高数答案(下)习题册答案 第六版 下册 同济大学数学系 编
高等数学同济第六版下册课后习题答案
习题8-11. 设u =a -b +2c , v =-a +3b -c . 试用a 、b 、c 表示2u -3v . 解 2u -3v =2(a -b +2c )-3(-a +3b -c )=2a -2b +4c +3a -9b +3c=5a -11b +7c .2. 如果平面上一个四边形的对角线互相平分, 试用向量证明这是平行四边形.证 →→→-=OA OB AB ; →→→-=OD OC DC ,而 →→-=OA OC , →→-=OB OD ,所以 →→→→→→-=-=+-=AB OA OB OB OA DC .这说明四边形ABCD 的对边AB =CD 且AB //CD , 从而四边形ABCD 是平行四边形.3. 把∆ABC 的BC 边五等分, 设分点依次为D 1、D 2、D 3、D 4, 再把各分点与点A 连接. 试以c =→AB 、a =→BC 表示向量→A D 1、→A D 2、→A D 3、→A D 4.解 a c 5111--=-=→→→BD BA A D , a c 5222--=-=→→→BD BA A D , a c 5333--=-=→→→BD BA A D , a c 5444--=-=→→→BD BA A D .4. 已知两点M 1(0, 1, 2)和M 2(1, -1, 0). 试用坐标表示式表示向量→21M M 及→-212M M .解 )2 ,2 ,1()2 ,1 ,0()0 ,1 ,1(21--=--=→M M ,)4 ,4 ,2()2 ,2 ,1(2221-=---=-→M M .5. 求平行于向量a =(6, 7, -6)的单位向量.解 11)6(76||222=-++=a ,平行于向量a =(6, 7, -6)的单位向量为)116 ,117 ,116(||1-=a a 或)116 ,117 ,116(||1--=-a a . 6. 在空间直角坐标系中, 指出以下各点在哪个卦限? A (1, -2, 3); B (2, 3, -4); C (2, -3, -4); D (-2, -3, 1).解 A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.7. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出以下各点的位置:A (3, 4, 0);B (0, 4, 3);C (3, 0, 0);D (0, -1, 0).解 在xOy 面上, 点的坐标为(x , y , 0); 在yOz 面上, 点的坐标为(0, y , z ); 在zOx 面上, 点的坐标为(x , 0, z ).在x 轴上, 点的坐标为(x , 0, 0); 在y 轴上, 点的坐标为(0, y , 0), 在z 轴上, 点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上. 8. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标.解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , -c ), 点(a , b , c )关于yOz 面的对称点为(-a , b , c ), 点(a , b , c )关于zOx 面的对称点为(a , -b , c ).(2)点(a , b , c )关于x 轴的对称点为(a , -b , -c ), 点(a , b , c )关于y 轴的对称点为(-a , b , -c ), 点(a , b , c )关于z 轴的对称点为(-a , -b , c ).(3)点(a , b , c )关于坐标原点的对称点为(-a , -b , -c ). 9. 自点P 0(x 0, y 0, z 0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.解 在xOy 面、yOz 面和zOx 面上, 垂足的坐标分别为(x 0, y 0, 0)、(0, y 0, z 0)和(x 0, 0, z 0).在x 轴、y 轴和z 轴上, 垂足的坐标分别为(x 0, 0, 0), (0, y 0, 0)和(0, 0, z 0).10. 过点P 0(x 0, y 0, z 0)分别作平行于z 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点? 解 在所作的平行于z 轴的直线上, 点的坐标为(x 0, y 0, z ); 在所作的平行于xOy 面的平面上, 点的坐标为(x , y , z 0).11. 一边长为a 的立方体放置在xOy 面上, 其底面的中心在坐标原点, 底面的顶点在x 轴和y 轴上, 求它各顶点的坐标. 解 因为底面的对角线的长为a 2, 所以立方体各顶点的坐标分别为)0 ,0 ,22(a -, )0 ,0 ,22(a , )0 ,22 ,0(a -, )0 ,22 ,0(a , ) ,0 ,22(a a -, ) ,0 ,22(a a , ) ,22 ,0(a a -, ) ,22 ,0(a a . 12. 求点M (4, -3, 5)到各坐标轴的距离.解 点M 到x 轴的距离就是点(4, -3, 5)与点(4, 0, 0)之间的距离, 即345)3(22=+-=x d .点M 到y 轴的距离就是点(4, -3, 5)与点(0, -3, 0)之间的距 离, 即415422=+=y d .点M 到z 轴的距离就是点(4, -3, 5)与点(0, 0, 5)之间的距离, 即5)3(422=-+=z d .13. 在yOz 面上, 求与三点A (3, 1, 2)、B (4, -2, -2)和C (0, 5,1)等距离的点.解 设所求的点为P (0, y , z )与A 、B 、C 等距离, 则 2222)2()1(3||-+-+=→z y PA ,2222)2()2(4||++++=→z y PB ,222)1()5(||-+-=→z y PC .由题意, 有222||||||→→→==PC PB PA , 即 ⎩⎨⎧-+-=++++-+-=-+-+2222222222)1()5()2()2(4)1()5()2()1(3z y z y z y z y 解之得y =1, z =-2, 故所求点为(0, 1, -2).14. 试证明以三点A (4, 1, 9)、B (10, -1, 6)、C (2, 4, 3)为顶点的三角形是等腰三角直角三角形.解 因为7)96()11()410(||222=-+--+-=→AB ,7)93()14()42(||222=-+-+-=→AC ,27)63()14()102(||222=-+++-=→BC ,所以222||||||→→→+=AC AB BC , ||||→→=AC AB . 因此∆ABC 是等腰直角三角形.15. 设已知两点1) ,2 ,4(1M 和M 2(3, 0, 2). 计算向量→21M M 的模、方向余弦和方向角.解 )1 ,2 ,1()12 ,20 ,43(21-=---=→M M ;21)2()1(||22221=++-=→M M ;21cos -=α, 22cos =β, 21cos =γ; 32πα=, 43 πβ=, 3πγ=. 16. 设向量的方向余弦分别满足(1)cos α=0; (2)cos β=1;(3)cos α=cos β=0, 问这些向量与坐标轴或坐标面的关系如何? 解 (1)当cos α=0时, 向量垂直于x 轴, 或者说是平行于yOz 面.(2)当cos β=1时, 向量的方向与y 轴的正向一致, 垂直于zOx 面.(3)当cos α=cos β=0时, 向量垂直于x 轴和y 轴, 平行于z 轴, 垂直于xOy 面.17. 设向量r 的模是4, 它与轴u 的夹角是60︒, 求r 在轴 u 上的投影.解 22143cos ||j Pr =⋅=⋅=πr r u . 18. 一向量的终点在点B (2, -1, 7), 它在x 轴、y 轴和z 轴上的投影依次为4, -4, 7. 求这向量的起点A 的坐标.解 设点A 的坐标为(x , y , z ). 由已知得⎪⎩⎪⎨⎧=--=--=-774142z y x ,解得x =-2, y =3, z =0. 点A 的坐标为A (-2, 3, 0).19. 设m =3i +5j +8k , n =2i -4j -7k 和p =5i +j -4k . 求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n -p=4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k ,所以a =4m +3n -p 在x 轴上的投影为13, 在y 轴上的分向量7j .习题8-21. 设a =3i -j -2k , b =i +2j -k , 求(1)a ⋅b 及a ⨯b ; (2)(-2a )⋅3b 及a ⨯2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3⨯1+(-1)⨯2+(-2)⨯(-1)=3,k j i k j i b a 75121 213++=---=⨯. (2)(-2a )⋅3b =-6a ⋅b = -6⨯3=-18,a ⨯2b =2(a ⨯b )=2(5i +j +7k )=10i +2j +14k .(3)21236143||||||) ,cos(^==⋅=b a b a b a . 2. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a .解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a . 3. 已知M 1(1, -1, 2)、M 2(3, 3, 1)和M 3(3, 1, 3). 求与→21M M 、→32M M 同时垂直的单位向量.解 →)1 ,4 (2,2)1 ,13 ,13(21-=-+-=M M , →)2 ,2 ,0()13 ,31 ,33(32-=---=M M .→→k j i k j i n 446 220 142 3221--=--=⨯=M M M M , 172161636||=++=n ,)223(171)446(1721k j i k j i e --±=--±=为所求向量. 4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).解F =(0, 0, -100⨯9. 8)=(0, 0, -980), →)6 ,3 ,2()82 ,14 ,31(21--=---==M M S . W =F ⋅S =(0, 0, -980)⋅(-2, 3, -6)=5880(焦耳).5. 在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与→1OP 成角θ1的力F 1作用着; 在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与→2OP 成角θ1的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解 因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的规定可得, 使杠杆保持平衡的条件为x 1|F 1|⋅sin θ1-x 2|F 2|⋅sin θ2=0,即 x 1|F 1|⋅sin θ1=x 2|F 2|⋅sin θ2.6. 求向量a =(4, -3, 4)在向量b =(2, 2, 1)上的投影.解2)142324(31)1 ,2 ,2()4 ,3 ,4(1221||1||j Pr 222=⨯+⨯-⨯=⋅-++=⋅=⋅=⋅=b a b b b a e a a b b . 7. 设a =(3, 5, -2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直? 解 λa +μb =(3λ+2μ, 5λ+μ, -2λ+4μ),λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, -2λ+4μ)⋅(0, 0, 1)=0,即-2λ+4μ=0, 所以λ=2μ. 当λ=2μ时, λa +μb 与z 轴垂直.8. 试用向量证明直径所对的圆周角是直角.证明 设AB 是圆O 的直径, C 点在圆周上, 则→→OA OB -=, →→||||OA OC =.因为→→→→→→→→→→→→0||||)()()()(22=-=+⋅-=-⋅-=⋅OA OC OA OC OA OC OB OC OA OC BC AC ,所以→→BC AC ⊥, ∠C =90︒.9. 设已知向量a =2i -3j +k , b =i -j +3k 和c =i -2j , 计算: (1)(a ⋅b )c -(a ⋅c )b ; (2)(a +b )⨯(b +c );(3)(a ⨯b )⋅c .解 (1)a ⋅b =2⨯1+(-3)⨯(-1)+1⨯3=8, a ⋅c =2⨯1+(-3)⨯(-2)=8,(a ⋅b )c -(a ⋅c )b =8c -8b =8(c -b )=8[(i -2j )-(i -j +3k )]=-8j -24k .(2)a +b =3i -4j +4k , b +c =2i -3j +3k ,k j k j i c b b a --=--=+⨯+332443)()(. (3)k j i k j i b a +--=--=⨯58311132, (a ⨯b )⋅c =-8⨯1+(-5)⨯(-2)+1⨯0=2.10. 已知→j i 3+=OA , →k j 3+=OB , 求∆OAB 的面积.解 根据向量积的几何意义, →→||OB OA ⨯表示以→OA 和→OB 为邻边的平行四边形的面积, 于是∆OAB 的面积为→→||21OB OA S ⨯=. 因为→→k j i k j i +--==⨯33310301OB OA , →→191)3()3(||223=+-+-=⨯OB OA , 所以三角形∆OAB 的面积为→→1921||21=⨯=OB OA S . 12. 试用向量证明不等式:||332211232221232221b a b a b a b b b a a a ++≥++++,其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数, 并指出等号成立的条件.解 设a =(a 1, a 2, a 3), b =(b 1, b 2, b 3), 则有||||) ,cos(||||^b a b a b a b a ⋅≤⋅=⋅,于是 ||332211232221232221b a b a b a b b b a a a ++≥++++,其中当) ,cos(^b a =1时, 即a 与b 平行是等号成立.习题8-31. 一动点与两定点(2, 3, 1)和(4, 5, 6)等距离, 求这动点的轨迹方程.解 设动点为M (x , y , z ), 依题意有(x -2)2+(y -3)2+(z -1)2=(x -4)2+(y -5)2+(z -6)2,即 4x +4y +10z -63=0.2. 建立以点(1, 3, -2)为球心, 且通过坐标原点的球面方程.解 球的半径14)2(31222=-++=R ,球面方程为(x -1)2+(y -3)2+(z +2)2=14,即 x 2+y 2+z 2-2x -6y +4z =0.3. 方程x 2+y 2+z 2-2x +4y +2z =0表示什么曲面?解 由已知方程得(x 2-2x +1)+(y 2+4y +4)+(z 2+2z +1)=1+4+1,即 2222)6()1()2()1(=++++-z y x ,所以此方程表示以(1, -2, -1)为球心, 以6为半径的球面.4. 求与坐标原点O 及点(2, 3, 4)的距离之比为1:2的点的全体所组成的曲面的方程, 它表示怎样曲面?解 设点(x , y , z )满足题意, 依题意有21)4()3()2(222222=-+-+-++z y x z y x , 化简整理得9116)34()1()32(222=+++++z y x , 它表示以)34 ,1 ,32(---为球心, 以2932为半径的球面. 5. 将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的z 换成22z y +±得旋转曲面的方程y 2+z 2=5x .6. 将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周, 求所生成的旋转曲面的方程.解 将方程中的x 换成22y x +±得旋转曲面的方程x 2+y 2+z 2=9.7. 将xOy 坐标面上的双曲线4x 2-9y 2=36分别绕x 轴及y 轴旋转一周, 求所生成的旋转曲面的方程.解 双曲线绕x 轴旋转而得的旋转曲面的方程为4x 2-9y 2-9z 2=36.双曲线绕y 轴旋转而得的旋转曲面的方程为4x 2+4z 2-9y 2=36.8. 画出以下方程所表示的曲面:(1)222)2()2(a y a x =+-; (2)19422=+-y x ;(3)14922=+z x ;(4)y2-z=0;(5)z=2-x2.9.指出以下方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1)x=2;解在平面解析几何中,x=2表示平行于y轴的一条直线;在空间解析几何中,x=2表示一张平行于yOz面的平面.(2)y=x+1;解在平面解析几何中,y=x+1表示一条斜率是1,在y轴上的截距也是1的直线;在空间解析几何中,y=x+1表示一张平行于z轴的平面.(3)x2+y2=4;解在平面解析几何中,x2+y2=4表示中心在原点,半径是4的圆;在空间解析几何中, x2+y2=4表示母线平行于z轴,准线为x2+y2=4的圆柱面.(4)x2-y2=1.解在平面解析几何中,x2-y2=1表示双曲线;在空间解析几何中,x2-y2=1表示母线平行于z轴的双曲面.10.说明以下旋转曲面是怎样形成的:(1)1994222=++z y x ;解 这是xOy 面上的椭圆19422=+y x 绕x 轴旋转一周而形成的, 或是zOx 面上的椭圆19422=+z x 绕x 轴旋转一周而形成的.(2)14222=+-z y x ;解 这是xOy 面上的双曲线1422=-y x 绕y 轴旋转一周而形成的, 或是yOz 面上的双曲线1422=+-z y 绕y 轴旋转一周而形成的. (3)x 2-y 2-z 2=1;解 这是xOy 面上的双曲线x 2-y 2=1绕x 轴旋转一周而形成的, 或是zOx 面上的双曲线x 2-z 2=1绕x 轴旋转一周而形成的.(4)(z -a )2=x 2+y 2 .解 这是zOx 面上的曲线(z -a )2=x 2绕z 轴旋转一周而形成的, 或是yOz 面上的曲线(z -a )2=y 2绕z 轴旋转一周而形成的. 11. 画出以下方程所表示的曲面: (1)4x 2+y 2-z 2=4;(2)x 2-y 2-4z 2=4;(3)94322y x z +=.习题8-41. 画出以下曲线在第一卦限内的图形:(1)⎩⎨⎧==21y x ;(2)⎩⎨⎧=---=0422y x y x z ;(3) ⎩⎨⎧=+=+222222az x a y x .2. 指出下方程组在平面解析几何中与在空间解析几何中分别表示什么图形: (1)⎩⎨⎧-=+=3215x y x y ;解 在平面解析几何中, ⎩⎨⎧-=+=3215x y x y 表示直线y =5x +1与y =2x -3的交点)317 ,34(--; 在空间解析几何中, ⎩⎨⎧-=+=3215x y x y 表示平面y =5x +1与y =2x -3的交线, 它表示过点)0 ,317 ,34(--, 并且行于z 轴. (2)⎪⎩⎪⎨⎧==+319422y y x .解 在平面解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆19422=+y x 与其切线y =3的交点(0, 3); 在空间解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆柱面19422=+y x 与其切平面y =3的交线. 3. 分别求母线平行于x 轴及y 轴而且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解 把方程组中的x 消去得方程3y 2-z 2=16, 这就是母线平行于x 轴且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 把方程组中的y 消去得方程3x 2+2z 2=16, 这就是母线平行于y 轴且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 4. 求球面x 2+y 2+z 2=9与平面x +z =1的交线在xOy 面上的投影的方程.解 由x +z =1得z =1-x 代入x 2+y 2+z 2=9得方程2x 2-2x +y 2=8, 这是母线平行于z 轴, 准线为球面x 2+y 2+z 2=9与平面x +z =1的交线的柱面方程, 于是所求的投影方程为 ⎩⎨⎧==+-082222z y x x .5. 将以下曲线的一般方程化为参数方程:(1)⎩⎨⎧==++xy z y x 9222 ;解 将y =x 代入x 2+y 2+z 2=9得2x 2+z 2=9, 即13)23(2222=+z x .令t x cos 23=, 则z =3sin t .故所求参数方程为t x cos 23=, t y cos 23=, z =3sin t .(2)⎩⎨⎧==+++-04)1()1(222z z y x .