哈工大航天学院课程-空间飞行器动力学与控制-第3课-空间飞行器轨道动力学上
空间飞行器动力学与控制
![空间飞行器动力学与控制](https://img.taocdn.com/s3/m/8630ce53312b3169a451a4f6.png)
Nanjing University of Aeronautics and Astronautics Spacecraft Dynamics and Control Teacher:Han-qing ZhangCollege of AstronauticsSpacecraft Dynamics and Control Text book:Spacecraft Dynamics andControl:A PracticalEngineering Approach/s/1o6BF32U(1) Wertz, J. R. Spacecraft Orbit and Attitude Systems, Springer. 2001(2) 刘墩.空间飞行器动力学,哈尔滨工业大学出版社,2003.(3) 章仁为.卫星轨道姿态动力学与控制,北京航空航天大学出版社,2006.(4) 基于MATLAB/Simulink的系统仿真技术与应用,清华大学出版社,2002。
2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and Control 1. IntroductionSpace technology is relatively young compared to other modern technologies, such as aircrafttechnology.In only forty years this novel domain hasachieved a tremendous level of complexity andsophistication. The reason for this is simplyexplained: most satellites, once in space, must rely heavily on the quality of their onboardinstrumentation and on the design ingenuity of the scientists and engineers.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and Control The desire of humans to conquer space within the solar system will surely encourage newtechnological achievements that are not yetimagined.The technical fields in which satellites are used are numerous一telecommunications, scientificresearch, meteorology, and others.According to the specific task for which they are designed, satellites may be in orbits as low as200 km or as high as 40,000 km above the earth;other spacecraft leave the earth toward planets in the solar system2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and Control In October 4, 1957, the former Soviet Union sent the world's first artificial satellite into space.In March 11, 1960, the United States launcheda "pioneer" detector,and it was known as thefirst deep-space probe.2014年4月22日星期二Spacecraft Dynamics and Control2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlIn April 12, 1961,the former SovietUnion successfullylaunched the firstmanned spacecraft. 尤里·加加林Spacecraft Dynamics and ControlIn March 1965, the former Soviet Union realized the first human spacewalk.“上升号”载人飞船2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlIn January 1966, two spacecrafts completed the rendezvous and docking successfully for the first time in the former Soviet Union .“联盟号”飞船2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlIn July 1969, the United States landed on the moon for the first time.N.A.阿姆斯特朗E.E.奥尔德林2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlIn April 19, 1971, the first space station was built successfully with regard to the former Soviet.“和平号”轨道空间站2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlIn April 1981, the first space shuttle had the successful test flight.