轴对称问题练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.选择题(共12小题)
1.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.9
2.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A.B. C.5 D.
3.如图,在矩形ABCD中,AD=4,∠DAC=30°,点P、E分别在AC、AD上,则PE+PD的最小值是()A.2 B.2 C.4 D.
4.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()
A.(0,)B.(0,)C.(0,2) D.(0,)
5.如图,正方形ABCD的边长为8,点M在边DC上,且DM=2,点N是边AC上一动点,则线段DN+MN的最小值为()A.8 B.8 C.2D.10
6.如图,在菱形ABCD中,∠ABC=60°,AB=1,E为BC的中点,则对角线BD上的动点P 到E、C两点的距离之和的最小值为()A. B.C.D.
7.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2C.D.2 8.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE 交AD于点F,则DF的长等于()A.B.C.D.
9.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC 于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm
10.关于x的方程有两个不相等的实数根,则k的取值范围是()A.k≥0 B.k>0 C.k≥﹣1 D.k>﹣1
11.若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是()
A.1 B.2 C.﹣ D.﹣
12.若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()
A.﹣13 B.12 C.14 D.15
13.如图,在对角线长分别为12和16的菱形ABCD中,E、F分别是边AB、AD的中点,H 是对角线BD上的任意一点,则HE+HF的最小值是.
14.如图,将长方形ABCD沿着对角线BD折叠,点C落在C'处,BC′交AD于点E.若AB=4cm,AD=8cm,则△BDE的面积等于.
15.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.16.已知方程x2﹣2x﹣5=0的两个根是m和n,则2m+4n﹣n2的值为.
19.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC
于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.
参考答案与试题解析
一.选择题(共12小题)
1.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()
A.3B.10C.9 D.9
【解答】解:如图,连接BE,设BE与AC交于点P′,
∵四边形ABCD是正方形,
∴点B与D关于AC对称,
∴P′D=P′B,
∴P′D+P′E=P′B+P′E=BE最小.
即P在AC与BE的交点上时,PD+PE最小,为BE的长度.
∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,
∴BE==3.
故选A.
2.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()
A. B. C.5 D.
【解答】解:设△ABP中AB边上的高是h.
=S矩形ABCD,
∵S
△PAB
∴AB•h=AB•AD,
∴h=AD=2,
∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.
在Rt△ABE中,∵AB=5,AE=2+2=4,
∴BE===,
即PA+PB的最小值为.
故选D.
3.如图,在矩形ABCD中,AD=4,∠DAC=30°,点P、E分别在AC、AD上,则PE+PD的最小值是()
A.2 B.2 C.4 D.
【解答】解:作D关于直线AC的对称点D′,过D′作D′E⊥AD于E,
则D′E=PE+PD的最小值,
∵四边形ABCD是矩形,
∴∠ADC=90°,
∵AD=4,∠DAC=30°,
∵DD′⊥AC,
∴∠CDD′=30°,
∴∠ADD′=60°,
∴DD′=4,
∴D′E=2,
故选B.
4.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()
A.(0,)B.(0,)C.(0,2) D.(0,)
【解答】解:作A关于y轴的对称点A′,连接A′D交y轴于E,
则此时,△ADE的周长最小,
∵四边形ABOC是矩形,
∴AC∥OB,AC=OB,
∵A的坐标为(﹣4,5),
∴A′(4,5),B(﹣4,0),
∵D是OB的中点,
∴D(﹣2,0),
设直线DA′的解析式为y=kx+b,
∴,
∴,
∴直线DA′的解析式为y=x+,
当x=0时,y=,
∴E(0,),
故选B.
5.如图,正方形ABCD的边长为8,点M在边DC上,且DM=2,点N是边AC上一动点,则线段DN+MN的最小值为()
A.8 B.8 C.2D.10
【解答】解:根据题意,连接BD、BM,则BM就是所求DN+MN的最小值,
在Rt△BCM中,BC=8,CM=6
根据勾股定理得:BM==10,
即DN+MN的最小值是10;
故选D.
6.如图,在菱形ABCD中,∠ABC=60°,AB=1,E为BC的中点,则对角线BD上的动点P 到E、C两点的距离之和的最小值为()
A.B.C.D.
【解答】解:∵四边形ABCD为菱形,
∴A、C关于BD对称,
∴连AE交BD于P,
则PE+PC=PE+AP=AE,
根据两点之间线段最短,AE的长即为PE+PC的最小值.
∵∠ABC=60°,
∴∠ABE=∠BAC=60°,
∴△ABC为等边三角形,
又∵BE=CE,
∴AE⊥BC,
∴AE==.
故选C.
7.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()
A.B.2 C.D.2
【解答】解:连接BP.
∵点B与D关于AC对称,
∴PD=PB,
∴PD+PE=PB+PE.
∴由两点之间线段最短可知当点P为点P′处时,PD+PE有最小值,最小值=BE.
∵正方形ABCD的面积为12,
∴AB=2.
又∵△ABE是等边三角形,
∴BE=AB=2.
∴PD+PE的最小值为2.
故选:D.
8.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE 交AD于点F,则DF的长等于()
A.B.C.D.
