自考线性代数(经管类)公式汇总(精髓版)
线性代数公式总结大全
线性代数公式 1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 与ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式与余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90o,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤与 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0就是其特征值;2、矩阵8.A 就是n 阶可逆矩阵:⇔0A ≠(就是非奇异矩阵);⇔()r A n =(就是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0; ⇔T A A 就是正定矩阵;⇔A 的行(列)向量组就是n R 的一组基; ⇔A 就是n R 中某两组基的过渡矩阵;9. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立; 10. 1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===11. 矩阵就是表格,推导符号为波浪号或箭头;行列式就是数值,可求代数与; 12. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,则: Ⅰ、12s A A A A =L ;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭O; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组13. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形就是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :; 14. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其她元素必须为0;15. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X :,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x :,则A 可逆,且1x A b -=; 16. 初等矩阵与对角矩阵的概念:①、初等矩阵就是行变换还就是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭O λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;17. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B :,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 就是m n ⨯矩阵,B 就是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部就是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;18. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑L L ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-L L g g g L g m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值与相似对角化: 19. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A -=20. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不全为0;21. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 22. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;23. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M O M M M L(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M ); ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性24. m 个n 维列向量所组成的向量组A :12,,,m αααL 构成n m ⨯矩阵12(,,,)m A =L ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ;含有有限个向量的有序向量组与矩阵一一对应;25. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=就是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=就是否有解;(矩阵方程)26. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件就是:齐次方程组0Ax =与0Bx =同解;(101P 例14) 27. ()()T r A A r A =;(101P 例15) 28. n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;29. 线性相关与无关的两套定理:若12,,,s αααL 线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s αααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;30. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 31. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P L ,使12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 32.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 33.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)34.齐次方程组0Bx =的解一定就是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;35. 设向量组12:,,,n r r B b b b ⨯L 可由向量组12:,,,n s s A a a a ⨯L 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;36. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 37. 12,,,s αααL 线性相关⇔存在一组不全为0的数12,,,s k k k L ,使得11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;38. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;39. 若*η为Ax b =的一个解,12,,,n r ξξξ-L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-L 线性无关;(111P 题33结论)5、相似矩阵与二次型40. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都就是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也就是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化与单位化; 41. 施密特正交化:12(,,,)r a a a L11b a =;1222111[,][,]b a b a b b b =-g L L L121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----g g L g ; 42. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 43. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 44. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B :,(合同、相似的约束条件不同,相似的更严格); 45. A 为对称阵,则A 为二次型矩阵; 46. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。
线性代数公式必背完整归纳清晰版
线性代数公式必背完整归纳清晰版线性代数是数学的一个重要分支,研究向量空间及其上的线性映射的理论和方法。
在学习线性代数的过程中,掌握一些重要的公式是非常重要的。
下面是线性代数中一些常见且重要的公式,希望能够帮助到你。
1.向量的加法和数乘:(a1, a2, ..., an) + (b1, b2, ..., bn) = (a1 + b1, a2 +b2, ..., an + bn)k(a1, a2, ..., an) = (ka1, ka2, ..., kan)这是线性代数的基本操作,向量的加法是对应元素分别相加,向量的数乘是将向量中的每个元素与常数相乘。
2.内积:向量a = (a1, a2, ..., an) 和向量b = (b1, b2, ..., bn) 的内积定义为:a ·b = a1b1 + a2b2 + ... + anbn内积有许多重要的性质:a·b=b·a-->内积的交换律(ka) · b = a · (kb) --> 内积的数乘关系a·(b+c)=a·b+a·c-->内积的分配律内积可以用来计算向量的夹角和向量的长度,是线性代数中的一个重要概念。
3.范数:向量a的范数定义为:a, = sqrt(a1^2 + a2^2 + ... + an^2向量的范数满足以下性质:a,>=0,且当且仅当a=0时取等ka, = ,k,,a,对于任意的实数a+b,<=,a,+,b,三角不等范数是一个度量向量长度的函数,也是线性代数中常用的概念。
4.矩阵的乘法:对于矩阵A(m×n)和矩阵B(n×p),它们的乘积C=A×B是一个m×p的矩阵,其中C的第i行第j列的元素可以表示为:C(i,j)=a(i,1)*b(1,j)+a(i,2)*b(2,j)+...+a(i,n)*b(n,j)矩阵乘法是线性代数中的核心概念,它在很多应用中都有重要的作用。
《线性代数》公式大全
《线性代数》公式大全1.向量1.1向量的加法和减法v1=(x1,y1,z1)v2=(x2,y2,z2)v1+v2=(x1+x2,y1+y2,z1+z2)v1-v2=(x1-x2,y1-y2,z1-z2)1.2向量的数量乘法v=(x,y,z),k是一个实数kv = (kx, ky, kz)1.3向量的点积v1·v2=x1x2+y1y2+z1z21.4向量的模长v,=√(x^2+y^2+z^2)2.矩阵2.1矩阵的加法和减法A = (aij),B = (bij)是两个m x n矩阵A +B = (aij + bij)A -B = (aij - bij)2.2矩阵的数量乘法A = (aij)是一个m x n矩阵,k是一个实数kA = (kaij)2.3矩阵的乘法A = (aij)是一个m x n矩阵,B = (bij)是一个n x p矩阵AB = (cij)是一个m x p矩阵,其中cij = a1j*b1i + a2j*b2i+ ... + anj*bni2.4矩阵的转置A = (aij)是一个m x n矩阵A的转置为A^T = (aij)^T = (aji)2.5矩阵的逆A为可逆矩阵,A^-1为其逆矩阵,满足AA^-1=A^-1A=I,其中I为单位矩阵3.行列式3.1二阶行列式D=,abc d, = ad - b3.2三阶行列式D=,abcdeg h i, = aeI + bfG + cdH - ceG - afH - bd3.3n阶行列式D=,a11a12 (1)a21a22...a2...........an1 an2 ... ann, = (-1)^(i+j)*Mij,其中Mij为aij的代数余子4.线性方程组4.1齐次线性方程组Ax=0,其中A为一个mxn矩阵4.2非齐次线性方程组Ax=b,其中A为一个mxn矩阵,x为一个n维列向量,b为一个m维列向量4.3线性方程组的解法4.3.1矩阵消元法通过矩阵的初等行变换将线性方程组转化为行阶梯形或最简形4.3.2克拉默法则Ax = b的解可以表示为x = (Dx1/D, Dx2/D, ..., Dxn/D),其中D 为系数矩阵A的行列式,Di为将第i列的系数替换为b后的行列式4.3.3矩阵求逆法若A为可逆矩阵,则Ax=b的解可以表示为x=A^(-1)b以上是线性代数的一些重要公式,通过理解和掌握这些公式,可以帮助我们解决线性代数相关的问题和应用。
线性代数公式总结大全
线性代数公式1、行列式1.n 行列式共有n 2个元素,展开后有n !项,可分解为2n 行列式;2.代数余子式的性质:①、A ij和a ij的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为A ;3.代数余子式和余子式的关系:M ij=(-1)i +j Aij4.设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为D 1,则D 1=(-1)n (n -1)2A ij=(-1)i +j MijD ;D ;将D 顺时针或逆时针旋转90,所得行列式为D 2,则D 2=(-1)将D 主副角线翻转后,所得行列式为D 4,则D 4=D ;5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积⨯(-1)n (n -1)2n (n -1)2将D 主对角线翻转后(转置),所得行列式为D 3,则D 3=D ;;③、上、下三角行列式(◥=◣):主对角元素的乘积;④、◤和◢:副对角元素的乘积⨯(-1)⑤、拉普拉斯展开式:n (n -1)2;A O A C C A O A==A B 、==(-1)m n A BC B O B B O B C⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于n 阶行列式A ,恒有:λE -A =λn +∑(-1)k S kλn -k ,其中S k为k 阶主子式;k =1n7.证明A =0的方法:①、A =-A ;②、反证法;③、构造齐次方程组Ax =0,证明其有非零解;④、利用秩,证明r (A )<n ;⑤、证明0是其特征值;2、矩阵8.A 是n 阶可逆矩阵:⇔A ≠0(是非奇异矩阵);⇔r (A )=n (是满秩矩阵)⇔A 的行(列)向量组线性无关;⇔齐次方程组Ax =0有非零解;⇔∀b ∈R n ,Ax =b 总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0;⇔A T A 是正定矩阵;⇔A 的行(列)向量组是R n 的一组基;⇔A 是R n 中某两组基的过渡矩阵;9.对于n 阶矩阵A :AA *=A *A =A E 无条件恒成立;10.(A -1)*=(A *)-1(AB )T =B T A T(A -1)T =(A T )-1(AB )*=B *A *(A *)T =(A T )*(AB )-1=B -1A -111.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;12.关于分块矩阵的重要结论,其中均A 、B 可逆:⎛A 1若A =⎝A2⎫⎪⎪,则:⎪⎪A s⎭A s;-1A 2Ⅰ、A =A 1A2⎛A 1-1 -1Ⅱ、A =⎝-1⎫⎪⎪;⎪⎪A s-1⎪⎭O ⎫⎪;(主对角分块)B -1⎭B -1⎫⎪;(副对角分块)O ⎭⎛A -1⎛A O ⎫②、 ⎪=O B ⎝⎭⎝O ⎛O ⎛O A ⎫③、 ⎪= -1⎝B O ⎭⎝A-1⎛A -1⎛A C ⎫④、 ⎪=O B ⎝⎭⎝O -1-1-A -1CB -1⎫⎪;(拉普拉斯)B -1⎭O ⎫;(拉普拉斯)-1⎪B ⎭⎛A -1⎛A O ⎫⑤、 ⎪= -1-1C B ⎝⎭⎝-B CA3、矩阵的初等变换与线性方程组13.一个m ⨯n 矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:F = r⎝O 对于同型矩阵A 、B ,若r (A )=r (B )⇔A B ;14.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;15.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(A ,E )(E ,X ),则A 可逆,且X =A -1;②、对矩阵(A ,B )做初等行变化,当A 变为E 时,B 就变成A B ,即:(A ,B )~(E ,A -1B );-1c r⎛E O ⎫⎪;O ⎭m ⨯n等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;③、求解线形方程组:对于n 个未知数n 个方程Ax =b ,如果(A ,b )(E ,x ),则A 可逆,且x =A -1b ;16.