“哥伦比亚号”航天飞机首飞记录片2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlFengYun22014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and Control北斗导航试验卫星定位原理图2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and Control Satellites may be very heavy: an inhabited space station, for example, could weigh severaltons or more. There also exist very light satellites, weighing 20 kg or less. Small satellites may berelatively cheap.Despite their differences, satellites possess fundamental features that are common to all. The physical laws that govern their motion in spaceand their dynamics are the same for all spacecraft.Hence, the fundamental technologies that evolved from these laws are common to all.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlA satellite's life begins with the specificbooster transferring it to some initial orbit,called a transfer orbit, in which the satellite is already circling the earth.For a satellite that will stay near earth, the next stage will be to "ameliorate" theorbit. This means that the satellite must bemaneuvered to reach the precise orbit forwhich the satellite was designed to fulfill its mission.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and Control Next, the satellite's software must check for the proper functioning of itsinstrumentation and its performance inspace, as well as calibrate some of theinstruments before they can be used tocontrol the satellite.The final stage is the one for which the satellite was designed and manufactured.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and Control Understanding the meaning of each stage will help one to understand the infrastructure of thecontrol system of any satellite.Throughout the text, the terms "satellite" and "spacecraft" (s/c for short) will be usedinterchangeably. The terms "geosynchronous"and "geostationary" will be used interchangeably to describe the orbit of a satellite whose period can be made exactly equal to the time it takes theearth to rotate once about its axis.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlA geosynchronous communications satellitewill be described in its different life stages. Acommon, medium-sized satellite is good example.Satellite of this type consist of the following main structural parts.(1) A central body consisting of a cubelikestructure.(2) Solar arrays extended in the N-S direction.(3) An antenna tower directed toward theearth.(4) Controllers(such as reaction thrusters)and attitude sensors(such as sun sensors).2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlAttitude and orbit control systemThe attitude and orbit control system (AOCS) may include:(1) A reaction bipropellant (反应双组元)thrustsystem.(2) Two momentum wheels (one redundant).2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and Control(3) Two infrared horizon sensors. (one operating andone redundant)(4) Four fine sun sensors. (two redundant)(5)Twelve coarse sun sensors for safety reasons. (sixredundant)(6)Two three-axis coarse rate gyros(陀螺仪).(7)Two three-axis integrating gyros.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and Control Much of the control hardware is redundant in order to guarantee a reliable control systemdespite potential hardware failures.