人教版八年级数学上册期中综合能力检测题部分附答案共3份

合集下载

人教版数学八年级上册期中考试题附答案

人教版数学八年级上册期中考试题附答案

人教版数学八年级上册期中考试试卷一、精心选择(每小题3分,共24分)1.在下列各电视台的台标图案中,是轴对称图形的是()A .B .C .D .2.下列说法正确的是()A .三角形三条高的交点都在三角形内B .三角形的角平分线是射线C .三角形三边的垂直平分线不一定交于一点D .三角形三条中线的交点在三角形内。

3.已知点A (x ,4)与点B (3,y )关于y 轴对称,那么y x +的值是()A .1-B .7-C .7D .1第5题图第6题图第7题图4.正多边形的每个内角都等于135°,则该多边形是()A .正八边形B .正九边形C .正十边形D .正十一边形5.在正方形网格中,∠AOB 的位置与图所示,到∠AOB 两边距离相等的点应是()A .M 点B .N 点C .P 点D .Q 点第8题图第9题图第11题图6.如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是()A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90°7.如图,在△ABC 中,AD 为∠BAC 的平分线,D E⊥AB 于E ,D F⊥AC 于F ,△ABC 的面积是228cm ,AB=20cm ,AC=8cm ,则DE 的长是()A .4cm B .3cm C .2cm D .1cm8.如图,在四边形ABCD 中,AD ∥BC ,∠C=90°,BC=CD=8,过点B 作EB ⊥AB ,交CD 于点E 。

若DE=6,则AD 的长为()A .6B .8C .9D .10二、细心填空(每小题3分,共24分)9.如图,已知△ABC ≌△ADE ,若AB=7cm ,AC=3cm ,则BE 的长为。

10.若等腰三角形有两边长分别为4cm 和7cm ,则它的周长是cm 。

11.如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AC 于D ,交AB 于E ,若△ABC 的周长为22,BC=6,则△BCD 的周长为。

人教版八年级上册数学期中考试试题及答案

人教版八年级上册数学期中考试试题及答案

人教版八年级上册数学期中考试试卷一、选择题(每题3分,共30分)1.下列标志中,可以看作是轴对称图形的是()A.B.C.D.2.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.3,3,6 B.1,5,5 C.1,2,3 D.8,3,43.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是()A.7 B.6 C.5 D.44.已知一个等腰三角形的两边长a、b满足方程组,则此等腰三角形的周长为A.5 B.4 C.3 D.5或45.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个7.如图,已知AB∥CD,OA、OC分别平分∠BAC和∠ACD,OE⊥AC于点E,且OE=2,则AB、CD之间的距离为()A.2 B.4 C.6 D.88.如图,在△ABC中,已知点D,E,F分别为BC,AD,AE的中点,且S△ABC=12cm2,则阴影部分面积S=()cm2.A.1 B.2 C.3 D.49.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A=()A.60°B.80°C.70°D.50°10.如图所示,在矩形纸片ABCD中,E,G为AB边上两点,且AE=EG=GB;F,H为CD边上两点,且DF=FH=HC.沿虚线EF折叠,使点A落在点G上,点D落在点H 上;然后再沿虚线GH折叠,使B落在点E上,点C落在点F上.叠完后,剪一个直径在EF上的半圆,再展开,则展开后的图形为()A.B.C.D.二、填空题(每题3分,共30分)11.点P(3,2)关于x轴对称的点的坐标为.12.一个多边形的内角和是它的外角和的4倍,这个多边形是边形.13.若等腰三角形的一个角为50°,则它的顶角为.14.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.15.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC 分成三个三角形,则S△ABO:S△BCO:S△CAO等于.16.若直角三角形的一锐角为30°,而斜边与较短边之和为24.那么斜边的长为.17.已知P(m﹣4,3m﹣7)关于y轴的对称点在第一象限,则m的整数解为.18.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是.19.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是.20.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE 经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是(填序号)三.解答题(共50分)21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.22.如图,△ABC和△AED中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD、CE,求证:BD=EC.23.如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠BAE=∠CAE,求证:∠ABE=∠ACE.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.参考答案与试题解析一.选择题(共10小题)1.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念,可得答案.【解答】解:A、是中心对称图形,故A错误;B、是中心对称图形,故B正确;C、是轴对称图形,故C正确;D、是中心对称图形,故D错误;故选:C.2.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.3,3,6 B.1,5,5 C.1,2,3 D.8,3,4【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行判断即可.【解答】解:A、3+3=6,不能构成三角形;B、1+5>5,能够组成三角形;C、1+2=3,不能构成三角形;D、3+4<8,不能构成三角形.故选:B.3.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是()A.7 B.6 C.5 D.4【分析】先求出△ABD的面积,再得出△ADC的面积,最后根据角平分线上的点到角的两边的距离相等可得AC边上的高,从而得解.【解答】解:∵DE=3,AB=6,∴△ABD的面积为,∵S△ABC=15,∴△ADC的面积=15﹣9=6,∵AD平分∠BAC,DE⊥AB于E,∴AC边上的高=DE=3,∴AC=6×2÷3=4,故选:D.4.已知一个等腰三角形的两边长a、b满足方程组,则此等腰三角形的周长为()A.5 B.4 C.3 D.5或4【分析】先解二元一次方程组,然后讨论腰长的大小,再根据三角形三边关系即可得出答案.【解答】解:解方程组得,所以等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以,这个等腰三角形的周长为5.故选:A.5.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形【分析】首先求得外角的度数,然后利用360除以外角的度数即可求解.【解答】解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选:C.6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.7.如图,已知AB∥CD,OA、OC分别平分∠BAC和∠ACD,OE⊥AC于点E,且OE=2,则AB、CD之间的距离为()A.2 B.4 C.6 D.8【分析】要求二者的距离,首先要作出二者的距离,作OF⊥AB,OG⊥CD,根据角平分线的性质可得,OE=OF=OG,即可求得AB与CD之间的距离.【解答】解:作OF⊥AB,延长FO与CD交于G点,∵AB∥CD,∴FG垂直CD,∴FG就是AB与CD之间的距离.∵∠ACD平分线的交点,OE⊥AC交AC于E,∴OE=OF=OG,∴AB与CD之间的距离等于2OE=4.故选:B.8.如图,在△ABC中,已知点D,E,F分别为BC,AD,AE的中点,且S△ABC=12cm2,则阴影部分面积S=()cm2.A.1 B.2 C.3 D.4【分析】根据三角形面积公式由点D为BC的中点得到S△ABD=S△ADC=S△ABC=6,同理得到S△EBD=S△EDC=S△ABD=3,则S△BEC=6,然后再由点F为EC的中点得到S△BEF=S△BEC=3.【解答】解:∵点D为BC的中点,∴S△ABD=S△ADC=S△ABC=6,∵点E为AD的中点,∴S△EBD=S△EDC=S△ABD=3,∴S△EBC=S△EBD+S△EDC=6,∵点F为EC的中点,∴S△BEF=S△BEC=3,即阴影部分的面积为3cm2.故选:C.9.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A=()A.60°B.80°C.70°D.50°【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,故选:A.10.如图所示,在矩形纸片ABCD中,E,G为AB边上两点,且AE=EG=GB;F,H为CD边上两点,且DF=FH=HC.沿虚线EF折叠,使点A落在点G上,点D落在点H 上;然后再沿虚线GH折叠,使B落在点E上,点C落在点F上.叠完后,剪一个直径在EF上的半圆,再展开,则展开后的图形为()A.B.C.D.【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【解答】解:∵在矩形纸片ABCD中,E,G为AB边上两点,且AE=EG=GB;F,H 为CD边上两点,且DF=FH=HC,∴四边形AEFD,EGHF,GBCH是三个全等的矩形.现在把矩形ABCD三等分,标上字母;严格按上面方法操作,剪一个直径在EF上的半圆,展开后实际是从矩形ABCD的一条三等分线EF处剪去一个圆,从一边BC上剪去半个圆.故选:B.二.填空题(共10小题)11.点P(3,2)关于x轴对称的点的坐标为(3,﹣2).【分析】坐标平面内两个点关于x轴对称,则横坐标不变,纵坐标互为相反数.【解答】解:根据轴对称的性质,得点P(3,2)关于y轴对称的点的坐标为(3,﹣2).故答案为:(3,﹣2).12.一个多边形的内角和是它的外角和的4倍,这个多边形是十边形.【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360°,则内角和是4×360°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=360°×4,解得n=10.则这个多边形是十边形.故答案为:十.13.若等腰三角形的一个角为50°,则它的顶角为80°或50°.【分析】已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.【解答】解:当该角为顶角时,顶角为50°;当该角为底角时,顶角为80°.故其顶角为50°或80°.故填50°或80°.14.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=70°.【分析】先根据三角形内角和定理计算出∠BAC+∠BCA=180°﹣∠B=140°,则利用邻补角定义计算出∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=220°,再根据角平分线定义得到∠EAC=∠DAC,∠ECA=∠FCA,所以∠EAC+∠ECA=(∠DAC+∠FCA)=110°,然后再利用三角形内角和计算∠AEC的度数.【解答】解:∵∠B=40°,∴∠BAC+∠BCA=180°﹣40°=140°,∴∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=360°﹣140°=220°,∵AE和CE分别平分∠DAC和∠FCA,∴∠EAC=∠DAC,∠ECA=∠FCA,∴∠EAC+∠ECA=(∠DAC+∠FCA)=110°,∴∠AEC=180°﹣(∠EAC+∠ECA)=180°﹣110°=70°.故答案为:70°.15.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC 分成三个三角形,则S△ABO:S△BCO:S△CAO等于2:3:4.【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵O是三角形三条角平分线的交点,∴OD=OE=OF,∵AB=20,BC=30,AC=40,∴S△ABO:S△BCO:S△CAO=2:3:4.故答案为:2:3:4.16.若直角三角形的一锐角为30°,而斜边与较短边之和为24.那么斜边的长为16.【分析】设直角三角形的30°角对的边为a,斜边为2a,由题意知3a=18,则a=6.【解答】解:设直角三角形的30°角对的边为a,斜边为2a,由题意知,3a=24,∴a=8,2a=16cm,故答案为16.17.已知P(m﹣4,3m﹣7)关于y轴的对称点在第一象限,则m的整数解为3.【分析】先判断出点M在第二象限,再根据第二象限内点的横坐标是负数,纵坐标是正数列不等式组求解,然后选择即可.【解答】解:∵点P(m﹣4,3m﹣7)关于y轴的对称点在第一象限,∴点P在第二象限,∴,解得:<m<4,∴m的整数解为3,故答案为:3.18.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是1<AD<7.【分析】延长AD至E,使DE=AD,连接CE.根据SAS证明△ABD≌△ECD,得CE =AB,再根据三角形的三边关系即可求解.【解答】解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<14,故1<AD<7.故答案为:1<AD<7.19.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是30°.【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD 是等边三角形,得出∠COD=60°,即可得出结果.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵PN+PM+MN的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.故答案为:30°.20.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE 经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是①②③(填序号)【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【解答】解:∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∵BF是∠ABC的平分线,CF是∠ACB的平分线,∴∠FBC=∠DFB,∠FCE=∠FCB,∵∠DBF=∠DFB,∠EFC=∠ECF,∴△DFB,△FEC都是等腰三角形.∴DF=DB,FE=EC,即有DE=DF+FE=DB+EC,∴△ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC.综上所述,命题①②③正确.故答案为①②③.三.解答题(共4小题)21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.【分析】(1)根据顶点A,C的坐标分别为(﹣4,5),(﹣1,3)建立坐标系即可;(2)作出各点关于y轴的对称点,再顺次连接即可;(3)根据点B′在坐标系中的位置写出其坐标即可.【解答】解:(1)如图所示;(2)如图所示;(3)由图可知,B′(2,1).22.如图,△ABC和△AED中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD、CE,求证:BD=EC.【分析】根据角与角之间的等量关系求出∠BAD=∠EAC,根据SAS证△BAD≌△EAC,根据全等三角形的性质即可得出结论.【解答】证明:∵∠DAE=∠BAC,∴∠DAE﹣∠BAE=∠EAC﹣∠BAE,∴∠BAD=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴BD=EC.23.如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠BAE=∠CAE,求证:∠ABE=∠ACE.【分析】过点E作EM⊥AB于M,EN⊥AC于N,由角平分线的性质可得EM=EN,由“HL”可证Rt△BME≌Rt△CNE,可得∠ABE=∠ACE.【解答】解:过点E作EM⊥AB于M,EN⊥AC于N∵∠BAE=∠CAE,EM⊥AB,EN⊥AC∴EM=EN,且BE=CE∴Rt△BME≌Rt△CNE(HL)∴∠ABE=∠ACE24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.【分析】(1)△ABC,△OBC,△EBO,△CFO,△AEF一共5个等腰三角形,同时可证△BEO≌△CFO,可得EF=EO+FO=BE+CF;(2)由EF∥BC,可得∠2=∠3,又∠1=∠2,∴∠1=∠3,所以△BEO为等腰三角形,在△CFO中,同理可证;(3)由于OE∥BC,可得∠5=∠6,又∠4=∠5,∴∠4=∠6,∴△BEO是等腰三角形,在△CFO中,同理可证△CFO是等腰三角形,【解答】解:(1)图中有5个等腰三角形,EF=BE+CF,∵△BEO≌△CFO,且这两个三角形均为等腰三角形,可得EF=EO+FO=BE+CF;(2)还有两个等腰三角形,为△BEO、△CFO,如下图所示:∵EF∥BC,∴∠2=∠3,又∵∠1=∠2,∴∠1=∠3,∴△BEO为等腰三角形,在△CFO中,同理可证.∴EF=BE+CF存在.(3)有等腰三角形:△BEO、△CFO,此时EF=BE﹣CF,∵如下图所示:OE∥BC,∴∠5=∠6,又∠4=∠5,∴∠4=∠6,∴△BEO是等腰三角形,在△CFO中,同理可证△CFO是等腰三角形,∵BE=EO,OF=FC,∴BE=EF+FO=EF+CF,∴EF=BE﹣CF。

八年级上学期数学期中考试试卷含答案(共3套,人教版)

八年级上学期数学期中考试试卷含答案(共3套,人教版)