解 将z =0代入(x -1)2+y 2+(z +1)2=4得(x -1)2+y 2=3. 令t x cos 31+=, 则t y sin 3=, 于是所求参数方程为t x cos 31+=, t y sin 3=, z =0.6. 求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解 由前两个方程得x 2+y 2=a 2, 于是螺旋线在xOy 面上的投影曲线的直角坐标方程为 ⎩⎨⎧==+0222z a y x .由第三个方程得bz=θ代入第一个方程得b z a x cos =, 即ax b z arccos =,于是螺旋线在zOx 面上的投影曲线的直角坐标方程为 ⎪⎩⎪⎨⎧==0arccos y a xb z .由第三个方程得b z =θ代入第二个方程得b z a y sin =, 即ay b z arcsin =, 于是螺旋线在yOz 面上的投影曲线的直角坐标方程为 ⎪⎩⎪⎨⎧==a y b z x arcsin 0.7. 求上半球2220y x a z --≤≤与圆柱体x 2+y 2≤ax (a >0)的公共部分在xOy 面和zOx 面上的投影.解 圆柱体x 2+y 2≤ax 在xOy 面上的投影为x 2+y 2≤ax , 它含在半球2220y x a z --≤≤在xOy 面上的投影x 2+y 2≤a 2内, 所以半球与圆柱体的公共部分在xOy 面上的投影为x 2+y 2≤ax .为求半球与圆柱体的公共部分在zOx 面上的投影, 由圆柱面方程x 2+y 2=ax 得y 2=ax -x 2, 代入半球面方程222y x a z --=, 得ax a z -=2(0≤x ≤a ), 于是半球与圆柱体的公共部分在zOx 面上的投影为ax a z -≤≤20(0≤x ≤a ), 即z 2+ax ≤a 2, 0≤x ≤a , z ≥0.8. 求旋转抛物面z =x 2+y 2(0≤z ≤4)在三坐标面上的投影.解 令z =4得x 2+y 2=4, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在xOy 面上的投影为x 2+y 2≤4. 令x =0得z =y 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在yOz 面上的投影为y 2≤z ≤4. 令y =0得z =x 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在zOx 面上的投影为x 2≤z ≤4.习题8-51. 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程.解 所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为 3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0.2. 求过点M 0(2, 9, -6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程.解 所求平面的法线向量为n =(2, 9, -6), 所求平面的方程为 2(x -2)+9(y -9)-6(z -6)=0, 即2x +9y -6z -121=0. 3. 求过(1, 1, -1)、(-2, -2, 2)、(1, -1, 2)三点的平面方程. 解 n 1=(1, -1, 2)-(1, 1, -1)=(0, -2, 3), n 1=(1, -1, 2)-(-2, -2, 2)=(3, 1, 0), 所求平面的法线向量为k j i kj i n n n 69301332021++-=-=⨯=,所求平面的方程为-3(x -1)+9(y -1)+6(z +1)=0, 即x -3y -2z =0. 4. 指出以下各平面的特殊位置, 并画出各平面: (1)x =0;解 x =0是yOz 平面. (2)3y -1=0;解 3y -1=0是垂直于y 轴的平面, 它通过y 轴上的点)0 ,31 ,0(. (3)2x -3y -6=0;解 2x -3y -6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和-2.(4)03=-y x ;解 03=-y x 是通过z 轴的平面, 它在xOy 面上的投影的斜率为33.(5)y +z =1;解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1.(6)x -2z =0;解 x -2z =0是通过y 轴的平面. (7)6x +5-z =0.解 6x +5-z =0是通过原点的平面.5. 求平面2x -2y +z +5=0与各坐标面的夹角的余弦. 解 此平面的法线向量为n =(2, -2, 1). 此平面与yOz 面的夹角的余弦为321)2(22||||) ,cos(cos 122^=+-+=⋅⋅==i n i n i n α;此平面与zOx 面的夹角的余弦为321)2(22||||) ,cos(cos 122^-=+-+-=⋅⋅==j n j n j n β; 此平面与xOy 面的夹角的余弦为311)2(21||||) ,cos(cos 122^=+-+=⋅⋅==k n k n k n γ.6. 一平面过点(1, 0, -1)且平行于向量a =(2, 1, 1)和b =(1, -1, 0), 试求这平面方程.解 所求平面的法线向量可取为k j i kj i b a n 3011112-+=-=⨯=,所求平面的方程为(x -1)+(y -0)-3(z +1)=0, 即x +y -3z -4=0.7. 求三平面x +3y +z =1, 2x -y -z =0, -x +2y +2z =3的交点. 解 解线性方程组 ⎪⎩⎪⎨⎧=++-=--=++3220213z y x z y x z y x得x =1, y =-1, z =3. 三个平面的交点的坐标为(1, -1, 3). 8. 分别按以下条件求平面方程: (1)平行于zOx 面且经过点(2, -5, 3);解 所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为 0⋅(x -2)-5(y +5)+0⋅(z -3)=0, 即y =-5. (2)通过z 轴和点(-3, 1, -2); 解 所求平面可设为Ax +By =0. 因为点(-3, 1, -2)在此平面上, 所以 -3A +B =0, 将B =3A 代入所设方程得 Ax +3Ay =0, 所以所求的平面的方程为 x +3y =0,(3)平行于x 轴且经过两点(4, 0, -2)和(5, 1, 7).解 所求平面的法线向量可设为n =(0, b , c ). 因为点(4, 0, -2)和(5, 1, 7)都在所求平面上, 所以向量n 1=(5, 1, 7)-(4, 0, -2)=(1, 1, 9)与n 是垂直的, 即 b +9c =0, b =-9c , 于是 n =(0, -9c , c )=-c (0, 9, -1). 所求平面的方程为9(y -0)-(z +2)=0, 即9y -z -2=0.9. 求点(1, 2, 1)到平面x +2y +2z -10=0的距离. 解 点(1, 2, 1)到平面x +2y +2z -10=0的距离为 1221|1012221|222=++-⨯+⨯+=d .习题8-61. 求过点(4, -1, 3)且平行于直线51123-==-z y x 的直线方程.解 所求直线的方向向量为s =(2, 1, 5), 所求的直线方程为531124-=+=-z y x .2. 求过两点M 1(3, -2, 1)和M 2(-1, 0, 2)的直线方程. 解 所求直线的方向向量为s =(-1, 0, 2)-(3, -2, 1)=(-4, 2, 1), 所求的直线方程为112243-=+=--x y x .3. 用对称式方程及参数方程表示直线⎩⎨⎧=++=+-421z y x z y x .解 平面x -y +z =1和2x +y +z =4的法线向量为n 1=(1, -1, 1), n 2=(2, 1, 1), 所求直线的方向向量为k j i kj i n n s 3211211121++-=-=⨯=.在方程组⎩⎨⎧=++=+-421z y x z y x 中, 令y =0, 得⎩⎨⎧=+=+421z x z x , 解得x =3,z =-2. 于是点(3, 0, -2)为所求直线上的点.所求直线的对称式方程为32123+==--z yx ;参数方程为x =3-2t , y =t , z =-2+3t .4. 求过点(2, 0, -3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.解 所求平面的法线向量n 可取为已知直线的方向向量, 即k j i kj i n 111416253421)2 ,5 ,3()4 ,2 ,1(++-=--=-⨯-=.所平面的方程为-16(x -2)+14(y -0)+11(z +3)=0, 即 16x -14y -11z -65=0.5. 求直线⎩⎨⎧=+-=-+-02309335z y x z y x 与直线⎩⎨⎧=-++=+-+0188302322z y x z y x 的夹角的余弦.解 两直线的方向向量分别为k j i kj i s -+=--=431233351,k j i kj i s 105101831222+-=-=.两直线之间的夹角的余弦为 ||||) ,cos(2121^21s s s s s s ⋅⨯= 010)5(10)1(4310)1()5(4103222222=+-+-++⨯-+-⨯+⨯=. 6. 证明直线⎩⎨⎧=++-=-+7272z y x z y x 与直线⎩⎨⎧=--=-+028363z y x z y x 平行.解 两直线的方向向量分别为k j i kj i s 531121211++=--=,k j i kj i s 153********---=---=.因为s 2=-3s 1, 所以这两个直线是平行的.7. 求过点(0, 2, 4)且与两平面x +2z =1和y -3z =2平行的直线方程.解 因为两平面的法线向量n 1=(1, 0, 2)与n 2=(0, 1, -3)不平行, 所以两平面相交于一直线, 此直线的方向向量可作为所求直线的方向向量s , 即k j i kj i s ++-=-=32310201.所求直线的方程为14322-=-=-z y x .8. 求过点(3, 1, -2)且通过直线12354zy x =+=-的平面方程. 解 所求平面的法线向量与直线12354zy x =+=-的方向向量s 1=(5, 2, 1)垂直. 因为点(3, 1, -2)和(4, -3, 0)都在所求的平面上, 所以所求平面的法线向量与向量s 2=(4, -3, 0)-(3, 1, -2)=(1, -4, 2)也是垂直的. 因此所求平面的法线向量可取为k j i kj i s s n 229824112521--=-=⨯=.所求平面的方程为8(x -3)-9(y -1)-22(z +2)=0, 即 8x -9y -22z -59=0.9. 求直线⎩⎨⎧=--=++003z y x z y x 与平面x -y -z +1=0的夹角.解 已知直线的方向向量为)2(2242111311)1 ,1 ,1()3 ,1 ,1(k j i k j i kj i s -+=-+=--=--⨯=,已知平面的法线向量为n =(1, -1, -1). 因为s ⋅n =2⨯1+4⨯(-1)+(-2)⨯(-1)=0,所以s ⊥n , 从而直线⎩⎨⎧=--=++003z y x z y x 与平面x -y -z +1=0的夹角为0.10. 试确定以下各组中的直线和平面间的关系:(1)37423zy x =-+=-+和4x -2y -2z =3; 解 所给直线的方向向量为s =(-2, -7, 3), 所给平面的法线向量为n =(4, -2, -2).因为s ⋅n =(-2)⨯4+(-7)⨯(-2)+3⨯(-2)=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(-3, -4, 0)不满足平面方程4x -2y -2z =3, 所以所给直线不在所给平面上.(2)723zy x =-=和3x -2y +7z =8;解 所给直线的方向向量为s =(3, -2, 7), 所给平面的法线向量为n =(3, -2, 7).因为s =n , 所以所给直线与所给平面是垂直的.(3)431232--=+=-z y x 和x +y +z =3.解 所给直线的方向向量为s =(3, 1, -4), 所给平面的法线向量为n =(1, 1, 1).因为s ⋅n =3⨯1+1⨯1+(-4)⨯1=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(2, -2, 3)满足平面方程x +y +z =3, 所以所给直线在所给平面上.11. 求过点(1, 2, 1)而与两直线⎩⎨⎧=-+-=+-+01012z y x z y x 和⎩⎨⎧=+-=+-002z y x z y x平行的平面的方程.解 已知直线的方向向量分别为k j i kj i s 32111121)1 ,1 ,1()1 ,2 ,1(1--=--=-⨯-=,k j kj i s --=--=-⨯-=111112)1 ,1 ,1()1 ,1 ,2(1.所求平面的法线向量可取为k j i kj i s s n -+-=----=⨯=11032121,所求平面的方程为-(x -1)+(y -2)-(z -1)=0, 即x -y +z =0. 12. 求点(-1, 2, 0)在平面x +2y -z +1=0上的投影.解 平面的法线向量为n =(1, 2, -1). 过点(-1, 2, 0)并且垂直于已知平面的直线方程为12211-=-=+zy x .将此方程化为参数方程x =-1+t , y =2+2t , z =-t , 代入平面方程x +2y -z +1=0中, 得(-1+t )+2(2+2t )-(-t )+1=0,解得32-=t . 再将32-=t 代入直线的参数方程, 得35-=x , 32=y ,32=z . 于是点(-1, 2, 0)在平面x +2y -z +1=0上的投影为点)32 ,32 ,25(-.13. 求点P (3, -1, 2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.解 已知直线的方向向量为k j kj i s 33112111)1 ,1 ,2()1 ,1 ,1(--=--=-⨯-=.过点P 且与已知直线垂直的平面的方程为 -3(y +1)-3(z -2)=0, 即y +z -1=0. 解线性方程组 ⎪⎩⎪⎨⎧=-+=-+-=+-+0104201z y z y x z y x ,得x =1, 21-=y , 23=z .点P (3, -1, 2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离就是点P (3, -1, 2)与点)23 ,21 ,1(-间的距离, 即223)232()211()13(22=-++-+-=d .14. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离 →||||0s s ⨯=M M d . 解 设点M 0到直线L 的距离为d , L 的方向向量→=MN s , 根据向量积的几何意义, 以→M M 0和→MN 为邻边的平行四边形的面积为||||00s ⨯=⨯→→→M M MN M M ,又以→M M 0和→MN 为邻边的平行四边形的面积为||||s ⋅=⋅→d MN d . 因此||||0s s ⨯=⋅→M M d , ||||0s s ⨯=→M M d . 15. 求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面4x -y +z =1上的投影直线的方程.解 过已知直线的平面束方程为 (2+3λ)x +(-4-λ)y +(1-2λ)z -9λ=0. 为在平面束中找出与已知平面垂直的平面, 令 (4 -1, 1)⋅(2+3λ, -4-λ, 1-2λ)=0, 即 4⋅(2+3λ)+(-1)⋅(-4-λ)+1⋅(1-2λ)=0. 解之得1113-=λ. 将1113-=λ代入平面束方程中, 得17x +31y -37z -117=0. 故投影直线的方程为⎩⎨⎧=--+=+-011737311714z y x z y x .16. 画出以下各曲面所围成的立体图形: (1)x =0, y =0, z =0, x =2, y =1, 3x +4y +2z -12=0;(2)x =0, z =0, x =1, y =2, 4yz =;(3)z =0, z =3, x -y =0, 03=-y x , x 2+y 2=1(在第一卦限内);(4)x =0, y =0, z =0, x 2+y 2=R 2, y 2+z 2=R 2(在第一卦限内).总习题八 1. 填空(1)设在坐标系[O ; i , j , k ]中点A 和点M 的坐标依次为(x 0, y 0, z 0)和(x , y , z ), 则在[A ; i , j , k ] 坐标系中, 点M 的坐标为___________, 向量→OM 的坐标为___________. 解 M (x -x 0, y -y 0, z -z 0), →) , ,(z y x OM =.提示: 自由向量与起点无关, 它在某一向量上的投影不会因起点的位置的不同而改变. (2)设数λ1、λ2、λ3不全为0, 使λ1a +λ2b +λ3c =0, 则a 、b 、c 三个向量是__________的. 解 共面.(3)设a =(2, 1, 2), b =(4, -1, 10), c =b -λa , 且a ⊥c , 则λ=____________. 解3.提示: 因为a ⊥c , 所以a ⋅c =0.又因为由a ⋅c =a ⋅b -λa ⋅a =2⨯4+1⨯(-1)+2⨯10-λ(22+12+22)=27-9λ, 所以λ=3.(4)设a 、b 、c 都是单位向量, 且满足a +b +c =0, 则a ⋅b +b ⋅c +c ⋅a =____________. 解 23-.提示: 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0, 即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a .(5)设|a |=3, |b |=4, |c |=5, 且满足a +b +c =0, 则|a ⨯b +b ⨯c +c ⨯a |=____________.解36.提示: c =-(a +b ),a ⨯b +b ⨯c +c ⨯a =a ⨯b -b ⨯(a +b )-(a +b )⨯a =a ⨯b -b ⨯a -b ⨯a =3a ⨯b , |a ⨯b +b ⨯c +c ⨯a |=3|a ⨯b |=3|a |⋅|b |=3⋅3⋅4=36.2. 在y 轴上求与点A (1, -3, 7)和点B (5, 7, -5)等距离的点. 解 设所求点为M (0, y , 0), 则有12+(y +3)2+72=52+(y -7)2+(-5)2, 即 (y +3)2=(y -7)2,解得y =2, 所求的点为M (0, 2, 0).3. 已知∆ABC 的顶点为A (3,2,-1)、B (5,-4,7)和C (-1,1,2), 求从顶点C 所引中线的长度.解 线段AB 的中点的坐标为)3 ,1 ,4()271 ,242 ,253(-=+--+. 所求中线的长度为30)23()11()14(222=-+--++=d .4. 设∆ABC 的三边→a =BC 、→b =CA 、→c =AB , 三边中点依次为D 、E 、F , 试用向量a 、b 、c 表示→AD 、→BE 、→CF , 并证明 →→→0=++CF BE AD . 解 →→→a c 21+=+=BD AB AD ,→→→b a 21+=+=CE BC BE ,→→→c b 21+=+=AF CA CF .→→→0=+-=++=++)(23)(23c c c b a CF BE AD5. 试用向量证明三角形两边中点的连线平行于第三边, 且其长度等于第三边长度的一半.证明 设D , E 分别为AB , AC 的中点, 则有→→→→→)(21AB AC AD AE DE -=-=, →→→→→AB AC AC BA BC -=+=,所以 →→BC DE 21=, 从而DE //BC , 且||21||BC DE =.6. 设|a +b |=|a -b |, a =(3, -5, 8), b =(-1, 1, z ), 求z .解a +b =(2, -4, 8+z ), a -b =(4, -6, 8-z ). 因为|a +b |=|a -b |, 所以 222222)8()6(4)8()4(2z z -+-+=++-+,解得z =1.7. 设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a -b 的夹角.解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^ b )76cos 3213=++=π, |a -b |2=(a -b )⋅(a -b )=|a |2+|b |2-2a ⋅b =|a |2+|b |2-2|a |⋅|b |cos(a ,^ b )16cos 3213=-+=π. 设向量a +b 与a -b 的夹角为θ, 则721713||||||||||||)()(cos 22=⋅-=-⋅+-=-⋅+-⋅+=b a b a b a b a b a b a b a θ, 72arccos =θ. 8. 