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlMission sequenceSequence for injecting a satellite into the geostationary orbit.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlFirst is the launch into ageosynchronous transfer orbit(GTO).(地球同步转移轨道)withperigee and apogee (low and highaltitude) of 200 km and 35,786km, respectively.This is followed by the transferfrom GTO to geostationary orbit(GEO)(地球同步静止轨道),whereperigee and apogee both are35,786 km and the orbitinclination and eccentricity areclose to null.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlNext is the preparationand calibration of theAOCS.(姿态和轨道控制系统)GEO mission can start,followed by the actualGEO mission stage.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlAfter separation from the launcher, the satellite is commanded into a sun acquisition mode with the -X B axis pointing toward the sun. After completion of this stage, the solar panels are partially or fully deployed. If fully deployed, They can be rotated about their axis of rotation toward the sun in order to maximize power absorption.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlThe satellite stays in this cruise mode until the first apogee boost motor (ABM) orbit is approached. In the first and the subsequent ABM orbits, several hours before the ABM firing at the apogee, the gyros' calibration maneuvers are initiated.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlLess than an hour before any ABM firing, earth acquisition is initiated with the +Z B axis now pointed toward the earth, followed by preparation for the ABM firing stage.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlAfter ABM firings ranging from several to more than 30 minutes, the satellite is commanded to GTO cruise. After the last ABM firing, the satellite life is prepared for GEO operation.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlIn the first GEO, earth acquisition is performed, meaning that the +Z B axis of the satellite is directed toward the earth center of mass, thus allowing the normal GEO cruise.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlThe momentum wheel is spun to its nominal angular velocity to provide momentum bias attitude control. The orbit is then corrected for any remaining inaccuracies in inclination and eccentricity.2014年4月22日星期二Spacecraft Dynamics and ControlSpacecraft Dynamics and ControlThe satellite orbit dynamics and controlThe classical equations of motion of ideal Keplerian orbits.The basic orbital control concepts including control and station keeping of satellites.The attitude dynamics and controlThe basic equations of rotational motion about some axis through its center of mass.Single-and Dual-spin stabilization.The attitude stabilization and maneuvering ofspacecraft stabilized in three axes.2014年4月22日星期二Spacecraft Dynamics and Control。
航天器轨道动力学与控制(上)
![航天器轨道动力学与控制(上)](https://img.taocdn.com/s3/m/1719db38227916888486d7e7.png)
常见卫星观测设备误差
多普勒测速仪
单脉冲雷达
