同态与同构

合集下载

线性空间的同构与同态

线性空间的同构与同态

线性空间的同构与同态线性空间是很多高阶数学领域所需要用到的基本概念,因此在线性代数的学习中,我们不得不对线性空间基本的性质、定义、等价性、基础定理等有一个深刻的理解。

当然,线性空间的同构与同态作为线性变换的代名词,也是我们学习线性空间理论时,需要重点关注的。

一、线性空间同构同构,是数学中一个十分重要的概念。

它指的是两个结构相同、具有相同性质的数学对象。

更准确地说,如果两个集合之间存在一一对应,且它们之间的映射不仅是单射还是满射,那么这两个集合就是同构的。

对于线性空间,它满足向量的加法和数量的乘法这两个运算规则,因此,我们可以要求用以下方式定义两个线性空间的同构:定义:若存在双射映射$f:V\to W$,并满足:1. $\forall u,v\in V$,有$f(u+v)=f(u)+f(v)$。

2. $\forall u\in V$和$c\in F$,有$f(cu)=cf(u)$。

则称线性空间$V$和$W$之间存在同构,称$f$为同构映射。

其中,$F$是一个数域,它是一个固定的标量(标量乘法满足分配律、结合律、单位元和逆元等基本性质)。

同构可以理解为两个向量空间“外形”相同,尽管它们之间的标量乘法、向量加法的具体运算方式可能不同。

关于线性空间同构,我们有如下三个重要结论:(1)同构是一种双射关系,即两个线性空间同构当且仅当它们的维度相等。

(2)两个线性空间同构,则它们必须同构于数域$F$上的$n$维线性空间$F^n$。

(3)两个线性空间同构,当且仅当它们的基底个数相等。

通过上述结论,我们可以发现,实际上同构所关注的是两个线性空间的向量基。

只有当两个线性空间的维度相等、同构映射满足条件时,它们才是同构的。

因此,为了构造同构映射,我们通常需要找到两个向量空间之间的一个映射,满足一一对应、线性、满射的性质,这样才能实现同构。

二、线性空间同态同态是另一个重要的概念。

它们也是线性代数中常用的术语,他们主要与线性空间中的变换相关。

离散数学-同态和同构

离散数学-同态和同构

离散算法设计
同态和同构可以用于设计高效的离散算法, 如通过同态映射将问题转化为易于处理的数
学形式,从而降低计算复杂度。
05
同态和同构的实例分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
二次方程的同态和同构分析
要点一
总结词
要点二
详细描述
在二次方程中,同态和同构的概念主要应用于方程的变形 和等价分类。
拓扑同构映射保持了原拓扑空间中的拓扑性质,即如果映射$f: X rightarrow Y$是 拓扑空间$X, Y$之间的同构映射,那么对于任意子集$U subseteq X$,有$f(U)$是 $Y$中的开集当且仅当$U$是$X$中的开集。
保持连通性
拓扑同构映射保持了原拓扑空间中的连通性,即如果映射$f: X rightarrow Y$是拓 扑空间$X, Y$之间的同构映射,那么对于任意子集$A subseteq X, B subseteq Y$, 有$(A subseteq B) Leftrightarrow (f(A) subseteq f(B))$。
逻辑同构的性质
保持逻辑关系
逻辑同构映射保持了原逻辑系统中的逻辑关系,即如果映射$f: L_1 rightarrow L_2$是逻辑系统$L_1, L_2$之间的同构映射,那么对于任意命题$varphi in L_1, psi in L_2$,有$(L_1 models varphi) Leftrightarrow (L_2 models psi)$。
的。
同构的性质
同构是一种更强的相似性关系,它不仅保持了群的基本运算性质,还要求存在一个双射 的映射。这意味着原始群和目标群在某种程度上是完全相同的。

6.5---同构及同态PPT课件

6.5---同构及同态PPT课件

-
4
证明
(1) 因为G非空,显然G′非空. (2)设a’∈G′,b’∈G′,往证a’b’∈G′。
因有a,b∈G,使得 a’=σ(a), b’=σ(b),
故按σ的同态性, a’b’= σ(a)σ(b)=σ(ab),
而ab ∈G, 因而a’b’∈G′。
-
5
(3) 往证G′中有结合律成立: 设a’ ,b’,c’∈G,往证a’ (b’ c’)=(a’b’)c’。 有a,b,c∈G,使得 a’ =σ(a),b’=σ(b),c’=σ(c), 因群G中有结合律成立,所以a(bc)=(ab)c。于 是
……
用⊕表示陪集间的加法,则
1 ⊕4 =(1+N)⊕(4+N)=(1+4)+N=N= 0 ,
G 在陪集加法下是一个群,若命σ:a→a+N,
则σ是G到 G 上的同态映射,且σ的核就是N。
-
21
第三同态定理
定理6.5.4 设σ是G到G′上的一个同态映射,
若σ的核为N,则G′ G/N。 ❖例. 设G是整数加法群,
σ:x→x(mod 5),x∈G ,则 G′=σ(G)={0,1,2,3,4} 是模5的加法群,σ是G 到G′上的同态映射。 σ的核为N=5G,
G∕N =={ ,0 ,1 ,2 ,3 }4, 则G′G∕N。
-
22
证明
因为G′的元素和G∕N的元素一一对应,设在这个 一一对应之下,G′的元素a′和b′分别对应G∕N的 元素aN 和bN,其中a′=σ(a),b′=σ(b) :
b∈σ-1(a’)iff σ(b)=a′
iff σ(b)(a′)-1=1′
iff σ(b)(σ(a))-1=σ(ba-1)=1’

同态和同构

同态和同构
8.3.1 同态、同构的定义
定义 5-22 设 G1, 和 G2 , 是两个群,映射 : G1 G2 , 如果对 a,b G1 ,有
(a b) (a) (b)
则称 是群 G1 到 G2 的同态映射,简称同态。 例 5-23 设 G1 Z, 是整数加群,G2 {Zn, }是模 n 整数加
循环群和置换群
循环群和置换群是两类重要的群,在计算机密码学中都有 着重用的应用。
定义 5-25 设 G, 为群,如果存在一个元素 a G ,使 G {ak | k Z},则称 G 为循环群,记作 G a ,称 a 是 G 的生成 元。
例 5-28 (1) Z, 是一个循环群,1 或-1 是生成元,1 与-1 互为逆元。
群。令 : Z Zn ,( x) (x) mod n
则 是 G1 到 G2 y) mod n ( x) mod n ( y) mod n (x) ( y)
例 5-24 设 G1 R, 是实数加群, G2 R {0}, 是非零实数 乘法群。令
证明 首先根据同态的定义,易证 是满足结合律的。其次,由定理 1 的性质(1),知
G2 , 中存在单位元 e2 (e1) ,其中 e1 为 G1 的单位元。 对于任意的 t G2 ,由于 是 G1 , 到 G2 , 的满射,于是存在 g G1 ,使
( g) t 。令( g1 ) t ' ,于是( g1 g) (e1) e2 。 另一方面,( g1 g) ( g1 ) ( g) t ' t ,所以t ' t e2 。同理可证 t t' e2 。因
定理 5-13 设 是 G1, 到 G2 , 的同态映射, H G1 ,则 (H ) G2 。
证明 任取 x, y (H ) ,则存在 a,b H ,使得 x (a) , y (b) ; x y (a)(b) (a b)(H ) ,所以 (H ) 对于运算 封闭。又 (e) 是 G2 的 单 位 元 , x (H) 存 在 a G1 , 使 得 x (a) , 从 而 x1 (a1) ( H) 。综上, (H ) 是 G2 的子群。