八年级(上册)期中数学试卷一、选择题(本题共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的). 1.下列数中是无理数的是()A.B.0 C.D.0.12132.下列根式中是最简二次根式的是()A.2B.C.D.3.下列各点,在一次函数y=x﹣1图象上的是()A.(1,)B.(﹣1,0)C.(﹣,﹣1)D.(4,1)4.下列各组数中,以a、b、c为边长的三角形不是直角三角形的是()A.a=3,b=4,c=5 B.a=5,b=12,c=13C.a=1,b=2,c=D.a=,b=2,c=35.下列各式中,正确的是()A.=±5 B.=4C.=D.=﹣10﹣26.第四象限内的点P到x轴的距离是5,到y轴的距离是4,那么点P的坐标是()A.(﹣4,5)B.(4,﹣5)C.(﹣5,4)D.(5,﹣4)7.对于函数y=3x﹣1,下列说法正确的是()A.它与y轴的交点是(0,1)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>时,y>08.如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.20 B.25 C.30 D.329.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.310.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),当y1>y2时,x的取值范围()A.x>﹣2 B.x<﹣2 C.x>﹣5 D.x<﹣511.已知实数a在数轴上的位置如图,化简|a﹣1|﹣的结果为()A.﹣1 B.﹣2 C.2a﹣1 D.1﹣2a12.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有320米其中正确的结论有()A.1 个B.2 个C.3 个D.4 个二、填空题(本题共6小题,每小题2分,共12分)13.的算术平方根为.14.小明从家出发向正北方向走了120米,接着向正东方向走到离家200米远的地方,这时,小明向正东方向走了米.15.一次函数y=3x﹣6的图象与x轴的交点坐标是.16.若与|b+2|互为相反数,则a﹣b=.17.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA=4,OB=3,点C,D在第一象限.则O、D两点的距离=.18.如图,∠BAC=90度,AB=AC,AE⊥AD,且AE=AD,AF平分∠DAE交BC于F,若BD=6,CF=8,则线段AD的长为.三.解答题(共72分)19.计算(1)(1+)(2﹣)(2)﹣(3)﹣4+4220.解下列方程(组)(1)4(3x+1)2=16(2)21.某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费12元,另外,通话费按0.2元/min计;B类收费标准如下:没有月租费,但通话费按0.6元/min计.按照此类收费标准完成下列各题:(1)直接写出每月应缴费用y(元)与通话时长x(分)之间的关系式:A类:B类:(2)若每月平均通话时长为300分钟,选择类收费方式较少.(3)求每月通话多长时间时,按A.B两类收费标准缴费,所缴话费相等.22.如图,在△ABC中,AB=8cm,AC=6cm,BC=10cm,点D在AB上,且BD=CD,求△BDC的面积.23.如图,已知A(0,4),B(﹣2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)△A1B1C1的面积=.A1C1边上的高=;(3)在x轴上有一点P,使PA+PB最小,此时PA+PB的最小值=.24.如图,已知直线c和直线b相交于点(2,2),直线c过点(0,3).平行于y轴的动直线a的解析式为x=t,且动直线a分别交直线b、c于点D、E(E在D的上方).(1)求直线b和直线c的解析式;(2)若P是y轴上一个动点,且满足△PDE是等腰直角三角形,求点P的坐标.参考答案与试题解析一.选择题(共12小题)1.下列数中是无理数的是()A.B.0 C.D.0.1213【分析】无理数常见的三种类型:①开方开不尽的数,②无限不循环小数,③含有π的数.【解答】解:0,,0.1213是有理数,是无理数.故选:A.2.下列根式中是最简二次根式的是()A.2B.C.D.【分析】利用最简二次根式定义判断即可.【解答】解:A、2是最简二次根式,符合题意;B、原式=,不符合题意;C、原式=2,不符合题意;D、原式=3,不符合题意,故选:A.3.下列各点,在一次函数y=x﹣1图象上的是()A.(1,)B.(﹣1,0)C.(﹣,﹣1)D.(4,1)【分析】根据点在一次函数y=x﹣1的图象上,把各点的坐标代入一次函数的解析式即可判断.【解答】解:把各点代入解析式y=x﹣1中,只有D符合,故选:D.4.下列各组数中,以a、b、c为边长的三角形不是直角三角形的是()A.a=3,b=4,c=5 B.a=5,b=12,c=13C.a=1,b=2,c=D.a=,b=2,c=3【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵32+42=52,∴以a=3,b=4,c=5为边的三角形是直角三角形;B、∵52+122=132,∴以a=5,b=12,c=13为边的三角形是直角三角形;C、∵12+22=()2,∴以a=1,b=2,c=为边的三角形是直角三角形;D、∵()2+22≠32,∴以a=,b=2,c=3为边的三角形不是直角三角形.故选:D.5.下列各式中,正确的是()A.=±5 B.=4C.=D.=﹣10﹣2【分析】直接利用二次根式以及立方根的性质分别化简得出答案.【解答】解:A、=5,故此选项错误;B、=,故此选项错误;C、=,正确;D、=10﹣2,故此选项错误;故选:C.6.第四象限内的点P到x轴的距离是5,到y轴的距离是4,那么点P的坐标是()A.(﹣4,5)B.(4,﹣5)C.(﹣5,4)D.(5,﹣4)【分析】应先判断出点P的横纵坐标的符号,进而根据到坐标轴的距离判断点的具体坐标.【解答】解:∵点P在第四象限内,∴点P的横坐标大于0,纵坐标小于0,∵点P到x轴的距离是5,到y轴的距离是4,∴点P的横坐标是4,纵坐标是﹣5,即点P的坐标为(4,﹣5).故选:B.7.对于函数y=3x﹣1,下列说法正确的是()A.它与y轴的交点是(0,1)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>时,y>0【分析】根据一次函数的性质可以判断各个选项是否正确,从而可以解答本题.【解答】解:∵y=3x﹣1,∴当x=0时,y=﹣1,故选项A错误,k=3>0,y随x的增大而增大,故选项B错误,k=3,b=﹣1,该函数的图象过第一、三、四象限,故选项C错误,当x>时,y>0,故选项D正确,故选:D.8.如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.20 B.25 C.30 D.32【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.【解答】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB==25;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB=;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:∴AB=;∵25<5,∴蚂蚁爬行的最短距离是25,故选:B.9.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.10.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),当y1>y2时,x的取值范围()A.x>﹣2 B.x<﹣2 C.x>﹣5 D.x<﹣5【分析】结合函数图象,写出函数y1=3x+b图象在函数y2=ax﹣3图象上方所对应的自变量的范围即可.【解答】解:当y1>y2时,x的取值范围为x>﹣2.故选:A.11.已知实数a在数轴上的位置如图,化简|a﹣1|﹣的结果为()A.﹣1 B.﹣2 C.2a﹣1 D.1﹣2a【分析】直接利用数轴得出a﹣1<0,a>0,再化简得出答案.【解答】解:由数轴可得:a﹣1<0,a>0,则原式=1﹣a﹣a=1﹣2a.故选:D.12.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有320米其中正确的结论有()A.1 个B.2 个C.3 个D.4 个【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②正确,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选:B.二.填空题(共6小题)13.的算术平方根为.【分析】首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.【解答】解:∵=2,∴的算术平方根为.故答案为:.14.小明从家出发向正北方向走了120米,接着向正东方向走到离家200米远的地方,这时,小明向正东方向走了160 米.【分析】根据题意画出图形,进而利用勾股定理得出答案.【解答】解:如图所示:由题意可得,AO=120m,BO=200m,故在Rt△OAB中,AB===160(m),故小明向正东方向走了160m.故答案为:160.15.一次函数y=3x﹣6的图象与x轴的交点坐标是(2,0).【分析】在解析式中,令y=0,即可求得横坐标,则与x轴的交点坐标即可求得.【解答】解:令y=0,得到:3x﹣6=0,解得:x=2,则图象与x轴的交点坐标是:(2,0).故答案是:(2,0).16.若与|b+2|互为相反数,则a﹣b= 3 .【分析】利用非负数的性质确定a、b的值即可解决问题.【解答】解:∵若与|b+2|互为相反数,∴+|b+2|=0,∵≥0,|b+2|≥0,∴a=1,b=﹣2,∴a﹣b=1+2=3,故答案为:3.17.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA=4,OB=3,点C,D在第一象限.则O、D两点的距离=.【分析】过点D作DF⊥OA于点F,由“AAS“可证△DFA≌△AOB,可得DF=AO=4,OB=AF=3,由勾股定理可求O、D两点的距离.【解答】解:如图,过点D作DF⊥OA于点F,∵四边形ABCD是正方形∴AD=AB,∠DAB=90°∴∠DAF+∠BAO=90°,且∠BAO+∠ABO=90°∴∠DAF=∠ABO,且AD=AB,∠DFA=∠AOB=90°∴△DFA≌△AOB(AAS)∴DF=AO=4,OB=AF=3∴OF=OA+AF=7∴OD==故答案为:18.如图,∠BAC=90度,AB=AC,AE⊥AD,且AE=AD,AF平分∠DAE交BC于F,若BD=6,CF=8,则线段AD的长为6.【分析】由“SAS”可证△ABD≌△ACE,△DAF≌△EAF可得BD=CE,∠4=∠B,DF=EF,由勾股定理可求EF的长,即可求BC的长,由勾股定理可求AD的长.【解答】解:如图,连接EF,过点A作AG⊥BC于点G,∵AE⊥AD,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴BD=CE,∠4=∠B∵∠BAC=90°,AB=AC,∴∠B=∠3=45°∴∠4=∠B=45°,∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF(SAS).∴DF=EF.∴BD2+FC2=DF2.∴DF2=BD2+FC2=62+82=100,∴DF=10∴BC=BD+DF+FC=6+10+8=24,∵AB=AC,AG⊥BC,∴BG=AG=BC=12,∴DG=BG﹣BD=12﹣6=6,∴AD==6故答案为:6三.解答题(共6小题)19.计算(1)(1+)(2﹣)(2)﹣(3)﹣4+42【分析】(1)直接利用二次根式乘法运算法则计算得出答案;(2)直接化简二次根式以及化简立方根进而合并得出答案;(3)直接利用二次根式乘法运算法则计算得出答案.【解答】解:(1)(1+)(2﹣)=2﹣+2﹣3=﹣1;(2)﹣=+4=11;(3)﹣4+42=﹣4×6+7=﹣.20.解下列方程(组)(1)4(3x+1)2=16(2)【分析】(1)利用直接开平方法解方程得出答案,(2)利用加减消元法解之即可.【解答】解:(1)方程两边同事除以4得:(3x+1)2=4,方程两边同时开方得:3x+1=±2,解得:x1=,x2=﹣1,(2),①﹣②×2得:5y=15,解得:y=3,把y=3代入①得:4x+9=5,解得:x=﹣1,即方程组的解为:.21.某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费12元,另外,通话费按0.2元/min计;B类收费标准如下:没有月租费,但通话费按0.6元/min计.按照此类收费标准完成下列各题:(1)直接写出每月应缴费用y(元)与通话时长x(分)之间的关系式:A类:y=0.2x+12 B类:y=0.6x(2)若每月平均通话时长为300分钟,选择A类收费方式较少.(3)求每月通话多长时间时,按A.B两类收费标准缴费,所缴话费相等.【分析】(1)根据题目中收费标准可列出函数关系式;(2)根据两种收费方式,计算结果比较得出答案即可;(3)设每月通话时间x分钟,按A、B两类收费标准缴费,所缴话费相等列出方程解答即可.【解答】解:(1)根据题意得,A类:y=0.2x+12,B类:y=0.6x;故答案为:(0.2x+12);0.6a.(2)A类收费:12+0.2×300=72元;B类收费:0.6×300=180元;180>72,所以选择A类收费方式;(3)设每月通话时间x分钟,由题意得12+0.2x=0.25x,解得:x=240.答:每月通话时间240分钟,按A、B两类收费标准缴费,所缴话费相等22.如图,在△ABC中,AB=8cm,AC=6cm,BC=10cm,点D在AB上,且BD=CD,求△BDC的面积.【分析】根据勾股定理逆定理得到∠BAC=90°,设BD=x,则AD=8﹣x,根据勾股定理即可得到结论.【解答】解:∵AB2+AC2=82+62=100=102=BC2,∴∠BAC=90°,设BD=x,则AD=8﹣x,∵AD2+AC2=BD2,∴(8﹣x)2﹣62=x2,∴x=,∴S△BDC=BD•AC=cm2.23.如图,已知A(0,4),B(﹣2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)△A1B1C1的面积=7 .A1C1边上的高=;(3)在x轴上有一点P,使PA+PB最小,此时PA+PB的最小值=2.【分析】(1)依据轴对称的性质,即可作△ABC关于x轴对称的△A1B1C1;(2)依据割补法即可得到△A1B1C1的面积,进而得出A1C1边上的高;(3)连接AB1,交x轴于点P,则BP=B1P,PA+PB的最小值等于AB1的长,运用勾股定理即可得到结论.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)△A1B1C1的面积=4×5﹣×2×2﹣×3×4﹣×2×5=20﹣2﹣6﹣5=7.∵A1C1==5,∴A1C1边上的高==;故答案为:7,;(3)如图所示,连接AB1,交x轴于点P,则BP=B1P,∴PA+PB的最小值等于AB1的长,∵AB1==2,∴PA+PB的最小值等于2,故答案为:2.24.如图,已知直线c和直线b相交于点(2,2),直线c过点(0,3).平行于y轴的动直线a的解析式为x=t,且动直线a分别交直线b、c于点D、E(E在D的上方).(1)求直线b和直线c的解析式;(2)若P是y轴上一个动点,且满足△PDE是等腰直角三角形,求点P的坐标.【分析】(1)设直线b的解析式为y=kx,设直线c的解析式为:y=kx+b,把点的坐标代入即可得到结论;(2)当x=t时,y=x=t;当x=t时,y=﹣x+3=﹣t+3,得到E点坐标为(t,﹣t+3),D点坐标为(t,t).分三种情况:①若t>0,PD=DE时,②若t>0,PE=PD时,即DE为斜边,③若t<0,PE=PD时,即DE为斜边,由已知得DE=﹣2t,﹣t+3=﹣2t,列方程即可得到结论.【解答】解:(1)设直线b的解析式为:y=kx,把(2,2)代入y=kx得,k=1,∴直线b的解析式为:y=x;设直线c的解析式为:y=kx+b,把点(2,2),点(0,3)代入得,,∴,∴直线c的解析式为:y=﹣x+3;(2)∵当x=t时,y=x=t;当x=t时,y=﹣x+3=﹣t+3,∴E点坐标为(t,﹣t+3),D点坐标为(t,t).∵E在D的上方,∴DE=﹣t+3﹣t=﹣t+3,且t<2,∵△PDE为等腰直角三角形,∴PE=DE或PD=DE或PE=PD.t>0时,PE=DE时,﹣t+3=t,∴t=,﹣t+3=,∴P点坐标为(0,),①若t>0,PD=DE时,﹣t+3=t,∴t=.∴P点坐标为(0,);②若t>0,PE=PD时,即DE为斜边,∴﹣t+3=2t,∴t=,DE的中点坐标为(t,t+),∴P点坐标为(0,).若t<0,PE=DE和PD=DE时,由已知得DE=﹣t,﹣t+3=﹣t,t=6>0(不符合题意,舍去),此时直线x=t不存在.③若t<0,PE=PD时,即DE为斜边,由已知得DE=﹣2t,﹣t+3=﹣2t,∴t=﹣6,t+=0,∴P点坐标为(0,0)综上所述:当t=时,△PDE为等腰直角三角形,此时P点坐标为(0,)或(0,);当t=时,△PDE为等腰直角三角形,此时P点坐标为(0,);当t=﹣6时,△PDE为等腰直角三角形,此时P点坐标为(0,0).2018-2019学年八年级(上册)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.94.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或165.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()A.30°B.50°C.60°D.37.5°9.(3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米10.(3分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.AC=DC,∠A=∠D11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.913.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN =4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)点P(﹣3,5)关于x轴的对称点的坐标是.16.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S=7,DE△ABC =2,AB=4,则AC长是.17.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.18.(3分)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是.19.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上.△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=4,则△A6B6A7的边长为.三、解答题(本大题共7个小题,共计63分)20.(6分)用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且PA=PB.21.(7分)如图,△ABC三个顶点的坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小.(不写作法,保留作图痕迹).22.(8分)如图,在△ABC中,∠B=40°,AE是∠BAC的平分线,∠ACD=106°,求∠AEC的度数.23.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,OA=OD,AC与BD相交于点O.(1)求证:AB=CD;(2)请判断△OBC的形状,并证明你的结论.24.(10分)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.25.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE 与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).26.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)试求何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.2018-2019学年八年级(上册)期中数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm【分析】设木条的长度为xcm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为xcm,则11﹣5<x<11+5,即6<x<16.故选:D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.9【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的4倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×4,解得n=10.故选:C.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或16【分析】由于等腰三角形的底边与腰不能确定,故应分4为底边与6为底边两种情况进行讨论.【解答】解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论,不要漏解是解题关键.5.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C【分析】根据三角形的内角和等于180°可知,相等的两个角∠B与∠C不能是100°,再根据全等三角形的对应角相等解答.【解答】解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于100°,∴与△ABC全等的三角形的100°的角的对应角是∠A.故选:A.【点评】本题主要考查了全等三角形的对应角相等的性质,三角形的内角和等于180°,根据∠A=∠C判断出这两个角都不能是100°是解题的关键.6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°【分析】根据等腰三角形的性质由已知可求得∠A的度数,再根据垂直的定义和三角形内角和定理不难求得∠ABD的度数.【解答】解:∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°,∵BD⊥AC,∴∠ABD=90°﹣36°=54°.故选:C.【点评】本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()A.30°B.50°C.60°D.37.5°【分析】由题意可得AD=BD=DF,即可求∠B=∠DFB=75°,根据三角形内角和定理可求∠BDF的度数.【解答】解:∵点D是AB的中点∴AD=BD∵折叠∴AD=DF∴BD=AD=DF∴∠B=∠DFB=75°∴∠BDF=30°故选:A.【点评】本题考查了翻折变换,三角形内角和定理,熟练运用折叠性质解决问题是本题的关键.9.(3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选:B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.10.(3分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.AC=DC,∠A=∠D【分析】根据全等三角形的判定方法逐项判断即可.【解答】解:∵AB=DE,∴当BC=EC,∠B=∠E时,满足SAS,可证明△ABC≌△DEC,故A可以;当BC=EC,AC=DC时,满足SSS,可证明△ABC≌△DEC,故B可以;当BC=DC,∠A=∠D时,在△ABC中是ASS,在△DEC中是SAS,故不能证明△ABC≌△DEC,故C不可以;当AC=DC,∠A=∠D时,满足SAS,可证明△ABC≌△DEC,故D可以;故选:C.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.9【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【解答】解:①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.13.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm【分析】利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ的长,即可得出QR的长.【解答】解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,即NQ=MN﹣MQ=4﹣2.5=1.5(cm),则线段QR的长为:RN+NQ=3+1.5=4.5(cm).故选:A.【点评】此题主要考查了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键.14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④【分析】因为△ABC为等边三角形,根据已知条件可推出Rt△ARP≌Rt△ASP,则AR=AS,故(2)正确,∠BAP=∠CAP,所以AP是等边三角形的顶角的平分线,故(1)正确,根据等腰三角形的三线合一的性质知,AP也是BC边上的高和中线,即点P是BC的中点,因为AQ=PQ,所以点Q是AC的中点,。