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;⎛λ1λ2②、Λ=⎝⎫⎪⎪,左乘矩阵A ,λ乘A 的各行元素;右乘,λ乘A 的各列元素;i i ⎪⎪λn⎭-1r⎛1⎫⎛1⎫⎪ ⎪③、对调两行或两列,符号E (i ,j ),且E (i ,j )-1=E (i ,j ),例如: 1⎪= 1⎪; 1⎪1⎪⎝⎭⎝⎭-1⎛1⎛1⎫11 ⎪-1④、倍乘某行或某列,符号E (i (k )),且E (i (k ))=E (i ()),例如: k ⎪= k k ⎪1 ⎝⎭⎝-1⎫⎪⎪(k ≠0);⎪1⎪⎭k ⎫-k ⎫⎛1⎛1 ⎪ ⎪=1⑤、倍加某行或某列,符号E (ij (k )),且E (ij (k ))-1=E (ij (-k )),如: 1⎪ ⎪(k ≠0);1⎪1⎪⎝⎭⎝⎭17.矩阵秩的基本性质:①、0≤r (A m ⨯n)≤min(m ,n );②、r (A T )=r (A );③、若AB ,则r (A )=r (B );④、若P 、Q 可逆,则r (A )=r (PA )=r (AQ )=r (PAQ );(可逆矩阵不影响矩阵的秩)⑤、max(r (A ),r (B ))≤r (A ,B )≤r (A )+r (B );(※)⑥、r (A +B )≤r (A )+r (B );(※)⑦、r (AB )≤min(r (A ),r (B ));(※)⑧、如果A 是m ⨯n 矩阵,B 是n ⨯s 矩阵,且AB =0,则:(※)Ⅰ、B 的列向量全部是齐次方程组AX =0解(转置运算后的结论);Ⅱ、r (A )+r (B )≤n⑨、若A 、B 均为n 阶方阵,则r (AB )≥r (A )+r (B )-n ;18.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;⎛1a c ⎫⎪②、型如 01b ⎪的矩阵:利用二项展开式; 001⎪⎝⎭二项展开式:(a +b )=C a +C a b +注:Ⅰ、(a +b )n 展开后有n +1项;n (n -1)(n -m +1)n !=123m m !(n -m )!m nn -mnnnn1nn -11+C am nn -mb +m +Cn -11n -1na b m m n -m ;+C b=∑Cna b n nnm =0n Ⅱ、C nm=0n C n=C n=1Ⅲ、组合的性质:C =C Cm n +1=C +Cm nm -1n∑Cr =0n r n=2nr r -1rC n=nC n -1;③、利用特征值和相似对角化:19.伴随矩阵:⎧n⎪①、伴随矩阵的秩:r (A *)=⎨1⎪0⎩r (A )=n r (A )=n -1;r (A )<n -1②、伴随矩阵的特征值:③、A *=A A -1、A *=A Aλ(AX =λX ,A *=A A -1⇒A *X =AλX );n -120.关于A 矩阵秩的描述:①、r (A )=n ,A 中有n 阶子式不为0,n +1阶子式全部为0;(两句话)②、r (A )<n ,A 中有n 阶子式全部为0;③、r (A )≥n ,A 中有n 阶子式不全为0;21.线性方程组:Ax =b ,其中A 为m ⨯n 矩阵,则:①、m 与方程的个数相同,即方程组Ax =b 有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax =b 为n 元方程;22.线性方程组Ax =b 的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;23.由n 个未知数m 个方程的方程组构成n 元线性方程:⎧a 11x 1+a 12x 2++a 1n x n =b 1⎪a x +a x ++a x =b ⎪2n n 2①、⎨211222;⎪⎪⎩a m 1x 1+a m 2x 2++a nm x n =b n⎛a 11a 12 a a 22②、 21 ⎝a m 1am 2a 1n⎫⎛x 1⎫⎛b 1⎫⎪⎪ ⎪a 2n ⎪x 2⎪ b 2⎪=⇔Ax =b (向量方程,A 为m ⨯n 矩阵,m 个方程,n 个未知数)⎪⎪ ⎪⎪⎪ ⎪a mn ⎭⎝x m ⎭⎝b m ⎭⎛x 1⎫⎛b 1⎫ ⎪ ⎪x b 2a n ) ⎪=β(全部按列分块,其中β= 2⎪); ⎪ ⎪ ⎪ ⎪⎝x n ⎭⎝b n ⎭③、(a1a2④、a 1x 1+a 2x 2++a nx n=β(线性表出)⑤、有解的充要条件:r (A )=r (A ,β)≤n (n 为未知数的个数或维数)4、向量组的线性相关性24.m 个n 维列向量所组成的向量组A :α1,α2,,αm构成n ⨯m 矩阵A =(α1,α2,,αm);T m 个n 维行向量所组成的向量组B :β1T ,β2,⎛β1T ⎫T ⎪βT ,βm构成m ⨯n 矩阵B = 2⎪; ⎪ βT ⎪⎪⎝m ⎭含有有限个向量的有序向量组与矩阵一一对应;25.①、向量组的线性相关、无关⇔Ax =0有、无非零解;(齐次线性方程组)②、向量的线性表出(线性方程组)⇔Ax =b 是否有解;③、向量组的相互线性表示(矩阵方程)⇔AX =B 是否有解;26.矩阵A m ⨯n与B l ⨯n行向量组等价的充分必要条件是:齐次方程组Ax =0和Bx =0同解;(P101例14)27.r (A T A )=r (A );(P 101例15)28.n 维向量线性相关的几何意义:⇔α=0;①、α线性相关②、α,β线性相关⇔α,β坐标成比例或共线(平行);③、α,β,γ线性相关⇔α,β,γ共面;29.线性相关与无关的两套定理:若α1,α2,,αs 线性相关,则α1,α2,,αs,αs +1必线性相关;若α1,α2,,αs线性无关,则α1,α2,,αs -1必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n -r 个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;30.向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r ≤s (二版P 74定理7);向量组A 能由向量组B 线性表示,则r (A )≤r (B );(P 86定理3)向量组A 能由向量组B 线性表示⇔AX =B 有解;⇔r (A )=r (A ,B )(P 85定理2)向量组A 能由向量组B 等价⇔r (A )=r (B )=r (A ,B )(P 85定理2推论),P l,使A =P 1P2P l;31.方阵A 可逆⇔存在有限个初等矩阵P 1,P 2,r①、矩阵行等价:A ~B ⇔PA =B (左乘,P 可逆)⇔Ax =0与Bx =0同解②、矩阵列等价:A ~B ⇔AQ =B (右乘,Q 可逆);③、矩阵等价:A ~B ⇔PAQ =B (P 、Q 可逆);对于矩阵A m ⨯n 与B l ⨯n:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则Ax =0与Bx =0同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵A 的行秩等于列秩;若A m ⨯s B s ⨯n =C m ⨯n,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,A T 为系数矩阵;(转置)齐次方程组Bx =0的解一定是ABx =0的解,考试中可以直接作为定理使用,而无需证明;①、ABx =0只有零解⇒Bx =0只有零解;②、Bx =0有非零解⇒ABx =0一定存在非零解;设向量组B n ⨯r:b 1,b 2,,b r可由向量组A n ⨯s :a 1,a 2,,a s线性表示为:(P 110题19结论)(b 1,b 2,,b r)=(a 1,a 2,,a s)K (B =AK )c 32.33.34.35.其中K 为s ⨯r ,且A 线性无关,则B 组线性无关⇔r (K )=r ;(B 与K 的列向量组具有相同线性相关性)(必要性:r =r (B )=r (AK )≤r (K ),r (K )≤r ,∴r (K )=r ;充分性:反证法)注:当r =s 时,K 为方阵,可当作定理使用;36.①、对矩阵A m ⨯n,存在Q n ⨯m,AQ =E m⇔r (A )=m 、Q 的列向量线性无关;(P 87)②、对矩阵A m ⨯n ,存在P n ⨯m ,PA =E n⇔r (A )=n 、P 的行向量线性无关;37.α1,α2,,αs线性相关⇔存在一组不全为0的数k 1,k 2,,k s,使得k 1α1+k 2α2++k s αs=0成立;(定义)⎛x 1⎫ ⎪x ,αs ) 2⎪=0有非零解,即Ax =0有非零解; ⎪ ⎪⎝x s ⎭⇔(α1,α2,⇔r (α1,α2,,αs)<s ,系数矩阵的秩小于未知数的个数;38.设m ⨯n 的矩阵A 的秩为r ,则n 元齐次线性方程组Ax =0的解集S 的秩为:r (S )=n -r ;39.若η*为Ax =b 的一个解,ξ1,ξ2,,ξn -r为Ax =0的一个基础解系,则η*,ξ1,ξ2,,ξn -r线性无关;(P111题33结论)5、相似矩阵和二次型40.正交矩阵⇔A T A =E 或A -1=A T (定义),性质:①、A 的列向量都是单位向量,且两两正交,即a i T a j=⎨⎧1⎩0i =j i ≠j(i ,j =1,2,n );②、若A 为正交矩阵,则A -1=A T 也为正交阵,且A =±1;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;41.施密特正交化:(a 1,a 2,,a r)b 1=a 1;b 2=a 2-[b 1,a 2]b 1[b 1,b 1]b r =a r -[b 1,a r ][b ,a ]b 1-2r b 2-[b 1,b 1][b 2,b 2]-[b r -1,a r ]b r -1;[b r -1,b r -1]42.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;43.①、A 与B 等价⇔A 经过初等变换得到B ;⇔PAQ =B ,P 、Q 可逆;⇔r (A )=r (B ),A 、B 同型;②、A 与B 合同⇔C T AC =B ,其中可逆;⇔x T Ax 与x T Bx 有相同的正、负惯性指数;③、A 与B 相似⇔P -1AP =B ;44.相似一定合同、合同未必相似;若C 为正交矩阵,则C T AC =B ⇒A B ,(合同、相似的约束条件不同,相似的更严格);45.A 为对称阵,则A 为二次型矩阵;46.n 元二次型x T Ax 为正定:⇔A 的正惯性指数为n ;⇔A 与E 合同,即存在可逆矩阵C ,使C T AC =E ;⇔A 的所有特征值均为正数;⇔A 的各阶顺序主子式均大于0;⇒a ii>0,A >0;(必要条件)。
线性代数公式大全--最全最完美
线性代数公式大全——最新修订1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基;⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。
线性代数自考(经管类)
3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.
4.行列式中各行元素之和为一个常数的类型.
5.范德蒙行列式的计算公式
例6求4阶行列式的值.
测试点 行列式的计算
解
测试点 个维向量线性无关相应的行列式;
解
所以 且.
答案 且.
2. 关于线性相关的几个定理
1) 如果向量组线性无关,而线性相关,则可由线性表示,且表示法唯一.
矩阵的加、减、乘有意义的充分必要条件
例1设矩阵,, ,则下列矩阵运算中有意义的是( )
A. B.
C. D.
测试点: 矩阵相乘有意义的充分必要条件
答案: B
例2设矩阵, ,则 =_____________.
测试点: 矩阵运算的定义
解 .
例3设矩阵, ,则____________.
3.转置 对称阵和反对称阵
1)转置的性质
2)若,则称为对称(反对称)阵
例4矩阵为同阶方阵,则=( )
A. B.
C. D.
答案: B
例5设令,试求.
测试点 矩阵乘法的一个常用技巧
解 因为,所以
答案
例6为任意阶矩阵,下列矩阵中为反对称矩阵的是( )
1.向量组的线性相关性的定义和充分必要条件:
1)定义: 设是一组维向量.如果存在个不全为零的数,使得
,
则称向量组线性相关,否则,即如果,必有
,则称向量组线性无关.
2) 个维向量线性相关的充分必要条件是至少存在某个是其余向量的线性组合.即线性无关的充分必要条件是其中任意一个向量都不能表示为其余向量的线性组合.
线性代数公式总结大全
线性代数公式总结大全在线性代数中,有许多重要的公式被广泛应用于向量、矩阵和线性方程组的求解。
下面将对这些公式进行一个全面的总结,并说明它们的应用。
1. 向量的加法和减法- 向量加法:给定两个向量A和B,其加法可以表示为A + B = C,其中C的每个分量等于A和B对应分量的和。
- 向量减法:给定两个向量A和B,其减法可以表示为A - B = C,其中C的每个分量等于A和B对应分量的差。
2. 向量的数量积和向量积- 数量积:给定两个向量A和B,其数量积可以表示为A · B = |A| |B| cosθ,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角。
- 向量积:给定两个向量A和B,其向量积可以表示为A × B = |A| |B| sinθ * n,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角,n是垂直于A和B所在平面的单位向量。
3. 矩阵的基本运算- 矩阵加法:给定两个矩阵A和B,其加法可以表示为A + B = C,其中C的每个元素等于A和B对应元素的和。
- 矩阵减法:给定两个矩阵A和B,其减法可以表示为A - B = C,其中C的每个元素等于A和B对应元素的差。
- 矩阵数乘:给定一个矩阵A和一个标量k,其数乘可以表示为kA = B,其中B的每个元素等于A对应元素乘以k。
4. 矩阵的乘法- 矩阵乘法:给定两个矩阵A和B,其乘法可以表示为AB = C,其中矩阵C的元素等于A的行向量与B的列向量的数量积。
- 矩阵转置:给定一个矩阵A,其转置可以表示为A^T,其中A^T的第i行第j列元素等于A的第j行第i列元素。
- 矩阵的逆:给定一个可逆矩阵A,其逆可以表示为A^−1,其中AA^−1 = I,I是单位矩阵。
5. 线性方程组的解法- 列主元消去法:通过消去矩阵A的部分元素,将其转化为上三角矩阵,然后通过回代法求解线性方程组的解。
- 伴随矩阵法:利用矩阵的伴随矩阵和行列式的性质求解线性方程组的解。
(完整版)精心整理线性代数公式大全,推荐文档
1.行列式共有个元素,展开后有项,可分解为行列式;n 2n !n 2n2.代数余子式的性质:①、和的大小无关;ij A ija ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;A3.代数余子式和余子式的关系:(1)(1)i ji jijijijijM A A M ++=-=-4.设行列式:n D 将上、下翻转或左右翻转,所得行列式为,则;D 1D (1)21(1)n n D D -=-将顺时针或逆时针旋转,所得行列式为,则;D 902D (1)22(1)n n DD-=-将主对角线翻转后(转置),所得行列式为,则;D 3D 3DD=将主副角线翻转后,所得行列式为,则;D 4D 4DD=5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;(1)2(1)n n -⨯ -③、上、下三角行列式():主对角元素的乘积; = ◥◣④、和:副对角元素的乘积;◤ ◢(1)2(1)n n -⨯ -⑤、拉普拉斯展开式:、A O A CA B C B O B==(1)m n C A O AA B B O B C==-:⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主n A 1(1)nnkn k kk E A S λλλ-=-=+-∑kS k 子式;7.证明的方法:0A =①、;A A =-②、反证法;③、构造齐次方程组,证明其有非零解;0Ax =④、利用秩,证明;()r A n<⑤、证明0是其特征值;2、矩阵1.是阶可逆矩阵:An (是非奇异矩阵);⇔0A ≠(是满秩矩阵)⇔()r A n =的行(列)向量组线性无关;⇔A 齐次方程组有非零解;⇔0Ax =,总有唯一解;⇔n b R ∀∈Ax b =与等价;⇔A E 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0;⇔A是正定矩阵;⇔T A A 的行(列)向量组是的一组基;⇔A nR 是中某两组基的过渡矩阵;⇔AnR 2.对于阶矩阵: 无条件恒成立;n A **AA A A A E ==3.1**111**()()()()()()TT TT A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均、可逆:A B 若,则:12s A AA A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭Ⅰ、;12sA A A A = Ⅱ、;111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭②、;(主对角分块)111A O A O O B O B ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭③、;(副对角分块)111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭④、;(拉普拉斯)11111A C A A CB O B OB -----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭⑤、;(拉普拉斯)11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭3、矩阵的初等变换与线性方程组1.