群环域论中的同态与同构

群环域论中的同态与同构

群环域论中的同态与同构群环域论是数学中的一个重要分支,研究群与环域之间的关系及其性质。

在群环域论中,同态与同构是两个重要的概念。

本文将从同态和同构的定义、性质以及应用等方面进行探讨。

一、同态的定义与性质同态是指保持代数结构之间运算相容性的映射。

对于群与环域,同态具体的定义如下:(一)群同态:设G和H是两个群,如果存在一个映射f:G→H,满足对于任意的a,b∈G都有f(a•b)=f(a)•f(b),则称f为从G到H的一个群同态。

(二)环域同态:设R和S是两个环域,如果存在一个映射f:R→S,满足对于任意的a,b∈R都有f(a+b)=f(a)+f(b)和f(a•b)=f(a)•f(b),则称f为从R到S的一个环域同态。

同态具有以下性质:(一)同态保持单位元:对于群同态,有f(eG)=eH,其中eG和eH分别是群G和H的单位元。

(二)同态保持逆元:对于群同态,有f(a^(-1))=f(a)^(-1),其中a^(-1)是a的逆元。

(三)同态保持加法和乘法运算:对于环域同态,有f(a+b)=f(a)+f(b)和f(a•b)=f(a)•f(b)。

二、同构的定义与性质同构是指两个代数结构之间存在一个双射,使得这个映射保持运算性质。

对于群与环域,同构具体的定义如下:(一)群同构:设G和H是两个群,如果存在一个双射f:G→H,且对于任意的a,b∈G都有f(a•b)=f(a)•f(b),则称G和H是同构的,f为从G到H的一个群同构映射。

(二)环域同构:设R和S是两个环域,如果存在一个双射f:R→S,且对于任意的a,b∈R都有f(a+b)=f(a)+f(b)和f(a•b)=f(a)•f(b),则称R和S是同构的,f为从R到S的一个环域同构映射。

同构具有以下性质:(一)同构保持单位元和逆元:对于群同构,有f(eG)=eH和f(a^(-1))=f(a)^(-1),其中eG和eH分别是群G和H的单位元,a^(-1)是a的逆元。

第三章 正规子群和群的同态与同构

第三章 正规子群和群的同态与同构
第三章 正规子群和群的同态与同构
§1群同态与同构的简单性质
(Basic Properties of Homomorphism and Isomorphism of the groups)
一 定义
定义1 设 ( G, ) 和 G, 是两个群,如果存在映射ϕ:G → G满足
( )
ϕ (a b) = ϕ (a) ϕ (b)(∀a, b ∈ G(即ϕ 保运算) )
G ⇒ ϕ ( N ) G;
( 2) N
G ⇒ ϕ −1 ( N ) G
5.子群之积
定理3 若群G的一个正规子群和一个子群之积仍是G的子群, 两个正规子群之积仍是正规子群,也就是说,若H ≤ G , N ≤ G, 则
(1) 若N ( 2 ) 若H
G ⇒ NH ≤ G且N G且N G ⇒ HN
NH , H ∩ N
H
G,进一步,若还有H ∩ N = {e},
则∀h ∈ H , ∀n ∈ N 都有hn = nh
例4 若H ≤ G,那么N ( H ) = {x ∈ G | xH = Hx}叫做H 在G中 的正规化子,试证H N ( H ) ≤ G。

1. 商群的定义
设N 即


G,任取2个陪集aN , bN。则 (aN )(bN ) = a ( Nb) N = abNN = (ab) N, (aN )(bN ) = (ab) N
ϕ
三 循环群的同态象
定理3 设G和G为两个群,且G ∼ G,若G为循环群, 则G也为循环群。
推论2 循环群的商群仍为循环群. 推广 交换群的满同态象仍为交换群;交换群的商群 也是交换群.
ϕ
四 同态映射下两个群的子群之间的关系
引理 设σ :G → G是群同态映射,又H ≤ G,如果H ⊇ Kerϕ, 则

群论中的同态与同构理论

群论中的同态与同构理论

群论中的同态与同构理论群论是数学中的一个重要分支,研究群的性质和结构。

在群论中,同态和同构是两个基本概念,它们对于理解群的性质和群之间的关系非常重要。

一、同态的定义和性质在群论中,同态是指两个群之间的映射,它保持了群运算的结构。

具体来说,设有两个群G和H,如果存在一个映射φ:G→H,对于任意的x、y∈G,有φ(xy)=φ(x)φ(y),那么φ就是一个从G到H的同态。

同态具有以下性质:1. 同态保持群运算:对于任意的x、y∈G,有φ(xy)=φ(x)φ(y)。

2. 同态保持单位元:对于任意的eG∈G,有φ(eG)=eH。

3. 同态保持逆元:对于任意的x∈G,有φ(x^(-1))=[φ(x)]^(-1)。

二、同构的定义和性质同构是指两个群之间的一种特殊的同态映射,它是一种双射,并且保持了群运算和群结构。

具体来说,设有两个群G和H,如果存在一个映射φ:G→H,满足以下条件:1. φ是一个双射,即φ是一个一一对应的映射。

2. φ保持群运算,即对于任意的x、y∈G,有φ(xy)=φ(x)φ(y)。

那么φ就是一个从G到H的同构。

同构具有以下性质:1. 同构保持群运算:对于任意的x、y∈G,有φ(xy)=φ(x)φ(y)。

2. 同构保持单位元:对于任意的eG∈G,有φ(eG)=eH。

3. 同构保持逆元:对于任意的x∈G,有φ(x^(-1))=[φ(x)]^(-1)。

三、同态和同构的应用同态和同构在群论中有着广泛的应用。

它们可以帮助我们研究群的性质和结构,以及群之间的关系。

1. 同态的应用:同态可以用来研究群之间的映射关系。

通过同态,我们可以将一个复杂的群映射到一个简单的群,从而简化问题的研究。

同态还可以用来刻画群的性质,例如同态核和同态像等。

2. 同构的应用:同构可以将一个群与另一个群进行一一对应,从而帮助我们找到两个群之间的相似之处。

同构还可以用来研究群的结构,例如分类群的同构分类问题。

四、同态与同构的例子为了更好地理解同态和同构的概念,我们来看几个具体的例子。

同态和同构的关系

同态和同构的关系

同态和同构的关系
在数学中,同态和同构是两个重要的概念,它们描述了两个代数结构之间的关系。

1.同态(Homomorphism):同态是指将一个代数结构映射到另一个代数结构的映射,保持运算结构的性质。

如果存在两个代数结构A 和B,以及一个映射f:A→B,对于A中的任意元素a和b,满足f(a*b)=f(a)*f(b),其中"*"表示A和B上的运算,而"="表示两个代数结构中的相等关系。