人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案

人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案

人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案一、选择题(每题4分,共40分)1. 已知数列:2, 4, 6, 8, 10, ...,该数列的第20项是()A. 40B. 42C. 38D. 412. 下列函数中,正比例函数是()A. y = 2x + 3B. y = 3x^2C. y = 5xD. y = x^33. 若平行线l1:3x - 4y + 5 = 0,l2:6x - 8y + 10 = 0,则两平行线的距离为()A. 5/2B. 5/3C. 10/3D. 104. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 1/xC. y = x^2D. y = x^35. 若直角坐标系中,点A(a, b)关于原点的对称点是B,则B的坐标是()A. (-a, b)B. (-a, -b)C. (a, -b)D. (b, a)6. 已知函数y = kx + b(k≠0)的图像经过第一、二、四象限,则()A. k > 0, b > 0B. k < 0, b < 0C. k > 0, b <0 D. k < 0, b > 07. 下列说法中,正确的是()A. 两个一次函数的图像平行,则它们的斜率相等B. 两个一次函数的图像垂直,则它们的斜率乘积为1C. 两个一次函数的图像重合,则它们的斜率相等D. 两个一次函数的图像相交,则它们的斜率之和为08. 下列图形中,一定是中心对称图形的是()A. 矩形B. 等边三角形C. 梯形D. 平行四边形9. 下列关于勾股定理的说法,正确的是()A. 直角三角形的两条直角边的平方和等于斜边的平方B. 直角三角形的两条直角边的平方差等于斜边的平方C. 直角三角形的斜边的平方等于两条直角边的平方和D. 直角三角形的斜边的平方等于两条直角边的平方差10. 若a^2 + b^2 = 25,且a > 0, b < 0,则a + b的取值范围是()A. a + b > 5B. a + b < 5C. a + b = 5D. a + b ≠ 5二、填空题(每题4分,共40分)11. 已知数列:3, 6, 9, 12, 15, ...,该数列的通项公式是an = _______。

人教版八年级数学上册期中检测题(3)

人教版八年级数学上册期中检测题(3)

2017-2018学年山东省德州五中八年级(上)期中数学试卷一、选择题(每题4分,共48分)1.(4分)下列图形中不是轴对称图形的是()A.B.C.D.2.(4分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.163.(4分)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm4.(4分)如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.285.(4分)一个多边形的内角和是900°,则这个多边形的边数是()A.4 B.5 C.6 D.76.(4分)已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD 与△ACD的面积之比为()A.3:2 B.9:4 C.2:3 D.4:97.(4分)△ABC中,∠ABC与∠ACB的平分线相交于I,且∠BIC=130°,则∠A 的度数是()A.40°B.50°C.65°D.80°8.(4分)如图∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.540°B.550°C.650° D.180°9.(4分)如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′10.(4分)如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150° D.180°11.(4分)如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若A E=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°12.(4分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64二、填空题(每题4分,共24分)13.(4分)从长度为2cm,3cm,4cm,5cm四条线段中任意取三条组成三角形,则组成三角形的个数为.14.(4分)如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入号球袋.15.(4分)如图,点P是∠AOB外一点,点M、N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为.16.(4分)点P(3a+6,3﹣a)关于x轴的对称点在第四象限内,则a的取值范围为.17.(4分)在△ABC中AB=AC,中线BD将△ABC的周长分为12cm和15cm,则三角形底边长.18.(4分)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有.(把你认为正确的序号都填上)三、解答题:(共78分)19.(8分)已知一个多边形的内角和与外角和的差为1440°,求这个多边形的边数.20.(10分)如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)(1)画出格点△ABC关于直线DE对称的对称的△A1B1C1;(2)在直线DE上画出点P,使△PAC周长最小.21.(10分)如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.22.(12分)如图,O为码头,A、B两个灯塔与码头O的距离相等,OA,OB为海岸线,一轮船P离开码头,计划沿∠AOB的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P始终保持与灯塔A、B的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.23.(12分)如图,已知△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE 上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ的形状.24.(12分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN 于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,直接写出DE、AD、BE的关系为:(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.25.(14分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC 的哪条边上相遇?2017-2018学年山东省德州五中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题4分,共48分)1.(4分)下列图形中不是轴对称图形的是()A.B.C.D.【解答】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选:C.2.(4分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【解答】解:设此三角形第三边的长为a,则10﹣4<a<10+4,即6<a<14.故选:C.3.(4分)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm【解答】解:等腰三角形的两边长分别为4cm和8cm,当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故选:C.4.(4分)如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A .16B .18C .26D .28【解答】解:∵DE 是△ABC 中AC 边的垂直平分线,∴AE=CE ,∴AE +BE=CE +BE=10,∴△EBC 的周长=BC +BE +CE=10厘米+8厘米=18厘米,故选:B .5.(4分)一个多边形的内角和是900°,则这个多边形的边数是( ) A .4 B .5 C .6 D .7【解答】解:设该多边形的边数为n则:(n ﹣2)•180°=900°,解得:n=7.故选:D .6.(4分)已知:如图,AD 是△ABC 的角平分线,且AB :AC=3:2,则△ABD 与△ACD 的面积之比为( )A .3:2B .9:4C .2:3D .4:9【解答】解:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F .∵AD 为∠BAC 的平分线,∴DE=DF ,又AB :AC=3:2,∴S △ABD :S △ACD =(AB•DE ):(AC•DF )=AB :AC=3:2.故选:A .7.(4分)△ABC中,∠ABC与∠ACB的平分线相交于I,且∠BIC=130°,则∠A 的度数是()A.40°B.50°C.65°D.80°【解答】解:∵∠BIC=130°,∴∠EBC+∠FCB=180°﹣∠BIC=180°﹣130°=50°,∵BE、CF是△ABC的角平分线,∴∠ABC+∠ACB=2(∠EBC+∠FCB)=2×50°=100°,∴∠A=180°﹣100°=80°.故选:D.8.(4分)如图∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.540°B.550°C.650° D.180°【解答】解:如图,∠6+∠7=∠8+∠9,由五边形内角和定理得:∠1+∠2+∠3+∠8+∠9+∠4+∠5=540°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=540°.故选:A.9.(4分)如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′【解答】解:A、若添加BC=BˊCˊ,可利用SAS进行全等的判定,故本选项错误;B、若添加∠A=∠A',可利用ASA进行全等的判定,故本选项错误;C、若添加AC=A'C',不能进行全等的判定,故本选项正确;D、若添加∠C=∠Cˊ,可利用AAS进行全等的判定,故本选项错误;故选:C.10.(4分)如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150° D.180°【解答】解:∵图中是三个等边三角形,∴∠1=180°﹣60°﹣∠ABC=120°﹣∠ABC,∠2=180°﹣60°﹣∠ACB=120°﹣∠ACB,∠3=180°﹣60°﹣∠BAC=120°﹣∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°﹣180°=180°,故选:D.11.(4分)如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°【解答】解:过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30°,故选:C.12.(4分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.二、填空题(每题4分,共24分)13.(4分)从长度为2cm,3cm,4cm,5cm四条线段中任意取三条组成三角形,则组成三角形的个数为3个.【解答】解:任意三条线段组合有:2cm,3cm,4cm;2cm,3cm,5cm;2cm,4cm,5cm;3cm,4cm,5cm.根据三角形的三边关系,可知2cm,3cm,5cm不能组成三角形.故答案为:3个14.(4分)如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入1号球袋.【解答】解:如图,该球最后将落入1号球袋.15.(4分)如图,点P是∠AOB外一点,点M、N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为4.5cm.【解答】解:由轴对称的性质可知:PM=MQ=2.5cm,PN=RN=3cm,QN=MN﹣QM=4﹣2.5=1.5cm,QR=QN+NR=1.5+3=4.5cm.故答案为:4.5cm.16.(4分)点P(3a+6,3﹣a)关于x轴的对称点在第四象限内,则a的取值范围为﹣2<a<3.【解答】解:∵P关于x轴的对称点在第四象限内,∴点P位于第一象限.∴3a+6>0①,3﹣a>0②.解不等式①得:a>﹣2,解不等式②得:a<3,所以a的取值范围是:﹣2<a<3.故答案为:﹣2<a<3.17.(4分)在△ABC中AB=AC,中线BD将△ABC的周长分为12cm和15cm,则三角形底边长11cm或7cm.【解答】解:如图,∵DB为△ABC的中线,∴AD=CD.设AD=CD=x,则AB=2x,当x+2x=12,解得x=4,BC+x=15,解得BC=11,此时△ABC的底边长为11cm;当x+2x=15,BC+x=12,解得x=5,BC=7,此时△ABC的底边长为7cm.故答案为11cm或7cm.18.(4分)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有①②③⑤.(把你认为正确的序号都填上)【解答】解:①∵正△ABC和正△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),∴AD=BE,∠ADC=∠BEC,(故①正确);②又∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,(故②正确);③∵△CDP≌△CEQ,∴DP=QE,∵△ADC≌△BEC∴AD=BE,∴AD﹣DP=BE﹣QE,∴AP=BQ,(故③正确);④∵DE>QE,且DP=QE,∴DE>DP,(故④错误);⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,(故⑤正确).∴正确的有:①②③⑤.故答案为:①②③⑤.三、解答题:(共78分)19.(8分)已知一个多边形的内角和与外角和的差为1440°,求这个多边形的边数.【解答】解:设此多边形的边数为n,则:(n﹣2)•180=1440+360,解得:n=12.答:这个多边形的边数为12.20.(10分)如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)(1)画出格点△ABC关于直线DE对称的对称的△A1B1C1;(2)在直线DE上画出点P,使△PAC周长最小.【解答】解:(1)如图所示:从△ABC各顶点向DE引垂线并延长相同的长度,找到对应点,顺次连接即可得△A1B1C1;(2)如图所示:利用轴对称图形的性质可得点C关于直线DE的对称点C1,连接C1A,交直线DE于点P点,P即为所求,此时△PAC的周长最小.21.(10分)如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.【解答】证明:∵AB∥DE,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.22.(12分)如图,O为码头,A、B两个灯塔与码头O的距离相等,OA,OB为海岸线,一轮船P离开码头,计划沿∠AOB的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P始终保持与灯塔A、B的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.【解答】解:(1)如图所示:OC即为所求.(2)没有偏离预定航行,理由如下:在△AOP与△BOP中,,∴△AOP≌△BOP(SSS).∴∠AOC=∠BOC,即点C在∠AOB的平分线上.23.(12分)如图,已知△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE 上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ的形状.【解答】解:△APQ是等腰直角三角形.∵BE、CF都是△ABC的高,∴∠1+∠BAE=90°,∠2+∠CAF=90°(同角(可等角)的余角相等)∴∠1=∠2又∵AC=BP,CQ=AB,在△ACQ和△PBA中,∴△ACQ≌△PBA∴AQ=AP,∴∠CAQ=∠BPA=∠3+90°∴∠QAP=∠CAQ﹣∠3=90°∴AQ⊥AP∴△APQ是等腰直角三角形24.(12分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN 于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,直接写出DE、AD、BE的关系为:DE=AD﹣BE(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【解答】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)DE=AD﹣BE,在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;故答案为:DE=AD﹣BE(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.25.(14分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC 的哪条边上相遇?【解答】解:(1)①∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS).②∵v P≠v Q,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间s,∴cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s 点P 与点Q 第一次在边AB 上相遇.高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。