一个矩阵,总可经过初等变换化为标准形,其标准形是m n ⨯A 唯一确定的:;rm nE OF O O⨯⎛⎫= ⎪⎝⎭等价类:所有与等价的矩阵组成的一个集合,称为一个等A 价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;A B ()()r A r B A B = ⇔ :2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;(,)(,)rA E E X :A 1X A -=②、对矩阵做初等行变化,当变为时,就变成,(,)A B A E B 1A B -即:;1(,)(,)cA B E AB - ~ ③、求解线形方程组:对于个未知数个方程,如果n n Ax b =,则可逆,且;(,)(,)rA b E x :A 1x A b -=4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,12n ⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭λλλAiλA乘的各列元素;iλA ③、对调两行或两列,符号,且,例如:(,)E i j 1(,)(,)E i j E i j -=;1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭④、倍乘某行或某列,符号,且,例如:(())E i k 11(())(())E i k E i k-=;1111(0)11k k k-⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑤、倍加某行或某列,符号,且,如:(())E ij k 1(())(())E ij k E ij k -=-;11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭5.矩阵秩的基本性质:①、;0()min(,)m nr A m n ⨯≤≤②、;()()Tr A r A =③、若,则;A B :()()r A r B =④、若、可逆,则;(可逆矩阵不影响P Q ()()()()r A r PA r AQ r PAQ ===矩阵的秩)⑤、;(※)max((),())(,)()()r A r B r A B r A r B ≤≤+⑥、;(※)()()()r A B r A r B +≤+⑦、;(※)()min((),())r AB r A r B ≤⑧、如果是矩阵,是矩阵,且,则:(※)A m n ⨯B n s ⨯0AB =Ⅰ、的列向量全部是齐次方程组解(转置运算后的B 0AX =结论);Ⅱ、()()r A r B n+≤⑨、若、均为阶方阵,则;A B n ()()()r AB r A r B n ≥+-6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵⨯(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;101001a c b ⎛⎫ ⎪ ⎪ ⎪⎝⎭二项展开式:;1111110()nnnn m n mmn n n nm m n mnnnnnnm a b C a C ab C ab Ca b C b Ca b -----=+=++++++=∑ 注:Ⅰ、展开后有项;()na b +1n +Ⅱ、0(1)(1)!1123!()!--+====- ::: :m n nn n n n n m n CC C m m n m Ⅲ、组合的性质:;11112---+-===+==∑nmn mm m m r nr r nnn n nnn n r CCCC CCrC nC ③、利用特征值和相似对角化:7.伴随矩阵:①、伴随矩阵的秩:;*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩②、伴随矩阵的特征值:;*1*(,)AAAX X AA A A X X λλλ- == ⇒ =③、、*1AA A -=1*n AA-=8.关于矩阵秩的描述:A ①、,中有阶子式不为0,阶子式全部为0;(两()r A n =A n 1n +句话)②、,中有阶子式全部为0;()r A n <A n ③、,中有阶子式不为0;()r A n ≥A n 9.线性方程组:,其中为矩阵,则:Ax b =A m n ⨯①、与方程的个数相同,即方程组有个方程;m Ax b =m②、与方程组得未知数个数相同,方程组为元方程;n Ax b =n 10.线性方程组的求解:Ax b =①、对增广矩阵进行初等行变换(只能使用初等行变换);B ②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11.由个未知数个方程的方程组构成元线性方程:n m n ①、;11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ②、(向量方程,为矩阵,个111211*********2n n m m mn m m a a a x b a a a x b Ax ba a a xb ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭A m n ⨯m 方程,个未知数)n ③、(全部按列分块,其中);()1212n n x xaa a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭④、(线性表出)1122n n a x a xa x β+++= ⑤、有解的充要条件:(为未知数的个数或维数)()(,)r A r A n β=≤n 4、向量组的线性相关性1.个维列向量所组成的向量组:构成矩阵mn A 12,,,mααα n m ⨯;12(,,,)mA = ααα个维行向量所组成的向量组:构成矩阵;mn B 12,,,T T T mβββ m n ⨯12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭含有有限个向量的有序向量组与矩阵一一对应;2.①、向量组的线性相关、无关有、无非零解;(齐次0Ax ⇔=线性方程组)②、向量的线性表出是否有解;(线性方程组)Ax b ⇔=③、向量组的相互线性表示是否有解;(矩阵方程)AX B ⇔=3.矩阵与行向量组等价的充分必要条件是:齐次方程组m nA ⨯l nB ⨯和同解;(例14)0Ax =0Bx =101P 4.;(例15)()()Tr A A r A =101P 5.维向量线性相关的几何意义:n ①、线性相关;α⇔0α=②、线性相关坐标成比例或共线(平行);,αβ⇔,αβ③、线性相关共面;,,αβγ⇔,,αβγ6.线性相关与无关的两套定理:若线性相关,则必线性相关;12,,,sααα 121,,,,ss αααα+ 若线性无关,则必线性无关;(向量的个数加12,,,sααα 121,,,s ααα- 加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:r A n r -n B 若线性无关,则也线性无关;反之若线性相关,则也线A B B A 性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7.向量组(个数为)能由向量组(个数为)线性表示,且A r B s 线性无关,则(二版定理7);A r s ≤74P 向量组能由向量组线性表示,则;(定理3)A B ()()r A r B ≤86P 向量组能由向量组线性表示A B 有解;AX B ⇔=(定理2)()(,)r A r A B ⇔=85P 向量组能由向量组等价(定理2推论)A B ()()(,)r A r B r A B ⇔ ==85P 8.方阵可逆存在有限个初等矩阵,使;A ⇔12,,,lP P P 12lA P P P = ①、矩阵行等价:(左乘,可逆)与同~rA B PA B ⇔=P 0Ax ⇔=0Bx =解②、矩阵列等价:(右乘,可逆);~cA B AQ B ⇔=Q ③、矩阵等价:(、可逆);~A B PAQ B ⇔=P Q 9.对于矩阵与:m nA ⨯l nB ⨯①、若与行等价,则与的行秩相等;A B A B ②、若与行等价,则与同解,且与的任何对应A B 0Ax =0Bx =A B 的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;A 10.若,则:m s s n m nA B C ⨯⨯⨯=①、的列向量组能由的列向量组线性表示,为系数矩阵;C A B ②、的行向量组能由的行向量组线性表示,为系数矩阵;C B TA (转置)11.齐次方程组的解一定是的解,考试中可以直接作0Bx =0ABx =为定理使用,而无需证明;①、只有零解只有零解;0ABx =0Bx ⇒ =②、有非零解一定存在非零解;0Bx =0ABx ⇒ =12.设向量组可由向量组线性表示为:12:,,,n rrB b b b ⨯ 12:,,,n ssA a a a ⨯ (题19结论)110P ()1212(,,,)(,,,)r sb b b a a a K = B AK =其中为,且线性无关,则组线性无关;(与K s r ⨯A B ()r K r ⇔=B 的列向量组具有相同线性相关性)K (必要性:;充分性:反证法)()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= 注:当时,为方阵,可当作定理使用;r s =K 13.①、对矩阵,存在,、的列向量线性m nA ⨯n mQ ⨯mAQ E =()r A m ⇔=Q 无关;()87P ②、对矩阵,存在,、的行向量线性无关;m n A ⨯n m P ⨯nPA E =()r A n ⇔=P 14.线性相关12,,,sααα 存在一组不全为0的数,使得成立;⇔12,,,sk k k 11220ssk k k ααα+++= (定义)有非零解,即有非零解;⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭0Ax =,系数矩阵的秩小于未知数的个数;⇔12(,,,)s r sααα< 15.设的矩阵的秩为,则元齐次线性方程组的解集m n ⨯A r n 0Ax =的秩为:;S ()r S n r =-16.若为的一个解,为的一个基础解系,则*ηAx b =12,,,n rξξξ- 0Ax =线性无关;(题33结论)*12,,,,n rηξξξ- 111P 5、相似矩阵和二次型1.正交矩阵或(定义),性质:TA A E ⇔=1TA A -=①、的列向量都是单位向量,且两两正交,即A ;1(,1,2,)0T iji j a a i j n i j=⎧==⎨≠⎩②、若为正交矩阵,则也为正交阵,且;A 1TA A -=1A =±③、若、正交阵,则也是正交阵;A B AB 注意:求解正交阵,千万不要忘记施密特正交化和单位化;2.施密特正交化:12(,,,)ra a a ;11b a =1222111[,][,]b a b a b b b =-: ;121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----: 3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、与等价经过初等变换得到;A B ⇔A B ,、可逆;⇔=PAQ B P Q ,、同型;()()⇔=r A r B A B ②、与合同,其中可逆;A B ⇔=TC AC B 与有相同的正、负惯性指数;⇔Tx Ax T x Bx ③、与相似;A B 1-⇔=P AP B 5.相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件C TC AC B =⇒A B :不同,相似的更严格);6.为对称阵,则为二次型矩阵;A A7.元二次型为正定:n Tx Ax 的正惯性指数为;A ⇔n 与合同,即存在可逆矩阵,使;A ⇔E C TC AC E=的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;A ⇔;(必要条件)0,0iia A ⇒>>。
自考线性代数(经管类)公式汇总(精髓版)
第一章 行列式一.行列式的定义和性质1.余子式 M ij 和代数余子式 A ij 的定义2.行列式按一行或一列展开的公式nn1) Aaij na ij A ij , j1,2, n ;( Aaij na ij A ij , i1,2, n )i1j 1nAk j nA k ia ijAika ijAkj2)k;kii 1jj 1测试点 行列式的任意一行 ( 列) 与另一行 ( 列 ) 元素的代数余子式的乘积之和为零.3.行列式的性质1) A TA.2)用数 k 乘行列式的某一行(列)所得新行列式=原行列式的k 倍 . 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的 k 倍加到另一行(列)上,所得新行列式与原行列式的值相等.例 设行列式a 1b1=1,a 1 c 1 =2,则 a 1b 1c1=(3 )a 2b 2 a 2c 2a 2b 2c 2二.行列式的计算1.二阶行列式和三角形行列式的计算.2. 对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形行列式的计算 .3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5. 范德蒙行列式的计算公式12323 3 100 23 3 100 20 3例( 性质 4)24949 9200 49 920040 9 0.(1)( 1)(2)(2) ( 1)(3)367 67 7 300 67 7 300 60 7例(各行元素之和为常数的行列式的计算技巧)x a a a x 3a a a a x 3aa a aDa x a a x 3a x a a0 x a 0 0 ( x 3a)( x a) 3.a a x a x 3a a x a 0 0 x a 0aa a x x 3a a a xx a例(行列式中有一行只有两个元素不为零的行列式的计算和三角形行列式的计算)a b 0 0 0 0 a b 0 00 0 a0 01)n 1M n1a n ( 1)n 1b nD n=aA 11 bA n1 = aM 11 +b( 0 0 0 a b b0 00 a1 x x 2x 31 2 41 2 4 8例D(x)中, x 3 项的系数 A 14 ( 1)5 1 3 9 (3 2)(4 2)(4 3)21 3 9 271 4 161 4 16 64第二章 矩阵一、矩阵的概念1. 要弄清矩阵与行列式的区别2. 两个矩阵相等的概念3. 几种特殊矩阵( 0 矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1. 矩阵 A , B 的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法的交换律和结合律;乘法关于加法的分配律; )重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点 .(A B )2 A 2+AB BA B 2 ;(A B )( A - B )A 2+BA - AB - B 2; ( AB)k ABABABA kB k ;( A E)2A 2 2 A E如果 AB O ,可能 AO, BO.例如 A1 12 2 AB O .1, B2都不为零,但123.转置 对称阵和反对称阵1)转置的性质( A B)TA TB T ; ( A)T A T ;( ABC)TC T B T A T2)若 T( T )A A A A ,则称 A 为对称(反对称)阵例 A 为任意 n 阶矩阵,下列矩阵中为反对称矩阵的是(B )A . AA TB .A A TC . AA TD . A T A解析( A A T )T A T (A T )T A TA AA T .故 A A T 为对称阵 .( A A T )TA T A( A A T ).故 A A T 为反对称阵 .( AA T )TAA T .故 AA T 为对称阵 . 同理 A T A 也为对称阵 .4. 方阵的行列式的性质A T A;AnA ; AB A B ;AkA k; A 11; AA n 1 .A5. 逆矩阵1)方阵 A 可逆 ( 也称非异, A 满秩 ) 的充分必要条件是A 0 .A11A 21An1当 A 可逆时, A11A . 其中方阵 A 的伴随阵 A 的定义 AA12 A22A n 2。
超详细自考线性代数经管类重点考点(精华版)