简而言之,同态保持了代数结构中的运算规则。

2.同构(Isomorphism):同构是指两个代数结构之间存在一种双射关系,使得双射保持了运算结构和元素之间的关系。

如果存在两个代数结构A和B,以及一个映射f:A→B,满足以下条件:-f是一个双射,即对于A中的每个元素a,都存在唯一的元素b 在B中与之对应;
-对于A中的任意两个元素a1和a2,满足a1*a2=a3,则f(a1)*f(a2)=f(a3);
-对于B中的任意元素b1和b2,满足b1*b2=b3,则存在A中的元素a1和a2,使得f(a1)=b1,f(a2)=b2,f(a1*a2)=b3。

简而言之,同构保持了代数结构中的运算规则和元素之间的一一对应关系。

因此,可以将同构看作是一种更严格的同态关系。

如果两个代数结构之间存在一个同构映射,那么它们在结构和性质上是完全相同的,只是元素的表示不同而已。

需要注意的是,在数学中,同态和同构的概念不仅仅适用于代数结构,还可以应用于其他领域,如拓扑学、图论等。

1/ 1。

近世代数科普

近世代数科普

近世代数科普群论⼆1. 同态与同构群的同态:设f:G→G′,如果其满⾜∀a,b∈G,f(a)f(b)=f(ab),则称f是⼀个同态当f是⼀个满射时,称为满同态当f是⼀个单射时,称为单同态当f是⼀个双射时,称为同构,称为G≅G′常记f(G)={f(x):x∈G},f−1(x)={a:f(a)=x},f−1(S)={a:f(a)∈S}常⽤结论设f:G→G′为⼀个同态,则f(e)=e′,f(a)−1=f(a−1)设f:G→G′为⼀个同态,则f(G)⩽G′Prof:对a′,b′∈f(G),∃a,b∈G,f(a)=a′,f(b)=b′,则a′b′−1=f(a)f(b)−1=f(ab−1)∈f(G)2. 正规⼦群Def:设H⩽G,若∀a∈G,aH=Ha,则称H为⼀个正规⼦群,记做H⊲G正规⼦群的等价结论:设H⩽G,∀a∈G,aHa−1=H设H⩽G,∀a∈G,aHa−1⊆HProf:取a和a−1,aHa−1⊆H,a−1Ha⊆H设H⊲G,K⩽G,则H∩K⊲KProf:∀x∈H∩K,∀g∈K,g−1xg∈H∩K(H是由正规⼦群,K由群的封闭性)3. 核Def:设f:G→G′是⼀个同态,则f−1(e)称为f的核,记做ker(f)核⼀定是正规⼦群:⼦群:∀a,b∈ker(f),f(ab−1)=f(a)f(b−1)=e∈ker(f)正规⼦群:∀g∈G,h∈ker(f),f(ghg−1)=f(g)ef(g−1)=e∈ker(f),从⽽g ker(f)g−1⊆ker(f),从⽽ker(f)是正规⼦群f−1(a)=a ker(f)4. 商群定义⼀种集合运算,AB={ab|a∈A,b∈B}Def:设H⩽G,G/H为H的陪集的集合,若H⊲G,G/H在上述集合运算下构成群,称为商群,商群的单位元为H,元素aH的逆元为a−1HProf:∀aH,bH∈G/H,aHb−1H=ab−1H∈G/H5. ⾃然同态设H⊲G,则存在G→G/H的同态φ(a)=aH,称为H的⾃然同态⾃然同态⼀定是满同态φ(H)=φ−1(H)=H6. 群同态基本定理设f:G→G′是⼀个满同态,则G/ker(f)≅G′Prof:记N=ker(f),构建映射ϕ(aN)=f(a)先证为双射,如果f(a)=f(b),则a∈bN,则aN=bN,故为单射∀a′∈G′,∃a∈f−1(a′),s.t.ϕ(aN)=a′,故为满射再证同构,ϕ(aN)ϕ(bN)=f(a)f(b)=f(ab)=ϕ(abN)=ϕ(aNbN)推论:设f:G→G′是⼀个同态,则G/ker(f)≅f(G)7. 群同态定理设f:G→G′是⼀个满同态,记N=ker(f)f建⽴G包含N的⼦群与G′的⼦群之间的⼀⼀对应Prof:设S1={K:N⩽K⩽G},S2={K:K⩽G′}(a) ⾸先证明映射合法,∀H∈S1,f:H→G′是⼀个同态,因此f(H)⩽G′(b) 证明单射,先证∀H∈S1,f−1(f(H))=H,知H⊂f−1(f(H)),并且∀x∈f−1(f(H)),f(x)∈f(H),因⽽∃h∈H,f(x)=f(h),故x∈hN⊂H,故f−1(f(H))⊂H,因此f−1(f(H))=H,那么如果f(H1)=f(H2)就有H1=H2(c) 证明满射,∀H′∈S2,f(f−1(H′))=H′f建⽴G包含N的正规⼦群与G′的正规⼦群之间的⼀⼀对应Prof:设S a={K:N⩽K⊲G},S b={K:K⊲G′}(a) f:S a→S b合法,因为∀K∈S a,∀g∈G,gKg−1=K,故f(K)=f(gKg−1)=f(g)f(K)f(g)−1,由f是满同构知f(K)∈S b,⼜由f:S1→S2是双射知,f是⼀个单射(b) 反之,∀K′∈S b,∀g∈G,f(g−1f−1(K′)g)=f(g)−1K′f(g)=K′,从⽽g−1f−1(K′)g⊂f−1(K′),从⽽f−1(K′)∈S a,由f:S1→S2是双射知,f是⼀个满射上述两条主要是为了接下来的定理的描述第⼀群同构定理:设f:G→G′是⼀个满同态,设N=ker(f),设N⊂H⊲G,则G/H≅G′/f(H)Prof:设G′/f(H)的⾃然同态为π,那么我们考虑同态φ=πf(G→G′/f(H)),由π,f为满同态,则φ为满同态我们考虑证明H=ker(φ),即{x|πf(x)∈f(H)},显然H⊆ker(φ),⽽∀x∈ker(φ),有πf(x)∈f(H),即f(x)∈f(H),即x∈f−1(f(x))⊆H,从⽽H=ker(φ),由群同态基本定理,我们得到G/H≅G′/f(H)第⼆群同构定理:设H⩽G,N⊲G,则HN/N≅H/H∩N为了使定理有意义,先证HN是⼦群,⾸先HN=NH,∀h1,h2∈H,n1,n2∈N,n1h1(n2h2)−1=n1(h1h−12)n2∈NHN=HN,故HN为⼦群Prof:设H/H∩N的⾃然同态为π,π(a)=a(H∩N),构造f:HN→H,∀x∈aN,f(x)=a,则ϕ=πf是⼀个满同态我们考虑证明N=ker(ϕ),即{x|πf(x)∈H∩N},⾸先f(N)=e,π(e)=H∩N,故N⊆ker(ϕ)⽽且∀x∈ker(ϕ),f(x)∈{e},故x∈N,故ker(ϕ)⊆N第三群同构定理:设N⊲G,N⩽H⊲G,则G/H≅(G/N)/(H/N)Prof:第⼀群同构定理,取G′=G/N的特例群论三1. 单群Def:如果G没有⾮平凡的正规⼦群({e}和G),那么G称为单群G≠{e}是交换单群,当且仅当G为素数阶的循环群Prof:对任意g≠e,考虑⟨g⟩2. ⽣成⼦群记最⼩包含S的⼦群为⟨S⟩,即⟨S⟩=⋂S⊂H⩽G H∀x∈S,x=x1x2...x m(x1,x2,...,x m∈S∪S−1)当S有限时,⟨S⟩称为有限⽣成群3. 换位⼦群(导群)a−1b−1ab称为元素a,b的换位⼦(交换⼦),记做[a,b]所有的换位⼦⽣成的⼦群称为换位⼦群(导群),常记做G′, [G,G], G(1)(以后变量要取别的名字了...)当ab=ba时,[a,b]=a−1b−1ab=eG′⊲GProf:g[a,b]g−1=(ga−1g−1)(gb−1g−1)(gag−1)(gbg−1)=[gag−1,gbg−1]∀x∈G′,x=[a1,b1][a2,b2]...[a m,b m], 故gxg−1=[ga1g−1,gb1g−1][ga m g−1,gb m g−1]∈G′故∀g∈G,g−1G′g⊆G′,故G′⊲GG/G′是阿贝尔群Prof:aG′bG′=bG′aG′⇔aG′b=bG′a⇔G′=a−1bG′ab−1⇔G′=G′a−1bab−1⇔G′=G′[a,b−1]4. 