人教版八年级数学上册期中测试题(含答案)

人教版八年级数学上册期中测试题(含答案)

八年级期中综合素质调研检测数 学(本卷满分120分,考试时间:120分钟)题号一二三总分1—1213—18 19 20 21 22 23 24 25 26 得分一、选择题:(本题共12小题,每小题3分,共36分, 请将正确的答案写在题后的括号内)。

1. 通常把自行车的车身设计为三角架结构,这是因为三角形具有 ( )A .对称性B .稳定性C .全等性D .以上说法都正确2. 下列各组数中,能组成三角形的一组是( )1,1,2B .1,2,4C .2,3,5D .2,3,43.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为 公共边的“共边三角形”有( )对。

A. 2 B. 3 C. 4 D. 54. 下列说法:①全等三角形的形状相同、大小相等②全等三角形的面积相等 ③周长相等的两个三角形全等 ④全等三角形的对应边相等、对应角相等其中正确的说法为( ) A .②③④B. ①②③C. ①②④D. ①②③④5.一副三角板有两个直角三角形,按如图的方式叠放在一起,则∠α的度数是( ) A. 165⁰B. 150⁰C. 135⁰D. 120⁰6. 下列四组条件中,可以判定△ABC 与△111C B A 全等的是( )A. ,,1111C A AC C B BC ==∠A=∠1AB. ,11B A AB = ∠C=∠1C =090C. ,11C A AC = ∠A=∠1A ∠B=∠1BD. ∠A=∠1A ∠B=∠1B ,∠C=∠1C7. 下列计算正确的是( )A.3332a a a =•B. 422x x x =+C.236a a a =÷D.6328)2(m m -=-8. 若,)()(22A b a b a +-=+则A 为 ( ) A.-2abB.2abC. 4abD. -4ab9. 已知43))((2--=+-x x n x m x ,则n m -的值为 ( ) A. 1B .3C. -2D . -310. 下列因式分解正解的是( )A. 2)()()(y x x y y y x x -=-+-B.)(2y x x x xy x +=++C. )2)(2(442-+=+-x x x xD.)4(42+-=+-x x x x11. 如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是 ( ) A. ∠AOB=90⁰ B. AD+BC=AB C. 点O 是CD 的中点 D. 图中与∠CBO 互余的角有两个12. 矩形ABCD 中,横向阴影部分是长方形,另一部分是平行四边形,依照图中标注的数据,图 中空白部分的面积为 ( ) A. 2c ac bc ab +-- B.2c ac ab bc ++-C.ab a bc b -+-22D. ac bc ab a -++2二、填空题:(本大题6小题,每小题3分,共18分,请将正确的答案填写在相应题中的横线上)13. 正n 边形的一个外角是40⁰,则n 为 . 14. 已知方程{512=+=-a b b a 的解恰好是△ABC 的两边长,则△ABC 的第三边C 的取值范围是 .15. 在△ABC 中,点D 、E 、F 分别 是BC 、AD 、CE 的中点,且△ABC 的面积等于82cm ,则阴影S = . 16. 已知51=+x x ,则221xx +的值是 . 17. 如图所示,在△ABC 中,∠A=70⁰,∠B=50⁰,点D 、E 分别为AB ,AC 上的点,沿DE 折叠,使点A 落在BC 边上点F 处, 若△EFC 为直角三角形,则∠BDF= .18. 如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平 分线交于点1A ,∠1A BC 的平分线与∠1A CD 的平分线交于点2A ,,∠BC A n 1-的平分线与∠CD A n 1-交于点n A ,的平分线交于点n A ,若∠A=θ,则∠=n A .三、解答题:(本大题共8小题,共66分,解答应写出文字说明或演算步骤或推理过程) 19.因式分解(每小题4分,共12分)(1))(9)(3a b b a -+- (2)m mx mx 1682+-(3)))((6-2+n n +7.20. 化简求值(每小题5分,共10分)(1)2215()()2()3(),5x y x y x y x y x y +--+--其中=-2,=(2)6423323(420126)(2),2,2a a b a b a b a a b ⎡⎤---+÷--=-=⎣⎦其中21.(5分)已知在△ABC 中,三边长分别为a ,b ,c 满足等式,0222222=--++bc ab c b a 请判断△ABC 的形状,并证明你的结论。

人教版八年级数学上册期中考试卷(附答案)

人教版八年级数学上册期中考试卷(附答案)

人教版八年级数学上册期中考试卷(附答案)学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、选择题(本大题共8小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列四个实数中,最小的是( )A. −√ 3B. −2C. 2D. 32.下列各数中,无理数是( )A. √ 9B. √−83C. π2D. 533.与数轴上的点一一对应的是( )A. 有理数B. 无理数C. 整数D. 实数4.估计√ 7+1的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.√ 16的算术平方根是( )A. 4B. 2C. ±4D. ±26.下列运算正确的是( )A. x 3÷x 2=xB. x 3⋅x 2=x 6C. x 3−x 2=xD. x 3+x 2=x 5 7.若(y +3)(y −2)=y 2+my +n ,则m 、n 的值分别为( )A. 5;6B. 5;−6C. 1;6D. 1;−68.已知a =255,b =344,c =433则a 、b 、c 的大小关系是( )A. b >c >aB. a >b >cC. c >a >bD. a <b <c第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)9.计算:−√ 36= ______ ,√−273= ______ ,√ 16= ______ .10.已知|a +2|+√ b −6=0,则a +b = ______ .11.√ 2−1的相反数是______ ,|√ 2−√ 3|= ______ ,√(−8)33= ______ .12.已知2n =a ,3n =b 则6n = ______ .13.已知x 2−y 2=8,且x +y =4,则x −y =______.14.已知x 2−(m −1)x +16是一个完全平方式,则m 的值等于______.三、解答题(本大题共10小题,共78.0分。

2023-2024学年全国初中八年级上数学人教版期中考卷(含答案解析)

2023-2024学年全国初中八年级上数学人教版期中考卷(含答案解析)

20232024学年全国初中八年级上数学人教版期中考卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题3分,共15分)1. 下列选项中,哪个是勾股定理的逆定理?A. 直角三角形两直角边的平方和等于斜边的平方B. 任意三角形两边的平方和等于第三边的平方C. 直角三角形斜边的平方等于两直角边的平方和D. 任意三角形两边的平方和等于第三边的平方2. 在平面直角坐标系中,点P(2,3)关于y轴的对称点是?A. P(2,3)B. P(2,3)C. P(2,3)D. P(2,3)3. 下列哪个是等差数列?A. 2,4,6,8,10B. 3,6,12,24,48C. 1,3,9,27,81D. 5,10,15,20,254. 下列哪个是等比数列?A. 2,4,6,8,10B. 3,6,12,24,48C. 1,3,9,27,81D. 5,10,15,20,255. 在一个等差数列中,首项为5,公差为3,第10项是多少?A. 32B. 35C. 38D. 406. 在一个等比数列中,首项为2,公比为3,第4项是多少?A. 18B. 27C. 36D. 457. 下列哪个是勾股数?A. 3,4,5B. 5,6,7C. 8,9,10D. 12,13,14二、填空题(每题4分,共20分)1. 下列数列中,第n项是__________。

2. 在平面直角坐标系中,点P(2,3)关于x轴的对称点是__________。

3. 在一个等差数列中,首项为5,公差为3,第10项是__________。

4. 在一个等比数列中,首项为2,公比为3,第4项是__________。

5. 下列数列中,第n项是__________。

三、判断题(每题3分,共15分)1. 直角三角形两直角边的平方和等于斜边的平方是勾股定理。

()2. 任意三角形两边的平方和等于第三边的平方是勾股定理的逆定理。

()3. 等差数列的任意两项之差是常数。

2020年人教版八年级数学上册期中检测卷(含答案)

2020年人教版八年级数学上册期中检测卷(含答案)