设a +3b ⊥7a -5b , a -4b ⊥7a -2b , 求) ,(^b a .解 因为a +3b ⊥7a -5b , a -4b ⊥7a -2b ,所以 (a +3b )⋅(7a -5b )=0, (a -4b )⋅(7a -2b )=0,即 7|a |2+16a ⋅b -15|b |2 =0, 7|a |2-30a ⋅b +8|b |2 =0,又以上两式可得b a b a ⋅==2||||,于是 21||||) ,cos(^=⋅⋅=b a b a b a , 3) ,(^π=b a . 9. 设a =(2, -1, -2), b =(1, 1, z ), 问z 为何值时) ,(^b a 最小?并求出此最小值.解 2^2321||||) ,cos(z z +-=⋅⋅=b a b a b a . 因为当2) ,(0^π<<b a 时, ) ,cos(^b a 为单调减函数. 求) ,(^b a 的最小值也就是求22321)(z z z f +-=的最大值.令0)2(431)(2/32=+--⋅='z z z f , 得z =-4. 当z =-4时, 22) ,cos(^=b a , 所以422arccos ) ,(min ^π==b a .10. 设|a |=4, |b |=3, 6) ,(^π=b a , 求以a +2b 和a -3b 为边的平行四边形的面积. 解 (a +2b )⨯(a -3b )=-3a ⨯b +2b ⨯a =5b ⨯a .以a +2b 和a -3b 为边的平行四边形的面积为3021435) ,sin(||||5||5|)3()2(|^=⋅⋅⋅=⋅=⨯=-⨯+b a a b a b b a b a . 11. 设a =(2, -3, 1), b =(1, -2, 3), c =(2, 1, 2), 向量r 满足r ⊥a , r ⊥b , Prj c r =14, 求r . 解 设r =(x , y , z ).因为r ⊥a , r ⊥b , 所以r ⋅a =0, r ⋅b =0, 即2x -3y +z =0, x -2y +3z =0.又因为Prj c r =14, 所以14||1=⋅c c r , 即 2x +y +2z =42.解线性方程组⎪⎩⎪⎨⎧=++=+-=+-4222032032z y x z y x z y x ,得x =14, y =10, z =2, 所以r =(14, 10, 2).另解 因为r ⊥a , r ⊥b , 所以r 与k j i k j i b a ---=--=⨯57321132平行, 故可设r =λ(7, 5, 1). 又因为Prj c r =14, 所以14||1=⋅c c r , r ⋅c =42, 即 λ(7⨯2+5⨯1+1⨯2)=42, λ=2,所以r =(14, 10, 2).12. 设a =(-1, 3, 2), b =(2, -3, -4), c =(-3, 12, 6), 证明三向量a 、b 、c 共面, 并用a 和b 表示c .证明 向量a 、b 、c 共面的充要条件是(a ⨯b )⋅c =0. 因为k i k j i b a 36432231--=---=⨯, (a ⨯b )⋅c =(-6)⨯(-3)+0⨯12+(-3)⨯6=0,所以向量a 、b 、c 共面.设c =λa +μb , 则有(-λ+2μ, 3λ-3μ, 2λ-4μ)=(-3, 12, 6),即有方程组⎪⎩⎪⎨⎧=-=--=+-642123332μλμλμλ,解之得λ=5, μ=1, 所以c =5a +b .13. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, -1, 2)的距离相等, 求点M 的轨迹方程.解 根据题意, 有222)2()1()1(||-+++-=z y x z ,或 z 2=(x -1)2+(y +1)2+(z -2)2,化简得(x -1)2+(y +1)2=4(z -1),这就是点M 的轨迹方程.14. 指出以下旋转曲面的一条母线和旋转轴:(1)z =2(x 2+y 2);解 旋转曲面的一条母线为zOx 面上的曲线z =2x 2, 旋转轴为z 轴.(2)136936222=++z y x ; 解 旋转曲面的一条母线为xOy 面上的曲线193622=+y x , 旋转轴为y 轴. (3)z 2=3(x 2+y 2);解 旋转曲面的一条母线为yOz 面上的曲线y z 3=, 旋转轴为z 轴.(4)144222=--z y x . 解 旋转曲面的一条母线为xOy 面上的曲线1422=-y x , 旋转轴为x 轴. 15. 求通过点A (3, 0, 0)和B (0, 0, 1)且与xOy 面成3π角的平面的方程. 解 设所求平面的法线向量为n =(a , b , c ).→)1 ,0 ,3(-=BA , xOy 面的法线向量为k =(0, 0, 1).按要求有→0=⋅BA n , 3cos ||||π=⋅⋅k n k n , 即 ⎪⎩⎪⎨⎧=++=-2103222c b a c c a ,解之得c =3a , a b 26±=. 于是所求的平面的方程为0326)3(=+±-z y x ,即 3326=++z y x , 或3326=+-z y x .16. 设一平面垂直于平面z =0, 并通过从点(1, -1, 1)到直线⎩⎨⎧==+-001x z y 的垂线, 求此平面方程.解 直线⎩⎨⎧==+-001x z y 的方向向量为s =(0, 1, -1)⨯(1, 0, 0)=(0, -1, -1). 设点(1, -1, 1)到直线⎩⎨⎧==+-001x z y 的垂线交于点(x 0, y 0, z 0). 因为点(x 0, y 0, z 0)在直线⎩⎨⎧==+-001x z y 上, 所以(x 0, y 0, z 0)=(0, y 0, y 0+1). 于是, 垂线的方向向量为 s 1=(-1, y 0+1, y 0).显然有s ⋅s 1=0, 即-y 0-1-y 0=0, 210-=y . 从而)21 ,21 ,1() ,1 ,1(001--=+-=y y s . 所求平面的法线向量可取为j i k j i k s k n --=-+-⨯=⨯=21)2121(1, 所求平面的方程为0)1()1(21=+---y x , 即x +2y +1=017. 求过点(-1, 0, 4), 且平行于平面3x -4y +z -10=0, 又与直线21311z y x =-=+相交的直线的方程.解 过点(-1, 0, 4), 且平行于平面3x -4y +z -10=0的平面的方程为3(x +1)-4(y -0)+(z -4)=0, 即3x -4y +z -1=0.将直线21311z y x =-=+化为参数方程x =-1+t , y =3+t , z =2t , 代入平面方程3x -4y +z -1=0, 得3(-1+t )-4(3+t )+2t -1=0,解得t =16. 于是平面3x -4y +z -1=0与直线21311z y x =-=+的交点的坐标为(15, 19, 32), 这也是所求直线与已知直线的交点的坐标.所求直线的方向向量为s =(15, 19, 32)-(-1, 0, 4)=(16, 19, 28),所求直线的方程为28419161-==+z y x . 18. 已知点A (1, 0, 0)及点B (0, 2, 1), 试在z 轴上求一点C , 使∆ABC 的面积最小.解 设所求的点为C (0, 0, z ), 则→) ,0 ,1(z AC -=, →)1 ,2 ,0(--=z BC .因为 →→k j i k j i 2)1(212001+-+=---=⨯z z z z BC AC , 所以∆ABC 的面积为→→4)1(421||2122+-+=⨯=z z BC AC S . 令04)1(4)1(284122=+-+-+⋅=z z z z dz dS , 得51=z , 所求点为)51 ,0 ,0(C . 19. 求曲线⎩⎨⎧-+-=--=2222)1()1(2y x z y x z 在三个坐标面上的投影曲线的方程. 解 在xOy 面上的投影曲线方程为⎩⎨⎧=--=-+-02)1()1(2222z y x y x , 即⎩⎨⎧=+=+022z y x y x . 在zOx 面上的投影曲线方程为⎩⎨⎧=---±+-=0)12()1(222y z x x z , 即⎩⎨⎧==+--++002342222y z x z xz x . 在yOz 面上的投影曲线方程为⎩⎨⎧=-+---±=0)1()12(222x y z y z , 即⎩⎨⎧==+--++002342222x z y z yz y . 20. 求锥面22y x z +=与柱面z 2=2x 所围立体在三个坐标面上的投影.解 锥面与柱面交线在xOy 面上的投影为⎩⎨⎧=+=0222z y x x , 即⎩⎨⎧==+-01)1(22z y x , 所以, 立体在xOy 面上的投影为⎩⎨⎧=≤+-01)1(22z y x . 锥面与柱面交线在yOz 面上的投影为⎪⎩⎪⎨⎧=+=0)21(222x y z z , 即⎪⎩⎪⎨⎧==+-01)22(222x y z ,所以, 立体在yOz 面上的投影为⎪⎩⎪⎨⎧=≤+-01)22(222x y z . 锥面22y x z +=与柱面z 2=2x 与平面y =0的交线为⎩⎨⎧==0||y x z 和⎩⎨⎧==02y x z , 所以, 立体在zOx 面上的投影为⎩⎨⎧=≤≤02y x z x . 21. 画出以下各曲面所围立体的图形:(1)抛物柱面2y 2=x , 平面z =0及1224===z y x ;(2)抛物柱面x 2=1-z , 平面y =0, z =0及x +y =1;(3)圆锥面22y x z +=及旋转抛物面z =2-x 2-y 2;(4)旋转抛物面x 2+y 2=z , 柱面y 2=x , 平面z =0及x =1.习题9-11. 判定以下平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界.(1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2,边界为 {(x , y )|x =0或y =0}.(2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集,导集为 {(x , y )|1≤x 2+y 2≤4},边界为 {(x , y )|x 2+y 2=1或x 2+y 2=4}.(3){(x , y )|y >x 2};解 开集, 区域, 无界集,导集为 {(x , y )| y ≥x 2},边界为 {(x , y )| y =x 2}.(4){(x , y )|x 2+(y -1)2≥1}⋂{(x , y )|x 2+(y -2)2≤4}. 解 闭集, 有界集, 导集与集合本身相同, 边界为 {(x , y )|x 2+(y -1)2=1}⋃{(x , y )|x 2+(y -2)2=4}.2. 已知函数yx xy y x y x f tan ),(22-+=, 试求f (tx , ty ). 解 )(tan )()()()(),(22tytx ty tx ty tx ty tx f ⋅⋅-+= ),()tan (2222y x f t yx xy y x t =-+=. 3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v =F (x , u )+F (x , v )+F (y , u )+F (y , v ). 4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x -y , xy ). 解 f (x +y , x -y , xy )=(x +y )xy +(xy )(x +y )+(x -y )=(x +y )xy +(xy )2x .5. 求以下各函数的定义域:(1)z =ln(y 2-2x +1);解 要使函数有意义, 必须y 2-2x +1>0,故函数的定义域为D ={(x , y )|y 2-2x +1>0}.(2)yx y x z -++=11; 解 要使函数有意义, 必须x +y >0, x -y >0,故函数的定义域为D ={(x , y )|x +y >0, x -y >0}.(3)y x z -=;解 要使函数有意义, 必须y ≥0,0≥-y x 即y x ≥,于是有 x ≥0且x 2≥y ,故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }.(4)221)ln(yx x x y z --+-=; 解 要使函数有意义, 必须y -x >0, x ≥0, 1-x 2-y 2>0,故函数的定义域为D ={(x , y )| y -x >0, x ≥0, x 2+y 2<1}.(5)222222221rz y x z y x R u -+++---=(R >r >0); 解 要使函数有意义, 必须R 2-x 2-y 2-z 2≥0且x 2+y 2+z 2-r 2>0,故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}.(6)22arccos yx z u +=. 解 要使函数有意义, 必须x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求以下各极限:(1)22)1,0(),(1limy x xy y x +-→; 解 110011lim22)1,0(),(=+-=+-→y x xy y x . (2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y y x . (3)xyxy y x 42lim )0,0(),(+-→; 解 xy xy y x 42lim)0,0(),(+-→)42()42)(42(lim )0,0(),(+++++-=→xy xy xy xy y x 41)42(1lim )0,0(),(-=++-=→xy y x .(4)11lim)0,0(),(-+→xy xyy x ;解11lim)0,0(),(-+→xy xyy x )11)(11()11(lim)0,0(),(-+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xyxy xy y x y x . (5)y xy y x )sin(lim )0,2(),(→;解 y xy y x )sin(lim)0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xy xyy x .(6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++-→. 解 2222)()(21lim )()cos(1lim 22222)0,0(),(2222)0,0(),(yx y x y x y x e y x y x e y x y x ++=++-→→ 0lim 212222)0,0(),(=+=→y x y x e y x (用等价无穷小代换). 7. 证明以下极限不存在: (1)yx yx y x -+→)0,0(),(lim ; 证明 如果动点p (x , y )沿y =0趋向(0, 0), 则。
高等数学习题答案(同济第六版下)
习题8—6
1.求曲线对应得点处得切线与法平面方程、
解:
切线:
法平面:
2.求下列曲面在指定点处得切平面与法线方程
(1),点
解:
切平面:
法ቤተ መጻሕፍቲ ባይዱ:
(2),点
解:
切平面:
即
法线:
3.求出曲线上得点,使在该点得切线平行于平面、
解:设曲线在点得切向量为
平面得法向量为,由题意可知
所以,该点为
4.求椭球面上平行于平面得切平面方程、
解:,
(4)
解:,,
4、设且具有二阶连续偏导数,求
解:
5、已知,其中有二阶连续导数,求
解:
6、设,其中有连续二阶偏导数,求
解:
第五节 隐函数得求导公式
本节主要概念,定理,公式与重要结论
1、一个方程得情形
(1)若方程确定隐函数, 则、
(2)若方程确定隐函数,则;、
2、方程组得情形
(1)若确定,,则
,、
注:以上定义与充分条件、必要条件均可推广至多元函数。
习题 8-3
1、求下列函数得全微分
(1)(2)
解:
(2)
解:
(3)
解:
(4)
解:
(5)
解:
所以
(6)
解:
2、求函数,当时得全微分、
解:
3、求函数,当 时得全增量与全微分、
解:
4、研究函数在点处得可微性、
解:由于,所以在点连续,又
又
所以
所以在点处可微
(2)若确定,则
,;,、
习题8—5
1.求下列方程所确定得隐函数得一阶导数
(1)
解:
同济大学第六版高等数学上下册课后习题答案5-2
同济大学第六版高等数学上下册课后习题答案5-2 1. 试求函数⎰=xtdt y 0sin 当x =0及4π=x 时的导数. 解 x tdt dx d y x sin sin 0=='⎰, 当x =0时, y '=sin0=0; 当4π=x 时, 224sin =='πy . 2. 求由参数表示式⎰=t udu x 0sin , ⎰=tudu y 0cos 所给定的函数y 对x 的导数.解 x '(t )=sin t , y '(t )=cos t , t t x t y dx dy cos )()(=''=. 3. 求由⎰⎰=+x y ttdt dt e 000cos 所决定的隐函数y 对x 的导数dxdy . 解 方程两对x 求导得0cos =+'x y e y ,于是 ye x dx dy cos-=. 4. 当x 为何值时, 函数⎰-=x t dt te x I 02)(有极值? 解 2)(x xe x I -=', 令I '(x )=0, 得x =0. 因为当x <0时, I '(x )<0; 当x >0时, I '(x )>0,所以x =0是函数I (x )的极小值点.5. 计算下列各导数:(1)⎰+2021x dt t dx d ; (2)⎰+32411x x dt tdx d ; (3)⎰x xdt t dx d cos sin 2)cos(π. 解 (1)dxdu dt t du d u x dt t dx d u x ⋅+=+⎰⎰02202112令 421221x x x u +=⋅+=.(2)⎰⎰⎰+++=+323204044111111x x x x dt tdx d dt t dx d dt t dx d ⎰⎰+++-=3204041111x x dt t dx d dt t dx d )()(11)()(11343242'⋅++'⋅+-=x x x x 12281312xx x x +++-=. (3)⎰⎰⎰+-=x x x x dt t dx d dt t dx d dt t dx d cos 02sin 02cos sin 2)cos()cos()cos(πππ ))(cos cos cos())(sin sin cos(22'+'-=x x x x ππ)cos cos(sin )sin cos(cos 22x x x x ππ⋅-⋅-=)sin cos(sin )sin cos(cos 22x x x x πππ-⋅-⋅-=)sin cos(sin )sin cos(cos 22x x x x ππ⋅+⋅-=)sin cos()cos (sin 2x x x π-=.6. 计算下列各定积分:(1)⎰+-adx x x 02)13(; 解 a a a x x x dx x x a a+-=+-=+-⎰230230221|)21()13(. (2)⎰+2142)1(dx xx ; 解 852)11(31)22(31|)3131()1(333321332142=---=-=+---⎰x x dx x x . (3)⎰+94)1(dx x x ; 解 94223942194|)2132()()1(x x dx x x dx x x +=+=+⎰⎰ 6145)421432()921932(223223=+-+=. (4)⎰+33121x dx ; 解 66331arctan 3arctan arctan 13313312πππ=-=-==+⎰x x dx . (5)⎰--212121x dx ; 解 3)6(6)21arcsin(21arcsin arcsin 1212121212πππ=--=--==---⎰x x dx .(6)⎰+a x a dx 3022; 解 a a a a xa x a dx aa 30arctan 13arctan 1arctan 1303022π=-==+⎰. (7)⎰-1024x dx ; 解 60arcsin 21arcsin 2arcsin 410102π=-==-⎰x x dx . (8)dx x x x ⎰-+++012241133; 解 013012201224|)arctan ()113(1133---+=++=+++⎰⎰x x dx x x dx x x x 41)1arctan()1(3π+=----=. (9)⎰---+211e x dx ; 解 1ln 1ln ||1|ln 12121-=-=+=+------⎰e x x dx e e . (10)⎰402tan πθθd ; 解 4144tan )(tan )1(sec tan 40402402πππθθθθθθπππ-=-=-=-=⎰⎰d d . (11)dx x ⎰π20|sin |; 解 ⎰⎰⎰-=ππππ2020sin sin |sin |xdx xdx dx x πππ20cos cos x x +-==-cos π +cos0+cos2π-cos π=4.(12)⎰20)(dx x f , 其中⎪⎩⎪⎨⎧>≤+=1 211 1)(2x x x x x f . 解 38|)61(|)21(21)1()(2131022121020=++=++=⎰⎰⎰x x x dx x dx x dx x f . 