可解群定义G(n)=(G(n−1))(1),注意到G⊳G(1)⊳G(2)⊳...Def:如果G(k)={e},则称G为可解群利⽤换位⼦群的商群的性质,有这样的充要条件:群G是可解群当且仅当存在G⊳G1⊳G2....⊳G k={e},且G i−1/G i(1≤i≤k)为阿贝尔群Prof:“⇒":显然,G,G(1),G(2),....,满⾜题意“⇐”:如果G/N是阿贝尔群,考虑φ:G→G/N为⾃然同态,那么有φ([a,b])=e,即[a,b]∈N从⽽我们有G(1)⩽N,在本题中,由于G/G1是阿贝尔群,故G(1)⩽G1,归纳得到G(k)⩽G k,即G(k)={e}5. 中⼼化⼦定义C(G)={x:∀a∈G,ax=xa},称为群G的中⼼C(G)⊲G类似的,定义C S(G)={x:∀a∈S,ax=xa},称为S的中⼼化⼦C S(G)⩽G6. 群对集合的作⽤设f:G×S→S,且满⾜[1] f(e,x)=x [2] f(g1g2,x)=f(g1,f(g2,x)),称f决定了群G在S上的作⽤,f(g1,x)常简写为g1(x)设G是⼀个群,X,X′是两个⾮空集合,G作⽤在X,X′上,如果存在双射ϕ:X→X′,使得ϕ(g(x))=g(ϕ(x)),则称这两个作⽤等价example:项链的旋转构成群,对长为n的全红项链和全蓝项链显然等价设G作⽤在X上,定义关系R={(x,y)|∃g∈G,g(x)=y},易证R是等价关系,在这个等价关系下,我们划分出的等价类称为轨道,和x 等价的元素记做O x={g(x)|g∈G}给⼀条项链染⾊,在旋转操作下等价的元素设G作⽤在X上,∀x∈X,定义H x={g∈G|g(x)=x}为x的稳定⼦群(显然为⼦群)如果|O x|=1,或者说∀g∈G,g(x)=x,则称x为不动点7. 齐性空间Def:设H⩽G,则H的所有左陪集构成的集合称为G的齐性空间⼀般的,默认g(aH)=gaH是G在G/H上的作⽤设G作⽤在X上,则\forall x \in X,G在O_x上的作⽤和其在G/H_x上的作⽤等价Prof:定义映射f:G/H_x \to O_x, f(aH_x) = a(x)其为单射,因为b(x) = a(x) \Leftrightarrow b^{-1}a(x)=x \Leftrightarrow bH_x=aH_x其显然为满射,因此此为⼀⼀映射,并且,f(gaH_x) = ga(x) = g(f(aH_x))设G为有限群,G作⽤在X上,则|O_x| = |G/H_x|Prof:由上⼀个命题,f是⼀个⼀⼀映射,故这两个集合的基数相等ex:求正⽅体的旋转群的⼤⼩我们考虑利⽤上式公式,不难得到|H_1| = 3,|O_1| = 8,从⽽|G| = 24在G作⽤到G上,并且g(x) = gxg^{-1}时,此时H_x = C_G(X),定义C(x)为和x共轭的元素的集合,则|C(x)| = |G :C_G(x)|根据等价类的定义,从每个共轭类中选择⼀个元素,得到|G| = \sum_x [G:C_G(x)]特别的,当x\in C(G)时,[G:C_G(x)] = 1,因此我们选择从每个⾮平凡的共轭类中选择⼀个x元,则有|G| = |C(G)| + \sum_x |G:C_G(x)|这称为共轭类⽅程设H\leqslant G,则H \cong xHx^{-1}(x\in G)8. p-群Def:如果|G| = p^k(k\geq 1),其中p为素数,则称G为p-群设p-群G作⽤于集合X上,设|X|=n,设t为X中不动点的数⽬,则t \equiv n(mod\;p)Prof:设集合X的全部轨道为O_1, O_2, ..., O_k,则有\sum |O_i| = n,注意到|O_i| = p^m(m\geq 0),当且仅当|O_i| = 1时,有|O_i|\;mod\;p =1,否则|O_i| \;mod\;p=0,因此t \equiv n(mod\;p)p-群⼀定有⾮\{e\}的中⼼Prof:考虑G到G上的共轭变换,任意G的中⼼中的元素⼀定是⼀个不动点,因此,我们有|C(G)|\equiv 0(mod\;p),⾃然我们得到|C(G)|>19. Burnside 引理设群G作⽤于集合S上,令t表⽰S在G作⽤下的轨道的条数,\forall g\in G,F(g)表⽰S在g作⽤下不动点的个数,则t = \frac{\sum_{g\in G} F(g)}{|G|}Prof:⾸先转化命题,我们运⽤双计数证明|G|*t = \sum_{g\in G}F(g)考虑右式,\sum_{g\in G}F(g) = \sum_{x\in S, g\in G} [gx = x] = \sum_{x\in S} \{g:g\in G, gx=x\} = \sum_{x\in S} |H_x|由于|H_x| = |G| / |O_x|,因此所求即|G|*\sum_{x \in S}\frac{1}{|O_x|},即证\sum_{x\in S} \frac{1}{|O_x|} = t考虑⼀个轨道O_x,这个轨道产⽣的贡献为|O_x| * \frac{1}{|O_x|} = 1,如此,t为不同的轨道的条数,命题得证群论四好像有些不太正常的要来了1. 西罗第⼀定理设G是⼀个阶为n的有限群,p为素数,如果p^k | n, k \geq 0,那么G中存在⼀个阶为p^k的⼦群Prof:引理:设n = p^r*m, (p, m) = 1,对k \leq r,有v_p(\binom{n}{p^k})=r-k(由Kummer\;TH显然)取G中所有含有p^k个元素的⼦集,构成集合X,令G作⽤在X上,定义g(A) = gA, A\in X那么有|X| = \sum |O_i|,由于p^{r-k+1} \nmid |X|,因此存在A\in X,使p^{r-k+1} \nmid |O_A|,下证|H_A|=p^k由|O_A| |H_A|= |G|知,v_p(H_A) \geq k,即|H_A| \geq p^k但\forall a\in A, H_Aa \subset A,故|H_A| \leqslant |A| = p^k,从⽽|H_A|=p^k设v_p(|G|) = k,则阶为p^k的⼦群称为西罗p-⼦群2. 西罗第⼆定理设v_p(|G|) = r,P是G的⼀个西罗p-⼦群,\forall H \leqslant G, |H|=p^k, \exists g\in G, s.t. H \leqslant gPg^{-1}Prof:考虑X为P的左陪集的集合,将H作⽤于X,h(aP)=haP由于(|X|, |H|) = 1,那么存在⼀个不动点,使得HgP = gP此时\forall h \in H ,\exists p_1, p_2\in P, hgp_1=gp_2,即h = gp_2p_1^{-1}g^{-1} \in gPg^{-1},因此H \leqslant gPg^{-1}推论1:任意两个西罗p-⼦群互相共轭推论的推论:⼀个群G有唯⼀的西罗p-⼦群P的充要条件为P \lhd G3. 正规化⼦Def:对H \leqslant G,定义\{g:g\in G, gH=Hg\}为H的正规化⼦,记做N(H) N(H) \leqslant GH \lhd N(H)C_G(H) \leqslant N(H)G中西罗p-⼦群的个数,以及对任⼀西罗p-⼦群P,N(P)的阶为|G|的因⼦Prof:设X为G中所有西罗p-⼦群的集合,在上⾯作共轭变换对任⼀西罗p-⼦群P,有O_P = X,H_P = N(P),从⽽|X|*|N(P)|= |G|4. 西罗第三定理若G中所有西罗p-⼦群的个数为t,则t \equiv 1(mod\;p)证明从略|G| = p^r * m, (p, m) = 1,结合t | |G|,我们有t | m。