2020年人教版八年级数学上册期中检测卷时间:90分钟满分:100分一、选择题(每题3分,共30分)1.下面四个图形分别是绿色食品、节水、节能和低碳标志,其中是轴对称图形的是()A B CD2.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°3.已知在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,则△ABC中与这个100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C4.将一副直角三角尺按如图所示的位置放置,使含30°角的三角尺的一条直角边和含45°角的三角尺的一条直角边放在同一条直线上,则∠α的度数是() A.45° B.60° C.75° D.85°第4题图第6题图5.下列说法:①两条直角边对应相等的两个直角三角形全等;②斜边对应相等的两个等腰直角三角形全等;③一条直角边和斜边上的高对应相等的两个直角三角形全等;④一条边相等的两个等腰直角三角形全等.其中正确的有() A.1个 B.2个 C.3个 D.4个=10,DF=2,AC=4,则6.如图,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F.若S△ABCAB的长是() A.5 B.6 C.7 D.8BC的长为半径画弧,两弧相7.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12交于M,N两点;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为() A.90° B.95° C.100° D.105°第7题图第8题图8.如图,AD⊥CD,AE⊥BE,垂足分别为D,E,且AB=AC,AD=AE,则下列结论:①△ABE≌△ACD;②AM=AN;③△ABN≌△ACM;④BO=EO.其中正确的有()A.1个B.2个C.3个D.4个9.如图,把△ABC沿EF对折,点B,C分别落在点B',C'处,若∠A=60°,∠1=95°,则∠2的度数为() A.24° B.25° C.30° D.35°第9题图第10题图10.如图,在△ABC中,∠ACB=90°,以AC为一边在△ABC外侧作等边三角形ACD,过点D作DF⊥AC于点F,延长DF交AB于点E,AB=15 cm,BC=9 cm,P是射线DE上一点,连接PC,PB,则△PBC的周长的最小值为()A.21 cmB.22 cmC.24 cmD.27 cm二、填空题(每题3分,共18分)11.从长度分别为2,5,6,8的四条线段中任选三条,可构成个不同的三角形.12.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值是 .13.如图,已知AD是△ABC的中线,BE是△ABD的中线,若△ABC的面积为18,则△ABE的面积为.第13题图第14题图第16题图14.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.若BF=AC,则∠ABC 的度数为.15.有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数为.16.如图,等边三角形A1C1C2的周长为1,过点C1作C1D1⊥A1C2于点D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边三角形A2C2C3;过点C2作C2D2⊥A2C3于点D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边三角形A3C3C4……且点A1,A2,A3,…都在的周长和直线C1C2的同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△A n C n C n+1为.(n≥2,且n为整数)三、解答题(共52分)17.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-3,2),B(-1,4),C(0,2). (1)画出△ABC关于y轴对称的△A1B1C1,并直接写出点A1,B1,C1的坐标;(2)若将△ABC三个顶点的纵坐标分别乘以-1,横坐标不变,将所得的三个点用线段顺次连接,得到的三角形与△ABC的位置关系是.18.(8分)如图,在锐角三角形ABC中,直线l为BC的垂直平分线,射线BM平分∠ABC,且与l相交于点P.若∠A=60°,∠ACP=24°,求∠ABP的度数.19.(8分)如图,AD是△ABC的外角∠EAC的平分线,AD∥BC.(1)求证:△ABC是等腰三角形;(2)当∠CAE等于多少度时,△ABC是等边三角形?证明你的结论.20.(8分)如图,AO,BO,CO,DO分别是四边形ABCD四个内角的平分线.(1)判断∠AOB与∠COD有怎样的数量关系,为什么?(2)若∠AOD=∠BOC,则AB,CD有怎样的位置关系?为什么?21.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD于点E,BF∥AC交CE 的延长线于点F,连接DF.(1)求证:△ACD≌△CBF;(2)求证:AB垂直平分DF.22.(12分)已知△ABC中,AC=BC,∠C=120°,D为AB边的中点,∠EDF=60°,DE,DF分别交AC,BC 于点E,F.(1)如图1,若EF∥AB,求证:DE=DF;(2)如图2,若EF与AB不平行,则(1)中的结论是否仍成立?请说明理由.参 考 答 案 与 解 析期中检测卷题号12345678910答案 A C A C C B D C B C11.2 12.1 13.4.5 14.45° 15.40°或25°或10° 16.2n -12n -1 1.A2.C 【解析】 设此正多边形为正n 边形,根据题意,得(n-2)×180°=540°,解得n=5,所以这个正多边形的每一个外角等于360°5=72°.故选C .3.A 【解析】 在△ABC 中,∠B=∠C ,∴∠B ,∠C 不可能等于100°,∴△ABC 中与这个100°角对应相等的角是∠A.故选A .4.C 【解析】 如图,∠ACD=90°,∠F=45°,∴∠CGF=45°,∴∠DGB=45°,∴∠α=∠D+∠DGB=30°+45°=75°.故选C .5.C 【解析】 ①利用“SAS ”可判定两条直角边对应相等的两个直角三角形全等;②利用“ASA ”可判定斜边对应相等的两个等腰直角三角形全等;③利用“HL ”和“ASA ”可判定一条直角边和斜边上的高对应相等的两个直角三角形全等;④一条边相等的两个等腰直角三角形不一定全等.故选C .6.B 【解析】 ∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE=DF=2.∵S △ABC=S △ABD+S △ACD,∴10=12AB×DE+12AC ×DF ,即10=12AB ×2+12×4×2,∴AB=6.故选B .7.D 【解析】 ∵CD=AC ,∠A=50°,∴∠ADC=∠A=50°.根据题意,得MN 是BC 的垂直平分线,∴CD=BD ,∴∠BCD=∠B=12∠ADC=25°,∴∠ACB=180°-∠A-∠B=105°.故选D .8.C 【解析】 ∵AD ⊥CD ,AE ⊥BE ,∴∠D=∠E=90°.在Rt △ABE 和Rt △ACD 中,{AB =AC,AE =AD, ∴Rt △ABE ≌Rt △ACD (HL),故①正确.由Rt △ABE ≌Rt △ACD ,得∠B=∠C.在△ABN 和△ACM 中,{∠BAN =∠CAM,AB =AC,∠B =∠C,∴△ABN ≌△ACM (ASA),∴AM=AN ,故②③正确.由已知条件无法得出BO=EO ,故④错误.故选C .9.B 【解析】 ∵∠A=60°,∴∠AEF+∠AFE=180°-60°=120°,∴∠FEB+∠EFC=360°-120°=240°.由折叠,可得∠B'EF+∠C'FE=240°,∴∠1+∠2=240°-(∠AEF+∠AFE )=240°-120°=120°,又∠1=95°,∴∠2=120°-95°=25°.故选B .10.C 【解析】 △PBC 的周长为PC+PB+CB ,∵CB 的长为定值,∴当PC+PB 的值最小时,△PBC 的周长最小.∵△ACD 为等边三角形,PF ⊥AC ,∴点A 与点C 关于DE 对称,∴当点P 运动到点E 处时,△PBC 的周长最小,∴△PBC 的周长的最小值为AB+BC=24 cm .故选C .11.2 【解析】 由三角形的三边关系,得选取长度为2,5,6和5,6,8的三条线段可构成三角形,所以可构成2个不同的三角形.12.1 【解析】 ∵点A (1+m ,1-n )与点B (-3,2)关于y 轴对称,∴{1+m =3,1−n =2,解得{m =2,n =−1,∴m+n=2-1=1.13.4.5 【解析】 ∵AD 是△ABC 的中线,∴S △ABD=12S △ABC=9.∵BE 是△ABD 的中线,∴S △ABE=12S △ABD=4.5.14.45° 【解析】 ∵AD ⊥BC ,BE ⊥AC ,∴∠ADC=∠BDF ,∠CAD+∠C=90°,∠FBD+∠C=90°,∴∠CAD=∠FBD.在△ADC 和△BDF 中,{∠CAD =∠FBD,∠ADC =∠BDF,AC =BF,∴△ADC ≌△BDF (AAS),∴AD=BD ,∴△ABD是等腰直角三角形,∴∠ABC=45°.15.40°或25°或10° 【解析】 由题意知△ABD 与△DBC 均为等腰三角形.分情况讨论:①若AB=BD ,则∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∴∠C=12×(180°-100°)=40°;②若AB=AD ,则∠ADB=12(180°-∠A )=12×(180°-80°)=50°,∴∠BDC=180°-∠ADB=180°-50°=130°,∴∠C=12×(180°-130°)=25°;③若AD=BD ,则∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∴∠C=12×(180°-160°)=10°.综上,∠C 的度数为40°或25°或10°. 16.2n -12 【解析】 ∵等边三角形A 1C 1C 2的周长为1,C 1D 1⊥A 1C 2,∴A 1D 1=D 1C 2,∴易证△A 2C 2C 3的周长=12△A 1C 1C 2的周长=12,∴△A 1C 1C 2,△A 2C 2C 3,△A 3C 3C 4,…,△A n C n C n +1的周长分别为1,12,122,…,12n -1,∴△A 1C 1C 2,△A 2C 2C 3,△A 3C 3C 4,…,△A n C n C n +1的周长和为1+12+122+…+12n -1=2n -12n -1. 17.【解析】 (1)△A 1B 1C 1如图所示,A 1(3,2),B 1(1,4),C 1(0,2).(2)关于x 轴对称18.【解析】 ∵BP 平分∠ABC ,∴∠ABP=∠CBP.∵直线l 是线段BC 的垂直平分线, ∴BP=CP ,∴∠CBP=∠BCP ,∴∠ABP=∠BCP.∵∠A+∠ACB+∠ABC=180°,∠A=60°,∠ACP=24°, ∴3∠ABP+24°+60°=180°, ∴∠ABP=32°.19.【解析】 (1)∵AD 平分∠CAE ,∴∠EAD=∠CAD.∵AD ∥BC ,∴∠EAD=∠B ,∠CAD=∠C , ∴∠B=∠C ,∴AB=AC , ∴△ABC 是等腰三角形.(2)当∠CAE=120°时,△ABC 是等边三角形.证明如下: 当∠CAE=120°时,∠BAC=180°-120°=60°, 由(1)知△ABC 是等腰三角形,∴△ABC 是等边三角形.20.【解析】 (1)∠AOB+∠COD=180°.理由如下:如图,∵AO ,BO ,CO ,DO 分别是四边形ABCD 四个内角的平分线,∴∠1=12∠DAB ,∠2=12∠ABC ,∠3=∠ADC ,∠4=12∠BCD , ∴∠1+∠2+∠3+∠4=12(∠DAB+∠ABC+∠ADC+∠BCD )=180°,∴∠AOB+∠COD=180°-(∠1+∠2)+180°-(∠3+∠4)=360°-(∠1+∠2+∠3+∠4)=180°.(2)AB ∥CD.理由如下: 由(1)得∠AOB+∠COD=180°,∴∠AOD+∠BOC=180°. ∵∠AOD=∠BOC ,∴∠AOD=90°. ∴∠OAD+∠ADO=12(∠BAD+∠ADC )=90°, ∴∠BAD+∠ADC=180°, ∴AB ∥CD.21.【解析】 (1)∵∠ACB=90°,CE ⊥AD ,∴∠ACE+∠BCF=90°,∠CAD+∠ACE=90°, ∴∠CAD=∠BCF.∵BF ∥AC ,∴∠ACD+∠CBF=180°,∴∠CBF=90°. 在△ACD 和△CBF 中,{∠CAD =∠BCF,AC =CB,∠ACD =∠CBF,∴△ACD ≌△CBF.(2)由(1)得△ACD ≌△CBF ,∴CD=BF.∵D 为BC 的中点,∴CD=BD ,∴BF=BD ,∴△BFD 为等腰直角三角形.∵∠ACB=90°,CA=CB ,∴∠ABC=45°.∵∠FBD=90°,∴∠ABF=45°.∴∠ABC=∠ABF ,即BA 是∠FBD 的平分线.根据等腰三角形三线合一的性质,得AB 垂直平分DF.22.【解析】 (1)∵AC=BC ,∠C=120°,∴∠A=∠B=30°.∵EF ∥AB ,∴∠FEC=∠A=30°,∠EFC=∠B=30°,∴EC=CF.又AC=BC ,∴AE=BF.∵D 是AB 的中点,∴AD=BD.在△ADE 和△BDF 中,{AE =BF,∠A =∠B,AD =BD,∴△ADE ≌△BDF ,∴DE=DF.(2)(1)中的结论仍成立.理由如下:如图,过点D 作DM ⊥AC 于点M ,DN ⊥BC 于点N ,连接CD.∵AC=BC ,∠C=120°,∴∠A=∠B=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°-∠ADM-∠BDN=60°.∵AC=BC ,AD=BD ,∴∠ACD=∠BCD ,∴DM=DN.由∠MDN=60°,∠EDF=60°可知:①当点M 与点E 重合时,点N 一定与点F 重合,此时DM=DE ,DN=DF ,∵DM=DN ,∴DE=DF.②当点M 落在点C ,E 之间时,点N 一定落在点B ,F 之间,此时∠EDM=∠EDF-∠MDF=60°-∠MDF ,∠FDN=∠MDN-∠MDF=60°-∠MDF , ∴∠EDM=∠FDN.在△DEM 和△DFN 中,{∠DME =∠DNF,DM =DN,∠EDM =∠FDN,∴△DEM ≌△DFN ,∴DE=DF.③当点M 落在点A ,E 之间时,点N 一定落在点C ,F 之间,此时∠EDM=∠MDN-∠EDN=60°-∠EDN ,∠FDN=∠EDF-∠EDN=60°-∠EDN , ∴∠EDM=∠FDN.在△DEM 和△DFN 中,{∠DME =∠DNF,DM =DN,∠EDM =∠FDN,∴△DEM ≌△DFN ,∴DE=DF.综上,得DE=DF ,即(1)中的结论仍成立.。

2022-2023学年新人教版数学八年级上册期中学习质量检测卷(附参考答案)

2022-2023学年新人教版数学八年级上册期中学习质量检测卷(附参考答案)

2022-2023学年新人教版数学八年级上册期中学习质量检测卷学校:_____________班级:____________ 姓名:____________(时间:120分钟分值:120分)一、选择题(共10小题,满分30分,每小题3分)1.(3分)下列长度的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.4,4,9 2.(3分)一副三角尺如图摆放,则α的大小为()A.105°B.120°C.135°D.150°3.(3分)如图,在Rt△ABC中,∠C=90°,∠ABC=64°,AF∥BE.若BE平分∠ABC,则∠BAF=()A.152°B.148°C.122°D.116°4.(3分)如图图案中不是轴对称图形的是()A.B.C.D.5.(3分)已知,如图,△ABC中,AB=AC,∠A=120°,BC=18cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AB于点F,则MN的长为()A.18cm B.12cm C.6cm D.3cm6.(3分)如图,P为△ABC内一点,过点P的线段MN分别交AB、BC于点M、N,且M、N分别在P A、PC的中垂线上.若∠ABC=80°,则∠APC的度数为()A.120°B.125°C.130°D.135°7.(3分)如图,已知AB=AC,AE=AD,则图中全等的三角形共有()A.2对B.3对C.4对D.5对8.(3分)如图,一块玻璃被打碎成三块,如果要去玻璃店配一块完全一样的玻璃,那么最合理的办法是()A.带①去B.带②去C.带③去D.带①②③去9.(3分)在△ABC中,AC=6,中线AD=10,则AB边的取值范围是()A.16<AB<22B.14<AB<26C.16<AB<26D.14<AB<22 10.(3分)如图,已知∠A=60°,∠B=40°,∠C=30°,则∠D+∠E等于()A.30°B.40°C.50°D.60°二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图是小明从镜子中看到电子钟的时间,此时实际时间是.12.(3分)如图,在△ABC中,AB=AC,BC=5cm,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长为12cm,则△ABC的周长为cm.13.(3分)如图,在△ABC中,E是AC边的中点,过点A作∠ABC平分线BD的垂线,垂足为D,连接DE,若DE=2,BC=8,则AB=.14.(3分)已知BD、CE是△ABC的高,直线BD、CE相交所成的锐角为40°,则∠A的度数是.15.(3分)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=度.三、解答题(共10小题,满分75分)16.(7分)如图,在△ABC中,∠ABC=82°,∠C=58°,BD⊥AC于D,AE平分∠CAB,BD与AE交于点F,求∠AFB.17.(7分)如图,在△ABC中,AD平分∠BAC交BC于点D,BE平分∠ABC交AD 于点E.(1)若∠C=50°,∠BAC=60°,求∠ADB的度数;(2)若∠BED=45°,求∠C的度数.18.(7分)如图,在四边形ACDE中,点F、G分别在AE和CD上,连接FG,且DE ∥FG,点B在AE的延长线上,连接BC,分别交GF、DE于点M,N,且∠2=∠3.(1)求证:∠1=∠B;(2)若∠A=∠1+70°,∠ACB=42°,求∠B的度数.19.(7分)在由单位正方形(每个小正方形边长都为1)组成的网格中,△AOB的顶点均在格点上.(1)把△AOB向左平移4个单位,再向上平移2个单位得到△A1O1B1,请画出△A1O1B1,并写出点A1的坐标;(2)请画出△AOB关于x轴对称的△A2OB2,并求出△A2OB2的面积.20.(7分)△ABC的三边长分别为m﹣2,2m+1,8.(1)求m的取值范围;(2)若△ABC是等腰三角形,求三边长.21.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.(1)若∠B=70°,求∠BAC的大小.(2)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使PB+CP的值最小,若存在,标出点P的位置并求PB+CP的最小值,若不存在,说明理由.22.(9分)如图,F、B、E、C四点共线,AB与DE相交于点O,AO=DO,OB=OE,BF=CE,求证:∠D=∠A.23.(9分)如图,△ABC中,∠ABC=45°,AD⊥BC于D,点E在AD上,且DE=DC.求证:△BDE≌△ADC.24.(7分)工人师傅经常利用角尺平分一个任意角.如图所示,∠AOB是一个任意角,在边OA,边OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,这时过角尺顶点P的射线OP就是∠AOB的平分线.(1)证明:OP平分∠AOB;(2)在(1)的条件下,请你在射线OP上任取一点Q,作QC⊥OA,QD⊥OB,试判断线段QC与线段QD的数量关系并证明.25.(7分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE,BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠2=70°,求∠AEB的度数.参考答案一、选择题(共10小题,满分30分,每小题3分)1.C;2.A;3.B;4.A;5.C;6.C;7.A;8.C;9.B;10.C;二、填空题(共5小题,满分15分,每小题3分)11.21:0512.1913.414.140°或40°15.540三、解答题(共10小题,满分75分)16.解:∵∠CAB=180°﹣∠ABC﹣∠C,而∠ABC=82°,∠C=58°,∴∠CAB=40°,∵AE平分∠CAB,∴∠DAF=20°,∵BD⊥AC于D,∴∠ADB=90°,∴∠AFB=∠ADB+∠DAF=90°+20°=110°.故答案为:110°.17.解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC=12∠BAC=30°.∵∠ADB是△ADC的外角,∠C=50°,∴∠ADB=∠C+∠DAC=80°;(2)∵AD平分∠BAC,BE平分∠ABC,∴∠BAC=2∠BAD,∠ABC=2∠ABE.∵∠BED是△ABE的外角,∠BED=45°,∴∠BAD+∠ABE=∠BED=45°.∴∠BAC+∠ABC=2(∠BAD+∠ABE)=90°.∵∠BAC+∠ABC+∠C=180°,∴∠C=180°﹣(∠BAC+∠ABC)=90°.18.(1)证明:∵DE∥FG,∴∠2=∠D ,∵∠2=∠3,∴∠3=∠D ,∴AB ∥CD ,∴∠1=∠B ;(2)解:∵AB ∥CD ,∴∠A +∠ACD =180°,∵∠A =∠1+70°,∠ACB =42°,∴(∠1+70°)+(∠1+42°)=180°,∴∠1=34°,∴∠B =∠1=34°.19.解:(1)如图,△A 1O 1B 1即为所求.点A 1的坐标为(﹣3,5).(2)如图,△A 2OB 2即为所求.△A 2OB 2的面积为3×3−12×1×3−12×2×1−12×3×2=72.20.解:(1)根据三角形的三边关系得{(2m +1)+(m −2)>8(2m +1)−(m −2)<8,解得3<m <5;(2)当m ﹣2=2m +1时,解得m =﹣3(不合题意,舍去),当m ﹣2=8时,解得,m =10>5(不合题意,舍去),当2m +1=8时,解得,m =72,所以若△ABC 为等腰三角形,m =72,则m ﹣2=32,2m +1=8,所以,△ABC 三边长为32、8、8. 21.解:(1)∵AB =AC ,∠B =70°,∴∠BAC =180°﹣70°×2=40°;(2)∵MN 垂直平分AB .∴MB =MA ,又∵△MBC 的周长是14cm ,∴AC +BC =14cm ,∴BC =6cm .(3)当点P 与点M 重合时,PB +CP 的值最小,为AC 长,最小值是8cm .22.证明:∵OB =OE ,∴∠DEF =∠ABC ,∵AO =DO ,BF =CE ,∴AO +OB =DO +OE ,CE +BE =BF +BE ,∴DE =AB ,EF =BC ,在△DEF 和△ABC 中,{DE =AB ∠DEF =∠ABC EF =BC,∴△DEF ≌△ABC (SAS ),∴∠D =∠A .23.证明:∵AD ⊥BC ,∴∠ADB =∠ADC =90°,∵∠ABC =45°,∴∠BAD =45°,∴∠ABC =∠BAD ,∴AD =BD ,在△BDE 和△ADC 中,{BD =AD ∠EDB =∠ADC DE =DC,∴△BDE ≌△ADC (SAS ).24.(1)证明:在△OPM 与△OPN 中,{OM =ON PM =PN OP =OP,∴△OPM ≌△OPN (SSS ),∴∠AOP =∠BOP ,∴OP 平分∠AOB ;(2)解:QC =QD .证明:∵OP 是∠AOB 的平分线,QC ⊥OA ,QD ⊥OB , ∴QC =QD .25.(1)证明:∵∠ADB =∠2+∠C =∠1+∠BDE ,∠1=∠2, ∴∠BDE =∠C ,在△AEC 和△BED 中,{∠BDE =∠C ∠B =∠A BE =AE ,∴△AEC ≌△BED (AAS );(2)解:∵△AEC ≌△BED ,∴∠BED =∠AEC ,∴∠BEA =∠2,∵∠2=70°,∴∠AEB =70°.。