7. 设k 为正整数. 试证下列各题: (1)⎰-=ππ0cos kxdx ; (2)⎰-=ππ0sin kxdx ; (3)⎰-=πππkxdx 2cos ; (4)⎰-=πππkxdx 2sin . 证明 (1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k k k k kx k kxdx . (2))(cos 1cos 1cos 1sin ππππππ-+-=-=--⎰k k k k x k k kxdx 0cos 1cos 1=+-=ππk kk k . (3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx . (4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx . 8. 设k 及l 为正整数, 且k ≠l . 试证下列各题:(1)⎰-=ππ0sin cos lxdx kx ; (2)⎰-=ππ0cos cos lxdx kx ;(3)⎰-=ππ0sin sin lxdx kx . 证明 (1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos 0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k . (2)⎰⎰---++=ππππdx x l k x l k lxdx kx ])cos()[cos(21cos cos 0])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k . (3)⎰⎰----+-=ππππdx x l k x l k lxdx kx ])cos()[cos(21sin sin . 0])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k . 9. 求下列极限:(1)x dt t x x ⎰→020cos lim;(2)⎰⎰→x t x t x dt te dt e 0220022)(lim .解 (1)11cos lim cos lim 20020==→→⎰x x dt t x x x . (2)22222200002200)(2lim )(lim x xt x t x xt x t x xe dt e dt e dtte dt e '⋅=⎰⎰⎰⎰→→ 22222002002lim 2lim x x t x x x xt x xe dt e xe edt e ⎰⎰→→=⋅=2212lim 22lim 2020222=+=+=→→x e x e e x x x x x . 10. 设⎩⎨⎧∈∈=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=x dt t f x 0)()(ϕ在[0, 2]上的表达式, 并讨论ϕ(x )在(0, 2)内的连续性.解 当0≤x ≤1时, 302031)()(x dt t dt t f x xx ===⎰⎰ϕ; 当1<x ≤2时, 6121212131)()(2211020-=-+=+==⎰⎰⎰x x tdt dt t dt t f x xx ϕ. 因此 ⎪⎩⎪⎨⎧≤<-≤≤=21 612110 31)(23x x x x x ϕ. 因为31)1(=ϕ, 3131lim )(lim 30101==-→-→x x x x ϕ, 316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ, 所以ϕ(x )在x =1处连续, 从而在(0, 2)内连续.11. 设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f 或0 00 sin 21)(. 求⎰=x dt t f x 0)()(ϕ在(-∞, +∞)内的表达式.解 当x <0时,00)()(00===⎰⎰xx dt dt t f x ϕ; 当0≤x ≤π时,21cos 21|cos 21sin 21)()(000+-=-===⎰⎰x t tdt dt t f x x xx ϕ; 当x >π时,πππϕ000|cos 210sin 21)()(t dt tdt dt t f x x x -=+==⎰⎰⎰ 10cos 21cos 21=+-=π. 因此 ⎪⎩⎪⎨⎧≥≤≤-<=ππϕx x x x x 10 )cos 1(210 0)(. 12. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0,⎰-=x adt t f a x x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f x a -=⎰ξ. 于是有)(1)()(1)(2x f ax dt t f a x x F x a -+--='⎰ ))(()(1)(12a x f a x x f a x ----=ξ )]()([1ξf x f ax --=. 由 f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内 0)]()([1)(≤--='ξf x f ax x F .。
高等数学同济第六版下册课后习题答案
习题8-11. 设u =a -b +2c , v =-a +3b -c . 试用a 、b 、c 表示2u -3v . 解 2u -3v =2(a -b +2c )-3(-a +3b -c )=2a -2b +4c +3a -9b +3c=5a -11b +7c .2. 如果平面上一个四边形的对角线互相平分, 试用向量证明这是平行四边形.证 →→→-=OA OB AB ; →→→-=OD OC DC ,而 →→-=OA OC , →→-=OB OD ,所以 →→→→→→-=-=+-=AB OA OB OB OA DC .这说明四边形ABCD 的对边AB =CD 且AB //CD , 从而四边形ABCD 是平行四边形.3. 把∆ABC 的BC 边五等分, 设分点依次为D 1、D 2、D 3、D 4, 再把各分点与点A 连接. 试以c =→AB 、a =→BC 表示向量→A D 1、→A D 2、→A D 3、→A D 4.解 a c 5111--=-=→→→BD BA A D , a c 5222--=-=→→→BD BA A D , a c 5333--=-=→→→BD BA A D , a c 5444--=-=→→→BD BA A D .4. 已知两点M 1(0, 1, 2)和M 2(1, -1, 0). 试用坐标表示式表示向量→21M M 及→-212M M .解 )2 ,2 ,1()2 ,1 ,0()0 ,1 ,1(21--=--=→M M ,)4 ,4 ,2()2 ,2 ,1(2221-=---=-→M M .5. 求平行于向量a =(6, 7, -6)的单位向量.解 11)6(76||222=-++=a ,平行于向量a =(6, 7, -6)的单位向量为)116 ,117 ,116(||1-=a a 或)116 ,117 ,116(||1--=-a a . 6. 在空间直角坐标系中, 指出下列各点在哪个卦限? A (1, -2, 3); B (2, 3, -4); C (2, -3, -4); D (-2, -3, 1).解 A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.7. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3, 4, 0);B (0, 4, 3);C (3, 0, 0);D (0, -1, 0).解 在xOy 面上, 点的坐标为(x , y , 0); 在yOz 面上, 点的坐标为(0, y , z ); 在zOx 面上, 点的坐标为(x , 0, z ).在x 轴上, 点的坐标为(x , 0, 0); 在y 轴上, 点的坐标为(0, y , 0), 在z 轴上, 点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上. 8. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标.解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , -c ), 点(a , b , c )关于yOz 面的对称点为(-a , b , c ), 点(a , b , c )关于zOx 面的对称点为(a , -b , c ).(2)点(a , b , c )关于x 轴的对称点为(a , -b , -c ), 点(a , b , c )关于y 轴的对称点为(-a , b , -c ), 点(a , b , c )关于z 轴的对称点为(-a , -b , c ).(3)点(a , b , c )关于坐标原点的对称点为(-a , -b , -c ). 9. 自点P 0(x 0, y 0, z 0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.解 在xOy 面、yOz 面和zOx 面上, 垂足的坐标分别为(x 0, y 0, 0)、(0, y 0, z 0)和(x 0, 0, z 0).在x 轴、y 轴和z 轴上, 垂足的坐标分别为(x 0, 0, 0), (0, y 0, 0)和(0, 0, z 0).10. 过点P 0(x 0, y 0, z 0)分别作平行于z 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点? 解 在所作的平行于z 轴的直线上, 点的坐标为(x 0, y 0, z ); 在所作的平行于xOy 面的平面上, 点的坐标为(x , y , z 0).11. 一边长为a 的立方体放置在xOy 面上, 其底面的中心在坐标原点, 底面的顶点在x 轴和y 轴上, 求它各顶点的坐标. 解 因为底面的对角线的长为a 2, 所以立方体各顶点的坐标分别为)0 ,0 ,22(a -, )0 ,0 ,22(a , )0 ,22 ,0(a -, )0 ,22 ,0(a , ) ,0 ,22(a a -, ) ,0 ,22(a a , ) ,22 ,0(a a -, ) ,22 ,0(a a . 12. 求点M (4, -3, 5)到各坐标轴的距离.解 点M 到x 轴的距离就是点(4, -3, 5)与点(4, 0, 0)之间的距离, 即345)3(22=+-=x d .点M 到y 轴的距离就是点(4, -3, 5)与点(0, -3, 0)之间的距 离, 即415422=+=y d .点M 到z 轴的距离就是点(4, -3, 5)与点(0, 0, 5)之间的距离, 即5)3(422=-+=z d .13. 在yOz 面上, 求与三点A (3, 1, 2)、B (4, -2, -2)和C (0, 5,1)等距离的点.解 设所求的点为P (0, y , z )与A 、B 、C 等距离, 则 2222)2()1(3||-+-+=→z y PA ,2222)2()2(4||++++=→z y PB ,222)1()5(||-+-=→z y PC .由题意, 有222||||||→→→==PC PB PA , 即 ⎩⎨⎧-+-=++++-+-=-+-+2222222222)1()5()2()2(4)1()5()2()1(3z y z y z y z y 解之得y =1, z =-2, 故所求点为(0, 1, -2).14. 试证明以三点A (4, 1, 9)、B (10, -1, 6)、C (2, 4, 3)为顶点的三角形是等腰三角直角三角形.解 因为7)96()11()410(||222=-+--+-=→AB ,7)93()14()42(||222=-+-+-=→AC ,27)63()14()102(||222=-+++-=→BC ,所以222||||||→→→+=AC AB BC , ||||→→=AC AB . 因此∆ABC 是等腰直角三角形.15. 设已知两点1) ,2 ,4(1M 和M 2(3, 0, 2). 计算向量→21M M 的模、方向余弦和方向角.解 )1 ,2 ,1()12 ,20 ,43(21-=---=→M M ;21)2()1(||22221=++-=→M M ;21cos -=α, 22cos =β, 21cos =γ; 32πα=, 43 πβ=, 3πγ=. 16. 设向量的方向余弦分别满足(1)cos α=0; (2)cos β=1;(3)cos α=cos β=0, 问这些向量与坐标轴或坐标面的关系如何? 解 (1)当cos α=0时, 向量垂直于x 轴, 或者说是平行于yOz 面.(2)当cos β=1时, 向量的方向与y 轴的正向一致, 垂直于zOx 面.(3)当cos α=cos β=0时, 向量垂直于x 轴和y 轴, 平行于z 轴, 垂直于xOy 面.17. 设向量r 的模是4, 它与轴u 的夹角是60︒, 求r 在轴 u 上的投影.解 22143cos ||j Pr =⋅=⋅=πr r u . 18. 一向量的终点在点B (2, -1, 7), 它在x 轴、y 轴和z 轴上的投影依次为4, -4, 7. 求这向量的起点A 的坐标.解 设点A 的坐标为(x , y , z ). 由已知得⎪⎩⎪⎨⎧=--=--=-774142z y x ,解得x =-2, y =3, z =0. 点A 的坐标为A (-2, 3, 0).19. 设m =3i +5j +8k , n =2i -4j -7k 和p =5i +j -4k . 求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n -p=4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k ,所以a =4m +3n -p 在x 轴上的投影为13, 在y 轴上的分向量7j .习题8-21. 设a =3i -j -2k , b =i +2j -k , 求(1)a ⋅b 及a ⨯b ; (2)(-2a )⋅3b 及a ⨯2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3⨯1+(-1)⨯2+(-2)⨯(-1)=3,k j i k j i b a 75121 213++=---=⨯. (2)(-2a )⋅3b =-6a ⋅b = -6⨯3=-18,a ⨯2b =2(a ⨯b )=2(5i +j +7k )=10i +2j +14k .(3)21236143||||||) ,cos(^==⋅=b a b a b a . 2. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a .解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a . 3. 已知M 1(1, -1, 2)、M 2(3, 3, 1)和M 3(3, 1, 3). 求与→21M M 、→32M M 同时垂直的单位向量.解 →)1 ,4 (2,2)1 ,13 ,13(21-=-+-=M M , →)2 ,2 ,0()13 ,31 ,33(32-=---=M M . →→k j i k j i n 446 220 142 3221--=--=⨯=M M M M , 172161636||=++=n ,)223(171)446(1721k j i k j i e --±=--±=为所求向量. 4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).解F =(0, 0, -100⨯9. 8)=(0, 0, -980), →)6 ,3 ,2()82 ,14 ,31(21--=---==M M S . W =F ⋅S =(0, 0, -980)⋅(-2, 3, -6)=5880(焦耳).5. 在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与→1OP 成角θ1的力F 1作用着; 在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与→2OP 成角θ1的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解 因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的规定可得, 使杠杆保持平衡的条件为x 1|F 1|⋅sin θ1-x 2|F 2|⋅sin θ2=0,即 x 1|F 1|⋅sin θ1=x 2|F 2|⋅sin θ2.6. 求向量a =(4, -3, 4)在向量b =(2, 2, 1)上的投影.解2)142324(31)1 ,2 ,2()4 ,3 ,4(1221||1||j Pr 222=⨯+⨯-⨯=⋅-++=⋅=⋅=⋅=b a b b b a e a a b b . 7. 设a =(3, 5, -2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直? 解 λa +μb =(3λ+2μ, 5λ+μ, -2λ+4μ),λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, -2λ+4μ)⋅(0, 0, 1)=0,即-2λ+4μ=0, 所以λ=2μ. 当λ=2μ时, λa +μb 与z 轴垂直.8. 试用向量证明直径所对的圆周角是直角.证明 设AB 是圆O 的直径, C 点在圆周上, 则→→OA OB -=, →→||||OA OC =.因为→→→→→→→→→→→→0||||)()()()(22=-=+⋅-=-⋅-=⋅OA OC OA OC OA OC OB OC OA OC BC AC ,所以→→BC AC ⊥, ∠C =90︒.9. 设已知向量a =2i -3j +k , b =i -j +3k 和c =i -2j , 计算: (1)(a ⋅b )c -(a ⋅c )b ; (2)(a +b )⨯(b +c );(3)(a ⨯b )⋅c .解 (1)a ⋅b =2⨯1+(-3)⨯(-1)+1⨯3=8, a ⋅c =2⨯1+(-3)⨯(-2)=8,(a ⋅b )c -(a ⋅c )b =8c -8b =8(c -b )=8[(i -2j )-(i -j +3k )]=-8j -24k .(2)a +b =3i -4j +4k , b +c =2i -3j +3k ,k j k j i c b b a --=--=+⨯+332443)()(. (3)k j i k j i b a +--=--=⨯58311132, (a ⨯b )⋅c =-8⨯1+(-5)⨯(-2)+1⨯0=2.10. 已知→j i 3+=OA , →k j 3+=OB , 求∆OAB 的面积.解 根据向量积的几何意义, →→||OB OA ⨯表示以→OA 和→OB 为邻边的平行四边形的面积, 于是∆OAB 的面积为→→||21OB OA S ⨯=. 因为→→k j i k j i +--==⨯33310301OB OA , →→191)3()3(||223=+-+-=⨯OB OA , 所以三角形∆OAB 的面积为→→1921||21=⨯=OB OA S . 12. 试用向量证明不等式:||332211232221232221b a b a b a b b b a a a ++≥++++,其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数, 并指出等号成立的条件.解 设a =(a 1, a 2, a 3), b =(b 1, b 2, b 3), 则有||||) ,cos(||||^b a b a b a b a ⋅≤⋅=⋅,于是 ||332211232221232221b a b a b a b b b a a a ++≥++++,其中当) ,cos(^b a =1时, 即a 与b 平行是等号成立.习题8-31. 一动点与两定点(2, 3, 1)和(4, 5, 6)等距离, 求这动点的轨迹方程.解 设动点为M (x , y , z ), 依题意有(x -2)2+(y -3)2+(z -1)2=(x -4)2+(y -5)2+(z -6)2,即 4x +4y +10z -63=0.2. 建立以点(1, 3, -2)为球心, 且通过坐标原点的球面方程.解 球的半径14)2(31222=-++=R ,球面方程为(x -1)2+(y -3)2+(z +2)2=14,即 x 2+y 2+z 2-2x -6y +4z =0.3. 方程x 2+y 2+z 2-2x +4y +2z =0表示什么曲面?解 由已知方程得(x 2-2x +1)+(y 2+4y +4)+(z 2+2z +1)=1+4+1,即 2222)6()1()2()1(=++++-z y x ,所以此方程表示以(1, -2, -1)为球心, 以6为半径的球面.4. 求与坐标原点O 及点(2, 3, 4)的距离之比为1:2的点的全体所组成的曲面的方程, 它表示怎样曲面?解 设点(x , y , z )满足题意, 依题意有21)4()3()2(222222=-+-+-++z y x z y x , 化简整理得9116)34()1()32(222=+++++z y x , 它表示以)34 ,1 ,32(---为球心, 以2932为半径的球面. 5. 将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的z 换成22z y +±得旋转曲面的方程y 2+z 2=5x .6. 