线性代数(经管类)考点逐个击破第一章行列式(一)行列式的定义行列式是指一个由如干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按肯定的规章进行运算,其结果为一个确定的数.1. 二阶行列式由4 个数a ij (i , j 1,2) 得到以下式子:a11a21a12a22称为一个二阶行列式,其运算规章为2. 三阶行列式a11a21a12a22a11a22 a12 a21由9 个数a ij (i, j 1,2,3) 得到以下式子:a11a 21a31a12a22a32a13a23a33称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采纳递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.3. 余子式及代数余子式设有三阶行列式a11D3a21a31a12a22a32a13a23a33对任何一个元素a ij ,我们划去它所在的第i 行及第j 列,剩下的元素按原先次序组成一个二阶行列式,称它为元素a ij 的余子式,记成M ij例如M 11a22a32a23a33,M 21a12a32a13a33,M 31a12a22a13a23再记Aij ( 1)i Mij,称A ij为元素a ij的代数余子式.例如A11 M 11 ,A21M 21 ,A31 M 31 那么,三阶行列式D3定义为a11D3a21a31a12a22a32a13a23a33a11A11a21A21a31A31我们把它称为D3按第一列的绽开式,常常简写成D33ai 1i 1Ai13( 1)ii 1ai 1Mi14.n 阶行列式j1一阶行列式D 1 a 11 a 11n 阶行列式a 11 a 21 D na 12 a 22 a 1n a 2 na 11 A 11a 21 A 21a n1 A n1a n1 a n2a n n其中 A ij (i , j1,2, , n ) 为元素 a ij 的代数余子式 .5.特殊行列式上三角行列式a 11a 12 a 22a 1n a 2 na 11a 22a nn0 a nna 110 0下三角行列式a 21a 220 a 11a 22a nna n1 a n 2a nna 110 0对角行列式0 a 22 0 a 11a 22a nn(二)行列式的性质性质 1 行列式和它的转置行列式相等,即a nnDD T性质 2 用数 k 乘行列式 D 中某一行(列)的全部元素所得到的行列式等于 kD ,也就是说,行列式可以按行和列提出公因数 .性质 3 互换行列式的任意两行(列) ,行列式的值转变符号 . 推论 1 假如行列式中有某两行(列)相同,就此行列式的值等于零 .推论 2 假如行列式中某两行(列)的对应元素成比例,就此行列式的值等于零.性质 4 行列式可以按行(列)拆开 .性质 5 把行列式 D 的某一行(列)的全部元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为 D. 定理 1(行列式绽开定理)n 阶 行 列 式 Da ij n 等 于 它 的 任 意 一 行 ( 列 ) 的 各 元 素 与 其 对 应 的 代 数 余 子 式 的 乘 积 的 和 , 即D a i1 A i1a i 2 A i 2a in A in (i 1,2, ,n)或 Da 1 j A 1 ja 2 j A 2 ja nj A nj ( j1,2, , n )前一式称为 D 按第 i 行的绽开式,后一式称为D 按第 j 列的绽开式 .本定理说明,行列式可以按其任意一行或按其任意一列绽开来求出它的值 .定理 2 n 阶行列式 Da ij n 的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即 a i1 A k 1 a i 2 A k 2 a in A kn0(i k )或 a 1 j A 1sa 2 j A 2 s a nj A ns0( j s )(三)行列式的运算行列式的运算主要采纳以下两种基本方法:( 1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要留意的是,在互换两行或两列时,必需在新的行列式的前面乘上(- 1),在按行或按列提取公因子k 时,必需在新的行列式前面乘上k.( 2)把原行列式按选定的某一行或某一列绽开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生许多个“0”元素,再按这一行或这一列绽开:例 1 运算行列式D 42 1 4 13 1 2 1 5 2 3 2 7 0 2 5解:观看到其次列第四行的元素为 0,而且其次列第一行的元素是非零元素化为 0,然后按其次列绽开 .2 1 4 12 1 4 1a 121,利用这个元素可以把这一列其它两个5 6 23 1 2 12行 D 45 2 3 2 3行 1 1行 ( 2) 1行 5 06 21 0 5 0 按其次列绽开 1 5 07 2 5 7 0 2 5 7 0 2 55 31 22列 5 1列 1 0 0 按其次行绽开7 37 531 2 8137 5例 2 运算行列式D 4解:方法 1 这个行列式的元素含有文字,在运算它的值时,切忌用文字作字母,由于文字可能取 0 值 .要留意观察其特点, 这个行列式的特点是它的每一行元素之和均为 a 3b (我们把它称为行和相同行列式) ,我们可以先把后三列都加到第一列上去,提出第一列的公因子a 3b ,再将后三行都减去第一行:a b b b a b a b b a b b a b a b b b aa 3b b b b3b a b b3b b a b 3b b b a1 1 (a 3b)1 1 b b b a b b b a b b b a 1 b bb 0 a b 0 0(a 3b)0 0 a b 00 a b(a 3b)( a b)方法 2 观看到这个行列式每一行元素中有多个b ,我们采纳“加边法”来运算,即是构造一个与D 4 有相同值的五阶行列式:3a b b bb a b b b b a b b b b a221 b b b b1 b b b b0 a b b b 1行( 1) 2,3,4,5行 1 a b 0 00 D 40 b a b b 1 0 a b 00 b b a b 1 0 0 a b 0 0 b b b a10 a b这样得到一个“箭形”行列式,假如 a b ,就原行列式的值为零,故不妨假设a b ,即 a b0 ,把后四列的1倍加到第一列上,可以把第一列的(-1)化为零 .a b1 4b b b b b a b 0 a b 00 0 0 0 a b 0 0 14b (a b)4 a b(a 3b)(a b)0 0 0 a b 0 0a b(四)克拉默法就x 1 x 2x 3定理 1(克拉默法就)设含有n 个方程的 n 元线性方程组为a 11x 1 a 21x 1 a 12 x 2 a 22 x 2a 1n x n a 2 n x nb 1, b 2 ,a n1x 1 a n 2 x 2a nn x nb n假如其系数行列式 Da ij n0 ,就方程组必有唯独解:x jD j , j 1,2, , nD其中 D j 是把 D 中第 j 列换成常数项b 1, b 2 , , b n 后得到的行列式 .把这个法就应用于齐次线性方程组,就有0, 0,假如其系数行列式 D0 ,就该方程组只有零解:x 1x 2x n 0换句话说,如齐次线性方程组有非零解,就必有 D0 ,在教材其次章中,将要证明,n 个方程的 n 元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.其次章 矩阵(一)矩阵的定义2a b b b b a b b b b a b b b b a1 11 例 3 三阶范德蒙德行列式V 3x 1 x 2 x 3 ( x 2 x 1 )(x 3 x 1 )( x 3 x 2 )定理 2 设有含 n 个方程的 n 元齐次线性方程组a 11x 1 a 21x 1 a 12 x 2 a 1n x n a 22 x 2a 2 n x na n1x 1a n 2 x 2a nn x n1. 矩阵的概念由m n 个数a ij (i 1,2, , m; j 1,2, , n) 排成的一个m 行n 列的数表a11a 21 A a12a22a1na2 n称为一个m 行n 列矩阵或m n 矩阵a m1a m 2 a m n当m n时,称A aij n n为n 阶矩阵或n 阶方阵元素全为零的矩阵称为零矩阵,用2.3 个常用的特殊方阵:Om n或O 表示①n 阶对角矩阵是指形如a11A0 0a220的矩阵②n 阶单位方阵是指形如0 01 0 00 1 0E na nn的矩阵③n 阶三角矩阵是指形如a11a12a220 1a1na2na11a21,0 0a220的矩阵3.矩阵与行列式的差异0 0 a n n an1an2an n矩阵仅是一个数表,而n 阶行列式的最终结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“* ”与矩阵记号“* ”也不同,不能用错.(二)矩阵的运算1. 矩阵的同型与相等设有矩阵A( a ij ) m n,B (b ij )k,如m k ,n ,就说 A 与B 是同型矩阵.如A 与B 同型,且对应元素相等,即aij bij,就称矩阵 A 与B 相等,记为 A B因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等.2. 矩阵的加,减法设A (a ij )m n,B (b ij ) m n是两个同型矩阵就规定A B (a ij b ij ) m n A B ( a ij b ij )m n留意:只有 A 与B 为同型矩阵,它们才可以相加或相减.由于矩阵的相加表达为元素的相加,因而与一般数的加法运算有相同的运算律.3. 数乘运算TT 设 A(a ij )m n , k 为任一个数,就规定 kA (ka ij ) m n故数 k 与矩阵 A 的乘积就是 A 中全部元素都乘以 k ,要留意数 k 与行列式 D 的乘积,只是用 k 乘行列式中某一行或某一列,这两种数乘截然不同.矩阵的数乘运算具有一般数的乘法所具有的运算律.4. 乘法运算设 A(a ij ) m k , B (b ij ) k n ,就规定 AB (c ij ) m n其中 c ija i 1b 1 ja i 2b 2 ja ikb kj(i 1,2, , m; j 1,2, ,n)由此定义可知,只有当左矩阵A 的列数与右矩阵B 的行数相等时, AB 才有意义,而且矩阵AB 的行数为 A的行数, AB 的列数为 B 的列数,而矩阵 AB 中的元素是由左矩阵A 中某一行元素与右矩阵B 中某一列元素对应相乘再相加而得到 .故矩阵乘法与一般数的乘法有所不同,一般地: ①不满意交换律,即 AB BA②在 AB0 时,不能推出 A 0 或 B 0 ,因而也不满意消去律 .特殊,如矩阵 A 与 B 满意 ABBA ,就称 A 与 B 可交换,此时 A 与 B 必为同阶方阵 .矩阵乘法满意结合律,安排律及与数乘的结合律.5. 方阵的乘幂与多项式方阵设 A 为 n 阶方阵,就规定AmAA Am 个特殊 A0 E又如 f ( x)a x m a x m 1a x a ,就规定m m 11f ( A) a A m a A m 1a A a Em m 11称 f ( A) 为 A 的方阵多项式,它也是一个n 阶方阵6. 矩阵的转置设 A 为一个 m算满意以下运算律:n 矩阵,把 A 中行与列互换,得到一个n m 矩阵,称为 A 的转置矩阵,记为A T ,转置运( A ) TA , ( A B)TATB T , (kA)kA , ( AB)B T AT由转置运算给出对称矩阵,反对称矩阵的定义设 A 为一个 n 阶方阵,如 A 满意 A T7. 方阵的行列式A ,就称 A 为对称矩阵,如 A 满 足 ATA ,就称 A 为反对称矩阵 .矩阵与行列式是两个完全不同的概念,但对于n 阶方阵,有方阵的行列式的概念 .设 A(a ij ) 为一个 n 阶方阵,就由 A 中元素构成一个 n 阶行列式 a ij ,称为方阵 A 的行列式,记为 A方阵的行列式具有以下性质:设A ,B 为 n 阶方阵, k 为数,就① A TA ;② kAk n A③ ABA BTn1 111(三)方阵的逆矩阵1. 可逆矩阵的概念与性质设 A 为一个 n 阶方阵,如存在另一个n 阶方阵 B ,使满意 ABBA E ,就把 B 称为 A 的逆矩阵,且说 A为一个可逆矩阵,意指 A 是一个可以存在逆矩阵的矩阵,把A 的逆矩阵B 记为 且乘积为单位方阵 E.A ,从而 A 与 A 1第一必可交换,逆矩阵具有以下性质:设A ,B 为同阶可逆矩阵, k 0 为常数,就① A 是可逆矩阵,且( A 1) 1 A ;② AB 是可逆矩阵,且( AB)B A ;③ kA 是可逆矩阵,且 (kA)11 A 1k④ A T是可逆矩阵,且( A T ) 1 ( A 1) T⑤可逆矩阵可从矩阵等式的同侧消去,即 设 P 为可逆矩阵,就 PAPB2. 相伴矩阵A B APBPA BA 11 A 12A 21A 22A n1 A n2设 A(a ij ) 为一个 n 阶方阵, A ij 为 A 的行列式 Aa i j n 中元素 a ij 的代数余子式, 就矩阵A 1n A 2 nA nn称为 A 的相伴矩阵,记为相伴矩阵必满意* A (务必留意 *A 中元素排列的特点)AA *A * AA EA*An 1(n 为 A 的阶数)3.n 阶阵可逆的条件与逆矩阵的求法11 * 定理: n 阶方阵 A 可逆A 0 ,且 AA A推论:设 A , B 均为 n 阶方阵,且满意 ABE ,就 A , B 都可逆,且 A 1B , B 1Aa b 例 1 设 Ac d( 1)求 A 的相伴矩阵 A *( 2) a , b , c , d 满意什么条件时, A 可逆?此时求 A1解:( 1)对二阶方阵 A ,求 A *的口诀为“主交换,次变号”即A *dbc a( 2)由 Aa b ad c dbc ,故当 ad bc 0 时,即 A 0 , A 为可逆矩阵11此 时 A11A *A1d bad bc c a(四)分块矩阵1.分块矩阵的概念与运算对于行数和列数较高的矩阵, 为了表示便利和运算简洁, 常用一些贯穿于矩阵的横线和纵线把矩阵分割成如干小块,每个小块叫做矩阵的子块,以子块为元素的形式上的矩阵叫做分块矩阵 .在作分块矩阵的运算时,加,减法,数乘及转置是完全类似的,特殊在乘法时,要留意到应使左矩阵A 的列分块方式与右矩阵 B 的行分块方式一样, 然后把子块当作元素来看待, 相乘时 A 的各子块分别左乘 B 的对应的子块 .2. 准对角矩阵的逆矩阵A 1A 2形如的分块矩阵称为准对角矩阵,其中A 1 , A 2 ,, A r 均为方阵空白处都是零块 .A r如 A 1 , A 2 ,, A r 都是可逆矩阵,就这个准对角矩阵也可逆,并且A 1A 1A 2A 21rA r(五)矩阵的初等变换与初等方阵1.初等变换对一个矩阵 A 施行以下三种类型的变换,称为矩阵的初等行(列)变换,统称为初等变换, ( 1)交换 A 的某两行(列) ;( 2)用一个非零数 k 乘 A 的某一行(列) ;( 3)把 A 中某一行(列)的 k 倍加到另一行(列)上 .留意:矩阵的初等变换与行列式运算有本质区分,行列式运算是求值过程,用等号连接,而对矩阵施行初等变换是变换过程用“”连接前后矩阵 .初等变换是矩阵理论中一个常用的运算, 而且最常见的是利用矩阵的初等行变换把矩阵化成阶梯形矩阵,以至于化为行简化的阶梯形矩阵.2. 初等方阵由单位方阵 E 经过一次初等变换得到的矩阵称为初等方阵.由于初等变换有三种类型,相应的有三种类型的初等方阵,依次记为P ij , D i (k) 和T ij (k) ,简单证明,初等方阵都是可逆矩阵,且它们的逆矩阵仍是同一类的初等方阵 .3. 初等变换与初等方阵的关系设 A 为任一个矩阵,当在 A 的左边乘一个初等方阵的乘积相当于对 A 作同类型的初等行变换;在A 的右边乘一个初等方阵的乘积相当于对 A 作同类型的初等列变换 .4. 矩阵的等价与等价标准形如矩阵 A 经过如干次初等变换变为B ,就称 A 与 B 等价,记为 A B对任一个 mn 矩阵 A ,必与分块矩阵E r O O O等价,称这个分块矩阵为 A 的等价标准形 .即对任一个m n 矩阵 A , 必 存 在 n阶 可 逆 矩 阵 P及n阶 可 逆 矩 阵Q , 使 得11APAQ E r O O O5. 用初等行变换求可逆矩阵的逆矩阵设A 为任一个n 阶可逆矩阵,构造n 2n 矩阵(A,E)然后( A, E) (E, A 1)留意:这里的初等变换必需是初等行变换.例2 求A 解:1 1 32 1 41 2 4的逆矩阵1 1 3 1 0 10行1行2 行21 行31 1 3 1 0 0(A ,E ) 2 1 4 0 1 0 0 1 2 2 1 01 2 4 0 0 1 0 1 1 1 0 12 行1 行1 1 0 1 1 1 30行 1 行1 1 0 0 4 2 1 2行1行3 3行 2 行20 1 2 2 1 0 0 1 0 4 1 20 0 1 3 1 1 0 0 1 3 1 1就 A 1 例3 求解矩阵方程4 2 14 1 23 1 11 1 3 1 12 1 4 X 43 1 24 1 2解:令A 1 1 32 1 4 , B1 2 41 14 3 ,就矩阵方程为AX1 2B ,这里A 即为例2 中矩阵,是可逆的,在矩阵方程两边左乘A 1 ,得4 2 1 1 1 3 0X A 1B 4 1 2 4 3 2 53 1 1 1 2 0 2也能用初等行变换法,不用求出1A ,而直接求 A 1B1 1 3 1 1 1 0 0 3 0( A, B) 2 1 4 4 3 0 1 0 2 5 (E, A 1 B)1 2 4 1 2 0 0 1 0 23 0就X A 1B 2 50 2(六)矩阵的秩1. 秩的定义设 A 为m n 矩阵,把 A 中非零子式的最高阶数称为 A 的秩,记为秩( A) 或r ( A)零矩阵的秩为0,因而0 秩( A) min m,n ,对n 阶方阵A,如秩( A) n ,称 A 为满秩矩阵,否就称为降秩矩阵.2. 秩的求法由于阶梯形矩阵的秩就是矩阵中非零行的行数,又矩阵初等变换不转变矩阵的秩.对任一个矩阵 A ,只要用初等行变换把 A 化成阶梯形矩阵T,就秩(A)= 秩(T)=T 中非零行的行数.3. 与满秩矩阵等价的条件n 阶方阵 A 满秩 A 可逆,即存在B,使AB BA EA 非奇特,即 A 0A 的等价标准形为 EA 可以表示为有限个初等方阵的乘积齐次线性方程组AX 0 只有零解对任意非零列向量b,非齐次线性方程组AXA 的行(列)向量组线性无关b 有唯独解A 的行(列)向量组为R n的一个基任意n 维行(列)向量均可以表示为 A 的行(列)向量组的线性组合,且表示法唯独.A 的特点值均不为零A T A 为正定矩阵.(七)线性方程组的消元法.a11 x1 a 21 x1 a12x2a22x2a1nxnb1a2 nxnb2对任一个线性方程组a m1 x1 a m2 x2 a m n x nb m可以表示成矩阵形式AX b ,其中A(a ) 为系数矩阵, b (b , b , , b ) T为常数列矩阵,ij m n 1 2 mX ( x1, x2 , , x n) 为未知元列矩阵.从而线性方程组AX b 与增广矩阵A(A, b) 一一对应.对于给定的线性方程组,可利用矩阵的初等行变换,把它的增广矩阵化成简化阶梯形矩阵,从而得到易于求解的同解线性方程组,然后求出方程组的解.第三章向量空间TTTT(一) n 维向量的定义与向量组的线性组合1.n 维向量的定义与向量的线性运算由 n 个数组成的一个有序数组称为一个 n 维向量,如用一行表示,称为n 维行向量,即 1n 矩阵,如用一列表示,称为 n 维列向量,即 n 1矩阵 与矩阵线性运算类似,有向量的线性运算及运算律.2. 向量的线性组合设 1 ,2 , , m 是一组 n 维向量, k 1, k 2 , ,k m 是一组常数,就称k 11k 22k mm为1, 2 , , m 的一个线性组合,常数 k 1, k 2 , , k m 称为组合系数 .如一个向量可以表示成k 11k 22k mm就称 是1, 2 , , m 的线性组合,或称可用1, 2, , m 线性表出 .3. 矩阵的行,列向量组设 A 为一个 m n 矩阵,如把 A 按列分块,可得一个 m 维列向量组称之为 A 的列向量组 .