制电路 (14)2.7.2电机控制的执行结构 (15)2.7.3系统任务调度 (16)2.8报警电路 (16)第3章系统的软件设计与实现 (18)3.1软件总体设计 (18)3.1.1软件计数器的设计 (18)3.2软件各模块的设计 (19)3.2.1键盘识别及扫描模块 (19)3.2.2点滴速度检测模块 (20)3.2.3 报警模块 (21)3.2.4步进电机控制模块 (21)第4章结论 (23)参考文献 (24)结束语 (25)致谢 (26)附录Ⅰ程序清单 (27)附录Ⅱ键盘及显示电路控制图 (35)第1章绪论1.1国内外智能点滴输液控制系统的研究现状国外对智能型输液装置的研制较早,如日本、美国和德国等国家上世纪80年代末就进行了智能型输液装置的研制,现在市场上流行的大多是国外产品,类型多样,性能较好,如日本JMS株式会社的OT-601型输液泵(控制精度为10)和SP-500型注射泵,美国、德国、以色列等国家也有性能较好的产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Design of Realizing the Function of Spot Speed Monitoring and Control Based on SCM Technology CHEN Wu-lin1,YAN Jian-sheng1,HUANG Tian-c AN Ling-hui21Department of Electric Engineering, hen1,WANG Jian-qiang1,TI Ordnance Engineering College, Shijiazhuang 050003, China; Phone :+86 031197994743E-Mail: cwl@2Shenzhong middle school , HeBei 053800, ChinaAbstract: With a single-chip microcopy (SCM) as its core and assists with some electrical wires, using the infrared technology and so on, this instrument have realized the function of spot speed monitoring and control. To make the system more useful, we add figure-keyboard to it, with which people can set the function of spot speed by ones wish. Now, based on the communication among the SCM(s), consists of a SCM-internet by which one major module can control several small modules. Monitoring and controlling the function of spot speed is the major utilize of the small modules. Besides, emergency-ring, speed setting up and figure displaying and those shall realize the rest. This system monitors the function of spot speed and setting up emergency-ring line by using the infrared transmission. Its resisting interference is so strong that the monitor-precision shall rise greatly. The advantage rich resources of SCM are exploring completely which make function of the system stronger Key words: SCM; the Infrared Transmission.I. IntroductionIn medical, it requests the speed of a bit of transfusion to control in certain scope. Traditional transfusion installation in transfusion course, accompanying the liquid unceasing decreasing in transfusion bottle and the transfusion’s speed of a bit unceasing reduction, cannot satisfy medical requirement. This design uses the infrared check installation testing speed of a bit, transformation it to digital signal and inputs SCM. SCM shows it using numberal pipe and at the same time SCM controls walking electrical machineaccording to design, to make the speed control of a bit in the scope that enactments in advance. To increase systematic practicality, from digital keyboard of SCM, user can communicate according to the network and enactment the drop speed of set point by one’s need, can realize transfusion a bit of several wards from control system. It can replace transfusion with existing hospital by the liquid speed supervisory and control arrangement of a bit which have the characteristic with simple control and high precision. There is wide market prospect in the aspect of hospital and family tend, having higher society and economic benefits. It just follows as fig 1:II. Hardware designA. SCM brief introduction: SCM is more called as tiny controller definitely, is 20 century middle of 70 decade development getting up a kind of rule modular of integrated circuit that faces control , its characteristic is function strong , volume little ,reliability is high , price cheap. Once it came forth,it was convenient in industrial control, data collection and intelligence melt the fields such as appearance,electromechanical unifinication and home appliances and have gotten extensive application, also have raised automation level and the technical level of these fields maximally. Therefore application and the development of SCM have become high-tech with asignificantprogram of project field.B. Walk into generator: It is a kind of conductedelement of digital control system. It can change the digital quantitative change of input, is correspondingangular displacement or the displacement of straight line, make digital signals into pulse signals, give firstly pulse signals, motor turns a angle or ongoingone step. Sketch is Fig.2:①THE speed inspection of a bit design: It adopts the infrared sensor drop speed of measurement point, project with direct current, circuit is simple , has steady performance. Consideration uses a pair of pipe,lean droplet to fall take off reflection infrared ray will make accept pipe unknown and produce low level signals, but reflection signals is too weak , can not be monitored efficiently.