干涉仪测角系统
目视光学望远镜和 光学摄像机
卫星观测预报
1. 卫星必须在地平线上 2. 天空就必须足够黑 3.对于不发光的卫星用光学设备 观测还需要太阳光能直射它。
3 工作映射
开普勒激光测速仪
MSE-FLD60型高速激光测距传感器在不使用 反射板的情况下,高速测量自然物体目标可 达30米。而使用合适的反射板,测量范围可 以达到250米。 MSE-FLD60是一款高速激光测距传感器,可以 高速触发实时测量,它的测量速率可达 30kHz。在250米的测量范围内可以达到厘米 级的精度。它所使用的激光是波长为905nm 的对人眼安全的红外激光。
脉冲雷达
干涉仪测角系统
PI-3D激光测量系统是市场上最先进的激光干 涉仪系统。它可以以前所未有的精度和分辨 率,可以用在产品研发实验室, 精确的机床补偿可以从根本上提升产品质量 。使用我们的系统,用户可以快捷精确地完 成补偿。基本套装可以测量位移,振动,速 度以及定位精度。3D系统为机床的垂直及水 平直线度测量提供了独特的测量功能,使直 线度测量变得简便省时。
航天轨道动力学与控制能干嘛?
航天器轨道动力学可构筑各种实用轨道 变轨控制和轨道机动 航天器轨道控制可 轨道保持 交会与对接 再入和着陆控制
2 课本知识
近地空间环境
地球大气
地球磁场
太阳电磁辐射
日心坐标系
地心坐标系
地面坐标系
轨道摄动
摄动指一个天体绕另一个天体按二 体问题的规律运动时,因受其它天体的 吸引或其他因素的影响,在轨道上产生 的偏差,这些作用与中心体的引力相比 是很小的,因此称为摄动。 天体在摄动作用下,其坐标、速度 或轨道要素都产生变化,这种变化成分 称为摄动项。
哈工大航天学院课程-空间飞行器动力学与控制-第3课-空间飞行器轨道动力学上PPT课件
![哈工大航天学院课程-空间飞行器动力学与控制-第3课-空间飞行器轨道动力学上PPT课件](https://img.taocdn.com/s3/m/15cdac870b1c59eef9c7b4c1.png)
(2)运载火箭的 主动段轨道
在主动段飞行时,作用 在火箭上的力和力矩 如图3.6所示
图3.6 在主动段作用于火箭上的力系
第15页/共48页
XOY 为发射平面坐标, X1O1Y1为速度坐标。图中 为地心角, 为俯仰角, 为 速度方向角, 为火箭飞行 攻角。
第16页/共48页
把作用在火箭上所有的力,
第30页/共48页
春分点:黄道与天赤道的一 个交点。
黄道:地球绕太阳公转的轨 道面(黄道面)与以地心为球心 的天球相交的大圆。
“黄赤交角”:黄道面与赤 道面约相交成23°27′。
太阳的周年视运动:由于地 球公转观测到太阳在恒星间移动, 周期为1年。
黄道就是天球上的太阳周年 视运动轨迹。太阳由南向北过天 赤道的交点叫“春分点”,另一 个交点是秋分点。
co s2
2
k
vk2
v
2 k
rk2
co s2
k
2 2
rk
4 vk2rk2 cos2 k
co s(0
(3-8) )
式中, 3.8961014 m3/s2 称为地球引力常
数可见。,自由飞行段的轨道方程,完全取决于主动段终点的速度 ,速度方向角
和径向距离。
第23页/共48页
在图3.7中,如果火 箭在 B点,再一次点 火加速,使火箭的速 度达到航天飞行器在 该点的运行速度,它 就进入绕地球运动的 的轨道,此轨道称为 “卫星轨道”。卫星 的轨道高度和形状, 由运载火箭主动段终 点的速度矢量和空间 位置决定。
在运载火箭方案论证初期,可以依据发射航天 飞行器的速度要求,用齐氏公式计算出理想速度, 再减去约2000m/s的速度损失,进行方案估计。
第20页/共48页
哈工大航天学院课程-空间飞行器动力学与控制-第9课-航天飞机技术
![哈工大航天学院课程-空间飞行器动力学与控制-第9课-航天飞机技术](https://img.taocdn.com/s3/m/f7e9dac87c1cfad6195fa745.png)
空间飞行器动力学与控制 第九课_航天飞机技术
(1)航天飞机系统的测量敏感器
为了确定航天飞机系统的轨道和姿态,航天 飞机系统上采用了9种导航和姿态测量设备,总 共40个敏感器,在很多场合下把这些轨道和姿态 测量简称为导航。
空间飞行器动力学与控制 第九课_航天飞机技术
每一架航天飞机上装有三台主发动机,发动 机的结构完全一样,位于轨道器的尾部。
为了严格监控三台主发动机的工作状态并调 节其推力的大小和方向,每台主发动机都有一套 可整体更换的发动机电子控制器,其中包括两台 相同的互作备份的数字计算机。
空间飞行器动力学与控制 第九课_航天飞机技术
航天飞机控制系统包括轨道和姿态控制两个 部分。
轨道控制具体包括导航、制导和控制3种功 能。另外,还可以使航天飞机与同轨道平面内最 大相距560km的目标相会合。
空间飞行器动力学与控制 第九课_航天飞机技术
尽管航天飞机控制系统具有强大的控制功能 和复杂的结构,但它的基本结构和原理与其他各 种控制系统依然一致。
空间飞行器动力学与控制 第九课_航天飞机技术
航天飞机的飞行包括发射上升、入轨、轨道 运行、离轨和再入返回等阶段。
控制系统任务:保证航天飞机在各种飞行状 况下正常执行任务和安全可靠地运行。
控制要求:航天飞机又是载人航天器和多次 重复使用的,该控制系统的可靠性和安全性等方 面的要求极其严格。
空间飞行器动力学与控制 第九课_航天飞机技术
每套惯性测量单元由四框架平台、电子设备 、输入/输出装置和电源4个主要部分组成。
空间飞行器动力学与控制 第九课_航天飞机技术
惯性测量单元
空间飞行器动力学与控制第3课空间飞行器轨道动力学上
![空间飞行器动力学与控制第3课空间飞行器轨道动力学上](https://img.taocdn.com/s3/m/1f6054a0b4daa58da0114ad7.png)
火箭在主动段飞行时,通常攻角都很小,所飞
越的地心角也很小,若略去不计,即得:
dv P D g sin
dt m m
(3-5)
其中火箭的推力 P 为
P mve ( pe pa )Se
代入式(3-5)得到
dv
ve
dm mdt
dt
1 m
Se (
pe
pa
)dt
D m
dt
g
s in dt
(3-6)
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
积分上式,得到主动段终点的速度为:
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
把作用在火箭上所有的力,
投影到速度方向(
X
轴)上,
1
推力: 重力:
阻力:
升力:
得到运动方程为: dv 1 (P cos D) g sin( )
dt m
(3-4)
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
dv 1 (P cos D) g sin( )
图3.3 CD与马赫数 Ma 和攻角 的关系
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
图3.4
C