【解答】解:∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,
∴AE=AB,∠E=∠B=90°,
又∵四边形ABCD为矩形,
∴AB=CD,
∴AE=DC,
而∠AFE=∠DFC,
∵在△AEF与△CDF中,

∴△AEF≌△CDF(AAS),
∴EF=DF;
∵四边形ABCD为矩形,
∴AD=BC=6,CD=AB=4,
∵Rt△AEF≌Rt△CDF,
∴FC=FA,
设FA=x,则FC=x,FD=6﹣x,
在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6﹣x)2,解得x=,
则FD=6﹣x=.
故选:B.
9.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC 于点O,若AO=5cm,则AB的长为()
A.6cm B.7cm C.8cm D.9cm
【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,
∵四边形ABCD是矩形,
∴AB∥CD,
∴∠BAC=∠ACD,
∴∠EAC=∠ACD,
∴AO=CO=5cm,
在直角三角形ADO中,DO==3cm,
AB=CD=DO+CO=3+5=8cm.
故选:C.
10.关于x的方程有两个不相等的实数根,则k的取值范围是()A.k≥0 B.k>0 C.k≥﹣1 D.k>﹣1
【解答】解:∵方程有两个不相等的实数根,
∴k≥0,且△>0,即(2)2﹣4×1×(﹣1)>0,解得k>﹣1.
∴k的取值范围是k≥0.
故选A.
11.若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是()
A.1 B.2 C.﹣ D.﹣
【解答】解:依题意得:x1+x2=3,x1•x2=﹣4,
所以+===﹣.
故选:C.
12.若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()
A.﹣13 B.12 C.14 D.15
【解答】解:∵α为2x2﹣5x﹣1=0的实数根,
∴2α2﹣5α﹣1=0,即2α2=5α+1,
∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1,
∵α、β为方程2x2﹣5x﹣1=0的两个实数根,
∴α+β=,αβ=﹣,
∴2α2+3αβ+5β=5×+3×(﹣)+1=12.
故选B.
二.填空题(共4小题)
13.如图,在对角线长分别为12和16的菱形ABCD中,E、F分别是边AB、AD的中点,H 是对角线BD上的任意一点,则HE+HF的最小值是10.
【解答】解:如图:
作EE′⊥BD交BC于E′,连接E′F,连接AC交BD于O.
则E′F就是HE+HF的最小值,
∵E、F分别是边AB、AD的中点,
∴E′F AB,
而由已知△AOB中可得AB====10,
故HE+HF的最小值为10.
故答案为:10.
14.如图,将长方形ABCD沿着对角线BD折叠,点C落在C'处,BC′交AD于点E.若AB=4cm,AD=8cm,则△BDE的面积等于10cm2.
【解答】解:设AE=x,则BE=DE=8﹣x,
在直角△ABE中,AB2+AE2=BE2,
即42+x2=(8﹣x)2,
解得:x=3,
则AE=3cm,DE=8﹣3=5cm,
=AB•DE=×4×(8﹣3)=10cm2.
则S
△BDE
故答案为10cm2
15.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是﹣3.【解答】解:∵x1,x2是关于x的方程x2﹣2x﹣5=0的两根,
∴x12﹣2x1=5,x1+x2=2,
∴x12﹣3x1﹣x2﹣6=(x12﹣2x1)﹣(x1+x2)﹣6=5﹣2﹣6=﹣3.
故答案为:﹣3.
16.已知方程x2﹣2x﹣5=0的两个根是m和n,则2m+4n﹣n2的值为﹣1.
【解答】解:∵方程x2﹣2x﹣5=0的两个根是m和n,
∴m+n=2,n2﹣2n﹣5=0,即n2﹣2n=5,
则2m+4n﹣n2=2m+2n﹣(n2﹣2n)
=2(m+n)﹣(n2﹣2n)
=2×2﹣5
=﹣1,
故答案为:﹣1.
三.解答题(共3小题)
17.已知:如图,在△ABC中,AD⊥BC,∠1=∠B.求证:△ABC是直角三角形.
【解答】解:∵AD⊥BC
∴∠BAD+∠B=90°
∵∠1=∠B
∴∠1+∠BAD=∠BAC=90°
∴△ABC是直角三角形.
18.如图,D是△ABC的BC边上的一点,∠B=∠BAD,∠ADC=80°,∠BAC=70°.(1)求∠B的度数.
(2)求∠C的度数.
【解答】解:(1)∵∠ADC是△ABD的一个外角,
∴∠ADC=∠B+∠BAD,
又∵∠ADC=80°,∠B=∠BAD,
∴∠B=∠ADC=×80°=40°;
(2)在△ABC 中,
∵∠BAC+∠B+∠C=180°,
∴∠C=180°﹣∠B﹣∠BAC=180°﹣40°﹣70°=70°.
19.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC 于点E.
(1)求证:△DCE≌△BFE;
(2)若CD=,DB=2,求BE的长.
【解答】解:(1)∵四边形ABCD为矩形,
∴AB=CD,∠A=∠C=90°
∵由翻折的性质可知∠F=∠A,BF=AB,
∴BF=DC,∠F=∠C.
在△DCE与△BEF中,
∴△DCE≌△BFE.
(2)在Rt△BDC中,由勾股定理得:BC==3.
∵△DCE≌△BFE,
∴BE=DE.
设BE=DE=x,则EC=3﹣x.
在Rt△CDE中,CE2+CD2=DE2,即(3﹣x)2+()2=x2.
解得:x=2.
∴BE=2.。

相关文档
最新文档