②The speed control: It is fast to set an initial altitude first, and detection drips now. Then, regulate repeatedly, controlling step into the revolution of generator according to the relation between high and drop speed reaching suitable, make droplet satisfy to set drop speed highly.③The high detection of face of blade with alarm: Using infrared detection Technology, realize its warning function. Let infrared transmitting tube with take over pipe just for set up in bottle two side, and set up in the altitude of cordon, because of sensor when having water with sink water receive signals strength difference. Therefore but basis take over the strong weak difference of signals, with comparator handling,can get the greater telecommunications discrepancy that water level arouses in critical line , and judging from whether water level reaches cordon, SCM sends alarm signal’s.III. Software designSoftware design is systematic crucial link. If hardware is "skeleton", software is “muscle and nerve". Software design is mainly with signals and control signal `s outputting, the communication between main station and stations an d showing with keyboard’s controlling program.(1) Keyboard with showing is complete modular and the frequency that shows are the things that we will consider, because of having measured the speed of a bit, the frequency that shows can set according to needs completely.(2) The software about the communication between main station and stations: With relapse test and elaborate design, with the isolation technology of chief line us have realized standing for war all functions, can realize efficiently to stand for the control of station. Major stands to dispatch information are contained from station number and sign position, as well as the control data that it wants. Stations are in always to take over state , will want to return to main station information, state changes over to dispatch, data’s dispatching completely is still in to take over state, wait main stationcontrol and inquiry. Main station adopts to decide point with tour inspection two ways.(3) Software flow chart is as Fig 3:IV. Experiment Result(1) A bit speed control: Set a speed of a bit, the measure by every time with showing that. At the same time, regulate the high to control the speed of a bit, shows as follows: In table, the data analysis of test can be known ,this system has reached title requirement completely ,also, has highest precision under the condition in the mezzo speed, in the two ends of dropping rapid of controlling scope, the controlling error is also on the small side.(2) Liquid surface inspection to give an alarm test: Measure liquid surface’s altitude give an alarm,under the case of the fast rapid speed, have recordedsome groups of data, is 2.5 respectively.(3) For system enter the time needed by steady state test, the longest time is 1 minute and 32 seconds, this time is from the lowest end to the highest end, and the regulation time of other condition is smaller than this number. By the time that this system enters steady state, is smaller than the index. It satisfiestitle requirement.V. ConclusionThe system have completed title requirement basically and have realized the control regulation of a bit, can compare accurate regulation to assume random setting value .In systematic design course, it is simple that we make great effort line in line with practical attitude, to make the hardware circuitry simpleness and bring into play the agile of program and let high limit to excavate SCM resource, in order to satisfy problem requirement to keep close to life reality. However, since time is hurriedly and the ability infinity. This system still has the place of many worthwhile improvements, with the expecting of the readers’ criticism and comment.REFERENCES[1] Zhang Hong-run Zhang Ya-fan. SCM principle and application Beijing: Tsinghua University pressed in 2005.[2] Kang Hua-guang technical basic digital partial (the edition of 4th) Beijing: It is higher to educate pressed in2000.[3] Blanco J, et al. Micromachined inertial sensor development at north. Proc. 49th Annual Meeting,Institute of Navigation, 1993;实现基于单片机技术的点速度监控和控制装置的设计陈吴林1,燕建生1,黄天成1,王建强1,田灵慧21电气工程工程部、军械工程学院,中国石家庄050003;电话:+ 86 031197994743电子邮件:cwl@2、中国河北省中学053800摘要:以一个单片机(SCM)为核心,并协助一些电线,使用红外技术等做出一个器件,这种器件能够实现点速度的监控和控制。