第三章 正规子群和群的同态与同构

第三章 正规子群和群的同态与同构
则当 G 是一个群时, G却不一定是群 .
_
_
_
G ~ G,
_
例 令 G = {全体正负奇数 },代数运算为数的普通 乘法;
G = {1,−1}关于数的普通乘法 作成群, _ _ 令 ϕ : 正奇数 → 1, G ~ G , G 是群,但 G不是! 负奇数 → − 1.
结论: 如果 G与G 为各有一个代数运算的 代数系统,
为素数.
∴ a = n,
从而 G =< a > 为循环群,
由G为单群知n为素数. 练习 设G = Z , N = mZ < G , (1)写出商群的全部元素;(2)商群是否为循环群?
作 业
习题3.2 第91页 2,3,4,5
3.3
群同态基本定理
一、复习 二、 群同态基本定理 三、应用
一、复习
1、正规子群:
在 ϕ之下的所有逆象作成的 集合,叫做 ϕ的核 ,记为 ker ϕ .
_
_
G中所有元素在 ϕ之下的象作成的集合, 叫做
ϕ的象集 ,记为 Im ϕ .
结论: 设 ϕ为群 G到群 G 的一个同态映射, K = ker ϕ ,
.
_
则 : (1) ker ϕ
<G , Im ϕ < G; ( 2) ϕ (a ) = ϕ (b ) ⇔ ∀a , b ∈ G , 有 aK = bK . (3)一个同态 ϕ 是单同态 ⇔ Kerϕ = {e } ⊆ G
设N是G的一个正规子群,任取二陪集aN与bN,有
(aN )(bN ) = a ( Nb) N = a (bN ) N = (ab) NN = (ab) N ,
即(aN )(bN ) = (ab) N , 称此为陪集的乘法.