与马赫数
L
Ma和攻角
的关系
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
“俯仰力矩”的产生
火箭发动机工作时,推进剂在不断消耗,所以火 箭质心位置随时在变。
同时,气动阻力和升力也随飞行速度和大气条件 而变化,所以压心也随之变化。
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
第三种方案:与第二方案基本相同,只是要求自由飞行 段要绕地球半圈,即自由飞行段起点和终点正好在地心 的连线上。
哈工大航天学院课程-空间飞行器动力学与控制-第1课-绪论
![哈工大航天学院课程-空间飞行器动力学与控制-第1课-绪论](https://img.taocdn.com/s3/m/beeb7986e53a580216fcfefb.png)
“礼炮1号”空间站
空间飞行器动力学与控制 第一课 绪论
1981年4月,世界上第一 架垂直起飞、水平着陆、可 重复使用的美国航天飞机 “哥伦比亚号”试飞成功, 标志着航天运载器由一次性 使用的运载火箭转向重复使 用的航天运载器的新阶段, 标志着人类在空间时代又上 了一层楼,进入了航天飞机 时代。
美国“哥伦比亚号”航天飞机
空间飞行器动力学与控制 第一课 绪论
人类自20世纪60年 代开始探测火星的尝试。 大约半数火星探测任务 成功。 2008年05月25日 , 美国“凤凰”号火星探 测器成功降落在火星北 极区域,其核心任务是 寻找水和生命痕迹。 2008年11月,凤凰 号与地面控制中心失去 联络。
“凤凰”号挖掘臂挖掘火星土壤的情景
空间飞行器动力学与控制 第一课 绪论
1988年11月15日,前苏联的暴风雪号航天飞机从 拜科努尔航天中心首次发射升空,47分钟后进入距 地面 250公里的圆形轨道。它绕地球飞行两圈,在 太空遨游三小时后,按预定计划于 9时25分安全返 航,准确降落在离发射点12公里外的混凝土跑道上, 完成了一次无人驾驶的试验飞行。
“水手2号”探测器
空间飞行器动力学与控制 第一课 绪论
1966年1月,前苏联两艘载人飞船第一次在轨道上成功 交会对接,并实现了两位航天员从一艘飞船向另一艘飞船 的转移。
前苏联“联盟号”载人飞船
前苏联“上升号”载人飞船
空间飞行器动力学与控制 第一课 绪论
1971年4月19日,前苏联“礼炮1号”空间站入 轨成功,其质量约18t,总长14m,轨道高度200~ 250 km,轨道倾角51.6º ,成为人类第一个空间站。
空间飞行器动力学与控制 第一课 绪论
13~14世纪,中国的火箭技术与其他火药兵器一 同传到阿拉伯国家和印度,后又传入欧洲。至18世 纪后期,印度军队在抗击英国和法国军队的多次战 争中就曾大量使用火药火箭并取得了成功结果,由 此推动了欧洲火箭技术的发展。 曾在印度作战的英国人康格里夫(William Congreve)在19世纪初对印度火箭作了改进,他确定 了黑火药的多种配方,改善了制造方法并使火箭系 列化,最大射程可达3km。这些初期火箭的原理都 成为了近代火箭技术的最初基础。
哈工大航天学院课程空间飞行器动力学与控制空间飞行器轨道控制上课件
![哈工大航天学院课程空间飞行器动力学与控制空间飞行器轨道控制上课件](https://img.taocdn.com/s3/m/4010bc49a7c30c22590102020740be1e650ecc04.png)
利用航天器的特殊构型或附加质量等特性,通过改变航天器的重心 位置或转动惯量等方式,实现轨道控制。
组合控制方法
将主动控制和被动控制相结合,利用各自的优势,实现更高效、精确 的轨道控制。
轨道控制应用实例
卫星轨道转移
将卫星从一个圆轨道转移到一个椭圆轨道,或从一个椭圆轨道转 移到另一个椭圆轨道,实现卫星的变轨任务。
哈工大航天学院 课 程空间飞行器动力 学与控制空间飞行 器轨道控制上课件
contents
目录
• 课程简介 • 空间飞行器动力学基础 • 空间飞行器控制基础 • 轨道控制技术 • 课程实践环节
01
课程简介
课程目标
掌握空间飞行器动力 学与控制的基本原理 和关键技术。
培养学生在空间飞行 器设计、开发和运行 方面的实践能力和创 新思维。
实验内容与要求
实验内容
学生需要掌握卫星轨道测量、控制的 基本原理和方法,通过实际操作,掌 握卫星轨道控制技术。
实验要求
学生需要独立完成实验,并撰写实验 报告,同时需要掌握实验过程中的安 全操作规范。
实验报告撰写规范
实验目的
学生需要清晰阐述实验的目的和意义。
实验过程
学生需要详细记录实验过程,包括实验步骤、数据记录等。
描述了作用在空间飞行器上的控制力矩,是实现空间飞行器姿态 控制的重要手段。
03
空间飞行器控制基础
控制基本概念
控制系统
由控制器、受控对象和传感器等组成的整体,以分为开环控制和闭 环控制。
控制品质
评价控制系统性能的指标,包括稳定性、快速性和准 确性。
动量定理
描述了物体动量的变化与 作用力的关系,是理解动 力学行为的重要基础。
航天器轨道动力学与控制上-马佳
![航天器轨道动力学与控制上-马佳](https://img.taocdn.com/s3/m/d4e5dccd998fcc22bcd10deb.png)
监测数据
●高度 卫星必须在地平线以上 ●天光 光学测量设备或人眼观测时,天空必须足够黑 ●地影 不发光的卫星还需太阳光直接照射
07
地月飞行和星际飞行
地月关系
地月系的三个运动:
●地球自转 ●地球和月球围绕公共质心 的运动 ●月球的自转
月球公转参数:
●椭圆轨道,偏心率0.0549 ●轨道面与地球赤道的夹角 18.2°—28.8° ●黄白道夹角5°9′
加权最小
广义卡尔 曼滤波
二乘法
观测数据集中处理的“批量计 算方法”。
按时间顺序对每个观测数据进 行解算的“序贯计算法”。
卫星的观测预报
概况预报
利用已有的资料,通过解算卫星运动方程,确定卫星可见段的 起止时间和最大高度。
准确预报
确定确定卫星每一时刻的高度角、方位角和卫星到激光测距仪 的距离,以便可以快速、准确的跟踪卫星。
轨道摄动
04
轨道转移
轨道转移概述
轨道转移是指航天飞行棋 在其控制系统作用下,由 沿初始轨道(或停泊轨道)
运动改变为沿目标轨道运
动的一种轨道机动。 转移轨道又称过渡轨道, 是航天器从初始轨道或停
泊轨道过渡到工作轨道的
中间轨道。
共面圆轨道发轨道转移
双脉冲变轨可以使新的轨道完 全脱离原有的轨道。 在两个共面圆轨道之间的最佳 变轨方式为霍曼变轨,其转移
卫星星食
卫星进入地球阴影的现象叫做卫星 食,在卫星食发生时,卫星上的光 电池不能供电,整形温度下降,以 太阳光为信号的敏感器失去作用。 对于静止轨道而言,卫星的星食发 生在春秋分前后各23天的午夜,每 次发生星食的时间不定,最长 72min。
返回轨道概述
返回轨道设计要求
地势平坦,交通便捷 远离城市,通信顺畅 远离高压重要设施 选择已有回收区 利用已有测控网络
航天器轨道动力学与控制(上)
![航天器轨道动力学与控制(上)](https://img.taocdn.com/s3/m/61d81dbc284ac850ad024239.png)