2024年最新人教版八年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版八年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版八年级数学(上册)期中考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 3B. 2C. 0D. 12. 已知函数f(x) = 2x + 3,那么f(1)的值为()A. 1B. 1C. 5D. 53. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 三角形4. 已知等差数列{an}的前三项分别为1,3,5,那么第10项的值为()A. 19B. 20C. 21D. 225. 下列哪个数是无理数()A. √2B. √4C. √9D. √16二、判断题5道(每题1分,共5分)1. 0是正数和负数的分界点。

()2. 两个负数相乘,结果是正数。

()3. 任何数乘以1都等于它本身。

()4. 两个数的和与它们的顺序无关。

()5. 任何数除以0都有意义。

()三、填空题5道(每题1分,共5分)1. 一个正数与它的相反数相加,结果是______。

2. 函数f(x) = 2x 3中,当x = 2时,f(x)的值为______。

3. 平行四边形的对边______且______。

4. 等差数列{an}的前n项和为______。

5. 两个无理数相乘,结果可能为______。

四、简答题5道(每题2分,共10分)1. 简述实数的分类。

2. 解释等差数列的通项公式。

3. 什么是函数,给出一个函数的例子。

4. 举例说明平行四边形与矩形的区别。

5. 简述勾股定理的内容。

五、应用题:5道(每题2分,共10分)1. 计算下列表达式的值:3x 5,其中x = 4。

2. 已知函数f(x) = x^2 2x + 1,求f(3)的值。

3. 一个等差数列的前3项分别为2,5,8,求第10项的值。

4. 在一个长方形中,长为8cm,宽为6cm,求其对角线的长度。

5. 已知一个正方形的面积为36cm^2,求其边长。

六、分析题:2道(每题5分,共10分)1. 已知一个等差数列的前5项分别为2,5,8,11,14,求该数列的通项公式。

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。

人教版数学八年级上册期中考试试卷附答案解析

人教版数学八年级上册期中考试试卷附答案解析

人教版数学八年级上册期中考试试题一、选择题(每小题3分,共24分)1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm2.下列图形中,是轴对称图形的是(.下列图形中,是轴对称图形的是( )A.B.C.D.3.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()a=b C C.a<b D.b=a+180°A.a>b B.a=b 4.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间两点之间 D.G、H两点之间两点之间 B.E、G两点之间两点之间 C.B、F两点之间5.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP由作法得△OCP≌△ODP的根据是(的根据是( )AAS D D.SSSASA C C.AAS SAS B B.ASA A.SAS 6.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()120° D.130°A.50°B.100°C.120°7.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位的距离是( )海里.于北偏东60°方向上,则C处与灯塔A的距离是(A.25B.25C.50 D.258.下列说法错误的是(.下列说法错误的是( )A.已知两边及一角只能作出唯一的三角形B.到△ABC的三个顶点距离相等的点是△ABC的三条边垂直平分线的交点C.腰长相等的两个等腰直角三角形全等D.点A(3,2)关于x轴的对称点A坐标为(3,﹣2)二、填空题(每小题3分,共21分)9.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是,则该等腰三角形的周长是 .10.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.11.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点D,过点D作EF∥BC 交AB,AC于点E,F,若BE+CF=20,则EF=.12.在△ABC中,∠C=90°,∠A=15°,将△ABC沿MH翻折,使顶点A与顶点B 重合,已知AH=6,则BC等于等于 .13.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于的周长为 .点D;连结CD.若AB=6,AC=4,则△ACD的周长为14.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为长的最小值为 .15.如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,则当AP=时,才能使△ABC 和△APQ全等.三、解答题(本题8小题,)16.在数学实践课上,老师在黑板上画出如图的图形,(其中点B ,F ,C ,E 在同一条直线上).并写出四个条件:①AB=DE ,②∠1=∠2.③BF=EC ,④∠B=∠E ,交流中老师让同学们从这四个条件中选出三个作为题设,交流中老师让同学们从这四个条件中选出三个作为题设,另一个作为结论,另一个作为结论,组成一个真命题.①请你写出所有的真命题;②选一个给予证明.你选择的题设:②选一个给予证明.你选择的题设: ;结论:;结论: .(均填写序号)17.如图,两车从路段AB 的两端同时出发,沿平行路线以相同的速度行驶,相同时间后分别到达C ,D 两地,CE ⊥AB ,DF ⊥AB ,C ,D 两地到路段AB 的距离相等吗?为什么?18.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1; (2)在DE 上画出点P ,使PB 1+PC 最小; (3)在DE 上画出点Q ,使QA +QC 最小.19.某中学八年级某中学八年级((1)班数学课外兴趣小组在探究:“n 边形共有多少条对角线”这一问题时,设计了如下表格:多边形的边数 4 5 6 7 8 …从多边形一个顶点出发可引起的对角线条数…多边形对角线的总条数…(1)探究:假若你是该小组的成员,请把你研究的结果填入上表;(2)猜想:随着边数的增加,多边形对角线的条数会越来越多,从n 边形的一个顶点出发可引的对角线条数为个顶点出发可引的对角线条数为 ,n 边形对角线的总条数为边形对角线的总条数为 . (3)应用:10个人聚会,每不相邻的人都握一次手,共握多少次手? 20.如图,把长方形ABCD 沿对角线BD 折叠,重合部分为△EBD . (1)求证:△EBD 为等腰三角形. (2)图中有哪些全等三角形?(3)若AB=6,BC=8,求△DCʹE 的周长.21.如图,在△ABC 中,AB=AC ,∠A=60°,BE 是中线,延长BC 到D ,使CD=CE ,连接DE ,若△ABC 的周长是24,BE=a ,则△BDE 的周长是多少?22.如图1,AD 平分∠BAC ,∠B +∠C=180°,∠B=90°,易知:DB=DC .(1)如图2,AD 平分∠BAC ,∠ABD +∠ACD=180°,∠ABD <90°.求证:DB=DC .(2)如图3,四边形ABCD 中,∠B=60°,∠C=120°,DB=DC=2,则AB ﹣AC=?23.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.的长取得最大值,且最大值为 (用含位于 时,线段AC的长取得最大值,且最大值为①填空:当点A位于a,b的式子表示)且BC=3,AB=1,如图2所示,分别以AB、(2)应用:点A为线段BC外一动点,外一动点,且AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.参考答案与试题解析一、选择题(每小题3分,共24分)1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cmC .5cm ,5cm ,11cm D .13cm ,12cm ,20cm 【考点】三角形三边关系.【分析】根据三角形的三边关系,根据三角形的三边关系,两边之和大于第三边,两边之和大于第三边,两边之和大于第三边,即两短边的和大于最长即两短边的和大于最长的边,即可作出判断.【解答】解:A 、3+4<8,故以这三根木棒不可以构成三角形,不符合题意; B 、8+7=15,故以这三根木棒不能构成三角形,不符合题意; C 、5+5<11,故以这三根木棒不能构成三角形,不符合题意; D 、12+13>20,故以这三根木棒能构成三角形,符合题意. 故选D .2.下列图形中,是轴对称图形的是(.下列图形中,是轴对称图形的是( )A .B .C .D .【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A 、不是轴对称图形,故本选项错误; B 、是轴对称图形,故本选项正确; C 、不是轴对称图形,故本选项错误; D 、不是轴对称图形,故本选项错误. 故选B .3.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )a=b C C.a<b D.b=a+180°A.a>b B.a=b 【考点】多边形内角与外角.【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【解答】解:∵四边形的内角和等于a,∴a=(4﹣2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.4.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间两点之间 B.E、G两点之间两点之间 D.G、H两点之间两点之间 C.B、F两点之间【考点】三角形的稳定性.【分析】用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.【解答】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选B.5.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP由作法得△OCP≌△ODP的根据是(的根据是( )AAS D D.SSSASA C C.AAS SAS B B.ASA A.SAS 【考点】全等三角形的判定.【分析】认真阅读作法,从角平分线的作法得出△OCP与△ODP的两边分别相等,加上公共边相等,于是两个三角形符合SSS判定方法要求的条件,答案可得.【解答】解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;∴在△OCP和△ODP中,∴△OCP≌△ODP(SSS).故选:D.6.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()120° D.130°A.50°B.100°C.120°【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可.【解答】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA +∠A=100°, 故选:B .7.轮船从B 处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达C 处,在C 处观测灯塔A 位于北偏东60°方向上,则C 处与灯塔A 的距离是(的距离是( )海里.A .25B .25C .50 D .25【考点】等腰直角三角形;方向角.【分析】根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC 为等腰直角三角形,然后根据解直角三角形的知识解答. 【解答】解:根据题意, ∠1=∠2=30°, ∵∠ACD=60°,∴∠ACB=30°+60°60°=90°=90°, ∴∠CBA=75°﹣30°30°=45°=45°, ∴△ABC 为等腰直角三角形, ∵BC=50×0.5=25, ∴AC=BC=25(海里). 故选D .8.下列说法错误的是(.下列说法错误的是( )A .已知两边及一角只能作出唯一的三角形B .到△ABC 的三个顶点距离相等的点是△ABC 的三条边垂直平分线的交点 C .腰长相等的两个等腰直角三角形全等D .点A (3,2)关于x 轴的对称点A 坐标为(3,﹣2)【考点】等腰直角三角形;全等三角形的判定;线段垂直平分线的性质;关于x 轴、y 轴对称的点的坐标.【分析】利用等腰直角三角形的性质,线段垂直平分线的性质,关于x 轴对称的点的坐标特征,点的坐标特征,全等三角形的判定来确定.全等三角形的判定来确定.全等三角形的判定来确定.做题时,做题时,做题时,要结合已知条件与三角形全要结合已知条件与三角形全等的判定方法逐个验证.【解答】解:A 、SSA 不能确定两个三角形全等,题干的说法错误;B 、到△ABC 的三个顶点距离相等的点是△ABC 的三条边垂直平分线的交点的说法正确;C 、根据SAS 可知,腰长相等的两个等腰直角三角形全等的说法正确;D 、点A (3,2)关于x 轴的对称点A 坐标为(3,﹣2)的说法正确. 故选:A .二、填空题(每小题3分,共21分)9.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是则该等腰三角形的周长是 10 .【考点】等腰三角形的性质;三角形三边关系.【分析】根据任意两边之和大于第三边,知道等腰三角形的腰的长度是4,底边长2,把三条边的长度加起来就是它的周长. 【解答】解:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2, 周长:4+4+2=10, 答:它的周长是10, 故答案为:1010.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3= 20°.【考点】平行线的性质;三角形的外角性质.同位角相等和三角形的外角等于与它不相邻本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻【分析】本题主要利用两直线平行,的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.11.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点D,过点D作EF∥BC 交AB,AC于点E,F,若BE+CF=20,则EF=20.【考点】等腰三角形的判定与性质;平行线的性质.【分析】由平行线的性质可得内错角∠EDB=∠DBC,∠FDC=∠DCB,再由角平分线的性质可得∠ABD=∠EDB,∠ACD=∠FDC,即BE=DE,DF=FC,进而可求EF的长.【解答】解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵BD、CD分别平分∠ABC与∠ACB,∴∠ABD=∠DBC,∠ACD=∠DCB,∴∠ABD=∠EDB,∠ACD=∠FDC,即BE=DE,DF=FC,EF=DE+DF=BE+FC=20.故答案为:2012.在△ABC中,∠C=90°,∠A=15°,将△ABC沿MH翻折,使顶点A与顶点B等于 3.重合,已知AH=6,则BC等于【考点】翻折变换(折叠问题).【分析】根据折叠的性质得到HB=HA,根据三角形的外角的性质得到∠CHB=30°,根据直角三角形的性质计算即可.【解答】解:连接BH,由折叠的性质可知,HB=HA=6,∴∠HAB=∠HBA=15°,∴∠CHB=30°,∴BC=BH=3,故答案为:3.13.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为的周长为 10.【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据题意可知直线MN是线段BC的垂直平分线,推出DC=DB,可以证明△ADC的周长=AC+AB,由此即可解决问题.【解答】解:由题意直线MN是线段BC的垂直平分线,∵点D在直线MN上,∴DC=DB,∴△ADC的周长=AC+CD+AD=AC+AD+BD=AC+AB,∵AB=6,AC=4,∴△ACD的周长为10.故答案为10.14.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为长的最小值为 4.【考点】角平分线的性质;垂线段最短.【分析】根据垂线段最短,当DP垂直于BC的时候,DP的长度最小,则结合已知条件,利用三角形的内角和定理推出∠ABD=∠CBD,由角平分线性质即可得AD=DP,由AD的长可得DP的长.【解答】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小,∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP ,又AD=4, ∴DP=4.故答案为:4.15.如图,在Rt △ABC 中,∠C=90°,AC=12cm ,BC=6cm ,一条线段PQ=AB ,P ,Q 两点分别在线段AC 和AC 的垂线AX 上移动,则当AP= 6cm 或12cm 时,才能使△ABC 和△APQ 全等.【考点】勾股定理;全等三角形的判定.【分析】本题要分情况讨论:①Rt △APQ ≌Rt △CBA ,此时AP=BC=5cm ,可据此求出P 点的位置;②Rt △QAP ≌Rt △BCA ,此时AP=AC ,P 、C 重合. 【解答】解:∵PQ=AB ,∴根据三角形全等的判定方法HL 可知,①当P 运动到AP=BC 时,△ABC ≌△QPA ,即AP=BC=6cm ; ②当P 运动到与C 点重合时,△QAP ≌△BCA ,即AP=AC=12cm ; 故答案为:6cm 或12cm .三、解答题(本题8小题,)16.在数学实践课上,老师在黑板上画出如图的图形,(其中点B ,F ,C ,E 在同一条直线上).并写出四个条件:①AB=DE ,②∠1=∠2.③BF=EC ,④∠B=∠E ,交流中老师让同学们从这四个条件中选出三个作为题设,交流中老师让同学们从这四个条件中选出三个作为题设,另一个作为结论,另一个作为结论,组成一个真命题.①请你写出所有的真命题;②选一个给予证明.你选择的题设:②选一个给予证明.你选择的题设: ①③④①③④ ;结论:;结论: ② .(均填写序号)【考点】全等三角形的判定与性质;命题与定理.【分析】①有三种情况是真命题:情况一:由AAS证明△ABC≌△DEF,得出对应边相等BC=EF,即可得出BF=EC;情况二:先证BC=EF,由SAS证明△ABC≌△DEF,即可得出∠1=∠2;情况三:先证出BC=EF,再由ASA证明△ABC≌△DEF,即可得出AB=DE;②先证BC=EF,由SAS证明△ABC≌△DEF,即可得出∠1=∠2.【解答】解:①情况一:题设:①②④;结论:③;情况二:题设①③④;结论:②;情况三:题设②③④;结论:①.②选择的题设:①③④;结论:②;理由::∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;故答案为:①③④;②.17.如图,两车从路段AB的两端同时出发,沿平行路线以相同的速度行驶,相同时间后分别到达C,D两地,CE⊥AB,DF⊥AB,C,D两地到路段AB的距离相等吗?为什么?【考点】全等三角形的应用.【分析】根据题意可得∠AEC=∠BFD=90°,AC=BD,再根据平行线的性质可得∠A=∠B,然后再利用AAS判定△AEC≌△BFD,进而可得CE=DF.【解答】解:C,D两地到路段AB的距离相等,理由:∵CE⊥AB,DF⊥AB,∴∠AEC=∠BFD=90°,∵AC∥BD,∴∠A=∠B,在△AEC和△BFD中,∴△AEC≌△BFD(AAS),∴CE=DF,∴C,D两地到路段AB的距离相等.18.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PB1+PC最小;(3)在DE上画出点Q,使QA+QC最小.【考点】轴对称-最短路线问题.【分析】(1)从三角形各顶点向DE引垂线并延长相同的长度,找到对应点,顺次连接;(2)根据两点之间线段最短,连接B1C即可;(3)利用轴对称图形的性质可作点A 关于直线DE 的对称点Aʹ,连接AʹC ,交直线DE 于点Q ,点Q 即为所求. 【解答】解:如图所示: (1)△A 1B 1C 1即为所求.(2)连接B 1C 与直线DE 的交点P 即为所求.(3)作点A 关于直线DE 的对称点Aʹ,连接AʹC ,交直线DE 于点Q ,点Q 即为所求.19.某中学八年级某中学八年级((1)班数学课外兴趣小组在探究:“n 边形共有多少条对角线”这一问题时,设计了如下表格:多边形的边数 45678… 从多边形一个顶点出发可引起的对角线条数12 3 4 5…多边形对角线的总条数2 5 9 14 20 … (1)探究:假若你是该小组的成员,请把你研究的结果填入上表;(2)猜想:随着边数的增加,多边形对角线的条数会越来越多,从n 边形的一个顶点出发可引的对角线条数为个顶点出发可引的对角线条数为 (n ﹣3)) ,n 边形对角线的总条数为边形对角线的总条数为(n ≥3) .(3)应用:10个人聚会,每不相邻的人都握一次手,共握多少次手? 【考点】多边形的对角线.【分析】(1)根据多边形的性质,可得答案; (2)根据多边形的对角线,可得答案;(3)根据多边形的对角线,可得答案.【解答】解:多边形的边数45678…从多边形一个顶点出发可引起的对角线条数1 234 5 …多边形对角线的总条数2 59 14 20 …(1)探究:假若你是该小组的成员,请把你研究的结果填入上表;(2)猜想:随着边数的增加,多边形对角线的条数会越来越多,从n边形的一个顶点出发可引的对角线条数为个顶点出发可引的对角线条数为 (n﹣3)),n边形对角线的总条数为(n ≥3).(3)==35次,20.如图,把长方形ABCD沿对角线BD折叠,重合部分为△EBD.(1)求证:△EBD为等腰三角形.(2)图中有哪些全等三角形?(3)若AB=6,BC=8,求△DCʹE的周长.【考点】翻折变换(折叠问题).【分析】(1)根据矩形的性质得到∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,推出△AEB≌△CED,根据等腰三角形的性质即可得到结论;(2)根据全等三角形的判定解答即可;(3)根据三角形周长即可得到结论.【解答】解:(1)∵四边形ABCD为矩形,∴∠BAE=∠DCE,AB=CD,在△AEB和△CED中,,∴△AEB≌△CED(AAS),∴BE=DE,∴△EBD为等腰三角形.(2)全等三角形有:△EAB≌△EC'D;△ABD≌△CDB;△CDB≌△C'DB;△ABD ≌△C'DB;(3)△DCʹE的周长=C'D+C'E+ED=AB+AE+ED=AB+AD=6+8=14.21.如图,在△ABC中,AB=AC,∠A=60°,BE是中线,延长BC到D,使CD=CE,连接DE,若△ABC的周长是24,BE=a,则△BDE的周长是多少?【考点】等腰三角形的性质.【分析】根据在△ABC中,AB=AC,∠A=60°,可得△ABC的形状,再根据△ABC 的周长是24,可得AB=BC=AC=8,根据BE是中线,可得CE的长,∠EBC=30°,根据CD=CE,可得∠D=∠CED,根据∠ACB=60°,可得∠D,根据∠D与∠EBC,可得BE与DE的关系,可得答案.【解答】解:∵在△ABC中,AB=AC,∠A=60°,∴△ABC是等边三角形,∵△ABC的周长是24,∴AB=AC=BC=8,∵BE是中线,∴CE=AC=4,∠EBC=∠ABC=30°,∵CD=CE,∴∠D=∠CED,∵∠ACB是△CDE的一个外角,∴∠D+∠CED=∠ACB=60°∴∠D=30°,∴∠D=∠EBC,∴BE=DE=a,∴△BED周长是DE+BE+BD=a+a+(8+4)=2a+12.22.如图1,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知:DB=DC.(1)如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.(2)如图3,四边形ABCD中,∠B=60°,∠C=120°,DB=DC=2,则AB﹣AC=?【考点】全等三角形的判定与性质.【分析】(1)证明△DFC≌△DEB即可.(2)先证明△DFC≌△DEB,再证明△ADF≌△ADE,结合BD与EB的关系即可解决问题.【解答】(1)证明:如图②中,DE⊥AB于E,DF⊥AC于F,∵DA平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,,∴△DFC≌△DEB,∴DC=DB.(2)解:如图③连接AD、DE⊥AB于E,DF⊥AC于F,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC 和△DEB 中,, ∴△DFC ≌△DEB ,∴DF=DE ,CF=BE ,在Rt △ADF 和Rt △ADE 中,,∴△ADF ≌△ADE ,∴AF=AE , ∴AB ﹣AC=(AE +BE )﹣(AF ﹣CF )=2BE ,在Rt △DEB 中,∵∠DEB=90°,∠B=∠EDB=60°,BD=2,∴BE=1,∴AB ﹣AC=2.23.(1)发现:如图1,点A 为线段BC 外一动点,且BC=a ,AB=b . ①填空:①填空:当点当点A 位于位于 CB 的延长线上的延长线上 时,时,线段线段AC 的长取得最大值,的长取得最大值,且最大值且最大值为 a +b (用含a ,b 的式子表示)(2)应用:点A 为线段BC 外一动点,外一动点,且且BC=3,AB=1,如图2所示,分别以AB 、AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .①请找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.【考点】三角形综合题;全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据点A为线段BC外一动点,且BC=a,AB=b,可得当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b;(2)①根据等边三角形ABD和等边三角形ACE,可得△CAD≌△EAB(SAS),根据全等三角形的性质可得CD=BE;②根据全等三角形的性质可得,线段BE长的最大值=线段CD长的最大值,而当线段CD的长取得最大值时,点D在CB的延长线上,此时CD=3+1=4,可得BE=4.【解答】解:(1)如图1,∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b.故答案为:CB的延长线上,a+b;(2)①CD=BE.理由:如图2,∵等边三角形ABD和等边三角形ACE,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴CD=BE;②线段BE长的最大值为4.理由:∵线段BE长的最大值=线段CD长的最大值,。