同态与同构

同态与同构

离散结构同态与同构教学目标基本要求(1)掌握同态映射与同构映射的定义(2)掌握同态映射与同构映射的判定方法重点难点(1)同态映射的证明同态映射定义:设V1=<A,∘>和V2=<B,∗>是同类型的代数系统,f:A→B,且∀x, y∈A 有f(x∘y) = f(x)∗f(y), 则称f 是V1到V2的同态映射,简称同态.同态分类:(1) 如果f是单射,则称为单同态(2) 如果f是满射,则称为满同态,这时称V2是V1的同态像,记作V1∼ V2(3) 如果f是双射,则称为同构,也称代数系统V1同构于V2,记作V1 ≅ V2(4) 如果V1 = V2,则称作自同态实例例:设G为非0实数集R*关于普通乘法构成的代数系统,判断下述函数是否为G的自同态?如果不是,说明理由. 如果是,判别它们是否为单同态、满同态、同构.(1) f(x) = |x| +1(2) f(x) = |x|(3) f(x) = 0(4) f(x) = 2解:(1) 不是同态, 因为f(2×2)=f(4)=5, f(2)×f(2)=3×3=9(2) 是同态,不是单同态,也不是满同态,因为f(1)= f(−1), 且 ran f中没有负数.(3) 不是G 的自同态,因为f不是 G 到 G 的函数实例例:(1) 设V1=<Z,+>, V2=<Z n,⊕>.其中Z为整数集,+为普通加法;Z n={0,1,…,n−1},⊕为模n,f (x)=(x)mod n加. 令f: Z→Znf 是V1到V2的满同态.【f满射,f(x1+x2)=(x1+x2)mod n=(x1 mod n )⊕(x2 mod n)=f(x1)⊕f(x2)】(2) 设V1=<R,+>, V2=<R*,· >,其中R和R*分别为实数集与非零实数集,+ 和 · 分别表示普通加法与乘法.令f: R→R*,f (x)= e xf是V1到V2的单同态. 【f单射,f(x1+x2)=e(x1+x2)=e x1· e x2=f(x1) · f(x2)】(3) 设V=<Z,+>,其中Z为整数集,+为普通加法. ∀a∈Z,令f a : Z→Z,f a (x)=ax,f a 是V的自同态. 【f(x1+x2)=a(x1+x2)=ax1+ax2=f(x1)+f(x2)】当a=0时称f为零同态;为自同构;当a=±1时,称fa例. 证明<Z4,+4>与<X, >同构。

第3讲 8-9节同态与同构

第3讲 8-9节同态与同构

因此,只有 1,3是自同构 注: 两个代数体系如果同构,它们之间的同构映射 不一定唯一. (Q, )
1 : x x
2 : x x
3 : x 2x
N {0,1,2,3,}, N {1,2,3,} 设
证明: N , )与( , ) 不同构. ( N 证明:(反证法)如果 N N 设 (0) n N , (1) m,
例5设 F 为数域,
A {( a1 , a2 , a3 , a4 ) ai F} F
x1 A x 3 x2 xi F M 2 ( F ) x4
4
证明: A, )与(A, ) 是同构的。 (
a1 分析:令 : (a1 , a2 , a3 , a4 ) a3 a2 a4
因此:同构的代数体系由于完全相同的代数结构。
就是确定所有互不同构的代数体系以 及它们的代数结构。 而为了确定一个代数体系的代数结构, 只须让它与一个代数结构已经清楚的代数 体系同构则可。
定义 对于○与○来说的一个A与A间的同构映射,
叫做一个关于○的A的自同构。 例5

A={1,2,3}.代数运算○由下表给定:
则 A A.
·
1
1
1 1
1 1
1 1

偶 奇


偶 奇 奇 偶
1 -1 分析:令 : 偶, 奇,则是双射且 11)( )偶=偶 偶= 1) 1); ( = 1 = ( ( 1(-1))(-1)奇=偶 奇= 1) -1); ( = = ( ( -1) -1))( )偶=奇 奇= -1) -1) (( ( = 1 = ( (

同态 同构 同胚

同态 同构 同胚

同态同构同胚全文共四篇示例,供读者参考第一篇示例:同态、同构、同胚是代数学中常见的概念,它们在不同的数学领域中有着广泛的应用。

本文将分别解释这三个概念的含义,并通过例子阐述它们之间的关系和区别。

同态(Homomorphism)是一种保持代数结构的映射。

具体来说,设有两个代数结构(如群、环、域等)G和H,一个从G到H的映射f 称为同态,如果对于G中的任意两元素a和b,都有f(a*b) = f(a)*f(b)。

这意味着同态将代数结构中的运算保持下来,即先运算再映射等价于先映射再运算。

考虑一个从整数环Z到模2加法群Z/2Z的映射f,定义为将偶数映射为0,奇数映射为1。

这个映射保持整数环的加法运算,因此是一个同态。

同态在代数结构的保持性质上有很多应用,比如在同态定理中,同态映射的核与像之间的关系能够帮助我们理解代数结构的结构和性质。

同构可以看作是一个更强的同态,因为它不仅保持代数结构的运算,还保持了元素之间的一一对应关系。

一个典型的例子是置换群S3和三阶对称群D3之间的同构:置换群S3包括所有的三元置换,而D3包括所有的三角形对称。

这两个群之间存在一个双射同态,它将S3中的置换映射到D3中的三角形对称,这就是它们之间的同构。

同胚(Homeomorphism)是拓扑空间之间的同构。

在拓扑学中,同胚是一种保持拓扑结构的双射映射,即在两个拓扑空间X和Y之间存在一个双射映射f,f及其逆映射f^-1都是连续函数。

同胚能够保持拓扑空间的开集、闭集、极限等性质,因此它们的拓扑结构是完全相同的。

考虑一个从实数轴R到开区间(0,1)的映射f,定义为f(x) =1/(1+e^-x)。

这个映射是一个双射,并且连续,因此是一个同胚,将实数轴上的开集映射为开区间上的开集,保持了拓扑结构上的同构。

同态、同构、同胚都是代数学和拓扑学中重要的概念,它们分别描述了代数结构和拓扑结构之间的关系。

同态是保持代数结构的映射,同构是保持代数结构的双射同态,同胚是保持拓扑结构的双射映射。

离散数学同态与同构

离散数学同态与同构

❖同态、同态映射、同态象
例题2: f:NNk,对xN:f(x)=x mod k,验证f是 从<N,+>到<Nk,+k>的满同态。(Nk={0,1,2,…,k-1})
说明:对例如:k=5,则N5={0,1,2,3,4} 。 k1,k2 Nk:
k1 +k k2 =
k1 + k2 k1 + k2 - k
<A,>
A
a
b c
ac
f: AB
<B,*>
f(a)
f(A)
f(b)
f(c)
f(a)*f(c)
bc
f(b)*f(c)
❖同态、同态映射、同态象
定义1:<A,>和<B,*>是两个代数系统, f是从A到B的一个映射, 对a1,a2A , 有:f (a1a2) = f(a1) * f(a2), 则称f 为由<A,>到<B,*>的一个同态映射;称 <A,> 同态于<B,*>,记为A~B;<f(A),*>为<A, >的一个同态象;
❖同构
例题5:有三个代数系统如下: 它们彼此是同构的。
a b <{a, b}, >
aab
bba
★ 偶 奇 <{偶, 奇}, ★>
偶偶奇 奇奇偶
这3个系统运算规律 相同,只是符号不同。
* 0 180 <{0, 180}, *>
0 0 180 180 180 0
❖同态与同构
定义3: <A,*> 是一个代数系统, 若f是由<A,*>到<A,*>的同态映射,则称f是自同态; 若f是由<A,*>到<A,*>的同构映射,则称f是自同构。