轨道周期
入轨点位置
考虑
因素
轨道倾角
发射时间
近地点位置
近地轨道的主要摄动
摄动类型 地球形状 大气阻力 调姿喷气 太阳光压 日月摄动 潮汐摄动 地球磁场
摄动
摄动
摄动
摄动
摄动和轨
控喷气摄
动
量级
近地轨道
寿命
一阶小量 二阶小量 二阶小量 三阶小量 三阶小量 三阶小量 三阶小量
近地轨道的应用实例
神舟号飞船
2012年4月30日4时50分
长征三号乙
第十二、十三颗北斗导航系统组网卫星
2012年9月19日3时10分
长征三号乙
2012年10月25日23时33分
长征三号丙
第十六颗北斗导航卫星 [6]
2015年3月30日21时52分
长征三号丙
第十七颗北斗导航卫星 [7]
2015年7月25日20时29分
长征三号乙
第十八、十九颗北斗导航卫星
术发展,无线电测量技术逐渐成熟,应用雷达不但可以测量角度,还可以测量距离,使轨道计
算更加准确和方便。
2
太阳系、坐标系和时间系统
近地空间环境
近地空间环境
地球大气
大
大
大
大
气
气
气
气
密
温
压
成
度
度
力
分
地球磁场
地面上100km到10个地球半径的距离
太阳电磁
地球电离
空间粒子
辐射
层
辐射
磁
太
暴
阳
辐
射
压
力
坐标系
研究航天飞行器的运动要用到多种坐标系,我们将介绍航天运用到的多种坐标系
哈工大航天学院课程-空间飞行器动力学与控制-第5课-空间飞行器轨道动力学下PPT课件
![哈工大航天学院课程-空间飞行器动力学与控制-第5课-空间飞行器轨道动力学下PPT课件](https://img.taocdn.com/s3/m/bd861dff192e45361166f57a.png)
r,
r
的表
达式依然成立,只是相应的六个不变根数 ci 变为 ci (t) ,称为瞬时根数或密切根数。
利用上述方程计算航天器轨道时,要根据航天器 轨道、本体参数、计算精度要求等因素选取运动方程 右端项,并选择合适的计算方法。
第29页/共43页
轨道要素的摄动方程
分析摄动力引起卫星轨道要素的变化,用轨道要 素表示卫星的摄动方程,在天体力学中是著名的拉 格朗日行星运动方程。
➢ 确定停泊轨道、转移轨道、地球同步运行轨 道参数 ➢ 进入近地的停泊轨道,调整参数 ➢ 发动机点火从停泊轨道进入转移轨道 ➢ 发动机再次点火从转移轨道进入同步轨道
第13页/共43页
太阳同步轨道
太阳同步轨道是指轨道面的进动与平太阳的周年 视运动同步的卫星轨道。地球扁率引起升交点赤经 的长期变化,变化率主要依赖于轨道倾角 i ,也与 半长轴 a 、偏心率 e 有关。对确定的 a 、e ,选择 i 使 等于平太阳的周年视运动,即 0.9856 ,就是 太阳同步轨道。
f ci
dci dt
gc1, c2 , c3, c4 , c5 , c6 , t
第26页/共43页
r
r r3
F
F0
F
dr f 6 f dci
dt t i1 ci dt
r r
gc1,c2,c3,c4,c5,c6, t f c1,c2,c3,c4,c5,c6, t
r
f
/
t
g t
第21页/共43页
二、飞行器轨道摄动
在二体运动的轨道分析中,假定卫星仅受到地 球引力的作用,可以得到卫星的轨道是一个不变的 椭圆,轨道要素是常数的结论。
但事实上卫星除受地球引力外,还有其他外力 作用于卫星,如地球非球形摄动,大气阻力摄动, 日月引力摄动,太阳辐射压力摄动,小推力摄动等 力学因素的影响。
课程名称航天器轨道动力学与控制
![课程名称航天器轨道动力学与控制](https://img.taocdn.com/s3/m/9f65adc7d15abe23492f4d01.png)
课程名称:航天器轨道动力学与控制一、课程编码:0100035课内学时:32学分:2二、适用学科专业:航空宇航科学与技术、航天器自主技术三、先修课程:工科数学分析、线性代数;四、教学目标通过本课程的学习了解航天器轨道动力学与控制基础知识、基本原理与设计方法,掌握航天器轨道的基本运动特性和航天器轨道设计与优化相关工具,能够根据任务要求进行初步的航天器轨道设计,提升数学建模,分析和解决航天器轨道控制与优化问题的能力。
五、教学方式:课堂教学六、主要内容及学时分配1.航天器轨道动力学与控制基本理论2学时1.1轨道动力学中的时间系统与坐标系统1.2航天器轨道动力学模型1.3航天器轨道动力学中的基本概念2.航天器轨道动力学中的二体问题与多体问题2学时2.1二体问题的解析解和轨道根数2.2二体问题的轨道状态与轨道根数2.3多体问题与圆型限制性三体问题3.航天器轨道摄动理论与方法6学时3.1航天器轨道摄动方程3.2中心引力场非球形摄动3.3日地月引力摄动3.4太阳光压摄动3.5大气阻力摄动4.航天器轨道动力学与轨道设计6学时4.1航天器同步轨道设计与控制4.2航天器回归轨道设计与控制4.3航天器冻结轨道设计与控制4.4航天器编队飞行轨道设计与保持4.5航天器星座轨道设计与保持5.航天器轨道机动与轨道转移4学时5.1航天器的霍曼转移轨道5.2航天器调相轨道机动5.3航天器共拱线非霍曼转移轨道5.4航天器最优脉冲转移轨道6.航天器借力飞行轨道的设计与优化4学时6.1借力飞行的基本概念与原理6.2借力飞行的轨道特性分析6.3多天体借力飞行序列设计6.4航天器多天体借力飞行轨道设计7.航天器基于动平衡点的轨道设计与优化6学时7.1三体系统轨道动力学模型7.2三体系统轨道动平衡点及其稳定性7.3三体系统轨道动平衡点附近周期轨道7.4三体系统中的转移轨道设计七、考核与成绩评定考核方式:闭卷考试平时成绩40%包括3-4次课后作业,课堂随机提问与考勤期末考试:60%八、参考书及学生必读参考资料教材:杨嘉墀,航天器轨道动力学与控制(上)[M],北京,宇航出版社,1995.参考书:1.崔平远,深空探测轨道设计与优化[M],北京,科学出版社,2013.2.杨嘉墀,航天器轨道动力学与控制(下)[M],北京,宇航出版社,2001.3.Howard D.curtis,轨道力学[M],北京,科学出版社,2009.4.章仁为,卫星轨道姿态动力学与控制[M],北京,北京航天航空大学出版社,2006.九、大纲撰写人:乔栋。
航天器轨道动力学与控制(上)--李建辉
![航天器轨道动力学与控制(上)--李建辉](https://img.taocdn.com/s3/m/6c0fb924580216fc700afda8.png)
2、2特殊轨道和星座
轨道名称 定义 卫星选择
太阳同步轨道(近 进动角速度与平太阳在赤 资源卫星、气象卫星、军 用卫星等 极地太阳同步轨道) 道移动的角速度相等。 回归轨道 地面轨迹经过一定时间出 用于某一地区动态观察, 现重复的轨道。 可结合其他轨道如太阳同 步 相对地面观测禁止不动, 通信、广播、气象 距离地心42164km,覆盖 地球表面40%
航天器轨道动力学与控制 (上)
汇报人:李建辉
2018年9月22日
目
录
part one
理论基础 特殊轨道与卫星星座 卫星轨道确定 轨道转移 地月飞行和星际航行 工作映射