如把 A 按行分块,可得一个 n 维行向量组称之为 A 的行向量组 .4. 线性表示的判定及表出系数的求法 .向量能用1 ,2 , , m 线性表出的充要条件是线性方程组 x 11x 22x mm有解,且每一个解就是一个组合系数 .例 1 问( 1,1,5) 能否表示成1 (1,2,3) ,2 (0,1,4)T,(2,3,6) 的线性组合?解:设线性方程组为x 11x 22x 33对方程组的增广矩阵作初等行变换:1 02 1 1 0 0 1 ( A, ) ( 1,2, 3, )2 13 1 0 1 0 23 4 6 50 0 1 1就方程组有唯独解 x 1 1, x 2 2, x 31所以可以唯独地表示成1, 2 , 3 的线性组合,且 122 3(二)向量组的线性相关与线性无关1.线性相关性概念设1, 2 , ,m 是 m 个 n 维向量,假如存在m 个不全为零的数k 1 ,k 2, , k m ,使得k 11k 2 2k mm0 ,就称向量组 1, 2, , m线性相关,称 k 1, k 2, , k m 为相关系数 .否就,称向量1, 2 , , m 线性无关 .由定义可知,1, 2 , , m 线性无关就是指向量等式 k 11k 22k mm0 当且仅当3k1k2k m0时成立.特殊单个向量线性相关0 ;单个向量线性无关02. 求相关系数的方法设1, 2, , m为m 个n 维列向量,就1, 2, , m线性相关m 元齐次线性方程组x1 1 x2 2xm m0 有非零解,且每一个非零解就是一个相关系数矩阵A( 1, 2, , m ) 的秩小于m例2 设向量组1(2, 1,7) T , (1,4,11)T , (3, 6,3)T,试争论其线性相关性. 解:考虑方程组x1 1 x2 2 x3 3 0其系数矩阵 A ( 1, 2, 3) 2 1 31 4 67 11 31 0 20 1 10 0 0于是,秩( A) 2 3 ,所以向量组线性相关,与方程组同解的方程组为x12x30x2x30令x31,得一个非零解为x12, x21, x3 1就 21 2 33. 线性相关性的如干基本定理定理 1 n 维向量组1, 2, , m线性相关至少有一个向量是其余向量的线性组合.即1, 2, , m线性无关任一个向量都不能表示为其余向量的线性组合.定理 2 假如向量组1, 2, , m线性无关,又, 1, 2, , m线性相关,就可以用1, 2,, m线性表出,且表示法是唯独的.定理 3 如向量组中有部分组线性相关,就整体组也必相关,或者整体无关,部分必无关.定理 4 无关组的接长向量组必无关.(三)向量组的极大无关组和向量组的秩1. 向量组等价的概念如向量组S 可以由向量组R 线性表出,向量组R 也可以由向量组S 线性表出,就称这两个向量组等价.2. 向量组的极大无关组设T 为一个向量组,如存在T 的一个部分组S,它是线性无关的,且T 中任一个向量都能由S 线性表示,就称部分向量组S 为T 的一个极大无关组.明显,线性无关向量组的极大无关组就是其本身.对于线性相关的向量组,一般地,它的极大无关组不是唯独的,但有以下性质:定理 1 向量组T 与它的任一个极大无关组等价,因而T 的任意两个极大无关组等价.定理 2 向量组T 的任意两个极大无关组所含向量的个数相同.3. 向量组的秩与矩阵的秩的关系把向量组T 的任意一个极大无关组中的所含向量的个数称为向量组T 的秩.把矩阵 A 的行向量组的秩,称为 A 的行秩,把 A 的列向量组的秩称为 A 的列秩.2 3TTT T 定理:对任一个矩阵 A ,A 的列秩 =A 的行秩 =秩( A ) 此定理说明,对于给定的向量组,可以根据列构造一个矩阵 A ,然后用矩阵的初等行变换法来求出向量组的秩和极大无关组 .例 3 求出以下向量组的秩和一个极大无关组,并将其余向量用极大无关组线性表出:1 (1,1, 2,7),2 ( 1, 2,,2, 9),3 ( 1,1, 6,6),4 ( 2,1,4,3),5 (2,4,4,3)解:把全部的行向量都转置成列向量,构造一个4 5 矩阵,再用初等行变换把它化成简化阶梯形矩阵A1, 2 ,3,4,511 12 2 1 2 1 1 42 26 4 4 79 6 3 31 0 0 0 0 0 1 0 1 0 B0 0 1 1 0 0 0 0 0 1易见 B 的秩为 4,A 的秩为 4,从而秩1, 2, 3 , 4 , 5 4 ,而且 B 中主元位于第一,二,三,五列,那么相应地1, 2, 3 , 5 为向量组的一个极大无关组,而且 423(四)向量空间1.向量空间及其子空间的定义定义 1 n 维实列向量全体(或实行向量全体)构成的集合称为实 n 维向量空间,记作 Rn定义 2 设 V 是 n 维向量构成的非空集合,如V 对于向量的线性运算封闭,就称集合V 是 称为向量空间 .2. 向量空间的基与维数R n的子空间,也设 V 为一个向量空间,它第一是一个向量组,把该向量组的任意一个极大无关组称为向量空间V 的一个基,把向量组的秩称为向量空间的维数.明显, n 维向量空间 R n 的维数为 n ,且 R n 中任意 n 个线性无关的向量都是R n 的一个基 .3.向量在某个基下的坐标设1, 2 , , r 是向量空间 V 的一个基,就 V 中任一个向量都可以用1, 2 , , r 唯独地线性表出,由r 个表出系数组成的 r 维列向量称为向量在此基下的坐标 .第四章 线性方程组(一) 线性方程组关于解的结论定理 1 设 AXb 为 n 元非齐次线性方程组,就它有解的充要条件是r ( A, b) r ( A)定理 2 当 n 元非齐次线性方程组 AXb 有解时,即 r ( A, b) r (A)r 时,那么( 1) AX ( 2) AXb 有唯独解b有无穷多解r n ;r n .定理 3 n 元齐次线性方程组 AX0 有非零解的充要条件是 r ( A) rn推论 1 设 A 为 n 阶方阵,就 n 元齐次线性方程组 AX0 有非零解A 0推论 2 设 A 为 mn 矩阵,且 m n ,就 n 元齐次线性方程组必有非零解(二)齐次线性方程组解的性质与解空间第一对任一个线性方程组,我们把它的任一个解用一个列向量表示,称为该方程组的解向量,也简称为方程T组的解.考虑由齐次线性方程组AX 0 的解的全体所组成的向量集合V A 0明显V 是非空的,由于V 中有零向量,即零解,而且简单证明V 对向量的加法运算及数乘运算封闭,即解向量的和仍为解,解向量的倍数仍为解,于是V 成为n 维列向量空间R n的一个子空间,我们称V 为方程组AX 0 的解空间(三)齐次线性方程组的基础解系与通解把n 元齐次线性方程组AX 0 的解空间的任一个基,称为该齐次线性方程组的一个基础解系.当n 元齐次线性方程组有线性无关解向量的个数为AX 0 有非零解时,即n rr ( A) r n 时,就肯定存在基础解系,且基础解系中所含求基础解系与通解的方法是:对方程组AX 0 先由消元法,求出一般解,再把一般解写成向量形式,即为方程组的通解,从中也能求出一个基础解系.2 x1x2 2 x3 3 x40例1 求 3 x1x12 x2x3x2x32 x4x40 的通解解:对系数矩阵A,作初等行变换化成简化阶梯形矩阵:2 1 23 1 行(-1)+2 行 1 0 34 2 行(-1)+3 行 1 0 3 43 行(-1)+1 行 1 行(-1)+2 行A 3 2 1 2 1 1 1 1 0 1 4 51 1 1 1 1 1 1 1 0 0 0 0r ( A) 2 4 ,有非零解,取x3 , x4为自由未知量,可得一般解为x13x3x2 4 x3x3x3x4344x4,5x4,x445写成向量形式,令34 x3k1,45x4k 2为任意常数,就通解为X k1k 21 00 1可见,1,21为方程组的一个基础解系.1(四)非齐次线性方程组1. 非齐次线性方程组与它对应的齐次线性方程组(即导出组)的解之间的关系设AX b 为一个n 元非齐次线性方程组,AX 0 为它的导出组,就它们的解之间有以下性质:性质 1 假如1, 2是AX b 的解,就12是AX0 的解性质 2 假如是AX b 的解,是AX 0 的解,就是AX b 的解由这两个性质,可以得到AX b 的解的结构定理:*定理 设 A 是 mn 矩阵,且 r ( A, b) r (A) r ,就方程组 AX b 的通解为Xk 1 1 k 22k n rn r其中 * 为 AXb 的任一个解(称为特解) , 1, 2 , , n r 为导出组 AX0 的一个基础解系 .2. 求非齐次线性方程组的通解的方法对非齐次线性方程组AX b ,由消元法求出其一般解,再把一般解改写为向量形式,就得到方程组的通解.例 2当参数 a , b 为何值时,线性方程组 x 13x 1 x 2x 2 x 2 (a 2 x 2x 3 2 x 3 3) x 3 x 3 x 40 2 x 4 1 2 x 4b ax 41有唯独解?有无穷多解?无解?在有无穷多解时,求出通解.解:对方程组的增广矩阵施行初等行变换,把它化成阶梯形矩阵:1 11 1 02行 3行 1 1 11 0 ( A,b)0 1 2 2 1 1行 -34行0 1 2 2 1 0 1 a 3 2 b 0 0 a 1 0 b 13 21 a 1 012 a3 12 行 4 行 2行 -1 1行1 0 1 1 1 0 1 2210 0 a 1 0 b 10 00 a 1 0当 a 1 时, r ( A ,b) r ( A )4 ,有唯独解;当 a 1,b 1 时, r (A ,b) 3 , r ( A) 2 ,无解; 当 a 1,b1时, r ( A, b) r ( A)2 ,有无穷多解 .此时,方程组的一般解为令 x 3k 1, x 4 k 2 为任意常数,故一般解为向量形式,得方程组通解为1 1 1 12 2 Xk 1k 20 1 0 01x 11 x 3 x 4 x2 x3 x 41 2 x 3 x 3 2 x 4x 4。
线性代数(经管类)笔记
第一章行列式(一)行列式的定义行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.1.二阶行列式由4个数得到下列式子:称为一个二阶行列式,其运算规则为2.三阶行列式由9个数得到下列式子:称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.3.余子式及代数余子式设有三阶行列式对任何一个元素,我们划去它所在的第i行及第j列,剩下的元素按原先次序组成一个二阶行列式,称它为元素的余子式,记成例如,,再记,称为元素的代数余子式.例如,,那么,三阶行列式定义为我们把它称为按第一列的展开式,经常简写成4.n阶行列式一阶行列式n阶行列式其中为元素的代数余子式.5.特殊行列式上三角行列式下三角行列式对角行列式(二)行列式的性质性质1 行列式和它的转置行列式相等,即性质2用数k乘行列式D中某一行(列)的所有元素所得到的行列式等于kD,也就是说,行列式可以按行和列提出公因数.性质3互换行列式的任意两行(列),行列式的值改变符号.推论1如果行列式中有某两行(列)相同,则此行列式的值等于零.推论 2 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4行列式可以按行(列)拆开.性质 5 把行列式D的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为D.定理1(行列式展开定理)n阶行列式等于它的任意一行(列)的各元素与其对应的代数余子式的乘积的和,即或前一式称为D按第i行的展开式,后一式称为D按第j列的展开式.本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值.定理2 n阶行列式的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即或(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k时,必须在新的行列式前面乘上k.(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:例1 计算行列式解:观察到第二列第四行的元素为0,而且第二列第一行的元素是,利用这个元素可以把这一列其它两个非零元素化为0,然后按第二列展开.例2 计算行列式解:方法1这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观察其特点,这个行列式的特点是它的每一行元素之和均为(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一列的公因子,再将后三行都减去第一行:方法 2 观察到这个行列式每一行元素中有多个b,我们采用“加边法”来计算,即是构造一个与有相同值的五阶行列式:这样得到一个“箭形”行列式,如果,则原行列式的值为零,故不妨假设,即,把后四列的倍加到第一列上,可以把第一列的(-1)化为零.例3 三阶范德蒙德行列式(四)克拉默法则定理1(克拉默法则)设含有n个方程的n元线性方程组为如果其系数行列式,则方程组必有唯一解:其中是把D中第j列换成常数项后得到的行列式.把这个法则应用于齐次线性方程组,则有定理2 设有含n个方程的n元齐次线性方程组如果其系数行列式,则该方程组只有零解:换句话说,若齐次线性方程组有非零解,则必有,在教材第二章中,将要证明,n个方程的n元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.例4当取何值时,齐次线性方程组只有零解?解:方程组的系数行列式由于故当且且时,方程组只有零解.第二章矩阵(一)矩阵的定义1.矩阵的概念由个数排成的一个m行n列的数表称为一个m行n列矩阵或矩阵当时,称为n阶矩阵或n阶方阵元素全为零的矩阵称为零矩阵,用或O表示2.3个常用的特殊方阵:①n阶对角矩阵是指形如的矩阵②n阶单位方阵是指形如的矩阵③n阶三角矩阵是指形如的矩阵3.矩阵与行列式的差异矩阵仅是一个数表,而n阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“”与矩阵记号“”也不同,不能用错.(二)矩阵的运算1.矩阵的同型与相等设有矩阵,,若,,则说A与B是同型矩阵.若A与B同型,且对应元素相等,即,则称矩阵A与B相等,记为因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等.2.矩阵的加、减法设,是两个同型矩阵则规定注意:只有A与B为同型矩阵,它们才可以相加或相减.由于矩阵的相加体现为元素的相加,因而与普通数的加法运算有相同的运算律.3.数乘运算设,k为任一个数,则规定故数k与矩阵A的乘积就是A中所有元素都乘以k,要注意数k与行列式D的乘积,只是用k乘行列式中某一行或某一列,这两种数乘截然不同.矩阵的数乘运算具有普通数的乘法所具有的运算律.4.乘法运算设,,则规定其中由此定义可知,只有当左矩阵A的列数与右矩阵B的行数相等时,AB才有意义,而且矩阵AB的行数为A的行数,AB的列数为B的列数,而矩阵AB中的元素是由左矩阵A中某一行元素与右矩阵B中某一列元素对应相乘再相加而得到.故矩阵乘法与普通数的乘法有所不同,一般地:①不满足交换律,即②在时,不能推出或,因而也不满足消去律.特别,若矩阵A与B满足,则称A与B可交换,此时A与B必为同阶方阵.矩阵乘法满足结合律,分配律及与数乘的结合律.5.方阵的乘幂与多项式方阵设A为n阶方阵,则规定特别又若,则规定称为A的方阵多项式,它也是一个n阶方阵6.矩阵的转置设A为一个矩阵,把A中行与列互换,得到一个矩阵,称为A 的转置矩阵,记为,转置运算满足以下运算律:,,,由转置运算给出对称矩阵,反对称矩阵的定义设A为一个n阶方阵,若A满足,则称A为对称矩阵,若A满足,则称A为反对称矩阵.7.方阵的行列式矩阵与行列式是两个完全不同的概念,但对于n阶方阵,有方阵的行列式的概念.设为一个n阶方阵,则由A中元素构成一个n阶行列式,称为方阵A的行列式,记为方阵的行列式具有下列性质:设A,B为n阶方阵,k为数,则①;②③(三)方阵的逆矩阵1.可逆矩阵的概念与性质设A为一个n阶方阵,若存在另一个n阶方阵B,使满足,则把B称为A的逆矩阵,且说A为一个可逆矩阵,意指A是一个可以存在逆矩阵的矩阵,把A的逆矩阵B记为,从而A与首先必可交换,且乘积为单位方阵E.逆矩阵具有以下性质:设A,B为同阶可逆矩阵,为常数,则①是可逆矩阵,且;②AB是可逆矩阵,且;③kA是可逆矩阵,且④是可逆矩阵,且⑤可逆矩阵可从矩阵等式的同侧消去,即设P为可逆矩阵,则2.伴随矩阵设为一个n阶方阵,为A的行列式中元素的代数余子式,则矩阵称为A的伴随矩阵,记为(务必注意中元素排列的特点)伴随矩阵必满足(n为A的阶数)3.n阶阵可逆的条件与逆矩阵的求法定理:n阶方阵A可逆,且推论:设A,B均为n阶方阵,且满足,则A,B都可逆,且,例1 设(1)求A的伴随矩阵(2)a,b,c,d满足什么条件时,A可逆?此时求解:(1)对二阶方阵A,求的口诀为“主交换,次变号”即(2)由,故当时,即,A为可逆矩阵此时(四)分块矩阵1.分块矩阵的概念与运算对于行数和列数较高的矩阵,为了表示方便和运算简洁,常用一些贯穿于矩阵的横线和纵线把矩阵分割成若干小块,每个小块叫做矩阵的子块,以子块为元素的形式上的矩阵叫做分块矩阵.在作分块矩阵的运算时,加、减法,数乘及转置是完全类似的,特别在乘法时,要注意到应使左矩阵A的列分块方式与右矩阵B的行分块方式一致,然后把子块当作元素来看待,相乘时A的各子块分别左乘B的对应的子块.2.准对角矩阵的逆矩阵形如的分块矩阵称为准对角矩阵,其中均为方阵空白处都是零块.若都是可逆矩阵,则这个准对角矩阵也可逆,并且五)矩阵的初等变换与初等方阵1.初等变换对一个矩阵A施行以下三种类型的变换,称为矩阵的初等行(列)变换,统称为初等变换,(1)交换A的某两行(列);(2)用一个非零数k乘A的某一行(列);(3)把A中某一行(列)的k倍加到另一行(列)上.注意:矩阵的初等变换与行列式计算有本质区别,行列式计算是求值过程,用等号连接,而对矩阵施行初等变换是变换过程用“”连接前后矩阵.初等变换是矩阵理论中一个常用的运算,而且最常见的是利用矩阵的初等行变换把矩阵化成阶梯形矩阵,以至于化为行简化的阶梯形矩阵.2.初等方阵由单位方阵E经过一次初等变换得到的矩阵称为初等方阵.由于初等变换有三种类型,相应的有三种类型的初等方阵,依次记为,和,容易证明,初等方阵都是可逆矩阵,且它们的逆矩阵还是同一类的初等方阵.3.