将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周, 求所生成的旋转曲面的方程.解 将方程中的x 换成22y x +±得旋转曲面的方程x 2+y 2+z 2=9.7. 将xOy 坐标面上的双曲线4x 2-9y 2=36分别绕x 轴及y 轴旋转一周, 求所生成的旋转曲面的方程.解 双曲线绕x 轴旋转而得的旋转曲面的方程为4x 2-9y 2-9z 2=36.双曲线绕y 轴旋转而得的旋转曲面的方程为4x 2+4z 2-9y 2=36.8. 画出下列方程所表示的曲面:(1)222)2()2(a y a x =+-;(2)19422=+-y x ;(3)14922=+z x ;(4)y2-z=0;(5)z=2-x2.9.指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1)x=2;解在平面解析几何中,x=2表示平行于y轴的一条直线;在空间解析几何中,x=2表示一张平行于yOz面的平面.(2)y=x+1;解在平面解析几何中,y=x+1表示一条斜率是1,在y轴上的截距也是1的直线;在空间解析几何中,y=x+1表示一张平行于z轴的平面.(3)x2+y2=4;解在平面解析几何中,x2+y2=4表示中心在原点,半径是4的圆;在空间解析几何中, x2+y2=4表示母线平行于z轴,准线为x2+y2=4的圆柱面.(4)x2-y2=1.解在平面解析几何中,x2-y2=1表示双曲线;在空间解析几何中,x2-y2=1表示母线平行于z轴的双曲面.10.说明下列旋转曲面是怎样形成的:(1)1994222=++z y x ;解 这是xOy 面上的椭圆19422=+y x 绕x 轴旋转一周而形成的, 或是zOx 面上的椭圆19422=+z x 绕x 轴旋转一周而形成的.(2)14222=+-z y x ;解 这是xOy 面上的双曲线1422=-y x 绕y 轴旋转一周而形成的, 或是yOz 面上的双曲线1422=+-z y 绕y 轴旋转一周而形成的. (3)x 2-y 2-z 2=1;解 这是xOy 面上的双曲线x 2-y 2=1绕x 轴旋转一周而形成的, 或是zOx 面上的双曲线x 2-z 2=1绕x 轴旋转一周而形成的. (4)(z -a )2=x 2+y 2 .解 这是zOx 面上的曲线(z -a )2=x 2绕z 轴旋转一周而形成的, 或是yOz 面上的曲线(z -a )2=y 2绕z 轴旋转一周而形成的. 11. 画出下列方程所表示的曲面: (1)4x 2+y 2-z 2=4;(2)x 2-y 2-4z 2=4;(3)94322y x z +=.习题8-41. 画出下列曲线在第一卦限内的图形: (1)⎩⎨⎧==21y x ;(2)⎩⎨⎧=---=0422y x y x z ;(3) ⎩⎨⎧=+=+222222az x a y x .2. 指出下方程组在平面解析几何中与在空间解析几何中分别表示什么图形: (1)⎩⎨⎧-=+=3215x y x y ;解 在平面解析几何中, ⎩⎨⎧-=+=3215x y x y 表示直线y =5x +1与y =2x -3的交点)317 ,34(--; 在空间解析几何中, ⎩⎨⎧-=+=3215x y x y 表示平面y =5x +1与y =2x -3的交线, 它表示过点)0 ,317 ,34(--, 并且行于z 轴. (2)⎪⎩⎪⎨⎧==+319422y y x .解 在平面解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆19422=+y x 与其切线y =3的交点(0, 3); 在空间解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆柱面19422=+y x 与其切平面y =3的交线.3. 分别求母线平行于x 轴及y 轴而且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解 把方程组中的x 消去得方程3y 2-z 2=16, 这就是母线平行于x 轴且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 把方程组中的y 消去得方程3x 2+2z 2=16, 这就是母线平行于y轴且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 4. 求球面x 2+y 2+z 2=9与平面x +z =1的交线在xOy 面上的投影的方程.解 由x +z =1得z =1-x 代入x 2+y 2+z 2=9得方程2x 2-2x +y 2=8, 这是母线平行于z 轴, 准线为球面x 2+y 2+z 2=9与平面x +z =1的交线的柱面方程, 于是所求的投影方程为 ⎩⎨⎧==+-082222z y x x .5. 将下列曲线的一般方程化为参数方程:(1)⎩⎨⎧==++x y z y x 9222 ;解 将y =x 代入x 2+y 2+z 2=9得2x 2+z 2=9, 即13)23(2222=+z x .令t x cos 23=, 则z =3sin t .故所求参数方程为t x cos 23=, t y cos 23=, z =3sin t .(2)⎩⎨⎧==+++-04)1()1(222z z y x .解 将z =0代入(x -1)2+y 2+(z +1)2=4得(x -1)2+y 2=3. 令t x cos 31+=, 则t y sin 3=, 于是所求参数方程为t x cos 31+=, t y sin 3=, z =0.6. 求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解 由前两个方程得x 2+y 2=a 2, 于是螺旋线在xOy 面上的投影曲线的直角坐标方程为 ⎩⎨⎧==+0222z a y x .由第三个方程得bz=θ代入第一个方程得b z a x cos =, 即axb z arccos =,于是螺旋线在zOx 面上的投影曲线的直角坐标方程为⎪⎩⎪⎨⎧==0arccos y a xb z .由第三个方程得b z =θ代入第二个方程得b z a y sin =, 即ay b z arcsin =, 于是螺旋线在yOz 面上的投影曲线的直角坐标方程为 ⎪⎩⎪⎨⎧==a y b z x arcsin 0.7. 求上半球2220y x a z --≤≤与圆柱体x 2+y 2≤ax (a >0)的公共部分在xOy 面和zOx 面上的投影.解 圆柱体x 2+y 2≤ax 在xOy 面上的投影为x 2+y 2≤ax , 它含在半球2220y x a z --≤≤在xOy 面上的投影x 2+y 2≤a 2内, 所以半球与圆柱体的公共部分在xOy 面上的投影为x 2+y 2≤ax .为求半球与圆柱体的公共部分在zOx 面上的投影, 由圆柱面方程x 2+y 2=ax 得y 2=ax -x 2, 代入半球面方程222y x a z --=, 得ax a z -=2(0≤x ≤a ), 于是半球与圆柱体的公共部分在zOx 面上的投影为ax a z -≤≤20(0≤x ≤a ), 即z 2+ax ≤a 2, 0≤x ≤a , z ≥0.8. 求旋转抛物面z =x 2+y 2(0≤z ≤4)在三坐标面上的投影.解 令z =4得x 2+y 2=4, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在xOy 面上的投影为x 2+y 2≤4. 令x =0得z =y 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在yOz 面上的投影为y 2≤z ≤4. 令y =0得z =x 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在zOx 面上的投影为x 2≤z ≤4.习题8-51. 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程.解 所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为 3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0.2. 求过点M 0(2, 9, -6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程.解 所求平面的法线向量为n =(2, 9, -6), 所求平面的方程为 2(x -2)+9(y -9)-6(z -6)=0, 即2x +9y -6z -121=0. 3. 求过(1, 1, -1)、(-2, -2, 2)、(1, -1, 2)三点的平面方程. 解 n 1=(1, -1, 2)-(1, 1, -1)=(0, -2, 3), n 1=(1, -1, 2)-(-2, -2, 2)=(3, 1, 0), 所求平面的法线向量为k j i kj i n n n 69301332021++-=-=⨯=,所求平面的方程为-3(x -1)+9(y -1)+6(z +1)=0, 即x -3y -2z =0. 4. 指出下列各平面的特殊位置, 并画出各平面: (1)x =0;解 x =0是yOz 平面. (2)3y -1=0;解 3y -1=0是垂直于y 轴的平面, 它通过y 轴上的点)0 ,31 ,0(. (3)2x -3y -6=0;解 2x -3y -6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和-2. (4)03=-y x ;解 03=-y x 是通过z 轴的平面, 它在xOy 面上的投影的斜率为33.(5)y +z =1;解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1.(6)x -2z =0;解 x -2z =0是通过y 轴的平面. (7)6x +5-z =0.解 6x +5-z =0是通过原点的平面.5. 求平面2x -2y +z +5=0与各坐标面的夹角的余弦. 解 此平面的法线向量为n =(2, -2, 1). 此平面与yOz 面的夹角的余弦为321)2(22||||) ,cos(cos 122^=+-+=⋅⋅==i n i n i n α;此平面与zOx 面的夹角的余弦为321)2(22||||) ,cos(cos 122^-=+-+-=⋅⋅==j n j n j n β; 此平面与xOy 面的夹角的余弦为311)2(21||||) ,cos(cos 122^=+-+=⋅⋅==k n k n k n γ.6. 一平面过点(1, 0, -1)且平行于向量a =(2, 1, 1)和b =(1, -1, 0), 试求这平面方程.解 所求平面的法线向量可取为k j i kj i b a n 3011112-+=-=⨯=,所求平面的方程为(x -1)+(y -0)-3(z +1)=0, 即x +y -3z -4=0.7. 求三平面x +3y +z =1, 2x -y -z =0, -x +2y +2z =3的交点. 解 解线性方程组 ⎪⎩⎪⎨⎧=++-=--=++3220213z y x z y x z y x得x =1, y =-1, z =3. 三个平面的交点的坐标为(1, -1, 3). 8. 分别按下列条件求平面方程: (1)平行于zOx 面且经过点(2, -5, 3);解 所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为 0⋅(x -2)-5(y +5)+0⋅(z -3)=0, 即y =-5. (2)通过z 轴和点(-3, 1, -2); 解 所求平面可设为Ax +By =0. 因为点(-3, 1, -2)在此平面上, 所以 -3A +B =0, 将B =3A 代入所设方程得 Ax +3Ay =0, 所以所求的平面的方程为 x +3y =0,(3)平行于x 轴且经过两点(4, 0, -2)和(5, 1, 7).解 所求平面的法线向量可设为n =(0, b , c ). 因为点(4, 0, -2)和(5, 1, 7)都在所求平面上, 所以向量n 1=(5, 1, 7)-(4, 0, -2)=(1, 1, 9)与n 是垂直的, 即 b +9c =0, b =-9c ,于是 n =(0, -9c , c )=-c (0, 9, -1). 所求平面的方程为9(y -0)-(z +2)=0, 即9y -z -2=0.9. 求点(1, 2, 1)到平面x +2y +2z -10=0的距离. 解 点(1, 2, 1)到平面x +2y +2z -10=0的距离为 1221|1012221|222=++-⨯+⨯+=d .习题8-61. 求过点(4, -1, 3)且平行于直线51123-==-z y x 的直线方程.解 所求直线的方向向量为s =(2, 1, 5), 所求的直线方程为531124-=+=-z y x .2. 求过两点M 1(3, -2, 1)和M 2(-1, 0, 2)的直线方程. 解 所求直线的方向向量为s =(-1, 0, 2)-(3, -2, 1)=(-4, 2, 1),所求的直线方程为112243-=+=--x y x .3. 用对称式方程及参数方程表示直线⎩⎨⎧=++=+-421z y x z y x .解 平面x -y +z =1和2x +y +z =4的法线向量为n 1=(1, -1, 1), n 2=(2, 1, 1), 所求直线的方向向量为k j i k j i n n s 3211211121++-=-=⨯=. 在方程组⎩⎨⎧=++=+-421z y x z y x 中, 令y =0, 得⎩⎨⎧=+=+421z x z x , 解得x =3, z =-2. 于是点(3, 0, -2)为所求直线上的点.所求直线的对称式方程为32123+==--z y x ; 参数方程为x =3-2t , y =t , z =-2+3t .4. 求过点(2, 0, -3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.解 所求平面的法线向量n 可取为已知直线的方向向量, 即k j i k j i n 111416253421)2 ,5 ,3()4 ,2 ,1(++-=--=-⨯-=. 所平面的方程为-16(x -2)+14(y -0)+11(z +3)=0,即 16x -14y -11z -65=0.5. 求直线⎩⎨⎧=+-=-+-02309335z y x z y x 与直线⎩⎨⎧=-++=+-+0188302322z y x z y x 的夹角的余弦.解 两直线的方向向量分别为k j i k j i s -+=--=431233351, k j i k j i s 105101831222+-=-=. 两直线之间的夹角的余弦为||||) ,cos(2121^21s s s s s s ⋅⨯=010)5(10)1(4310)1()5(4103222222=+-+-++⨯-+-⨯+⨯=. 6. 证明直线⎩⎨⎧=++-=-+7272z y x z y x 与直线⎩⎨⎧=--=-+028363z y x z y x 平行. 解 两直线的方向向量分别为k j i k j i s 531121211++=--=, k j i k j i s 15391123632---=---=. 因为s 2=-3s 1, 所以这两个直线是平行的.7. 求过点(0, 2, 4)且与两平面x +2z =1和y -3z =2平行的直线方程.解 因为两平面的法线向量n 1=(1, 0, 2)与n 2=(0, 1, -3)不平行, 所以两平面相交于一直线, 此直线的方向向量可作为所求直线的方向向量s , 即k j i k j i s ++-=-=32310201. 所求直线的方程为14322-=-=-z y x . 8. 求过点(3, 1, -2)且通过直线12354z y x =+=-的平面方程. 解 所求平面的法线向量与直线12354z y x =+=-的方向向量s 1=(5, 2, 1)垂直. 因为点(3, 1, -2)和(4, -3, 0)都在所求的平面上, 所以所求平面的法线向量与向量s 2=(4, -3, 0)-(3, 1, -2)=(1, -4, 2)也是垂直的. 因此所求平面的法线向量可取为k j i k j i s s n 229824112521--=-=⨯=. 所求平面的方程为8(x -3)-9(y -1)-22(z +2)=0,即 8x -9y -22z -59=0.9. 求直线⎩⎨⎧=--=++003z y x z y x 与平面x -y -z +1=0的夹角. 解 已知直线的方向向量为)2(2242111311)1 ,1 ,1()3 ,1 ,1(k j i k j i k j i s -+=-+=--=--⨯=, 已知平面的法线向量为n =(1, -1, -1).因为s ⋅n =2⨯1+4⨯(-1)+(-2)⨯(-1)=0,所以s ⊥n , 从而直线⎩⎨⎧=--=++003z y x z y x 与平面x -y -z +1=0的夹角为0. 10. 试确定下列各组中的直线和平面间的关系:(1)37423z y x =-+=-+和4x -2y -2z =3; 解 所给直线的方向向量为s =(-2, -7, 3), 所给平面的法线向量为n =(4, -2, -2).因为s ⋅n =(-2)⨯4+(-7)⨯(-2)+3⨯(-2)=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(-3, -4, 0)不满足平面方程4x -2y -2z =3, 所以所给直线不在所给平面上.(2)723z y x =-=和3x -2y +7z =8; 解 所给直线的方向向量为s =(3, -2, 7), 所给平面的法线向量为n =(3, -2, 7).因为s =n , 所以所给直线与所给平面是垂直的.(3)431232--=+=-z y x 和x +y +z =3. 解 所给直线的方向向量为s =(3, 1, -4), 所给平面的法线向量为n =(1, 1, 1).因为s ⋅n =3⨯1+1⨯1+(-4)⨯1=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(2, -2, 3)满足平面方程x +y +z =3, 所以所给直线在所给平面上.11. 求过点(1, 2, 1)而与两直线⎩⎨⎧=-+-=+-+01012z y x z y x 和⎩⎨⎧=+-=+-002z y x z y x 平行的平面的方程.解 已知直线的方向向量分别为k j i k j i s 32111121)1 ,1 ,1()1 ,2 ,1(1--=--=-⨯-=, k j k j i s --=--=-⨯-=111112)1 ,1 ,1()1 ,1 ,2(1. 所求平面的法线向量可取为k j i k j i s s n -+-=----=⨯=11032121, 所求平面的方程为-(x -1)+(y -2)-(z -1)=0, 即x -y +z =0.12. 求点(-1, 2, 0)在平面x +2y -z +1=0上的投影.解 平面的法线向量为n =(1, 2, -1). 过点(-1, 2, 0)并且垂直于已知平面的直线方程为12211-=-=+z y x . 将此方程化为参数方程x =-1+t , y =2+2t , z =-t , 代入平面方程x +2y -z +1=0中, 得(-1+t )+2(2+2t )-(-t )+1=0, 解得32-=t . 再将32-=t 代入直线的参数方程, 得35-=x , 32=y , 32=z . 于是点(-1, 2, 0)在平面x +2y -z +1=0上的投影为点)32 ,32 ,25(-. 13. 求点P (3, -1, 2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.解 已知直线的方向向量为k j k j i s 33112111)1 ,1 ,2()1 ,1 ,1(--=--=-⨯-=. 过点P 且与已知直线垂直的平面的方程为-3(y +1)-3(z -2)=0, 即y +z -1=0.解线性方程组⎪⎩⎪⎨⎧=-+=-+-=+-+0104201z y z y x z y x ,得x =1, 21-=y , 23=z . 点P (3, -1, 2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离就是点P (3, -1, 2)与点)23 ,21 ,1(-间的距离, 即 223)232()211()13(22=-++-+-=d . 14. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离→||||0s s ⨯=M M d . 解 设点M 0到直线L 的距离为d , L 的方向向量→=MN s , 根据向量积的几何意义, 以→M M 0和→MN 为邻边的平行四边形的面积为||||00s ⨯=⨯→→→M M MN M M ,又以→M M 0和→MN 为邻边的平行四边形的面积为||||s ⋅=⋅→d MN d . 因此 ||||0s s ⨯=⋅→M M d , ||||0s s ⨯=→M M d . 15. 求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面4x -y +z =1上的投影直线的方程.解 过已知直线的平面束方程为(2+3λ)x +(-4-λ)y +(1-2λ)z -9λ=0.为在平面束中找出与已知平面垂直的平面, 令(4 -1, 1)⋅(2+3λ, -4-λ, 1-2λ)=0,即 4⋅(2+3λ)+(-1)⋅(-4-λ)+1⋅(1-2λ)=0. 解之得1113-=λ. 将1113-=λ代入平面束方程中, 得 17x +31y -37z -117=0.