球的体积公式
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球的体积公式: V球=4/3 π r^3
球的面积公式: S球=4π r^2
附:推导过程(可能会看不懂(涉及到了大学的微积分),就当学点知识吧,呵呵)
1.球的体积公式的推导
基本思想方法:
先用过球心的平面截球,球被截面分成大小相等的两个半球,截面⊙叫做所得半球的底面.
(l)第一步:分割.
用一组平行于底面的平面把半球切割成层.
(2)第二步:求近似和.
每层都是近似于圆柱形状的“小圆片”,我们用小圆柱形的体积近似代替“小圆片”的体积,它们的和就是半球体积的近似值.
(3)第三步:由近似和转化为精确和.
当无限增大时,半球的近似体积就趋向于精确体积.
(具体过程见课本)
2.定理:半径是的球的体积公式为:.
3.体积公式的应用
求球的体积只需一个条件,那就是球的半径.两个球的半径比的立方等于这两个球的体积比.
球内切于正方体,球的直径等于正方体的棱长;正方体内接于球,球的半径等于正方体棱长的倍(即球体对角钱的一半);棱长为的正四面体的内切球的半径为,外接球半径为.也可以用微积分来求,不过不好写
球体面积公式:
可用球的体积公式+微积分推导
定积分的应用:旋转面的面积。好多课本上都有,推导方法借助于曲线的弧长。
让圆y=√(R^2-x^2)绕x轴旋转,得到球体x^2+y^2+z^2≤R^2。求球的表面积。
以x为积分变量,积分限是[-R,R]。
在[-R,R]上任取一个子区间[x,x+△x],这一段圆弧绕x轴得到的球上部分的面积近似为2π×y×ds,ds是弧长。
所以球的表面积S=∫<-R,R>2π×y×√(1+y'^2)dx,整理一下即得到S=4πR^