离散数学-同态和同构

离散数学-同态和同构
所以, 代数<F, ·, f 0>和<N4, +4, 0>同构。
一、同态与同构
例1(c):证明代数< N, +>和< I+,·>是不同构的。
证明:使用反证法。假设h是从<N, +>到<I+, ·>的一个同构。因为h
是从N到I+的一个满函数, 必有x∈N( x≥2) 和某质数p(p≥3), 使h(x)=p
(h(x1)*′h(x2))*′h(x3)=h(x1*x2)*′h(x3)=h((x1*x2)*x3) =h(x1*(x2*x3))=h(x1)*′h(x2*x3) =h(x1)*′(h(x2)*′h(x3))
所以, *′是可交换(或可结合的)。证毕。
二、同态代数的性质
例2:设S = {a, b, c, d}, S′={0, 1, 2, 3}, 代数A=<S, *>和B=<S′,* >由下表
· f0 f1 f2 f3 f0 f0 f1 f2 f3 f1 f1 f2 f3 f0 f2 f2 f3 f0 f1 f3 f3 f0 f1 f2
+4 0 1 2 3 00123 11230 22301 33012
一、同态与同构
例1(b)证明:<F, ·, f 0>,F={f 0, f 1, f 2, f 3};< N4, +4, 0>,N4={0, 1, 2, 3}
作映射h∶F→N4, h(f i) = i (i=0, 1, 2, 3) (1) h∶F → N4双射; (2) h(f 0) =0; (3)任取f i, f j∈F, i, j∈ N4, 因为h(f i) = i , h(f j) = j ,所以 h(f i·f j) = h(f i+j) = h(f (i+j) mod 4) = (i+j) mod 4 = i +4 j = h(f i) +4h(f j)。

形式逻辑中的同构关系与同态关系分析

形式逻辑中的同构关系与同态关系分析

形式逻辑中的同构关系与同态关系分析形式逻辑是一门研究符号和推理关系的学科,它通过符号和规则的运用来研究思维和推理的过程。

在形式逻辑中,同构关系和同态关系是两个重要的概念,它们在逻辑推理和数学领域中有着广泛的应用。

本文将对同构关系和同态关系进行深入分析,并探讨它们在形式逻辑中的作用。

同构关系是指两个结构之间存在一种一一对应的关系,即两个结构具有相同的形式和结构。

在形式逻辑中,同构关系常常用于比较不同逻辑系统之间的相似性。

例如,我们可以将命题逻辑和谓词逻辑看作是两种不同的逻辑系统,它们的基本结构和规则有所不同。

然而,通过建立适当的映射,我们可以将命题逻辑和谓词逻辑之间建立起同构关系。

这种同构关系的建立有助于我们在不同逻辑系统之间进行推理和转换。

同态关系是指两个结构之间存在一种保持结构和关系的映射,即两个结构之间的关系在映射后仍然保持不变。

在形式逻辑中,同态关系常常用于研究结构之间的映射和转换。

例如,在谓词逻辑中,我们可以通过将谓词符号映射为命题符号,将谓词逻辑的结构转换为命题逻辑的结构,从而建立起谓词逻辑和命题逻辑之间的同态关系。

这种同态关系的建立使得我们可以利用命题逻辑的推理规则来处理谓词逻辑的问题。

同构关系和同态关系在形式逻辑中具有重要的意义。

首先,它们为我们提供了一种比较和转换不同逻辑系统的方法。

通过建立同构关系和同态关系,我们可以将不同逻辑系统之间的问题转化为同一种逻辑系统的问题,从而简化了问题的处理和求解。

其次,它们为我们提供了一种抽象和概括逻辑结构的方法。

通过建立同构关系和同态关系,我们可以将复杂的逻辑结构简化为更为简单和易于理解的形式,从而便于我们对逻辑结构进行研究和分析。

然而,同构关系和同态关系也存在一些限制和局限性。

首先,同构关系和同态关系的建立需要满足一定的条件和约束,否则可能会导致错误的结果。

例如,在建立同构关系时,我们需要保证两个结构之间的映射是一一对应的,否则可能会导致信息的丢失或混淆。

第十四讲同态与同构

第十四讲同态与同构

第⼗四讲同态与同构第⼗四讲同态与同构§14.1. 同态§14.2. 同态基本定理§14.1. 同态在讲授半群和monoid时,我们已定义过它们的同态与同构,现定义群同态与群同构。

1.1.定义:设(G,*)与(H,?)为群,f: G→H为映射(1)f为从群G到群H的同态,指(?a,b∈G)(f(a*b)=f(a)?f(b)),记为G∽f H(2)f为从G到H的满同态指f为同态且f为onto(3)f为从G到H的同构指f为同态且f为1-1&onto,记为G≌f H(4)f为从(G,*)到(G,*)的⾃同态指f(ab)=f(a)f(b)(5)f为从(G,*)到(G,*)的⾃同构(automorphism)指f为⾃同态且1-1&onto1.2.例:(1)(Z,+),(Z2,+2)为群,令f(2n)=0,f(2n+1)=1,则f为从(Z,+)到(Z2,+2)的群满同态,但f⾮同构。

令g(n)=0,则g也为同态但不是满的。

(2)(R,+)为实数加群,(R*,*)为⾮零实数乘群,令f: R→R*为f(x)=2x∵2x+y=2x*2y,∴f为同态,但f不是满的。

(3)令R+为全体正实数,(R+,*)为群,令f: R→R+为f(x)=2x,则f为从(R,+)到(R+,*)的同构。

1.3.命题:设(G,*),(H,?)为群,(1)令f: G→H,对?x∈G,f(x)=e H,则f为同态。

(2)令a∈G,f a: G→G为f a(x)=axa-1,则f a为⾃同构。

证明:∵f a(xy)=axya-1=axa-1aya-1=f a(x)f a(y)∴f a为同态⼜∵f a为1-1&onto∴f a为同构. #1.4.命题:(Z6,+6)恰有6个⾃同态,恰有2个⾃同构。

证明:(1)令f i: Z6→Z6,f I(x)=ix(mod 6)(=ix-[ix/6]*6),i=0,1, (5)∵f i(x+6y)=i(x+6y)(mod 6)=ix(mod 6)+6iy(mod6)=f i(x)+6f i(y)∴f i为同态.∵f i(1)=i∴i≠j→f i≠f j,故(Z6,+6)⾄少有6个⾃同态。