故投影直线的方程为⎩⎨⎧=--+=+-011737311714z y x z y x . 16. 画出下列各曲面所围成的立体图形:(1)x =0, y =0, z =0, x =2, y =1, 3x +4y +2z -12=0;(2)x =0, z =0, x =1, y =2, 4y z =;(3)z =0, z =3, x -y =0, 03=-y x , x 2+y 2=1(在第一卦限内);(4)x =0, y =0, z =0, x 2+y 2=R 2, y 2+z 2=R 2(在第一卦限内).总习题八1. 填空(1)设在坐标系[O ; i , j , k ]中点A 和点M 的坐标依次为(x 0, y 0, z 0)和(x , y , z ), 则在[A ; i , j , k ] 坐标系中, 点M 的坐标为___________, 向量→OM 的坐标为___________.解 M (x -x 0, y -y 0, z -z 0), →) , ,(z y x OM =.提示: 自由向量与起点无关, 它在某一向量上的投影不会因起点的位置的不同而改变.(2)设数λ1、λ2、λ3不全为0, 使λ1a +λ2b +λ3c =0, 则a 、b 、c 三个向量是__________的. 解 共面.(3)设a =(2, 1, 2), b =(4, -1, 10), c =b -λa , 且a ⊥c , 则λ=____________.解3.提示: 因为a ⊥c , 所以a ⋅c =0.又因为由a ⋅c =a ⋅b -λa ⋅a =2⨯4+1⨯(-1)+2⨯10-λ(22+12+22)=27-9λ, 所以λ=3.(4)设a 、b 、c 都是单位向量, 且满足a +b +c =0, 则a ⋅b +b ⋅c +c ⋅a =____________. 解 23-. 提示: 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a . (5)设|a |=3, |b |=4, |c |=5, 且满足a +b +c =0, 则|a ⨯b +b ⨯c +c ⨯a |=____________.解36.提示: c =-(a +b ),a ⨯b +b ⨯c +c ⨯a =a ⨯b -b ⨯(a +b )-(a +b )⨯a =a ⨯b -b ⨯a -b ⨯a =3a ⨯b ,|a ⨯b +b ⨯c +c ⨯a |=3|a ⨯b |=3|a |⋅|b |=3⋅3⋅4=36.2. 在y 轴上求与点A (1, -3, 7)和点B (5, 7, -5)等距离的点.解 设所求点为M (0, y , 0), 则有12+(y +3)2+72=52+(y -7)2+(-5)2,即 (y +3)2=(y -7)2,解得y =2, 所求的点为M (0, 2, 0).3. 已知∆ABC 的顶点为A (3,2,-1)、B (5,-4,7)和C (-1,1,2), 求从顶点C 所引中线的长度. 解 线段AB 的中点的坐标为)3 ,1 ,4()271 ,242 ,253(-=+--+. 所求中线的长度为 30)23()11()14(222=-+--++=d .4. 设∆ABC 的三边→a =BC 、→b =CA 、→c =AB , 三边中点依次为D 、E 、F , 试用向量a 、b 、c 表示→AD 、→BE 、→CF , 并证明→→→0=++CF BE AD .解 →→→a c 21+=+=BD AB AD , →→→b a 21+=+=CE BC BE , →→→c b 21+=+=AF CA CF . →→→0=+-=++=++)(23)(23c c c b a CF BE AD 5. 试用向量证明三角形两边中点的连线平行于第三边, 且其长度等于第三边长度的一半.证明 设D , E 分别为AB , AC 的中点, 则有→→→→→)(21AB AC AD AE DE -=-=, →→→→→AB AC AC BA BC -=+=,所以 →→BC DE 21=, 从而DE //BC , 且||21||BC DE =. 6. 设|a +b |=|a -b |, a =(3, -5, 8), b =(-1, 1, z ), 求z .解a +b =(2, -4, 8+z ), a -b =(4, -6, 8-z ). 因为|a +b |=|a -b |, 所以222222)8()6(4)8()4(2z z -+-+=++-+,解得z =1.7. 设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a -b 的夹角. 解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^ b )76cos 3213=++=π, |a -b |2=(a -b )⋅(a -b )=|a |2+|b |2-2a ⋅b =|a |2+|b |2-2|a |⋅|b |cos(a ,^ b )16cos 3213=-+=π. 设向量a +b 与a -b 的夹角为θ, 则721713||||||||||||)()(cos 22=⋅-=-⋅+-=-⋅+-⋅+=b a b a b a b a b a b a b a θ,72arccos =θ. 8. 设a +3b ⊥7a -5b , a -4b ⊥7a -2b , 求) ,(^b a .解 因为a +3b ⊥7a -5b , a -4b ⊥7a -2b ,所以 (a +3b )⋅(7a -5b )=0, (a -4b )⋅(7a -2b )=0,即 7|a |2+16a ⋅b -15|b |2 =0, 7|a |2-30a ⋅b +8|b |2 =0,又以上两式可得b a b a ⋅==2||||,于是 21||||) ,cos(^=⋅⋅=b a b a b a , 3) ,(^π=b a . 9. 设a =(2, -1, -2), b =(1, 1, z ), 问z 为何值时) ,(^b a 最小?并求出此最小值.解 2^2321||||) ,cos(z z +-=⋅⋅=b a b a b a . 因为当2) ,(0^π<<b a 时, ) ,cos(^b a 为单调减函数. 求) ,(^b a 的最小值也就是求22321)(z z z f +-=的最大值.令0)2(431)(2/32=+--⋅='z z z f , 得z =-4. 当z =-4时, 22) ,cos(^=b a , 所以422arccos ) ,(min ^π==b a .10. 设|a |=4, |b |=3, 6) ,(^π=b a , 求以a +2b 和a -3b 为边的平行四边形的面积. 解 (a +2b )⨯(a -3b )=-3a ⨯b +2b ⨯a =5b ⨯a .以a +2b 和a -3b 为边的平行四边形的面积为3021435) ,sin(||||5||5|)3()2(|^=⋅⋅⋅=⋅=⨯=-⨯+b a a b a b b a b a . 11. 设a =(2, -3, 1), b =(1, -2, 3), c =(2, 1, 2), 向量r 满足r ⊥a , r ⊥b , Prj c r =14, 求r . 解 设r =(x , y , z ).因为r ⊥a , r ⊥b , 所以r ⋅a =0, r ⋅b =0, 即2x -3y +z =0, x -2y +3z =0.又因为Prj c r =14, 所以14||1=⋅c c r , 即 2x +y +2z =42.解线性方程组⎪⎩⎪⎨⎧=++=+-=+-4222032032z y x z y x z y x ,得x =14, y =10, z =2, 所以r =(14, 10, 2).另解 因为r ⊥a , r ⊥b , 所以r 与k j i k j i b a ---=--=⨯57321132平行, 故可设r =λ(7, 5, 1). 又因为Prj c r =14, 所以14||1=⋅c c r , r ⋅c =42, 即 λ(7⨯2+5⨯1+1⨯2)=42, λ=2,所以r =(14, 10, 2).12. 设a =(-1, 3, 2), b =(2, -3, -4), c =(-3, 12, 6), 证明三向量a 、b 、c 共面, 并用a 和b 表示c .证明 向量a 、b 、c 共面的充要条件是(a ⨯b )⋅c =0. 因为k i k j i b a 36432231--=---=⨯, (a ⨯b )⋅c =(-6)⨯(-3)+0⨯12+(-3)⨯6=0,所以向量a 、b 、c 共面.设c =λa +μb , 则有(-λ+2μ, 3λ-3μ, 2λ-4μ)=(-3, 12, 6),即有方程组⎪⎩⎪⎨⎧=-=--=+-642123332μλμλμλ,解之得λ=5, μ=1, 所以c =5a +b .13. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, -1, 2)的距离相等, 求点M 的轨迹方程.解 根据题意, 有222)2()1()1(||-+++-=z y x z ,或 z 2=(x -1)2+(y +1)2+(z -2)2,化简得(x -1)2+(y +1)2=4(z -1),这就是点M 的轨迹方程.14. 指出下列旋转曲面的一条母线和旋转轴:(1)z =2(x 2+y 2);解 旋转曲面的一条母线为zOx 面上的曲线z =2x 2, 旋转轴为z 轴.(2)136936222=++z y x ; 解 旋转曲面的一条母线为xOy 面上的曲线193622=+y x , 旋转轴为y 轴. (3)z 2=3(x 2+y 2);解 旋转曲面的一条母线为yOz 面上的曲线y z 3=, 旋转轴为z 轴.(4)144222=--z y x . 解 旋转曲面的一条母线为xOy 面上的曲线1422=-y x , 旋转轴为x 轴.15. 求通过点A (3, 0, 0)和B (0, 0, 1)且与xOy 面成3π角的平面的方程. 解 设所求平面的法线向量为n =(a , b , c ).→)1 ,0 ,3(-=BA , xOy 面的法线向量为k =(0, 0, 1).按要求有→0=⋅BA n , 3cos ||||π=⋅⋅k n k n , 即 ⎪⎩⎪⎨⎧=++=-2103222c b a c c a ,解之得c =3a , a b 26±=. 于是所求的平面的方程为0326)3(=+±-z y x ,即 3326=++z y x , 或3326=+-z y x .16. 设一平面垂直于平面z =0, 并通过从点(1, -1, 1)到直线⎩⎨⎧==+-001x z y 的垂线, 求此平面方程.解 直线⎩⎨⎧==+-001x z y 的方向向量为s =(0, 1, -1)⨯(1, 0, 0)=(0, -1, -1).设点(1, -1, 1)到直线⎩⎨⎧==+-001x z y 的垂线交于点(x 0, y 0, z 0). 因为点(x 0, y 0, z 0)在直线⎩⎨⎧==+-001x z y 上, 所以(x 0, y 0, z 0)=(0, y 0, y 0+1). 于是, 垂线的方向向量为 s 1=(-1, y 0+1, y 0).显然有s ⋅s 1=0, 即-y 0-1-y 0=0, 210-=y . 从而)21 ,21 ,1() ,1 ,1(001--=+-=y y s . 所求平面的法线向量可取为j i k j i k s k n --=-+-⨯=⨯=21)2121(1, 所求平面的方程为0)1()1(21=+---y x , 即x +2y +1=017. 求过点(-1, 0, 4), 且平行于平面3x -4y +z -10=0, 又与直线21311z y x =-=+相交的直线的方程.解 过点(-1, 0, 4), 且平行于平面3x -4y +z -10=0的平面的方程为3(x +1)-4(y -0)+(z -4)=0, 即3x -4y +z -1=0.将直线21311z y x =-=+化为参数方程x =-1+t , y =3+t , z =2t , 代入平面方程3x -4y +z -1=0, 得3(-1+t )-4(3+t )+2t -1=0,解得t =16. 于是平面3x -4y +z -1=0与直线21311z y x =-=+的交点的坐标为(15, 19, 32), 这也是所求直线与已知直线的交点的坐标.所求直线的方向向量为s =(15, 19, 32)-(-1, 0, 4)=(16, 19, 28),所求直线的方程为28419161-==+z y x . 18. 已知点A (1, 0, 0)及点B (0, 2, 1), 试在z 轴上求一点C , 使∆ABC 的面积最小. 解 设所求的点为C (0, 0, z ), 则→) ,0 ,1(z AC -=, →)1 ,2 ,0(--=z BC .因为 →→k j i k j i 2)1(212001+-+=---=⨯z z z z BC AC , 所以∆ABC 的面积为→→4)1(421||2122+-+=⨯=z z BC AC S . 令04)1(4)1(284122=+-+-+⋅=z z z z dz dS , 得51=z , 所求点为)51 ,0 ,0(C . 19. 求曲线⎩⎨⎧-+-=--=2222)1()1(2y x z y x z 在三个坐标面上的投影曲线的方程. 解 在xOy 面上的投影曲线方程为⎩⎨⎧=--=-+-02)1()1(2222z y x y x , 即⎩⎨⎧=+=+022z y x y x . 在zOx 面上的投影曲线方程为⎩⎨⎧=---±+-=0)12()1(222y z x x z , 即⎩⎨⎧==+--++002342222y z x z xz x . 在yOz 面上的投影曲线方程为⎩⎨⎧=-+---±=0)1()12(222x y z y z , 即⎩⎨⎧==+--++002342222x z y z yz y . 20. 求锥面22y x z +=与柱面z 2=2x 所围立体在三个坐标面上的投影.解 锥面与柱面交线在xOy 面上的投影为⎩⎨⎧=+=0222z y x x , 即⎩⎨⎧==+-01)1(22z y x , 所以, 立体在xOy 面上的投影为⎩⎨⎧=≤+-01)1(22z y x . 锥面与柱面交线在yOz 面上的投影为⎪⎩⎪⎨⎧=+=0)21(222x y z z , 即⎪⎩⎪⎨⎧==+-01)22(222x y z , 所以, 立体在yOz 面上的投影为⎪⎩⎪⎨⎧=≤+-01)22(222x y z .锥面22y x z +=与柱面z 2=2x 与平面y =0的交线为⎩⎨⎧==0||y x z 和⎩⎨⎧==02y x z , 所以, 立体在zOx 面上的投影为⎩⎨⎧=≤≤02y x z x . 21. 画出下列各曲面所围立体的图形:(1)抛物柱面2y 2=x , 平面z =0及1224===z y x ;(2)抛物柱面x 2=1-z , 平面y =0, z =0及x +y =1;(3)圆锥面22y x z +=及旋转抛物面z =2-x 2-y 2;(4)旋转抛物面x 2+y 2=z , 柱面y 2=x , 平面z =0及x =1.习题9-11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界.(1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2,边界为 {(x , y )|x =0或y =0}.(2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集,导集为 {(x , y )|1≤x 2+y 2≤4},边界为 {(x , y )|x 2+y 2=1或x 2+y 2=4}.(3){(x , y )|y >x 2};解 开集, 区域, 无界集,导集为 {(x , y )| y ≥x 2},边界为 {(x , y )| y =x 2}.(4){(x , y )|x 2+(y -1)2≥1}⋂{(x , y )|x 2+(y -2)2≤4}.解 闭集, 有界集, 导集与集合本身相同,边界为 {(x , y )|x 2+(y -1)2=1}⋃{(x , y )|x 2+(y -2)2=4}.2. 已知函数yx xy y x y x f tan ),(22-+=, 试求f (tx , ty ).解 )(tan )()()()(),(22tytx ty tx ty tx ty tx f ⋅⋅-+= ),()tan (2222y x f t yx xy y x t =-+=. 3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v =F (x , u )+F (x , v )+F (y , u )+F (y , v ). 4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x -y , xy ). 解 f (x +y , x -y , xy )=(x +y )xy +(xy )(x +y )+(x -y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域:(1)z =ln(y 2-2x +1);解 要使函数有意义, 必须y 2-2x +1>0,故函数的定义域为D ={(x , y )|y 2-2x +1>0}.(2)yx y x z -++=11; 解 要使函数有意义, 必须x +y >0, x -y >0,故函数的定义域为D ={(x , y )|x +y >0, x -y >0}.(3)y x z -=;解 要使函数有意义, 必须y ≥0,0≥-y x 即y x ≥,于是有 x ≥0且x 2≥y ,故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }.(4)221)ln(yx x x y z --+-=; 解 要使函数有意义, 必须y -x >0, x ≥0, 1-x 2-y 2>0,故函数的定义域为D ={(x , y )| y -x >0, x ≥0, x 2+y 2<1}.(5)222222221rz y x z y x R u -+++---=(R >r >0); 解 要使函数有意义, 必须R 2-x 2-y 2-z 2≥0且x 2+y 2+z 2-r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}.(6)22arccos yx z u +=. 解 要使函数有意义, 必须x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2,故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限:(1)22)1,0(),(1limy x xy y x +-→; 解 110011lim22)1,0(),(=+-=+-→y x xy y x . (2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y y x . (3)xyxy y x 42lim )0,0(),(+-→; 解 xy xy y x 42lim )0,0(),(+-→)42()42)(42(lim )0,0(),(+++++-=→xy xy xy xy y x 41)42(1lim)0,0(),(-=++-=→xy y x . (4)11lim )0,0(),(-+→xy xy y x ; 解 11lim )0,0(),(-+→xy xy y x )11)(11()11(lim )0,0(),(-+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xyxy xy y x y x . (5)y xy y x )sin(lim )0,2(),(→;解 y xy y x )sin(lim)0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xy xyy x .(6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++-→. 解 2222)()(21lim )()cos(1lim 22222)0,0(),(2222)0,0(),(yx y x y x y x e y x y x e y x y x ++=++-→→ 0lim 212222)0,0(),(=+=→y x y x e y x (用等价无穷小代换). 7. 证明下列极限不存在: (1)yx yx y x -+→)0,0(),(lim;证明 如果动点p (x , y )沿y =0趋向(0, 0), 则1lim lim00 )0,0(),(==-+→=→x x y x yx x y y x ;如果动点p (x , y )沿x =0趋向(0, 0), 则1lim lim 00 )0,0(),(-=-=-+→=→y yy x y x y x y x .因此, 极限yx yx y x -+→)0,0(),(lim 不存在.。
第六版同济大学高等数学上下课后答案详解
|sin x | | x | 3 求 ( ) ( ) ( ) (2) 并作出函数 y(x) 8 设 ( x) 4 6 4 | x | 0 3
的图形 解 ( ) |sin | 1 ( ) |sin | 2 ( ) |sin( )| 2 (2) 0 6 6 2 4 4 2 4 4 2 9 试证下列函数在指定区间内的单调性 (1) y x ( 1) 1 x (2)yxln x (0 ) 证明 (1)对于任意的 x1 x2( 1) 有 1x10 1x20 因为当 x1x2 时