初等变换与初等方阵的关系设A为任一个矩阵,当在A的左边乘一个初等方阵的乘积相当于对A作同类型的初等行变换;在A的右边乘一个初等方阵的乘积相当于对A作同类型的初等列变换.4.矩阵的等价与等价标准形若矩阵A经过若干次初等变换变为B,则称A与B等价,记为对任一个矩阵A,必与分块矩阵等价,称这个分块矩阵为A 的等价标准形.即对任一个矩阵A,必存在n阶可逆矩阵P及n阶可逆矩阵Q,使得5.用初等行变换求可逆矩阵的逆矩阵设A为任一个n阶可逆矩阵,构造矩阵(A,E)然后注意:这里的初等变换必须是初等行变换.例2 求的逆矩阵解:则例3 求解矩阵方程解:令,则矩阵方程为,这里A即为例2中矩阵,是可逆的,在矩阵方程两边左乘,得也能用初等行变换法,不用求出,而直接求则(六)矩阵的秩1.秩的定义设A为矩阵,把A中非零子式的最高阶数称为A的秩,记为秩或零矩阵的秩为0,因而,对n阶方阵A,若秩,称A为满秩矩阵,否则称为降秩矩阵.2.秩的求法由于阶梯形矩阵的秩就是矩阵中非零行的行数,又矩阵初等变换不改变矩阵的秩.对任一个矩阵A,只要用初等行变换把A化成阶梯形矩阵T,则秩(A)=秩(T)=T中非零行的行数.3.与满秩矩阵等价的条件n阶方阵A满秩A可逆,即存在B,使A非奇异,即A的等价标准形为EA可以表示为有限个初等方阵的乘积齐次线性方程组只有零解对任意非零列向量b,非齐次线性方程组有唯一解A的行(列)向量组线性无关A的行(列)向量组为的一个基任意n维行(列)向量均可以表示为A的行(列)向量组的线性组合,且表示法唯一.A的特征值均不为零为正定矩阵.(七)线性方程组的消元法.对任一个线性方程组可以表示成矩阵形式,其中为系数矩阵,为常数列矩阵,为未知元列矩阵.从而线性方程组与增广矩阵一一对应.对于给定的线性方程组,可利用矩阵的初等行变换,把它的增广矩阵化成简化阶梯形矩阵,从而得到易于求解的同解线性方程组,然后求出方程组的解.例4解线性方程组解:把线性方程组的增广矩阵化成简化阶梯形矩阵:得到同解线性方程组即或取为自由未知量,可知方程组有无穷多解,上式就是所给方程组的一般解.例4解线性方程组解:把线性方程组的增广矩阵化成简化阶梯形矩阵:得到同解线性方程组即或取为自由未知量,可知方程组有无穷多解,上式就是所给方程组的一般解.2.向量的线性组合设是一组n维向量,是一组常数,则称为的一个线性组合,常数称为组合系数.若一个向量可以表示成则称是的线性组合,或称可用线性表出.3.矩阵的行、列向量组设A为一个矩阵,若把A按列分块,可得一个m维列向量组称之为A的列向量组.若把A按行分块,可得一个n维行向量组称之为A的行向量组.4.线性表示的判断及表出系数的求法.向量能用线性表出的充要条件是线性方程组有解,且每一个解就是一个组合系数.例1 问能否表示成,,的线性组合?解:设线性方程组为对方程组的增广矩阵作初等行变换:则方程组有唯一解所以可以唯一地表示成的线性组合,且(二)向量组的线性相关与线性无关1.线性相关性概念设是m个n维向量,如果存在m个不全为零的数,使得,则称向量组线性相关,称为相关系数.否则,称向量线性无关.由定义可知,线性无关就是指向量等式当且仅当时成立.特别单个向量线性相关;单个向量线性无关2.求相关系数的方法设为m个n维列向量,则线性相关m元齐次线性方程组有非零解,且每一个非零解就是一个相关系数矩阵的秩小于m例2 设向量组,试讨论其线性相关性.解:考虑方程组其系数矩阵于是,秩,所以向量组线性相关,与方程组同解的方程组为令,得一个非零解为则3.线性相关性的若干基本定理定理1 n维向量组线性相关至少有一个向量是其余向量的线性组合.即线性无关任一个向量都不能表示为其余向量的线性组合.定理2 如果向量组线性无关,又线性相关,则可以用线性表出,且表示法是唯一的.定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关.定理4无关组的接长向量组必无关.3.线性相关性的若干基本定理定理1 n维向量组线性相关至少有一个向量是其余向量的线性组合.即线性无关任一个向量都不能表示为其余向量的线性组合.定理2 如果向量组线性无关,又线性相关,则可以用线性表出,且表示法是唯一的.定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关.定理4无关组的接长向量组必无关.例3 求出下列向量组的秩和一个极大无关组,并将其余向量用极大无关组线性表出:解:把所有的行向量都转置成列向量,构造一个矩阵,再用初等行变换把它化成简化阶梯形矩阵易见B的秩为4,A的秩为4,从而秩,而且B中主元位于第一、二、三、五列,那么相应地为向量组的一个极大无关组,而且(四)向量空间1.向量空间及其子空间的定义定义1 n维实列向量全体(或实行向量全体)构成的集合称为实n维向量空间,记作定义2 设V是n维向量构成的非空集合,若V对于向量的线性运算封闭,则称集合V是的子空间,也称为向量空间.2.向量空间的基与维数设V为一个向量空间,它首先是一个向量组,把该向量组的任意一个极大无关组称为向量空间V的一个基,把向量组的秩称为向量空间的维数.显然,n维向量空间的维数为n,且中任意n个线性无关的向量都是的一个基.3.向量在某个基下的坐标设是向量空间V的一个基,则V中任一个向量都可以用唯一地线性表出,由r个表出系数组成的r维列向量称为向量在此基下的坐标.例4证明:构成的一个基,并求出在此基下的坐标.解:考虑由这三个3维向量组成的三阶行列式所以线性无关,它们构成的基,令由得唯一解,则所求在此基下的坐标为第四章线性方程组(一)线性方程组关于解的结论定理1 设为n元非齐次线性方程组,则它有解的充要条件是定理2当n元非齐次线性方程组有解时,即时,那么(1)有唯一解;(2)有无穷多解.定理3 n元齐次线性方程组有非零解的充要条件是推论1设A为n阶方阵,则n元齐次线性方程组有非零解推论2 设A为矩阵,且,则n元齐次线性方程组必有非零解(二)齐次线性方程组解的性质与解空间首先对任一个线性方程组,我们把它的任一个解用一个列向量表示,称为该方程组的解向量,也简称为方程组的解.考虑由齐次线性方程组的解的全体所组成的向量集合显然V是非空的,因为V中有零向量,即零解,而且容易证明V对向量的加法运算及数乘运算封闭,即解向量的和仍为解,解向量的倍数仍为解,于是V成为n维列向量空间的一个子空间,我们称V为方程组的解空间(三)齐次线性方程组的基础解系与通解把n元齐次线性方程组的解空间的任一个基,称为该齐次线性方程组的一个基础解系.当n元齐次线性方程组有非零解时,即时,就一定存在基础解系,且基础解系中所含有线性无关解向量的个数为求基础解系与通解的方法是:对方程组先由消元法,求出一般解,再把一般解写成向量形式,即为方程组的通解,从中也能求出一个基础解系.例1 求的通解解:对系数矩阵A,作初等行变换化成简化阶梯形矩阵:,有非零解,取为自由未知量,可得一般解为写成向量形式,令,为任意常数,则通解为可见,为方程组的一个基础解系.(四)非齐次线性方程组1.非齐次线性方程组与它对应的齐次线性方程组(即导出组)的解之间的关系设为一个n元非齐次线性方程组,为它的导出组,则它们的解之间有以下性质:性质1 如果是的解,则是的解性质2如果是的解,是的解,则是的解由这两个性质,可以得到的解的结构定理:定理设A是矩阵,且,则方程组的通解为其中为的任一个解(称为特解),为导出组的一个基础解系.2.求非齐次线性方程组的通解的方法对非齐次线性方程组,由消元法求出其一般解,再把一般解改写为向量形式,就得到方程组的通解.例2当参数a,b为何值时,线性方程组有唯一解?有无穷多解?无解?在有无穷多解时,求出通解.解:对方程组的增广矩阵施行初等行变换,把它化成阶梯形矩阵:_当时,,有唯一解;当时,,,无解;当时,,有无穷多解.此时,方程组的一般解为令为任意常数,故一般解为向量形式,得方程组通解为第五章特征值与特征向量(一)特征值与特征向量1.实方阵的特征值与特征向量的定义与求法设A为一个n阶实方阵,若存在一个数及一个非零n维列向量,使得,则称为A的一个特征值,称是A的属于这个特征值的一个特征向量.特征值必是特征多项式的根,而相应特征向量必是齐次线性方程组的非零解,反之也对.例1 设,求A的特征值和特征向量.解:A的特征方程为则为A的两个特征值.对,求解,即得方程组的一个基础解系为,则为A的属于的一个特征向量.对,同理可求出的一个基础解系为则为A的属于的一个特征向量2.特征值和特征向量的性质性质1设是n阶方阵的全体特征值,则必有这里为矩阵A的n个对角元之和,称为A的迹.性质2 设已知为A的特征值,为相应特征向量,即,那么对任意多项式必有,特别性质3 n阶方阵A的属于不同特征值的特征向量必线性无关.(二)方阵的相似变换1.矩阵相似的定义与相似矩阵的基本性质设A和B是两个n阶方阵,如果存在某个n阶可逆矩阵P,使得,则称A和B是相似的,记为A~B.相似矩阵必有相同的特征多项式,因而必有相同的特征值,相同的迹和相同的行列式,但反之不一定.2.方阵相似对角化若n阶方阵A能相似于一个n阶对角矩阵,则说方阵A是可以相似对角化的,有以下基本定理:定理n阶方阵A可相似对角化A有n个线性无关的特征向量.推论当n阶方阵A有n个互不相同的特征值时,A必能相似对角化.3.方阵相似对角化的方法设A为n阶实方阵,若它能相似对角化,即A有n个线性无关的特征向量,不妨设它们属于的特征值依次为(这里可以有重复的)则令为一个n阶可逆矩阵,必有称这个对角矩阵为A的相似标准形.例2 设,求A的相似标准形解:A的特征方程为则为A的特征值.可求出属于的线性无关特征向量为,属于二重特征值的线性无关特征向量为于是为A的三个特征无关特征向量,A可相似对角化令为可逆矩阵.使得,为A的相似标准形解:A的特征方程为则为A的特征值.可求出属于的线性无关特征向量为,属于二重特征值的线性无关特征向量为于是为A的三个特征无关特征向量,A可相似对角化令为可逆矩阵.使得,为A的相似标准形(三)向量内积和正交矩阵1.向量内积的定义和基本性质下面我们在n维向量空间中讨论设为两个n维列向量,把实数,称为向量与的内积向量的内积具有对称性、线性性与正定性.2.向量的长度n维列向量的长度为实数。
线性代数自考知识点汇总
线性代数自考知识点汇总 The Standardization Office was revised on the afternoon of December 13, 2020行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =. 性质2 互换行列式的两行(列),行列式变号.推论1 如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行(列)元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i j ij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132a a M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行(列)展开法则定理1 行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==4. 行列式的计算 (1)二阶行列式1112112212212122a a a a a a a a =- (2)三阶行列式111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++---(3)对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-(4)三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==111,n 11n1n n(n 1)212,n 12,n 12n 21n 2,n 1n1n1n1n2nna a a a a a a a (1)a a a a a a a -----==-(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值. (6)降阶法:利用行列式的性质,化某行(列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1)对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2)单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作E.3)上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭ 4)下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭5)对称矩阵:设A 为n阶方阵,若T A A =,即ij ji a a =,则称A 为对称矩阵.6)反对称矩阵:设A 为n阶方阵,若T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 7)正交矩阵:设A 为n阶方阵,如果T AA E =或T A A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 (1)矩阵的加法如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪ ⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. (2)数乘矩阵如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.(3)矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵(即一个数),即()112111121s 111112211s s1s1b ba a a ab a b a b b ⎛⎫ ⎪ ⎪=++⎪ ⎪⎝⎭列矩阵乘行矩阵是s 阶方阵,即()1111111112111s 2121112112211s 11121s s1s111s112s11s a a b a b a b a a b a b a b b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭3. 逆矩阵设n 阶方阵A 、B ,若AB=E 或BA=E ,则A ,B 都可逆,且11A B,B A --==.(1)二阶方阵求逆,设a b A c d ⎛⎫= ⎪⎝⎭ ,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭(两调一除法). (2)对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭.(3)分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. (4)一般矩阵求逆,初等行变换的方法:()()ERT1A E E A -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式(各元素的位置不变)叫做方阵A 的行列式.记作A 或det (A ). 5. 矩阵的初等变换下面三种变换称为矩阵的初等行(列)变换:(1)互换两行(列);(2)数乘某行(列);(3)某行(列)的倍数加到另一行(列). 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作R (A )或r (A ). 求矩阵的秩的方法:(1)定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.(2)初等行变换法:ERTA −−−→行阶梯形矩阵,R (A )=R (行阶梯形矩阵)=非零行的行数.8. 重要公式及结论 (1)矩阵运算的公式及结论()()12121212k k k k k k k k k k k k kk 10A B B A,(A B )C A (B C ),(A B )A B(AB )C A(BC ),(A B )C AC BC ,(AB )(A )B A(B )A A A ,(A )A ,(A )A ,E EAB A BA B ,EA AE A,A Eλλλλλλλλ+-+=+++=+++=+=+=+==⋅========()()()()()()T TTT T T T T T TTT nT n n A A,(A B )A B ,A A ,AB B A A A ,AB B A ,AA A A A EA A ,A A ,AB A B BA ,A A ,A B A Bλλλλ*******=+=+===========+≠+矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地若AB=AC ,无B=C ;只有当A 可逆时,有B=C.一般地若AB=O ,则无A=O 或B=O.()222A B ?A 2AB B +++.(2)逆矩阵的公式及定理()()()()()()()()11111111n 11111k1k 1T11T 1A A ,A A ,,A A 1A A,A A,A A ,A A AB B A1A A A A AA A ,A λλ----------*-**--**-----===========A 可逆⇔|A |≠0⇔A ~E (即A 与单位矩阵E 等价) (3)矩阵秩的公式及结论()()()T m n R(O )0,R(A )min{m,n },R(A )R(A ),R(kA )R(A ),k 0A 0R(A )n ,R A B R A R B ⨯=≤==≠≠⇔=+≤+R ( AB ) ≤R ( A ), R ( AB ) ≤R ( B ).特别地,当A 可逆时,R(AB)=R(B);当B 可逆时,R(AB)=R(A).()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程(1)设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -;② ()()ERT A B EX −−−→ .(2)设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:① 求出1A -,再计算1BA -;② ECT A E B X ⎛⎫⎛⎫−−−→ ⎪ ⎪⎝⎭⎝⎭ .10. 矩阵间的关系(1)等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B ,那么称矩阵A 与B 等价.