第5-5讲 同态与同构

第5-5讲 同态与同构
3
1、例子(3)
f(α)=f(β)=f(γ)=1,f(δ)=f(ε)=0,f(ζ)=f(α)=f(β)=f(γ)=1,f(δ)=f(ε)=0,f(ζ)=-1, *(- )=0 β ⊗ ζ= ε ; 1*(-1)=0 f(β )=f( f(ε *(f(β)*f(ζ f(β ⊗ ζ)=f(ε)= 0 =1*(-1)= f(β)*f(ζ)
9ቤተ መጻሕፍቲ ባይዱ
5、同态核
定义4 设f是群<G,⊗>到群<H,*>的一个同态,eH是<H,*> 的幺元,令Ker(f)={x|x∈G且f(x)=eH}。称Ker(f)是同态映 射f的核,简称同态核。 定理3 设f是群<G,⊗>到群<H,*>的一个同态,则f的同态 核K是G的子群。(<K,⊗>是<G,⊗>的子群) 证明:对任意k1,k2∈K,有 对任意k K,有 对任意 )=e f(k1⊗k2)=f(k1)*f(k2)= H*eH=eH k 所以k k K,所以 运算在K 封闭。进而可知⊗运算在 所以⊗运算在 所以k1⊗k2∈K,所以 运算在K上封闭。进而可知 运算在 可结合。 K上可结合。 又因f是群<G, 到群<H,*>的同态,根据定理1 <G,⊗ <H,*>的同态 又因f是群<G,⊗>到群<H,*>的同态,根据定理1, eH=f(e),这说明e∈K,e也是K的幺元。 这说明e 也是K 幺元。 这说明 对任意k f(k)=e =(e 对任意k∈K, f(k)= H。 f(k-1)=(f(k))-1=( H)-1= eH 所以k K,即 中任意元素有逆元 从而K 逆元。 的子群。 所以k-1∈K,即K中任意元素有逆元。从而K是G的子群。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A与 A 这两个代数系统,没有任何区别( • P26:1,3
• (3)同构映射:
性质 • 性质1 设 A, A, A 是三个代数系统,并且
f : A A, g: A A
是两个同态映射(单同态、满同态、 同构映射).那么, gf : A A仍然是 同态映射(单同态、满同态、同构 映射)
• 性质2 设 f : A A 是一个同构. 那么, f 1 : A A 也是一个同构. • 证明: • (1) f 1是双射 • (2) 保持运算. 看一个关键等式
§5 同态与同构(8-9节)
• • • • • 5.1 最初的思想 5.2 同态映射与性质 5.3 同态的代数系统 5.4 可单向传递的性质 5.5 同构的代数系统及其意义
5.1最初的思想
• 如何比较两个代数系统? • 回忆两个三角形全等的定义:经过运动,顶点可以重合.这 里涉及两个步骤:第一,点间有一个对应(映射);第二,对应 后可以重合. • 我们比较两个代数系统 A 和 A . 第一,我们需要一个映射 : A A ; 第二, 这个映射还能够使“运算重合”或曰:保持运算.具 (a b) 和 A 的两个元,那么 (a) (b) 都有意 b 是 a 和 体的说,假如 义,都是的元.保持运算即下面等式成立:
注: 同态映射简称为态射. • A ={所有整数}, A 的代数运算是普通加法. • A {1, 1} , A 的代数运算是普通乘法.
• 例1 证明 1 : a 1 ( a是 A 的任一元) • 是一个到的同态映射. • 证明 …… a 1 , • 例2 2 : 若是偶数 若是奇数 a 1 , • 证明: 2是一个 A 到 A 的满射的同态映射. 2 是 A 到 A 的满射.对于 A 的任意两 • 证明 : 显然 , • (2)若 a , b 都是奇数…… 个整数 a 和 b 来说,分三种情况: a b 也是偶数 • (3) (1)若a , b 都是偶数 ,那么 ,………. b 奇偶性相反 a和 2 (a) 1 , 2 (b) 1 , 2 (a b) 1 • • 所以, 2 (a b) 2 (a)2 (b)
,
• 定理2 假定, , 都是集合 A 的代数运算, , 都是 集合 A 的代数运算,并且存在一个 A 到 A 的满射 , 使得 A与 A 对于代数运算 , 来说同态,对于代数 运算 , 来说也同态.那么 (1) 若 , 适合第一分配律, , 也适合第一分配律. (2) 若 , 适合第二分配律, , 也适合第二分配律.
a a, b b, c c
• 于是
( ab)c f ( a b)c f [(a b ) c ] f [ a (b c )] f (a ) f (b c ) a (bc )
注: 这种通过同态映射过渡的方法在证明具有 一般性 • (2)同学们按照上面的方法,给出证明.
(a b) (a) (b)
• 换一种表示,假定在 之下的像,
xx
• 上面的等式即:
a b ab
5.2 同态映射与性质
定义与例子
• 定义1 一个 A 到 A 的映射 称为对于代数运算 和 的同态映射,假如, a, b A,都有:
(a b) (a) (b)
同构的代数系统意味什么
例1
0 1 2
, A {0,1,2}
0 0 1 2 1 1 2 0 2 2 0 1
. A {3 ,4,5 }
3 3 4 5 3 4 5 4 4 5 3 5 5 3 4
各 A 是 A 与的代数运算 与 的表.
请比较两个运算表,方向异同之处?
在A的运算表, 进行变换:
• 例3 2 : a 1 ( a 是 A 的任一元) • 固然是一个 A 到 A的映射,但不是同态映 射.因为,对于任意 A 的 a 和 b 来说,
a 1, b 1
a b 1 (1) (1)
进一步的定义
• 定义2 • (1)单同态:
• (2)满同态:
• 证明 …… • 注: A A, 由 A的性质可以推出 A 具有同样的 性质; 反过来不成立.
5.5 同构的代数系统及其意义
定义
定义 A 和 A 是两个代数系统,如果存在一个 A到 A 的同构映射 f ,就称 A 和 A 同态. • 记号: A A 自同态、自同构的概念可以自然的给出,同学们自己 做。
f 1 (ab) f 1[ f (a) f (b)] f 1[ f (a b)] a b f (a) f (b)
1 1
5.3 同态的代数系统
• 定义 A 和 A 是两个代数系统,如果存在 一个 A 到 A的同态满射 f ,就称 A 和 A同 态. • 记号: A A • 性质1 (1)反身性: A A (2)传递性: 注: 对称性不成立
5.4 可单向传递的性质
• 定理1 假定,对于代数运算 和 来说, A到 A 同态.那么, (1)若 适合结合律, 也适合结合律; (2)若 适合交换律, 也适合交换律.
• 证明 我们用 f 来表示 A 到 A 的同态满射. (1)假定a, b, c 是 A 的任意三个元. 由于 f 是同态满 射,我们在 A 里至少找得出三个元 a , b , c 来,使得 在 f 之下,
0 3,1 4, 2 5
变成了什么?. 它们可以用统一成为一个运算表……..
小结
• 现在我们看两个任意的,对于代数运算 和 来说 是同构的集合 A和 A.我们可以假定, A {a , b , c ,...}
A {a , b , c ,...} • 并且在 A 与 A 间的同构映射 之下, a a ,b b , c c ,… • 由于同构映射的性质,我们知道, x y z x y z
相关文档
最新文档