对于映射 g YX 因为对每个 yY 有 g(y)xX 且满足 f(x)f[g(y)]Iy yy 按逆映射的定义 g 是 f 的逆映射 5 设映射 f XY AX 证明 (1)f 1(f(A))A (2)当 f 是单射时 有 f 1(f(A))A 证明 (1)因为 xA f(x)yf(A) f 1(y)xf 1(f(A)) f 1(f(A))A 所以 (2)由(1)知 f 1(f(A))A 另一方面 对于任意的 xf 1(f(A))存在 yf(A) 使 f 1(y)xf(x)y 因为 yf(A)且 f 是单射 所以 xA 这就证明了 f 1(f(A))A 因此 f 1(f(A))A 6 求下列函数的自然定义域 (1) y 3x 2 解 由 3x20 得 x 2 函数的定义域为 [ 2 , ) 3 3 (2) y 1 2 1 x 解 由 1x20 得 x1 函数的定义域为( 1)(1 1)(1 ) (3) y 1 1 x 2 x 解 由 x0 且 1x20 得函数的定义域 D[1 0)(0 1] (4) y
y1 y2
x1 x x1 x2 2 0 1 x1 1 x2 (1 x1)(1 x2 )
高数同济第六版下册答案
340页304323页22页42页1.2.349页6369页89页315页1. 求下列微分方程的通解:(1)x e y dxdy-=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dxx dx +=+⋅=+⎰⋅⎰=-----⎰⎰.(2)xy '+y =x 2+3x +2; 解 原方程变为xx y x y 231++=+'.])23([11C dx e xx e y dx x dx x +⎰⋅++⎰=⎰- ])23([1])23([12C dx x x x C xdx x x x +++=+++=⎰⎰xC x x C x x x x +++=+++=22331)22331(1223. (3)y '+y cos x =e -sin x ;解 )(cos sin cos C dx e e e y xdxx dx +⎰⋅⎰=⎰--)()(sin sin sin sin C x e C dx e e e x x x x +=+⋅=---⎰.(4)y '+y tan x =sin 2x ;解 )2sin (tan tan C dx e x e y xdx xdx +⎰⋅⎰=⎰-)2sin (cos ln cos ln C dx e x e x x +⋅=⎰-⎰+⋅=)cos 1cos sin 2(cos C dx xx x x=cos x (-2cos x +C )=C cos x -2cos 2x . (5)(x 2-1)y '+2xy -cos x =0; 解 原方程变形为1cos 1222-=-+'x x y x x y .)1cos (1221222C dx e x x e y dx x xdx x x +⎰⋅-⎰=⎰--- )(sin 11])1(1cos [112222C x x C dx x x x x +-=+-⋅--=⎰.(6)23=+ρθρd d ; 解 )2(33C de e d d +⎰⋅⎰=⎰-θρθθ)2(33C d e e +=⎰-θθθθθθ33332)32(--+=+=Ce C e e . (7)x xy dxdy42=+; 解 )4(22C dx e x e y xdxxdx +⎰⋅⎰=⎰-)4(22C dx e x e x x +⋅=⎰-2222)2(x x x Ce C e e --+=+=. (8)y ln ydx +(x -ln y )dy =0; 解 原方程变形为yx y y dy dx 1ln 1=+.)1(ln 1ln 1C dy e ye x dy y y dyy y +⎰⋅⎰=⎰- )ln 1(ln 1C ydy yy +⋅=⎰ yCy C y y ln ln 21)ln 21(ln 12+=+=.(9)3)2(2)2(-+=-x y dxdyx ; 解 原方程变形为2)2(221-=--x y x dx dy .])2(2[21221C dx e x e y dxx dx x +⎰⋅-⎰=⎰---⎰+-⋅--=]21)2(2)[2(2C dx x x x =(x -2)[(x -2)2+C ]=(x -2)3+C (x -2).(10)02)6(2=+-y dxdyx y . 解 原方程变形为y x y dy dx 213-=-.])21([33C dy e y e x dy y dy y +⎰⋅-⎰=⎰- )121(33C dy y y y +⋅-=⎰32321)21(Cy y C y y +=+=.153页1. 计算下列二重积分:(1)⎰⎰+Dd y x σ)(22, 其中D ={(x , y )| |x |≤1, |y |≤1};解 积分区域可表示为D : -1≤x ≤1, -1≤y ≤1. 于是⎰⎰+Dd y x σ)(22y d y x dx ⎰⎰--+=111122)(x d y y x ⎰--+=111132]31[ x d x ⎰-+=112)312(113]3232[-+=x x 38=. (2)⎰⎰+Dd y x σ)23(, 其中D 是由两坐标轴及直线x +y =2所围成的闭区域:解 积分区域可表示为D : 0≤x ≤2, 0≤y ≤2-x . 于是⎰⎰+Dd y x σ)23(y d y x dx x⎰⎰-+=2020)23(dx y xy x ⎰-+=222]3[ dx x x ⎰-+=202)224(0232]324[x x x -+=320=. (3)⎰⎰++Dd y y x x σ)3(223, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤1};解 ⎰⎰++Dd y y x x σ)3(323⎰⎰++=1032310)3(dx y y x x dy ⎰++=1001334]4[dy x y y x x ⎰++=103)41(dy y y 0142]424[y y y ++=1412141=++=.(4)⎰⎰+Dd y x x σ)cos(, 其中D 是顶点分别为(0, 0), (π, 0), 和(π, π)的三角形闭区域.解 积分区域可表示为D : 0≤x ≤π, 0≤y ≤x . 于是,⎰⎰+Dd y x x σ)cos(⎰⎰+=x dy y x xdx 00)cos(π⎰+=π0)][sin(dx y x x x⎰-=π0)s i n 2(s i n dx x x x ⎰--=π0)c o s 2c o s 21(x x xd+--=0|)c o s 2c o s 21(πx x x dx x x ⎰-π0)cos 2cos 21(π23-=..2. 画出积分区域, 并计算下列二重积分:(1)⎰⎰Dd y x σ, 其中D 是由两条抛物线x y =, 2x y =所围成的闭区域;解 积分区域图如, 并且D ={(x , y )| 0≤x ≤1, x y x ≤≤2}. 于是⎰⎰Dd y xσ⎰⎰=102dy y x dx xx⎰=10223]32[dx y x x x 556)3232(10447=-=⎰dx x x .(2)⎰⎰Dd xy σ2, 其中D 是由圆周x 2+y 2=4及y 轴所围成的右半闭区域;解 积分区域图如, 并且D ={(x , y )| -2≤y ≤2, 240y x -≤≤}. 于是⎰⎰⎰⎰⎰----=22402240222222]21[dy y x dx xy dy d xy y y Dσ1564]10132[)212(22225342=-=-=--⎰y y dy y y . (3)⎰⎰+Dy x d e σ, 其中D ={(x , y )| |x |+|y |≤1};解 积分区域图如, 并且D ={(x , y )| -1≤x ≤0, -x -1≤y ≤x +1}⋃{(x , y )| 0≤x ≤1, x -1≤y ≤-x +1}. 于是⎰⎰⎰⎰⎰⎰+--+---++=1110111x x y x x x y x Dy x dy e dx e dy e dx e d e σ⎰⎰+---+--+=10110111][][dy e e dx e e x x y x x x y x ⎰⎰---+-+-=11201112)()(dx e e dx e ex x 101201112]21[]21[---+-+-=x x e ex x e e =e -e -1. (4)⎰⎰-+Dd x y x σ)(22, 其中D 是由直线y =2, y =x 及y =2x 轴所围成的闭区域.解 积分区域图如, 并且D ={(x , y )| 0≤y ≤2, y x y ≤≤21}. 于是⎰⎰⎰⎰⎰-+=-+=-+2022232222022]2131[)()(dy x x y x dx x y x dy d x y x y y y y Dσ 613)832419(2023=-=⎰dy y y .164页1. 化三重积分dxdydz z y x f I ),,(Ω⎰⎰⎰=为三次积分, 其中积分区域Ω分别是:(1)由双曲抛物面xy =z 及平面x +y -1=0, z =0所围成的闭区域; 解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤xy , 0≤y ≤1-x , 0≤x ≤1}, 于是 ⎰⎰⎰-=xyx dz z y x f dy dx I 01010),,(.(2)由曲面z =x 2+y 2及平面z =1所围成的闭区域; 解 积分区域可表示为}11 ,11 ,1|),,{(2222≤≤--≤≤--≤≤+=Ωx x y x z y x z y x , 于是 ⎰⎰⎰+----=111112222),,(y x x x dz z y x f dy dx I .(3)由曲面z =x 2+2y 2及z =2-x 2所围成的闭区域;解 曲积分区域可表示为}11 ,11 ,22|),,{(22222≤≤--≤≤---≤≤+=Ωx x y x x z y x z y x , 于是 ⎰⎰⎰-+----=22222221111),,(x y x x x dz z y x f dy dx I .提示: 曲面z =x 2+2y 2与z =2-x 2的交线在xOy 面上的投影曲线为x 2+y 2=1.(4)由曲面cz =xy (c >0), 12222=+by a x , z =0所围成的在第一卦限内的闭区域. 解 曲积分区域可表示为}0 ,0 ,0|),,{(22a x x a a b y c xyz z y x ≤≤-≤≤≤≤=Ω,于是 ⎰⎰⎰-=cxy abdz z y x f dy dx I x a a0),,(22.提示: 区域Ω的上边界曲面为曲面c z =xy , 下边界曲面为平面z =0.190页 3.计算下列对弧长的曲线积分:(1)⎰+Ln ds y x )(22, 其中L 为圆周x =a cos t , y =a sin t (0≤t ≤2π); 解⎰+L n ds y x )(22⎰+-+=π20222222)cos ()sin ()sin cos (dt t a t a t a t a n=⎰+-+π20222222)cos ()sin ()sin cos (dt t a t a t a t a n⎰++==ππ2012122n n a dt a .(2)⎰+Lds y x )(, 其中L 为连接(1, 0)及(0, 1)两点的直线段;解 L 的方程为y =1-x (0≤x ≤1);⎰⎰'-+-+=+102])1[(1)1()(dx x x x ds y x L22)1(1=-+=⎰dx x x .(3)xdx L⎰, 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界; 解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) .x d x L ⎰x d xx d x LL ⎰⎰+=21⎰⎰'++'+=102122)(1])[(1dx x x dx x x⎰⎰++=10102241x d x dx x x )12655(121-+=.(4)ds ey x L22+⎰, 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界; 解 L =L 1+L 2+L 3, 其中 L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t )40(π≤≤t ,L 3: x =x , y =x )220(a x ≤≤,因而ds eds eds eds ey x L y x L y x L y x L22322222122++++⎰⎰⎰⎰++=,⎰⎰⎰+++-++=axa ax dx e dt t a t a e dx e 22022240222211)cos ()sin (01π2)42(-+=a e a π.(5)⎰Γ++ds z y x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t 从0变到2的这段弧;解 dt dtdz dt dydt dx ds 222)()()(++=dt e t e t e t e t e t t t t t 222)cos sin ()sin cos (+++-=dt e t 3=,⎰⎰++=++Γ20222222223s i n c o s 11dt e et e t e ds z y x t tt t ⎰----=-==2220)1(23]23[23e e dt e t t .(6)⎰Γyzds x 2, 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、 (0, 0, 2)、(1, 0, 2)、(1, 3, 2); 解 Γ=AB +BC +CD , 其中 AB : x =0, y =0, z =t (0≤t ≤1), BC : x =t , y =0, z =2(0≤t ≤3), CD : x =1, y =t , z =2(0≤t ≤3),故y z d sx y z d s x y z d s x y z d s x CD BC AB 2222⎰⎰⎰⎰++=Γ 9010200322231=++++=⎰⎰⎰dt t dt dt .(7)⎰Lds y 2, 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解⎰⎰'+'--=L dt t a t t a t a ds y π2022222])(cos [])sin ([)cos 1(⎰--=π2023c o s 1)c o s 1(2dt t t a 315256a =.(8)⎰+Lds y x )(22, 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cos t )(0≤t ≤2π).解 dt dtdydt dx ds 22)()(+=atdt dt t at t at =+=22)sin ()cos (a t d tt t t a t t t a ds y x L ])cos (sin )sin (cos [)(22202222-++=+⎰⎰π⎰+=+=πππ2023223)21(2)1(a t d t t a .219页 6. 计算下面对面积的曲面积分:(1)dS y x z )342(++∑⎰⎰, 其中∑为平面1432=++z yx 在第一象限中的部分;解 y x z 3424:--=∑, x y x D xy 2310 ,20 :-≤≤≤≤, dxdy z z dS y x 221++=dxdy 361=,61436143614)342(==⋅=++⎰⎰⎰⎰⎰⎰∑dxdy dxdy dS y x z xyxy D D .(2)dS z x x xy )22(2+--∑⎰⎰, 其中∑为平面2x +2y +z =6在第一象限中的部分;解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,dxdy dxdy z z dS y x 3122=++=,dS z x x xy )22(2+--∑⎰⎰ dxdy y x x x xy xyD 3)22622(2--+--=⎰⎰⎰⎰--+--=xdy y xy x x dx 30230)22236(3427)9103(33023-=+-=⎰dx x x .(3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分;解 ∑:222y x a z --=, D xy : x 2+y 2≤a 2-h 2,dxdy z z dS y x 221++=dxdy y x a a 222--=,dxdy yx a a y x a y x dS z y x xyD 222222)()(----++=++⎰⎰⎰⎰∑)(||22h a a D a adxdy xy D xy-===⎰⎰π(根据区域的对称性及函数的奇偶性). 提示:dxdy y x a y y x a x dS 22222222)()(1+--++--+=dxdy y x a a 222--=,(4)dS zx yz xy )(++∑⎰⎰, 其中∑为锥面22y x z +=被x 2+y 2=2ax 所截得的有限部分.解 ∑: 22y x z +=, D xy : x 2+y 2≤2ax ,dxdy dxdy z z dS y x 2122=++=,dxdy y x y x xy dS zx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑⎰⎰++=-θππθθθθcos 202222)]sin (cos cos sin [2a rdr q r r dθθθθθθππd a )cos sin cos cos (sin 24422554⎰-++=421564a =. 提示: dxdy yx y y x x dS 2222221++++=. 255页3. 根据级数收敛与发散的定义判定下列级数的收敛性: (1)∑∞=-+1)1(n n n ;解 因为)1( )34()23()12(n n s n -++⋅⋅⋅+-+-+-= )()11(∞→∞→-+=n n , 所以级数发散.(2) )12)(12(1 751531311⋅⋅⋅++-+⋅⋅⋅+⋅+⋅+⋅n n ; 解 因为)12)(12(1751531311+-+⋅⋅⋅+⋅+⋅+⋅=n n s n)121121(21 )7151(21)5131(21)3111(21+--+⋅⋅⋅+-+-+-=n n )121121 715151313111(21+--+⋅⋅⋅+-+-+-=n n)(21)1211(21∞→→+-=n n ,所以级数收敛.(3) 6sin 63sin 62sin 6sin ⋅⋅⋅+⋅⋅⋅+++ππππn .解 6sin 63sin 62sin 6sin ππππn s n ⋅⋅⋅+++=)6s i n12sin 2 62sin 12sin 26sin 12sin 2(12sin 21πππππππn +⋅⋅⋅++=)]1212cos 1212(cos )125cos 123(cos )123cos 12[(cos 12sin 21πππππππ+--+⋅⋅⋅+-+-=n n)1212cos 12(cos 12sin 21πππ+-=n .因为π1212cos lim +∞→n n 不存在, 所以n n s ∞→lim 不存在, 因而该级数发散.4. 判定下列级数的收敛性:(1) 98)1( 9898983322⋅⋅⋅+-+⋅⋅⋅+-+-n n n ; 解 这是一个等比级数, 公比为98-=q , 于是198||<=q , 所以此级数收敛.(2) 31 916131⋅⋅⋅++⋅⋅⋅+++n;解 此级数是发散的, 这是因为如此级数收敛, 则级数 ) 31 916131(311⋅⋅⋅++⋅⋅⋅+++==∑∞=n n n也收敛, 矛盾.(3) 31 3131313⋅⋅⋅++⋅⋅⋅+++n ;解 因为级数的一般项)(013311∞→≠→==-n u n n n ,所以由级数收敛的必要条件可知, 此级数发散.(4)23 2323233322⋅⋅⋅++⋅⋅⋅+++nn ;解 这是一个等比级数, 公比123>=q , 所以此级数发散.(5) )3121( )3121()3121()3121(3322⋅⋅⋅+++⋅⋅⋅++++++nn . 解 因为∑∞=121n n 和∑∞=131n n 都是收敛的等比级数, 所以级数)3121( )3121()3121()3121()3121(33221⋅⋅⋅+++⋅⋅⋅++++++=+∑∞=n n n n n是收敛的.268页1. 用比较审敛法或极限形式的比较审敛法判定下列级数的收敛性:(1))12(1 51311⋅⋅⋅+-+⋅⋅⋅+++n ;解 因为211121lim =-∞→nn n , 而级数∑∞=11n n 发散, 故所给级数发散. (2) 11 313121211222⋅⋅⋅++++⋅⋅⋅+++++++n n ; 解 因为n n n n n n u n 111122=++>++=, 而级数∑∞=11n n发散, 故所给级数发散. (3))4)(1(1 631521⋅⋅⋅++++⋅⋅⋅+⋅+⋅n n ;解 因为145lim 1)4)(1(1lim222=++=++∞→∞→n n n nn n n n , 而级数∑∞=121n n 收敛, 故所给级数收敛. (4) 2sin 2sin 2sin 2sin32⋅⋅⋅++⋅⋅⋅+++nππππ;解 因为πππππ==∞→∞→n n n n n n 22sin lim 212sin lim , 而级数∑∞=121n n 收敛, 故所给级数收敛. (5)∑∞=>+1)0(11n na a. 解 因为⎪⎩⎪⎨⎧>=<<==+=+∞→∞→11 1 2110 0 1lim 111lim a a a l a a a a nn n n n n ,而当a >1时级数∑∞=11n n a 收敛, 当0<a ≤1时级数∑∞=11n n a发散, 所以级数∑∞=+111n na当a >1时收敛, 当0<a ≤1时发散. 2. 