即存在可逆矩阵P ,Q ,使得PAQ=B.性质:等价矩阵的秩相等.(2)相似矩阵:如果存在可逆矩阵P ,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. (3)合同矩阵:如果存在可逆矩阵P ,使得T P AP B =,那么称A 与B 合同. 性质:合同矩阵的秩相等.向量空间1. 线性组合(1)若α=k β,则称向量α与β成比例. (2)零向量O是任一向量组的线性组合.(3)向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关(1) 单独一个向量线性相关当且仅当它是零向量. (2) 单独一个向量线性无关当且仅当它是非零向量. (3) 两向量线性相关当且仅当两向量对应成比例. (4) 两向量线性无关当且仅当两向量不对应成比例. (5) 含有O向量的向量组一定线性相关. (6) 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.(7)n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.(8) 向量组12m ,,,ααα线性无关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=只有零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.(9) n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.(10)当m>n 时,m 个n 维向量一定线性相关.定理1:向量组 a 1 , a 2 ,……, a m (m ≥2)线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示.定理2:如果向量组A :a 1 , a 2 ,……, a r 线性无关,而向量组 a 1 , a 2 ,……, a r ,α线性相关,则α可由A 线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+若A 线性相关,则向量组B 也线性相关;反之,若向量组B 线性无关,则向量组A 也线性无关.(即部分相关,则整体相关;整体无关,则部分无关). 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1 如果在向量组 T 中有 r 个向量 a 1 , a 2 ,……, a r ,满足条件: ⑴ 向量组 a 1 , a 2 ,……, a r 线性无关, ⑵ T α∀∈,2r 1,,,,αααα线性相关.那么称向量 a 1 , a 2 ,……, a r 是向量组 T 的一个极大无关组. 定义2 向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩。
线性代数公式总结
线性代数公式总结线性代数是数学中的一个分支,主要研究向量、向量空间、矩阵、线性方程组等概念和性质。
线性代数公式总结如下:1.向量加法和标量乘法:- 向量加法:如果u和v是n维向量,则它们的和为u + v = (u1 + v1, u2 + v2, ..., un + vn)- 标量乘法:如果k是一个实数,则k乘以向量v的结果为kv = (k*v1, k*v2, ..., k*vn)2.线性方程组:-n个未知数的线性方程组可以用矩阵和向量表示:Ax=b,其中A是一个m×n的矩阵,x是一个n维列向量,b是一个m维列向量。
- 如果Ax = b有唯一解,则A的行列式不为零。
行列式表示为det(A)。
-矩阵的逆:如果矩阵A的行列式不为零,则存在矩阵A的逆矩阵A^-1,使得AA^-1=A^-1A=I,其中I是单位矩阵。
3.向量空间和线性无关性:- 向量空间是指由向量的线性组合构成的集合,满足以下性质:对于任意的向量u和v以及任意的标量k和l,ku + lv仍然在向量空间内。
- 向量v1, v2, ..., vn是线性无关的,如果方程k1v1 + k2v2+ ... + knvn = 0只有零解。
- 如果一组向量v1, v2, ..., vn张成一个向量空间V,则称这组向量是V的基。
4.矩阵的运算:- 矩阵的加法:如果A和B是相同大小的矩阵,则它们的和为A + B = (aij + bij),其中aij和bij分别是矩阵A和B对应位置的元素。
- 矩阵的乘法:如果A是m×n的矩阵,B是n×p的矩阵,它们的乘积为C = AB,其中C是m×p的矩阵,其中C的元素cij可以表示为cij= Σ(k=1 to n) aikbk,其中aik是矩阵A的元素,bk是矩阵B的元素。
5.特征值和特征向量:-如果矩阵A乘以向量v得到一个与v方向相同的向量,那么v是A的特征向量,对应的乘积结果是特征值λ,即Av=λv。
自考线性代数(经管类)整理
(一)余子式及代数余子式
a11 a12 a13
设有三阶行列式
D3 a 21 a 22 a 23 对任何一个元素 a ij ,我们划去它所在的第 i 行及第 j 列,剩下的 a31 a 32 a 33
元素按原先次序组成一个二阶行列式,称它为元素 a ij 的余子式,记成 M ij 例如
2 1 4 1 2行 11行 5 0 6 2 7 0 2 5 0 按第二行展开 31 2 37 5 81
5 6 2 按第二列展开 1 5 0 7 2 5
5 2 3 2 3行 (2) 1行 1 0 5 0
7 37 5
a b b b
例2 计算行列式 D4
b a b b b b a b b b b a
前一式称为 D 按第 i 行的展开式,后一式称为 D 按第 j 列的展开式. 本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值. 定理 2 n 阶行列式 D a ij 的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之
n
和等于零.即 a i1 Ak 1 a i 2 Ak 2 a in Akn 0(i k ) 或 a1 j A1s a 2 j A2 s a nj Ans 0( j s)
只有一阶方阵是一个数,而且行列式记号“ * ”与矩阵记号“ * ”也不同,不能用错. 矩阵仅是一个数表,而 n 阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,
(二)矩阵的运算
1.矩阵的同型与相等 设有矩阵 A (aij ) mn , B (bij ) k ,若 m k , n ,则说 A 与 B 是同型矩阵.若 A 与 B 同型,且
高等教育自学考试04184线性代数(经管类)-公式必记
高等教育自学考试04184线性代数(经管类)-公式必记1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-;将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -? -;③、上、下三角行列式(= ◥◣):主对角元素的乘积;④、◤和◢:副对角元素的乘积(1)2(1)n n -? -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-;②、反证法;③、构造齐次方程组0Ax =,证明其有非零解;④、利用秩,证明()r A n <;⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:0A ≠(是非奇异矩阵);()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解;?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价;A 可表示成若干个初等矩阵的乘积;A 的特征值全不为0; ?T A A 是正定矩阵;A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ?? ?= ? ??,则:Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----?? ?= ? ? ??;②、111A O A O O B O B ---??=;(主对角分块)③、111O A O B B O A O ---??= ? ?;(副对角分块)④、11111A C A A CB O B OB -----??-??=;(拉普拉斯)⑤、11111A O A O C B B CAB -----??= ? ?-;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO= ;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ? ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ??Λ= ? ??λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-???? ? ?= ? ? ? ?????;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k-=≠ ? ? ? ???;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --???? ? ?=≠ ? ? ? ?????;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ?≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※)⑥、()()()r A B r A r B +≤+;(※)⑦、()min((),())r AB r A rB ≤;(※)⑧、如果A 是m n ?矩阵,B 是n s ?矩阵,且0AB =,则:(※)Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)?行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ?? ?的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ??==-??<-?;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ? =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0;③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ?矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a xb +++= ??+++= +++=?;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ?????? ??? ? ??? ?=?= ??? ? ??? ???????(向量方程,A 为m n ?矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β?? ? ?= ? ???(全部按列分块,其中12n b b b β?? ? ?= ? ???);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ?矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ构成m n ?矩阵12T T T m B βββ??= ? ? ???;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ?=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ?=是否有解;(线性方程组)③、向量组的相互线性表示 AX B ?=是否有解;(矩阵方程)3. 矩阵m n A ?与l n B ?行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关?0α=;②、,αβ线性相关?,αβ坐标成比例或共线(平行);③、,,αβγ线性相关?,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3)向量组A 能由向量组B 线性表示AX B ?=有解;()(,)r A r A B ?=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ? ==(85P 定理2推论)8. 方阵A 可逆?存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ?=(左乘,P 可逆)0Ax ?=与0Bx =同解②、矩阵列等价:~cA B AQ B ?=(右乘,Q 可逆);③、矩阵等价:~A B PAQ B ?=(P 、Q 可逆); 9.对于矩阵m n A ?与l n B ?:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C =,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ? =只有零解;②、0Bx = 有非零解0ABx ? =一定存在非零解;12. 设向量组12:,,,n r r B b b b ?可由向量组12:,,,n s s A a a a ?线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ?,且A 线性无关,则B 组线性无关()r K r ?=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ?,存在n m Q ?,m AQ E = ()r A m ?=、Q 的列向量线性无关;(87P )②、对矩阵m n A ?,存在n m P ?,n PA E = ()r A n ?=、P 的行向量线性无关;14. 12,,,s ααα线性相关存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)1212(,,,)0s s x xx ααα?? ? ?= ? ???有非零解,即0Ax =有非零解;12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ?的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ?=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=?==?≠?;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a 11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ?A 经过初等变换得到B ;=PAQ B ,P 、Q 可逆; ()()?=r A r B ,A 、B 同型;②、A 与B 合同 ?=T C AC B ,其中可逆;T x Ax 与T x Bx 有相同的正、负惯性指数;③、A 与B 相似1-?=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =?A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ?的正惯性指数为n ;A ?与E 合同,即存在可逆矩阵C ,使T C AC E =; A ?的所有特征值均为正数; A ?的各阶顺序主子式均大于0;0,0ii a A ?>>;(必要条件)。
自考线性代数02198 复习要点、公式