part two
part three part four part five Part six
1、1太阳系
开普勒定律三定律:1.行星沿椭圆轨道运动,而太阳则位于椭圆轨道的二个 焦点之一。2.在相同时间内,半径向量所扫过的面积是相等的。3.二个行星绕 太阳运动的轨道的周期时间平方之比等于二个轨道与太阳的平均距离的立方 之比。
最小二乘法: 批量计算法,适合观 测数据集中处理。
广义卡尔曼滤波法: 序贯计算法,按时间 顺序对每个数据结算, 改进,可时刻中断。
3.5卫星观测
卫星观测预报是解决跟踪站如何能看到卫星的问题,根据感 测设备不同有下面三个含义: 1、高度:卫星必须在地平线至上 2、天光:光学或人眼观看,天空背景须特别黑, 3、地影:对于不发光卫星用光学设备观测还需要太阳光能 直接照射它
三个步骤
计算方法
三个理论
3.2数据的预处理和精度分析
数据处理的任务是消除观测数据中由于测量设备和环境 引起的一部分已知误差(利用已知误差模型),并消除大部 分随机误差(利用平滑方法)。从而在轨道确定和改进中选 取合适的间隔点,减少计算量。
轨道动力学分析分解课件
![轨道动力学分析分解课件](https://img.taocdn.com/s3/m/39e7e4464b7302768e9951e79b89680203d86b0a.png)
它涉及到经典力学、相对论力学 以及天体力学的相关知识,为航 天器轨道设计、行星探测和宇宙 航行等提供重要的理论支持。
轨道动力学的研究目的
揭示天体运动的规律和机制, 理解轨道参数变化对运动特性 的影响。
为航天器轨道规划和姿态控制 提供理论依据,提高航天器的 运行效率和安全性。
探索未知天体和宇宙现象,推 动天文学和宇宙科学的发展。
动量守恒定律
总结词
描述系统动量的变化规律,系统不受外力或合外力为零时,系统的动量保持不 变。
详细描述
动量守恒定律是物理学中的一个基本定律,它指出如果一个系统不受外力或合 外力为零,则系统的动量保持不变。在轨道动力学中,这个定律用于描述天体 的运动规律,特别是行星、卫星等天体的轨道运动。
角动量守恒定律
描述轨道力学中物体运动规律的方程式,包括轨道方程、速度方程和加速度方程等。
详细描述
轨道力学的基本方程是描述天体运动规律的数学表达式。这些方程包括轨道方程、速度方程和加速度方程等,它 们可以用来计算天体的位置、速度和加速度等运动参数。这些方程基于牛顿的万有引力定律和运动定律,是轨道 力学分析的基础。
03
有限元法的局限性
有限元法的计算量较大,需要消耗较多的计算资源和时间。此外,有限元法的精度受到离散化的影响, 对于某些特殊问题可能需要特殊的处理和建模技巧。
04
CATALOGUE
轨道动力学在工程中的应用
铁路轨道设计
总结词
轨道动力学在铁路轨道设计中发挥着 关键作用,确保列车安全、稳定地运 行。
详细描述
CATALOGUE
轨道动力学分析方法
解析法
01
解析法定义
解析法是一种通过数学公式和定理来求解轨道动力学问题的方法。它基
空间飞行器飞行动力学(工大教纲)
![空间飞行器飞行动力学(工大教纲)](https://img.taocdn.com/s3/m/f31a5a71a417866fb84a8e3e.png)
《空间飞行器飞行动力学》课程教学大纲课程编码: T1180230课程中文名称:空间飞行器飞行动力学课程英文名称:SPACECRAFT DYNAMICS总学时:50 讲课学时:50 实验学时:0习题学时:0 上机学时:0学分:3授课对象:飞行器设计专业、空间环境专业本科生先修课程:高等数学、普通物理、理论力学、自动控制理论教材及参考书:《空间飞行器动力学》,刘暾. 赵钧,哈尔滨工业大学出版社《空间飞行器动力学与控制》,M.H.卡普兰一、课程教学目的《空间飞行器动力学》是一门航天工程专业学生的专业基础课。
本课程主要研究空间飞行器动力学的基本概念、原理和应用,包括轨道动力学和姿态动力学两大部分,其主要任务是培养学生:建立空间飞行器动力学的基本概念,理解飞行器的运动与受力之间的关系,掌握空间飞行器动力学问题的基本分析方法;掌握应用空间飞行器动力学的基本理论,解决一般的空间飞行器动力学应用问题的基本技能;了解空间飞行器动力学理论、方法及其应用的最新发展;掌握使用相关的参考文献、计算机应用软件进行动力学问题研究分析的能力;《空间飞行器动力学》是高等工科院校中航天工程类专业的一门主要课程。
通过该课程的学习,学生可以初步掌握解决空间飞行器动力学问题的基本方法和技能,并了解其他空间飞行器应用问题的动力学依据,为日后从事空间飞行器的动力学及其他的空间飞行器应用专业的研究工作奠定初步的理论基础。
二、教学内容及基本要求轨道动力学部分(上篇)第一章绪论(1学时)概论,齐奥尔科夫斯基公式,单级火箭的极限速度。
第二章空间飞行器的入轨(1学时)运载火箭的运动方程式,纵向平面内的动力学方程,运载火箭导引规律。
第三章空间飞行器的轨道(4学时)两体运动方程的建立、求解,中心引力场中的运动,四种基本轨道的轨道方程、特性及时间方程。
第四章轨道的建立和星下点轨迹(2学时)空间飞行器轨道建立的方法,轨道要素与发射参数的关系,星下点轨迹的描述。
哈工大航天学院课程-空间飞行器动力学与控制-第1课-绪论
![哈工大航天学院课程-空间飞行器动力学与控制-第1课-绪论](https://img.taocdn.com/s3/m/beeb7986e53a580216fcfefb.png)
神州五号载人飞船
航天英雄杨利伟
空间飞行器动力学与控制 第一课 绪论
我国首个空间实验室:天宫一号于2011年9月29 日在酒泉卫星发射中心发射,飞行器全长10.4米,最 大直径3.35米,由实验舱和资源舱构成。
天宫一号
空间飞行器动力学与控制 第一课 绪论
2011年11月3日,天宫一号与神舟八号飞船在太 空中成功完成“天神”牵手,实现了载人航天工程 首次空间交会对接任务。
银 河 系
小麦哲伦云中新生 的超亮恒星。这类 恒星的寿命很短, 对于宇宙时间尺度 来说只是一眨眼的 功夫。
猎户座中的马头星云B33, 它是个暗星云。美国基特峰 国家天文台的0.9米望远镜摄 于1994年12月28日
空间飞行器动力学与控制 第一课 绪论
河外星系:位于银河系之外、由几十亿至几千亿颗恒星、星
药便取代了易燃物,使火箭迅速应用到军事中。
公元10世纪唐末宋初就已经有了火药用于火箭的 文字记载。真正靠火药喷气推进而非弩弓射出的 火箭的外形被记载于明代茅元仪编著的《武备志》 中,见下图。
空间飞行器动力学与控制 第一课 绪论
这种原始火箭虽然没有现代火箭那样复杂,但 已经具有了战斗部(箭头)、推进系统(火药筒)、稳 定系统(尾部羽毛)和箭体结构(箭杆),完全可以认 为是现代火箭的雏形。
天宫一号与神舟八号交会对接
空间飞行器动力学与控制 第一课 绪论
嫦娥工程是我国实施的第一次探月活动。工程自 2004年1月立项,目前已经完成了嫦娥一号卫星和长 征三号甲运载火箭产品研制和发射场、测控、地面 应用系统的建设。2007年10月24日在西昌卫星发射 中心成功发射升空。