八年级上册期中考试数学试卷含答案(共3套,新人教版)

八年级上册期中考试数学试卷含答案(共3套,新人教版)

人教版八年级上学期期中考试数学试卷一、选择题(每小题3分,共24分)1.1449的平方根是( )3.12A3.12B ± 12.3C ±12.3D 2.若0m <,则m 的立方根是( )A . 3mB .3m ±-C .3m ±D .3m -3.在实数23-,0,3,-3.14,4中,无理数有( ) A . 1个B . 2个C . 3个D . 4个4.下列运算正确的是()A 、426a a a =-B 、()532a a =[来 C 、326a a a =÷ D 、532a a a =⋅5.已知等腰三角形的两边分别为4和5,该三角形的周长是( )A.13B.14C.13或14D. 以上都不对 6.如果()()n mx x x x +-=+-22423,那么m 、n 的值分别是( ) A 、2,12B 、-2,12C 、2,-12D 、-2,-127.如图,在ABC △中,点D 在BC 上,AB AD DC ==,80B ∠=︒,则C ∠的度数为( )A.30°B.40°C.45°D.60°8.如图,已知AB CD ∥,AD BC ∥,AC 与BD 交于点O ,AE BD ⊥于点E ,CF BD ⊥于点F ,那么图中全等的三角形有( )A.5对B.6对C.7对D.8对第8题图 第7题图二、填空题(每小题3分,共18分) 9.比较大小:513- 13(填“>”“<”或“=”).10.若xy=2, x -y =2-1, 则(x +1)(y -1)=____ __.11.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为 .12.命题“对顶角相等”的条件是 .13.如图,两个全等的等边三角形的边长为1 m ,一个微型机器人由A 点开始按ABCDBEA 的顺序沿等边三角形的边循环运动,行走2 012 m 停下,则这个微型机器人停在点 处(填A 、B 、C 、E )14.如图,在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,将ABC △绕点C 顺时针 旋转至A B C ''△,使得点A '恰好落在AB 上,则旋转角度为 .三、解答题(本大题共10小题,共78分) 15.(6分)计算:)()(284232a a a a a -÷+⋅+-16.(6分)因式分解: x4y-2x 3y 2+x 2y 3第13题图第14题图17.(6分)先化简,在求值:()()2212224,5,.5xy xy x y xy x y ⎡⎤+--+÷==⎣⎦其中18.(7分)223,4,5,mn k m n k a a a a +-===已知:试求:的值。

2024年人教版八年级数学上册期中考试卷(附答案)

2024年人教版八年级数学上册期中考试卷(附答案)

2024年人教版八年级数学上册期中考试卷一、选择题(每题1分,共5分)1. 如果一个数的平方等于64,那么这个数是()A. 8B. 8C. 8或8D. 无法确定2. 下列哪个数是有理数()A. √3B. πC. 1.2D. √13. 已知x+y=6,xy=8,那么x²+y²的值是()A. 10B. 20C. 30D. 404. 如果一个正方形的边长是a,那么它的面积是()A. aB. a²C. 2aD. 4a²5. 下列哪个式子是正确的()A. a²+a²=2a²B. a²+a²=2aC. a²+a²=a⁴D.a²+a²=4a二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。