1、|A|=|A T|、|A*|=|A|n-1、A=(A-1)-1、A=(A*)*、|kA-1|=k n|A-1|、|A-1|=1/|A|2、n(n≥2)阶行列式的第i行元素与第k行元素的代数余子式乘积之和为03、n元线性方程组的系数行列式|A|≠0,则方程组有惟一解,且xi =|Bj|/|A|,当所有常数项都为0时,则方程组有惟一零解;反之,若n元齐次线性方程组有非零解,则系数行列式|A|=04、一般情况下AB≠BA、(AB)k≠A k B k5、A T A=0 => A=06、A T A=E <=> A是一个正交矩阵、A可逆,|A|=±1,且A T=A-17、(AB)T=B T A T、(AB)-1=B-1A-1、(AB)*=B*A*、A*A=AA*=|A|E8、若AB =E,则A、B互为可逆矩阵(AB=BA=E)、AA-1= A-1A=E、|A|≠0、|B|≠09、若|B|≠0,则r(AB)= r(A)10、若P、Q为m、n阶可逆矩阵,则对任意m×n阶矩阵A有r(PA)=r(AQ)= r(PAQ)= r(A)若n阶方阵A,当r(A)=n时,r(A*)=n;当r(A)=n-1时,r(A*)=1;当r(A)﹤n-1时,r(A*)=011、A可逆 <=> r(A)=n12、A不可逆(或|A|=0) <=> r(A)<n13、R n中的向量组α1,α2,…,αs线性相关 <=> 存在不全为0的常数k1,k2,…,ks,使得k1α1+k2α2+…+ksαs=0 成立14、如果s=n,α1,α2,…,αs线性相关(线性无关) <=>|A|=0(|A|≠0)α1,α2,…,αs线性相关(线性无关) <=> s元齐次线性方程组有非零解(仅有零解)α1,α2,…,αs线性相关(线性无关) <=> r(A)<s(r(A)=s)如果s>n,(向量个数大于微量的维数),则α1,α2,…,αs线性相关15、部分相关,则整体相关;整体无关,则部分无关16、本身相关,则缩短也相关;本身无关,则加长也无关17、设α1,α2,…,αs可以由β1,β2,…,βt线性表出,则r(α)≤r(β),且有:若α1,α2,…,αs线性相关,则s>t;若α1,α2,…,αs线性无关,则s≤t18、r(AB) ≤min(r(A),r(B))。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 行列式一.行列式的定义和性质1. 余子式ij M 和代数余子式ij A 的定义2.行列式按一行或一列展开的公式 1)11,1,2,;(,1,2,)nnijij ij ijij ij nni j A a a A j n A a a A i n ========∑∑2)11 ;00nn ij ik ij kj i j k j k i A Aa A a A k j k i ====⎧⎧==⎨⎨≠≠⎩⎩∑∑ 测试点 行列式的任意一行(列)与另一行(列)元素的代数余子式的乘积之和为零.3.行列式的性质 1).TA A =2)用数k 乘行列式的某一行(列)所得新行列式=原行列式的k 倍.推论 3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论 4)如果行列式中两行(列)对应元素成比例,则行列式值为0. 5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k 倍加到另一行(列)上,所得新行列式与原行列式的值相等. 例 设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a++=( 3 )二.行列式的计算1.二阶行列式和三角形行列式的计算.2. 对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形行列式的计算. 3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开. 4.行列式中各行元素之和为一个常数的类型. 5. 范德蒙行列式的计算公式例(性质4) (1)(1)(2)(2)(1)(3)1232331002331002032494992004992004090.367677300677300607+-+-=== 例(各行元素之和为常数的行列式的计算技巧)333000300030x a a a x a a a a x a a a a a x a a x a x a a x a D a a x a x a a x ax a a a axx a a axx a+++-====+-+-3(3)().x a x a =+-例(行列式中有一行只有两个元素不为零的行列式的计算和三角形行列式的计算)111111110000000000 ==+(1)(1) 000000n n n n n n n a b a b a D aA bA aM b M a b a b b a++=+-=+-例 2311248()13927141664x x x D x =中,3x 项的系数514124(1)139(32)(42)(43)21416A ==-=----=-第二章 矩阵一、矩阵的概念1.要弄清矩阵与行列式的区别2.两个矩阵相等的概念3.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵) 二、矩阵的运算1. 矩阵,A B 的加、减、乘有意义的充分必要条件 2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法的交换律和结合律;乘法关于加法的分配律;)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点.+ ;+;A B A AB BA B A B A B A BA AB B ±=+++=22222()()(-)-- 22(); ()2k k k AB ABABAB A B A E A A E =≠±=±+如果AB O =,可能,.A O B O ≠≠例如1122,1122A B ⎡⎤⎡⎤==⎢⎥⎢⎥----⎣⎦⎣⎦都不为零,但AB O =.3.转置 对称阵和反对称阵1)转置的性质(); () ;()T T T T T T T T T A B A B A A ABC C B A λλ±=±==2)若()T TA A A A ==-,则称A 为对称(反对称)阵例 A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( B ) A .T A A +B .TA A - C .T AAD .TA A解析 ()()T TTT TTTA A A A A A A A +=+=+=+.故TA A +为对称阵. ()()T T T TA A A A A A -=-=--.故TA A -为反对称阵. ().T T T AA AA =故T AA 为对称阵.同理TA A 也为对称阵.4. 方阵的行列式的性质; ; ; T n A A A A AB A B λλ===111 ; ;.kn k A A A A A A--*=== 5.逆矩阵1)方阵A 可逆(也称非异,A 满秩)的充分必要条件是0A ≠.当A 可逆时,11A A A-*=.其中方阵A 的伴随阵A *的定义112111222212n n nnnn A A A AA A A A A A *⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦。
特别 当0ad bc -≠时,11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦重要公式AA A A A E **==;1n A A -*=; A *与1A -的关系2)重要结论:若n 阶方阵,A B 满足AB E =,则,A B 都可逆,且11,A B B A --==.3)逆矩阵的性质:11();A A --=;当0λ≠时,111111();()A A AB B A λλ-----==;11()()T T A A --=;11A A-=. 4)消去律:设方阵A 可逆,且()AB AC BA CA ==,则必有B C =.(若不知A 可逆,仅知0A ≠结论不一定成立。
)例 设A 为2阶可逆矩阵,且已知112(2)34A -⎡⎤=⎢⎥⎣⎦,则A =1121342-⎡⎤⎢⎥⎣⎦解 由 112(2)34A -⎡⎤=⎢⎥⎣⎦,所以112234A -⎡⎤=⎢⎥⎣⎦ 故1121342A -⎡⎤=⎢⎥⎣⎦ 例 (求逆矩阵的方法)设101210,325A ⎛⎫ ⎪= ⎪ ⎪--⎝⎭ 求1A -.解 方法1 11AA A-*=方法2 []101100101100210 010012 210,325001022301AE ⎛⎫⎛⎫ ⎪ ⎪=−−−−→--→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭(2)+(-2)(1)(3)+3(1)1(3)(3)(2)(2)210110010110001221001221000272171001122+-⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥−−−−→--−−−→--→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦-⎢⎥⎣⎦例(若AB E =则,A B 都可逆,且11,.AB B A --==)已知228,A A E O --=则1()A E -+=_____________。
解 由228A A E O --=得23350A A A E E +---=,即()(3)5A E A E E +-=,即 (3)()5A E A E E -+=,故 11()(3).5A E A E -+=- 例 设A 是n 阶方阵,且2()A E O +=,证明A 可逆?.证 因为2()A E O +=,即220A A E ++=,所以(2)A A E E -+=故A 可逆,且1(2)AA E -=-+.例 设n 阶方阵A 满足mA O =,其中m 为正整数,证明E A -可逆,且121()m E A E A A A ---=++++分析 只要检查21()()m E A E A A A E --++++=即可 证 因为 21()()m E A E A A A --++++=22m E A A A A A =-+-+-+-m E A E =-=.故 121()m E A E A A A ---=++++6.分块矩阵矩阵运算时,分块的原则:保证运算能顺利进行(包括分块矩阵和子块的运算)如111121311112213322122232112222333,,B A A A A B A B A B A B B AB A A A A B A B A B B ⎡⎤++⎡⎤⎡⎤⎢⎥===⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎢⎥⎣⎦;分快矩阵的运算规则;特别是分快矩阵的转置111211121121222122221212TTTTk m TT T k m T T T m m mk kkmk A A A A A A A A A A A A A A A A A A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦准对角阵的逆矩阵: 如果 12,,,k A A A 都是可逆阵,则11111221k k A O O A OO O A O OA O OOA OOA ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦三、矩阵的初等变换和初等矩阵 1.初等变换的定义和性质称矩阵的下列三种变换为初等行变换: (1)两行互换;(2)某一行乘一个非零的数; (3)某一行的k 倍加到另一行上。
类似地可定义初等列变换,初等行变换,初等列变换统称为初等变换.方阵经初等变换后的行列式是否变化?(分别就三种初等变换说明行列式变化的情况)初等变换不改变方阵的可逆性;初等变换不改变矩阵的秩;行初等变换必能将矩阵化为行最简形,初等变换必能将矩阵A 化为标准形rE O O O ⎡⎤⎢⎥⎣⎦,其中r 为矩阵A 的秩. 如果矩阵A 经过有限次的初等变换变成,B 则称矩阵A 与B 等价.等价矩阵有相等的秩,从而有相等的等价标准形.2.初等矩阵的定义和性质1)初等矩阵的定义;初等阵都可逆,且其逆也是同类型的初等阵. 2) 初等变换和矩阵乘法之间的关系3)对任意m n ⨯阶矩阵A ,总存在一系列m 阶初等阵12,,,k P P P 和一系列n 阶初等阵12,,,,l Q Q Q 使得1212.rk l E O PP P AQ Q Q O O ⎡⎤=⎢⎥⎣⎦4)矩阵m n ⨯阶A 与B 等价的充分必要条件是存在一系列m 阶初等阵12,,,k P P P 和一系列n 阶初等阵12,,,,l Q Q Q 使得1212.k l PP P AQ Q Q B =例(初等矩阵的定义和性质) 下列矩阵中,是初等矩阵的为( C )A .1000⎡⎤⎢⎥⎣⎦B .011101001-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦C .100010101⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦D .010003100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦解析100010101⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是由单位矩阵经第三行加第一行得到的,故是初等矩阵。
四、矩阵的k 阶子式和矩阵秩的概念,求矩阵秩的方法 1 矩阵的k 阶子式的概念2 矩阵秩的概念 定义O 矩阵的秩为0,对于非零矩阵A ,如果有一个r 阶子式不等于0,而所有的1r +阶子式(如果有的话)都等于0,则称矩阵A 的秩为r .显然n 阶可逆矩阵的秩等于n ,故可逆阵又称是满秩的.阶梯形矩阵的秩等于其非零行的个数.3.等价矩阵有相等的秩(初等变换不改变矩阵的秩);从而矩阵A 左乘(右乘)可逆阵其秩不变.反之两个同形矩阵只要秩相等,则二者必等价.4.求矩阵秩的方法例 设A 为m ×n 矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,则矩阵B AC =的秩为___r ____. 测试点 用可逆矩阵左(右)乘任意矩阵A ,则A 的秩不变.五、矩阵方程的标准形及解的公式11111212;;.AX B X A B XA B X BA A XA B X A BA ----=⇒==⇒==⇒=第三章 向量空间一、n 维向量线性运算的定义和性质;例 向量由向量组线性表示;组合系数的求法设向量123(1,1,1),(1,1,0),(1,0,0),(0,1,1),T T T Tαααβ====则β由123,,ααα线性表出的表示式为__13βαα=-___.解 考虑 112233x x x αααβ++= 该线性方程组的增广矩阵[]123111011101101001110010111A αααβ⎡⎤⎡⎤⎢⎥⎢⎥==−−→-→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦111011011001011101000100001100110011⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥→-−−→−−→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦所以 13βαα=-二、n 维向量组的线性相关性1.向量组的线性相关性的定义和充分必要条件: 1)定义: 设12,,,m ααα是一组n 维向量.如果存在m 个不全为零的数12,,,m λλλ,使得11220m m λαλαλα+++=,则称向量组12,,,m ααα线性相关,否则,即如果11220m m λαλαλα+++=,必有120m λλλ====,则称向量组12,,,m ααα线性无关.2) m 个n 维向量12,,,(2)m m ααα≥线性相关的充分必要条件是至少存在某个i α是其余向量的线性组合.即12,,,(2)m m ααα≥线性无关的充分必要条件是其中任意一个向量都不能表示为其余向量的线性组合.2. 关于线性相关的几个定理 1) 如果向量组12,,,m ααα线性无关,而12,,,,m αααβ线性相关,则β可由12,,,m ααα线性表示,且表示法唯一.2) 线性相关的向量组再增加向量所得的新向量组必线性相关.(部分相关,则整体相关;或整体无关,则部分无关)3) 若向量组12(,,,),1,2,,i i i in a a a i m α==线性无关,则接长向量组12(1)(,,,,),1,2,,i i i in i n a a a a i m β+==必线性无关.3.判断向量组线性相关性的方法 1)一个向量α线性相关0α⇔=; 2)含有零向量的向量组必线性相关; 3)向量个数=向量维数时,n 维向量组12,,,n ααα线性相关120n A ααα⇔==.4)向量个数>向量维数时, 向量组必线性相关;5)部分相关,则整体必相关;(整体无关,则部分必无关). 6)若向量组线性无关,则其接长向量组必线性无关;7)向量组线性无关⇔向量组的秩=所含向量的个数,向量组线性相关⇔向量组的秩<所含向量的个数; 8)向量组12,,n ααα线性相关(无关)的充分必要条件是齐次方程组11220n n x x x ααα+++=有(没有)非零解.例 设向量111122221111122222(,,),(,,),(,,,),(,,,)a b c a b c a b c d a b c d ααββ====,下列命题中正确的是 ( B )A .若12,αα线性相关,则必有12,ββ线性相关B .若12,αα线性无关,则必有12,ββ线性无关C .若12,ββ线性相关,则必有12,αα线性无关D .若12,ββ线性无关,则必有12,αα线性相关三、向量组的极大无关组及向量组的秩 1.极大无关组的定义: 设12,,,r ααα是向量组T 的一个部分组.如果(1)12,,,r ααα线性无关;(2)任给T β∈,都有12,,,,r βααα线性相关,则称12,,,r ααα是向量组T 的一个极大无关组.2.向量组的秩,向量组的秩与矩阵的秩;求向量组的极大无关组,并将其余向量由该极大无关组线性表示的的方法例 设1234,,,αααα是一个4维向量组,若已知4α可以表为123,,ααα的线性组合,且表示法惟一,则向量组1234,,,αααα的秩为___3___.四、子空间的定义,基、维数、向量在一组基下的坐标1. n 维向量空间的定义:n 维实向量的全体构成的集合称为n 维向量空间,记为nR .2. 子空间的定义:设V 是nR 的一个非空子集,且满足对加法运算和数乘运算封闭,则称V 是nR 的一个子空间,简称为向量空间V . 3.生成子空间的定义:设12,,,,n m R ααα∈则由它们的所有线性组合构成n R 的一个子空间,称它为由12,,,m ααα生成的子空间.例 设1123123{(,,,0),,},V x x x x x x x R ==∈2123123{(,,,1),,}V x x x x x x x R ==∈ 31212{(,,,)0}n n V x x x x x x x ==+++=,说明哪个是子空间,那个不是.解析 在1V 中,任取1231231(,,,0),(,,,0),x x x y y y V k αβ==∈为任意数,都有1122331(,,,0),x y x y x y V αβ+=+++∈1231(,,,0)k kx kx kx V α=∈ 所以1V 是子空间.类似地,可以证明31212{(,,,)0}n n V x x x x x x x ==+++=也是子空间.但对2123123{(,,,1),,}V x x x x x x x R ==∈,取(1,0,0,1),(0,1,0,1)αβ==都属于2,V 而 2(1,1,0,2).V αβ+=∉这表明2V 对加法运算不封闭,故2V 不是子空间.4. 向量空间的基和维数的定义 向量空间V 的一个向量组12,,,r ααα线性无关,且V 中每个向量都能由它线性表示,则称它为向量空间的一个基.零空间{0}没有基,定义它为0维,否则,称向量空间的基所含向量个数r 为该空间的维数. 设 1122r r x x x αααα=+++ 称12(,,,)r x x x 为α在这组基下的坐标.例 向量空间1212{(,,0),V x x x x x ==为实数}的维数为____2_____. 容易看出 (1,0,0),(0,1,0)αβ==是V 的一个基。