嫦娥一号
空间飞行器动力学与控制 第一课 绪论
空间飞行器动力学与控制 第一课 绪论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三课 空间飞行器轨道动力学(上)
一、航天器发射轨道 二、人造地球卫星轨道的坐标与时间
一、航天器发射轨道 空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
航天器的轨道是指航天器的飞行轨迹。包括发射 轨道、运行轨道和返回轨道。以人造地球卫星为例, 发射轨道:
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
第三种方案:与第二方案基本相同,只是要求自由飞行 段要绕地球半圈,即自由飞行段起点和终点正好在地心 的连线上。
这种发射方案所消耗的能量最省,所以称为“最佳 轨道”也叫做“霍尔曼轨道”。
在制定火箭发射方案时,要受到发射场区的位置、 测控台站的布局、航区和落点的安全等因素的限制,不 一定采用自由飞行段很长的理想发射方案,而可能会采 用多消耗一些能量,甚至经常采用一次主动段就把卫星 送入轨道的发射方案。
dv 1 (P cos D) g sin( )
dt m
火箭在主动段飞行时,通常攻角都很小,所飞 越的地心角也很小,若略去不计,即得:
dv P D g sin
dt m m
(3-5)
其中火箭的推力 P 为
P m ve ( pe pa )Se
代入式(3-5)得到
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
运载火箭的飞行轨道
(1)运载火箭的发射方案
运载火箭发射航天飞行器的飞行轨道有3种方案
图3.5运载火箭的飞行弹道
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
第一种方案:一次主动段就直接入轨。 这种方案比较简单易行,但消耗的能量比较多。
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
把作用在火箭上所有的力,
投影到速度方向(
X
轴)上,
1
推力: 重力:
阻力:
升力:
得到运动方程为: dv 1 (P cos D) g sin( )
dt m
(3-4)
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
图3.3 CD与马赫数 Ma 和攻角 的关系
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
图3.4 CL与马赫数 Ma和攻角 的关系
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
“俯仰力矩”的产生
火箭发动机工作时,推进剂在不断消耗,所以火 箭质心位置随时在变。
同时,气动阻力和升力也随飞行速度和大气条件 而变化,所以压心也随之变化。
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
(2)运载火箭的 主动段轨道
在主动段飞行时,作用 在火箭上的力和力矩 如图3.6所示
图3.6 在主动段作用于火箭上的力系
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
XOY为发射平面坐标, X 1O1Y1为速度坐标。图中 为地心角, 为俯仰角, 为 速度方向角, 为火箭飞行 攻角。
运载器从地面起飞到航天飞行器入轨。 主动段:火箭发动机的工作段; 自由飞行段:从火箭发动机停机到航天飞行器入轨。 运行轨道: 人造地球卫星进入所设计好的轨道执行任务。 返回轨道:
从人造地球卫星制动火箭点火,到再入舱降落到 地球表面的飞行轨迹
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
第二种方案:先用一段主动段,把大部分推进剂在较低 的高度上消耗掉,让火箭获得足够大的速度,而进入一 段自由飞行段(被动段)。当火箭飞行到预定轨道高度 时,再加一小段主动段,让火箭再一次加速进入预定轨 道。
火箭所携带的大部分推进剂,在地球附近就消耗掉, 比在离地球更高的地方消耗掉,可节省为提高火箭的推 进剂势能所消耗的这部分能量。第二方案就是利用这个 道理而设计的飞行轨道,所以比第一方案节省了能量。
(3-3)
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
俯仰阻尼力矩 在俯仰方向上,还有俯仰阻尼力矩 M 。这是由
于箭体表面压力分布的变化和空气有粘性而产生了 摩擦力引起的。
其他力矩
由于空气动力和推力的作用线不与火箭的纵轴 重合,还存在着偏航力矩 M ,偏航阻尼力矩 M , 滚转力矩 M 及滚转阻尼力矩 M 等。
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
火箭升力的计算公式为:
L
CL
1 2
v 2 S
式中
CL ——火箭的升力系数。
(3-2)
CD 和 CL 不但与火箭的外形有关,同时都随 速度和攻角的变化而变化。
CD ,CL与马赫数 Ma 和攻角 的变化规律见下图。
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
因此,火箭的压心和质心很少重合在一个点上,
阻力和升力对质心必然要产生一个力矩M 。使火箭
绕横轴 ቤተ መጻሕፍቲ ባይዱ1Z1转动的力矩称为“俯仰力矩”,以 M表 示, 其表达式为:
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
M
C
1 2
v 2 Sl
式中 C ——俯仰力矩系数;
l ——火箭的特征长度。
dv
ve
dm mdt
dt
1 m
Se ( pe
pa )dt
图3.2 作用力和力矩
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
通常,把火箭在空气中飞行时所产生的总空气 动力,分解为阻力 D和升力L。
气动阻力的计算公式为:
D
CD
1 2
v 2 S
(3-1)
式中 S ——火箭的横截面面积;
1 v2 ——单位体积气流的动能,称为“速
2
度头”;
CD ——火箭的阻力系数。
图3.1 卫星的发射轨道、运行轨道和返回轨道
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
作用在运载火箭上的力与力矩
运载火箭上作用的力有: 发动机推力 P 地球对火箭的引力G 气动阻力 D 和气动升力 L 控制力等。
空间飞行器动力学与控制 第三课 空间飞行器轨道动力学(上)
推力:作用方向沿运载火箭纵轴指向前方。 地球引力:指向地心,作用于火箭的质心上。 阻力:平行于火箭的运动方向,指向相反。 升力:垂直于运动方向,指向向上。阻力和升力 的作用点是在火箭的压力中心上。