()2. 两个负数相乘的结果是正数。

()3. 如果a>b,那么a²>b²。

()4. 一元二次方程的解可以是两个实数,也可以是两个虚数。

()5. 任何一个正数都有两个平方根,它们互为相反数。

()三、填空题(每题1分,共5分)1. 如果一个数的平方是25,那么这个数是______。

2. 两个负数相乘的结果是______。

3. 如果a+b=6,ab=8,那么a²+b²的值是______。

4. 任何一个正数都有______个平方根,它们互为______数。

5. 一元二次方程ax²+bx+c=0的判别式是______。

四、简答题(每题2分,共10分)1. 请简要说明什么是有理数。

2. 请简要说明一元二次方程的定义。

3. 请简要说明正方形的面积公式。

4. 请简要说明平方根的定义。

5. 请简要说明负数乘法的规则。

五、应用题(每题2分,共10分)1. 已知一个数的平方是36,求这个数的平方根。

2. 如果一个正方形的边长是5,求它的面积。

3. 已知x+y=10,xy=21,求x²+y²的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册同步练习:期中考试冲刺(四)(附答案)一.选择题1.下列四个图案中,是轴对称图形的是()A.B.C.D.2.若一个多边形的内角和与外角和总共是900°,则此多边形是()A.四边形B.五边形C.六边形D.七边形3.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.54.已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.13 B.17 C.13或17 D.13或105.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S=15,则CD的长为()△ABDA.3 B.4 C.5 D.66.如图,△ABC与△DEF关于直线l对称,则∠F等于()A.60°B.40°C.80°D.60°或80°7.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A .BC =BEB .AC =DE C .∠A =∠D D .∠ACB =∠DEB8.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠C B .AD ⊥BC C .AD 平分∠BAC D .AB =2BD9.将一副三角板如图放置,且两条直角边重叠,则∠1的度数是( )A .30°B .45°C .70°D .75°10.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧交AB 于M 、AC 于N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于D ,下列四个结论:①AD 是∠BAC 的平分线; ②∠ADC =60°; ③点D 在AB 的中垂线上; ④S △ACD :S △ACB =1:3. 其中正确的有( )A .只有①②③B .只有①②④C .只有①③④D .①②③④二.填空题11.木工师傅做完房门后,为防止变形钉上两条斜拉的木条这样做的根据是 .12.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的底角度数是 .13.一个三角形的两边长为5和7,则第三边a的取值范围是.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.15.如图,在等边三角形ABC中,AE=CD,AD、BE相交于P点.∠BPD=°.16.如图∠1,∠2,∠3分别是△ABC的外角,则∠1+∠2+∠3=°.三.解答题17.将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.18.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.19.已知:如图,CA=CB(A、B、C三点不共线).(1)请分别作出线段CA、CB的垂直平分线(用尺规作图,保留作图痕迹,不必写作法);(2)设所作两垂直平分线交于点O,连接CO,请问CO平分∠ACB吗?请说明理由.四.解答题20.如图,某轮船上午8时在A处,测得灯塔S在北偏东60°的方向上,向东行驶至中午11时,该轮船在B处,测得灯塔S在北偏西30°的方向上(自己完成图形),已知轮船行驶速度为每小时60千米,求∠ASB的度数及AB的长.21.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.22.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,点B、C、E 在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并说明理由(结论中不得含有未标识的字母);(2)试判断DC与BE是否垂直?并说明理由.五.解答题23.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.24.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.25.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案一.选择题1.解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、是轴对称图形,符合题意.故选:D.2.解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900°﹣360°=540°,∴多边形的边数是:540°÷180°+2=3+2=5.故选:B.3.解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.4.解:①当腰是3,底边是7时,不满足三角形的三边关系,因此舍去.②当底边是3,腰长是7时,能构成三角形,则其周长=3+7+7=17.故选:B.5.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,=AB•DE=×10•DE=15,∴S△ABD解得DE=3,∴CD=3.故选:A.6.解:∵△ABC与△DEF关于直线l对称∴∠A=∠D=40°,∠B=∠E=60°∴∠F=180°﹣100°=80°.故选:C.7.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据AAS判定△ABC≌△DBE,故正确.故选:B.8.解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.9.解:如图,∠2=90°﹣45°=45°,∠3=∠2=45°,所以,∠1=∠3+30°=45°+30°=75°.故选:D.10.解:根据作图方法可得AD是∠BAC的平分线,故①正确;∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,故②正确;∵∠B=30°,∠DAB=30°,∴AD =DB ,∴点D 在AB 的中垂线上,故③正确; ∵∠CAD =30°, ∴CD =AD , ∵AD =DB , ∴CD =DB , ∴CD =CB ,S △ACD =CD •AC ,S △ACB =CB •AC ,∴S △ACD :S △ACB =1:3,故④正确, 故选:D .二.填空11.解:木工师傅做完房门后,为防止变形钉上两条斜拉的木条这样做的根据是:三角形的稳定性. 12.解:∵在△CBA 1中,∠B =30°,A 1B =CB , ∴∠BA 1C ==75°,∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角, ∴∠DA 2A 1=∠BA 1C =×75°;同理可得∠EA 3A 2=()2×75°,∠FA 4A 3=()3×75°, ∴第n 个三角形中以A n 为顶点的内角度数是() n ﹣1×75°.故答案为:() n ﹣1×75°. 13.解:∵三角形的两边长分别为5、7, ∴第三边a 的取值范围是则2<a <12. 故答案为:2<a <12.14.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.解:∵AE=CD,∴CE=BD,∵∠ABD=∠BCE,AB=BC,∴△ABD≌△CBE,故∠BAD=∠CBE,∵∠ABD+∠BAD+∠ADB=180°,∠CBE+∠ADB+∠BPD=180°,∴∠BPD=∠ABD,∵∠ABD=60°,∴∠BPD=60°,故答案为 60°.16.解:∵三角形的外角和为360°,∴∠1+∠2+∠3=360°,故答案为:360°.三.解答题17.解:(1)如图①,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1﹣∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.18.证明:在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=∠ACB+∠BAC=(∠ACB+∠BAC)=(180°﹣∠B)=60°则∠AOC=180°﹣∠ECA﹣∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,则∠COF=60°,∴∠COD=∠COF,∴在△FOC与△DOC中,,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.19.解:(1)出线段CA的垂直平分线GH,线段CB的垂直平分线MN如图所示;(2)设GH交AC于F,MN交BC于E.∵AC=BC,BE=CE,CF=AF,∴CE=CF,∵CO=CO,∴Rt△OCE≌Rt△OCF(HL),∴∠OCE=∠OCF,∴OC平分ACB.四.解答题20.解:如图:由图可知∠SAB=90°﹣∠DAS=90°﹣60°=30°,∠ABS=90°﹣∠SBC=90°﹣30°=60°,因为在△ABS中,∠SAB=30°,∠ABS=60°,所以∠ASB=180°﹣∠ABS﹣∠SAB=180°﹣60°﹣30°=90°.60×(11﹣8)=180(千米).所以AB长为180千米.21.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.22.解:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠EAC=∠DAE+∠EAC,∴∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS);(2)DC⊥BE,∵△ABE≌△ACD,∴∠AEB=∠ADC,∵∠ADC+∠AFD=90°,∴∠AEB+∠AFD=90°,∵∠AFD=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴DC⊥BE.五.解答题23.解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.24.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.25.(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.八年级上册:期中测试(附答案)一.选择题(满分30分,每小题3分)1.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是()A.B.C.D.2.下列图形中具有稳定性的是()A.正方形B.长方形C.等腰三角形D.平行四边形3.下列各线段中,能与长为4,6的两线段组成三角形的是()A.2 B.8 C.10 D.124.如图,在△ABC中,∠B=60°,∠C=50°,如果AD平分∠BAC,那么∠ADB的度数是()A.35°B.70°C.85°D.95°5.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCA C.AC=DB D.AB=DC6.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS7.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.58.如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,则△AEF的周长为()A.12 B.13 C.14 D.189.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确10.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水.某同学用直线(虛线)l表示小河,P,Q两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是()A.B.C.D.二.填空题(满分18分,每小题3分)11.如图,已知∠B=30°,则∠A+∠D+∠C+∠G=°.12.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=.13.如图,在△ABC中,AB=AC,∠BAD=∠CAD,BD=5cm,则BC=cm.14.课间,顽皮的小刚拿着老师的等腰直角三角板放在黑板上画好了的平面直角坐标系内(如图),已知直角顶点H的坐标为(0,1),另一个顶点G的坐标为(4,4),则点K的坐标为.15.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是.16.如图,等腰△ABC的底边BC的长为2cm,面积是6cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F.若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为.三.解答题(共8小题,满分72分)17.(8分)在△ABC中,已知∠A=∠B=∠C,按角判断△ABC的形状.18.(8分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.19.(8分)用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,求三角形各边的长.(2)能围成有一边的长是4cm的等腰三角形吗?若能,求出其他两边的长;若不能,请说明理由.20.(8分)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)△ABC关于y轴对称图形为△A1B1C1,画出△A1B1C1的图形.(2)求△ABC的面积.21.(8分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.22.(10分)综合与实践:操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.23.(10分)【阅读材料】小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.【材料理解】(1)在图1中证明小明的发现.【深入探究】(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).【延伸应用】(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.24.(12分)如图,在Rt△ABC中,∠BAC=90°,D为BC的中点,将线段AD绕点D顺时针旋转90°,得到线段DE,连接CE,过点D作CE的垂线,与CE交于点F,与线段AB交于点G.(1)依题意补全图形;(2)设∠ABC=α,求∠CDF的度数(用含α的代数式表示);(3)探究DG,DF和CE之间的等量关系,并给出证明.参考答案一.选择题1.解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意.故选:C.2.解:正方形,长方形,等腰三角形,平行四边形中只有等腰三角形具有稳定性.故选:C.3.解:设组成三角形的第三边长为x,由题意得:6﹣4<x<6+4,即:2<x<10,故选:B.4.解:∵在△ABC中,∠B=60°,∠C=50°,∴∠BAC=180°﹣60°﹣50°=70°.∵AD平分∠BAC,∴∠BAD=∠BAC=35°.∵在△ABD中,∠BDA=180°﹣∠B﹣∠BAD.∴∠BDA=180°﹣60°﹣35°=85°故选:C.5.解:A、∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;B、∵∠ABD=∠DCA,∠DBC=∠ACB,∴∠ABD+∠DBC=∠ACD+∠ACB,即∠ABC=∠DCB,∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;C、∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故本选项不符合题意;D、根据∠ACB=∠DBC,BC=BC,AB=DC不能推出△ABC≌△DCB,故本选项符合题意;故选:D.6.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.7.解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.8.解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13.故选:B.9.解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.10.解:作点P关于直线l的对称点C,连接QC交直线l于M.根据两点之间,线段最短,可知选项C铺设的管道最短.故选:C.二.填空题11.解:∵∠B=30°,∴∠BEF+∠BFE=180°﹣30°=150°,∴∠DEF+∠GFE=360°﹣150°=210°.∵∠DEF=∠A+∠D,∠GFE=∠C+∠G,∴∠A+∠D+∠C+∠G=∠DEF+∠GFE=210°,故答案为:210.12.解:∵点P(3,a)关于y轴的对称点为Q(b,2),∴a=2,b=﹣3,∴ab=﹣6,故答案为:﹣6.13.解:∵AB=AC,∠BAD=∠CAD,∴BC=2BD=2CD,∵BD=5cm,∴BC=2BD=10cm,故答案为10.14.解:作GP⊥y轴,KQ⊥y轴,如图,∴∠GPH=∠KQH=90°∵GH=KH,∠GHK=90°,∴∠GHP+∠KHQ=90°.又∠HKQ+∠KHQ=90°∴∠GHP=∠HKQ.在△GPH和△HQK中,Rt△GPH≌Rt△KHQ(AAS),KQ=PH=4﹣1=3;HQ=GP=4.∵QO=QH﹣HO=4﹣1=3,∴K(3,﹣3),故答案为:(3,﹣3).15.解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故答案为:()n﹣1×75°.16.解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×2×AD=6,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×2=6+1=7cm.故答案为7cm.三.解答题17.解:∵∠A=∠B=∠C,∴∠B=3∠A,∠C=5∠A,∵∠A+∠B+∠C=180°,∴∠A+3∠A+5∠A=180°,∴∠A=20°,∠B=60°,∠C=100°,∴△ABC是钝角三角形.18.证明:∵CE∥DF∴∠ECA=∠FDB,在△ECA和△FDB中,∴△ECA≌△BDF,∴AE=FB.19.解:(1)设底边长为xcm,则腰长为2xcm.依题意,得2x+2x+x=18,解得x=.∴2x=.∴三角形三边的长为cm、cm、cm.(2)若腰长为4cm,则底边长为18﹣4﹣4=10cm.而4+4<10,所以不能围成腰长为4cm的等腰三角形.若底边长为4cm,则腰长为(18﹣4)=7cm.此时能围成等腰三角形,三边长分别为4cm、7cm、7cm.20.解:如图所示,(1)△A1B1C1即为所求;(2)△ABC的面积为:2×3﹣2×2﹣1×1﹣1×3=2;21.证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.22.(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同法可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=EC=2.23.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE;(2)如图2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,①正确,∠ADB=∠AEC,记AD与CE的交点为G,∵∠AGE=∠DGO,∴180°﹣∠ADB﹣∠DGO=180°﹣∠AEC﹣∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB上取一点F,使OF=OC,连接CF,∴△OCF是等边三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°﹣∠OFC=120°,∴∠AOE=180°﹣∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=CE,∵BD=CE,∴CF=OF=BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.24.解:(1)图形如图所示.(2)∵∠BAC=90°,BD=CD,∴AD=DB=DC,∴DBA=∠DAB=α,∴∠ADC=∠DBA+∠DAB=2α,∵DA⊥DC,∴∠ADE=90°,∴∠CDE=90°﹣2α,∵DE=DA=DC,DF⊥EC,∴∠CDF=∠EDF=∠CDF=45°﹣α.(3)结论:2(DF﹣DG)=EC.理由:如图,作BH⊥FG交FG于H.∵∠H=90°,∴∠DBH+∠BDH=90°,∵∠BDH=45°﹣α,∴∠DBH=45°+α,∵∠ABC=α,∴∠HBG=45°,∴∠HBG=∠BGH=45°,∴BH=HG,∵∠H=∠DFC=90°,BD=DC,∠BDH=∠CDF,∴△BDH≌△CDF(ASA),∴CF=BH,DF=DH,∵DC=DE,DF⊥EC,∴CF=EF,EC=2CF,∴DF﹣DG=DH﹣DG=HG=BH=CF,∴2(DF﹣DG)=EC.教学共进联盟教学质量阶段调研数学试卷(附答案)初二数学命题人:张建平审核人:李婷玉一、选择题(每小题3分,共30分)1、以下四家银行的行标图中,是轴对称图形的有()A.1个B. 2个C. 3个D. 4个第2题图2、如图,AB⊥BC于点B,AD⊥DC于D,若CB=CD,且∠1=30°,则∠BAD的度数为()A.90°B. 60°C. 30°D. 15°3、如果将一副三角板按如图方式叠放,那么∠1=()A.105°B. 75°C. 60°D. 45°4、若一个三角形的两边长分别为5和8,则第三边长可能是()A.14B. 10C. 3D. 25、一个正多边形的每一个外角都等于30°,则这个多边形的边数是()A.12B. 9C. 8D. 66、以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()A. B. C. D.7、如图,已知AB=DE,∠B=∠DEF,下列条件中不能判定△ABC≌△DEF的是( )A. ∠A=∠DB. AC∥DFC. BE=CFD. AC=DF8、等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65°B. 65°或80°C. 50°或65°D. 40°9、已知M(a,3)和N(4,b)关于y轴对称,则(a+b)2019的值为()A.1B. -1C. 72019D. -7201910、如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是( )A. ∠DAB′=∠CAB′B. ∠ACD=∠B′CDC. AD=AED. AE=CE第3题图第7题图第10题图二、填空题(每小题4分,共28分)11、点A(2,﹣1)关于x轴对称的点的坐标是。

相关文档
最新文档