用比值审敛法判定下列级数的收敛性:(1)23 2332232133322⋅⋅⋅+⋅+⋅⋅⋅+⋅+⋅+⋅nn n ;解 级数的一般项为nn n n u 23⋅=. 因为123123lim322)1(3lim lim111>=+⋅=⋅⋅⋅+=∞→++∞→+∞→n n n n u u n n n n n n n n n ,所以级数发散.(2)∑∞=123n n n ; 解 因为131)1(31lim 33)1(lim lim 22121<=+⋅=⋅+=∞→+∞→+∞→nn n n u u n nn n n n n ,所以级数收敛.(3)∑∞=⋅1!2n nn nn ; 解 因为12)1(lim 2!2)1()!1(2lim lim 111<=+=⋅⋅++⋅=∞→++∞→+∞→e n n n n n n u u n n n n n n n n n n ,所以级数收敛. (4)∑∞=+112tann n n π.解 因为121221lim 2tan 2tan )1(limlim 12121<=⋅+=+=++∞→++∞→+∞→n n n n n n n n n n n n n u u ππππ, 所以级数收敛.269页5. 判定下列级数是否收敛?如果是收敛的, 是绝对收敛还是条件收敛? (1) 4131211⋅⋅⋅+-+-;解 这是一个交错级数∑∑∞=-∞=--=-11111)1()1(n n n n n n u , 其中n u n 1=.因为显然u n ≥u n +1, 并且0lim =∞→n n u , 所以此级数是收敛的.又因为∑∑∞=∞=-=-1111|)1(|n n n n nu 是p <1的p 级数, 是发散的,所以原级数是条件收敛的. (2)∑∞=---1113)1(n n n n ; 解∑∑∞=-∞=--=-111113|3)1(|n n n n n n n .因为131331lim 1<=+-∞→n n n n n , 所以级数∑∞=-113n nn 是收敛的, 从而原级数收敛, 并且绝对收敛. (3) 2131213121312131432⋅⋅⋅+⋅-⋅+⋅-⋅;解 这是交错级数∑∞=-⋅-112131)1(n n n , 并且∑∑∞=∞=-⋅=⋅-1112131|2131)1(|n n n n n . 因为级数∑∞=⋅12131n n是收敛的, 所以原级数也收敛, 并且绝对收敛.(4)5ln 14ln 13ln 12ln 1⋅⋅⋅+-+-; 解 这是交错级数∑∑∞=-∞=-+-=-1111)1ln()1()1(n n n n n n u , 其中)1ln(1+=n u n .因为u n ≥u n +1, 并且0lim =∞→n n u , 所以此级数是收敛的.又因为11)1ln(1+≥+n n , 而级数∑∞=+111n n 发散,故级数∑∑∞=∞=-+=-111)1ln(1|)1(|n n n n n u 发散, 从而原级数是条件收敛的.(5)∑∞=+-11!2)1(2n n n n .解 级数的一般项为!2)1(21n u n n n +-=.因为∞=⋅⋅⋅⋅⋅-⋅-⋅===∞→∞→∞→∞→122232 22122lim !)2(lim !2lim||lim 2n n n n n n n n n n n n n n n n n n u , 所以级数发散.277页 习题12-31. 求下列幂级数的收敛域:(1)x +2x 2+3x 3+ ⋅ ⋅ ⋅ +nx n + ⋅ ⋅ ⋅; 解 11lim ||lim 1=+=∞→+∞→nn a a n n n n , 故收敛半径为R =1. 因为当x =1时, 幂级数成为∑∞=1n n , 是发散的;当x =-1时, 幂级数成为∑∞=-1)1(n n n , 也是发散的,所以收敛域为(-1, 1).(2) )1( 21222⋅⋅⋅+-+⋅⋅⋅++-n x x x n n ;解 1)1(lim 1)1(1lim ||lim 22221=+=+=∞→∞→+∞→n n n n a a n n n n n , 故收敛半径为R =1. 因为当x =1时, 幂级数成为∑∞=-221)1(n nn , 是收敛的; 当x =-1时, 幂级数成为∑∞=+1211n n, 也是收敛的, 所以收敛域为[-1, 1].(3) )2( 42 64242232⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅+n x x x x n; 解 0)1(21lim )!1(2!2lim ||lim 11=+=⋅+⋅⋅=∞→+∞→+∞→n n n a a n n n n n n n , 故收敛半径为R =+∞, 收敛域为(-∞, +∞).(4)3 3332313322⋅⋅⋅+⋅+⋅⋅⋅+⋅+⋅+⋅nn n x x x x ;解 31131lim 3)1(3lim ||lim 11=+⋅=⋅+⋅=∞→+∞→+∞→n n n n a a n n n n n n n , 故收敛半径为R =3. 因为当x =3时, 幂级数成为∑∞=11n n , 是发散的; 当x =-3时, 幂级数成为∑∞=-11)1(n n n , 也是收敛的, 所以收敛域为[-3, 3).(5)12 102522223322⋅⋅⋅+++⋅⋅⋅+++n n x n x x x ;解 21)1(1lim 2211)1(2lim ||lim 222211=+++=+⋅++=∞→+∞→+∞→n n n n a a n n n n n n n , 故收敛半径为21=R .因为当21=x 时, 幂级数成为∑∞=+1211n n , 是收敛的;当x =-1时, 幂级数成为∑∞=+-1211)1(n n n , 也是收敛的, 所以收敛域为]21 ,21[-. (6)∑∞=++-11212)1(n n nn x ; 解 这里级数的一般项为12)1(12+-=+n x u n nn .因为212321|1232|lim ||lim x x n n x u u n n n n n n =+⋅+=++∞→+∞→, 由比值审敛法, 当x 2<1, 即|x |<1时, 幂级数绝对收敛; 当x 2>1, 即|x |>1时, 幂级数发散, 故收敛半径为R =1.因为当x =1时, 幂级数成为∑∞=+-1121)1(n n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=++-11121)1(n n n , 也是收敛的, 所以收敛域为[-1, 1].(7)∑∞=--122212n n nx n ; 解 这里级数的一般项为22212--=n nn x n u . 因为22212121|)12(22)12(|lim ||lim x xn x n u u n n n n n n n n =-⋅+=-+∞→+∞→, 由比值审敛法, 当1212<x , 即2||<x 时, 幂级数绝对收敛; 当1212>x , 即2||>x 时, 幂级数发散, 故收敛半径为2=R .因为当2±=x 时, 幂级数成为∑∞=-1212n n , 是发散的, 所以收敛域为)2 ,2(-.(8)∑∞=-1)5(n nn x .解 11lim ||lim 1=+=∞→+∞→n n a a n n n n , 故收敛半径为R =1, 即当-1<x -5<1时级数收敛, 当|x -5|>1时级数发散.因为当x -5=-1, 即x =4时, 幂级数成为∑∞=-1)1(n nn , 是收敛的; 当x -5=1, 即x =6时, 幂级数成为∑∞=11n n, 是发散的, 所以收敛域为[4, 6).2. 利用逐项求导或逐项积分, 求下列级数的和函数: (1)∑∞=-11n n nx ;解 设和函数为S (x ), 即∑∞=-=11)(n n nx x S , 则][][])([)(1010110'='='=∑⎰⎰∑⎰∞=-∞=-n xn x n n xdx nx dx nx dx x S x S)11( )1(1]111[][21<<--='--='=∑∞=x x x x n n . (2)∑∞=++11414n n n x ; 解 设和函数为S (x ), 即∑∞=++=11414)(n n n x x S , 则dx x dx n x dx x S S x S x n n x n n x ⎰∑⎰∑⎰∞=∞=+='+='+=01401140]14[)()0()( ⎰⎰-⋅++⋅+-=--=x xdx x x dx x 02204)112111211()111( )11( arctan 2111ln 41<<--+-+=x x x x x . 提示: 由)0()()(0S x S dx x S x -='⎰得⎰'+=xdx x S S x S 0)()0()(.(3)⋅⋅⋅+-+⋅⋅⋅+++- 12 531253n x x x x n . 解 设和函数为S (x ), 即⋅⋅⋅+-+⋅⋅⋅+++=-=-∞=-∑ 12 5312)(1253112n x x x x n x x S n n n , 则 ⎰∑⎰∑⎰∞=-∞=-='-='+=x n n x n n x dx x dx n x dx x S S x S 012201120]12[)()0()( )11( 11ln 211102<<--+=-=⎰x x x dx x x . 提示: 由)0()()(0S x S dx x S x -='⎰得⎰'+=x dx x S S x S 0)()0()(.285页 2. 将下列函数展开成x 的幂级数, 并求展开式成立的区间:(1)2sh x x e e x --=; 解 因为 ∑∞==0!n n xn x e , x ∈(-∞, +∞), 所以 ∑∞=--=0!)1(n n n x n x e , x ∈(-∞, +∞), 故 ∑∑∑∑∞=-∞=∞=∞=-=--=--=012000)!12(!])1(1[21]!)1(![21sh n n n n n n n n n n n x n x n x n x x , x ∈(-∞, +∞).(2)ln(a +x )(a >0);解 因为)1ln(ln )1(ln )ln(ax a a x a x a ++=+=+,∑∞=++-=+011)1()1ln(n n n n x x (-1<x ≤1), 所以 ∑∑∞=++∞=++-+=+-+=+01101)1()1(ln )(11)1(ln )ln(n n n n n n na n x a a x n a x a (-a <x ≤a ). (3)a x ;解 因为∑∞==0!n n x n x e , x ∈(-∞, +∞), 所以 ∑∑∞=∞=====00ln !)(ln !)ln (n n n n n x a x x x n a n a x e ea , x ∈(-∞, +∞), (4)sin 2x ; 解 因为x x 2cos 2121sin 2-=,∑∞=-=02)!2()1(cos n n n n x x , x ∈(-∞, +∞), 所以 ∑∑∞=-∞=⋅-=--=1212022)!2(2)1()!2()2()1(2121sin n n n n n n n n x n x x x ∈(-∞, +∞). (5)(1+x )ln(1+x );解 因为∑∞=++-=+011)1()1ln(n n n n x x (-1<x ≤1), 所以 ∑∞=++-+=++011)1()1()1ln()1(n n nn x x x x ∑∑∞=+∞=++-++-=02011)1(1)1(n n n n n n n x n x ∑∑∞=++∞=+-++-+=11111)1(1)1(n n n n n n n x n x x 111])1(1)1([+∞=+∑-++-+=n n n n x n n x 111)1()1(+∞=-∑+-+=n n n x n n x (-1<x ≤1). (6)21x x +. 解 因为∑∞=--+=+122/12!)!2(!)!12()1(1)1(1n n n x n n x (-1≤x ≤1),所以 ∑∑∞=+∞=+⋅-+=--+=+11221122)2()!()!2(2)1(!)!2(!)!12()1(1n n n n n n x n n x x n n x xx (-1≤x ≤1).。
同济大学第六版高等数学上下册课后习题答案5-7
同济大学第六版高等数学上下册课后习题答案5-71. 判别下列各反常积分的收敛性, 如果收敛, 计算反常积分的值:(1)⎰+∞14xdx; 解 因为3131)31(lim 3131314=+-=-=-+∞→+∞-+∞⎰x x x dx x , 所以反常积分⎰+∞14x dx收敛, 且3114=⎰∞+x dx . (2)⎰+∞1xdx ;解 因为+∞=-==+∞→+∞∞+⎰22lim 211x xxdx x , 所以反常积分⎰+∞1xdx 发散.(3)dx e ax ⎰+∞-0(a >0); 解 因为aa e a e adx e ax x ax ax 11)1(lim 100=+-=-=-+∞→+∞-+∞-⎰, 所以反常积分dx e ax ⎰+∞-0收敛, 且adx e ax 10=⎰+∞-.(4)⎰+∞-0ch tdt e pt (p >1); 解 因为1]1111[21][21ch 20)1()1(0)1()1(0-=+--=+=+∞+--∞++--∞+-⎰⎰p p e pe p dt e e tdt e tp t p t p tp pt ,所以反常积分⎰+∞-0ch tdt e pt 收敛, 且1ch 20-=⎰∞+-p p tdt e pt .(5)⎰+∞-0sin tdt e pt ω(p >0, ω>0); 解⎰⎰+∞-+∞--=0cos 1sin t d e tdt ept ptωωω⎰⎰+∞-+∞-+∞--=-⋅+-=020sin 1)(cos 1cos 1t d e pdt pe t te pt pt pt ωωωωωωω⎰+∞-+∞--⋅+-=0202)(sin sin 1dt pe t pte p ptpt ωωωωω⎰+∞--=022sin 1tdt e p pt ωωω,所以 22sin w p tdt e pt +=⎰+∞-ωω.(6)⎰+∞∞-++222x x dx;解 πππ=--=+=++=++⎰⎰+∞∞-+∞∞-+∞∞-)2(2)1arctan()1(12222x x dxx x dx . (7)dx xx ⎰-121;解 这是无界函数的反常积分, x =1是被积函数的瑕点.11)1(lim 112110212=+--=--=--→⎰x x dx x x x .(8)⎰-22)1(x dx;解 这是无界函数的反常积分, x =1是被积函数的瑕点. 因为⎰⎰⎰-+-=-212102202)1()1()1(x dxx dx x dx , 而 +∞=--=-=--→⎰111lim 11)1(110102x x x dx x ,所以反常积分⎰-202)1(x dx发散.(9)⎰-211x xdx ;解 这是无界函数的反常积分, x =1是被积函数的瑕点.21232121]12)1(32[)111(1-+-=-+-=-⎰⎰x x dx x x x xdx322]12)1(32[lim 38231=-+--=+→x x x .(10)⎰-ex x dx 12)(ln 1.解 这是无界函数的反常积分, x =e 是被积函数的瑕点.2)arcsin(ln lim )arcsin(ln ln )(ln 11)(ln 111212π===-=--→⎰⎰x x x d x x x dx ex e ee.2. 当k 为何值时, 反常积分⎰+∞)(ln kx x dx收敛? 当k 为何值时, 这反常积分发散? 又当k 为何值时, 这反常积分取得最小值?解 当k <1时, +∞=-==+∞+-+∞+∞⎰⎰2122)(ln 11ln )(ln 1)(ln k kk x k x d x x x dx ;当k =1时, +∞===+∞+∞+∞⎰⎰222)ln(ln ln ln 1)(ln x x d x x x dxk ; 当k >1时,k k kkk x kx d x x x dx -+∞+-+∞+∞-=-==⎰⎰12122)2(ln 11)(ln 11ln )(ln 1)(ln . 因此当k >1时, 反常积分⎰+∞0)(ln k x x dx 收敛; 当k ≤1时, 反常积分⎰+∞0)(ln k x x dx发散. 当k >1时, 令kk k x x dx k f -∞+-==⎰10)2(ln 11)(ln )(, 则 )2ln ln 11()1(2ln ln )2(ln 2ln ln )2(ln 11)2(ln )1(1)(21112+---=----='---k k k k k f k kk. 令f '(k )=0得唯一驻点2ln ln 11-=k . 因为当2ln ln 111-<<k 时f '(k )<0, 当2ln ln 11->k 时f '(k )>0, 所以2ln ln 11-=k 为极小值点, 同时也是最小值点, 即当2ln ln 11-=k 时, 这反常积分取得最小值 3. 利用递推公式计算反常积分⎰+∞-=0dx e x I x n n . 解 因为101000-+∞--+∞-+∞-+∞-=+-=-==⎰⎰⎰n x n x n x n x n n nI dx e x n e x de x dx e x I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1. 又因为 1000001=-=+-=-==+∞-+∞-+∞-+∞-+∞-⎰⎰⎰xx x x x e dx e xe xde dx xe I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1=n !.。
高数答案(下)习题册答案-第六版--下册-同济大学数学系-编
第八章 多元函数的微分法及其应用§ 1 多元函数概念一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ϕϕ求-=+=.二、求下列函数的定义域:1、2221)1(),(y x y x y x f ---= };1|),{(22≠+x y y x 2、xyz arcsin = };0,|),{(≠≤x x y y x三、求下列极限:1、222)0,0(),(sin lim y x yx y x +→ (0) 2、x y x x y3)2,(),()1(lim+∞→ (6e )四、证明极限 242)0,0(),(lim y x yx y x +→不存在. 证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2x y =趋于(0,0)时,极限为21, 二者不相等,所以极限不存在五、证明函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x yx xy y x f 在整个xoy 面上连续。
证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。
当)0,0(),(=y x 时,)0,0(01sin lim 22)0,0(),(f y x xy y x ==+→,所以函数在(0,0)也连续。
所以函数 在整个xoy 面上连续。
六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数1、设z=xyxe xy + ,验证 z x y +=∂∂+∂∂yz yx z x 证明:x y x y x y e x ,e x y e y +=∂∂-+=∂∂y z x z ,∴z xy xe xy xy x y+=++=∂∂+∂∂yzy x z x42244222222)()),,((y y x x y y x y y x f +-=+-=ϕ答案:2、求空间曲线⎪⎩⎪⎨⎧=+=Γ21:22y y x z 在点(1,21,23)处切线与y 轴正向夹角(4π) 3、设yxy xy y x f arcsin )1(),(2-+=, 求)1,(x f x ( 1)4、设yz x u =, 求x u ∂∂ ,y u ∂∂ ,zu ∂∂解:1-=∂∂y z x y z x u ,x x yz y u y zln 2-=∂∂ x x y z u y zln 1=∂∂ 5、设222z y x u ++=,证明 : uz u y u x u 2222222=∂∂+∂∂+∂∂6、判断下面的函数在(0,0) 处是否连续?是否可导(偏导)?说明理由⎪⎩⎪⎨⎧≠+≠++=0,00,1sin ),(222222y x y x yx x y x f )0,0(0),(lim 00f y x f y x ==→→ 连续; 201sin lim )0,0(xf x x →= 不存在, 0000lim )0,0(0=--=→y f y y7、设函数 f(x,y)在点(a,b )处的偏导数存在,求 xb x a f b x a f x ),(),(lim--+→(2f x (a,b)) § 3 全微分 1、单选题(1)二元函数f(x,y)在点(x,y)处连续是它在该点处偏导数存在的 __________(A) 必要条件而非充分条件 (B )充分条件而非必要条件(C )充分必要条件 (D )既非充分又非必要条件 (2)对于二元函数f(x,y),下列有关偏导数与全微分关系中正确的是___(A) 偏导数不连续,则全微分必不存在 (B )偏导数连续,则全微分必存在 (C )全微分存在,则偏导数必连续 (D )全微分存在,而偏导数不一定存在2、求下列函数的全微分:1)x ye z = )1(2dy x dx xy e dz x y +-=2))sin(2xy z = 解:)2()cos(22xydy dx y xy dz +=3)zyx u = 解:xdz x zyxdy x z dx x z y du z yz yz yln ln 121-+=-3、设)2cos(y x y z -=, 求)4,0(πdz解:dy y x y y x dx y x y dz ))2sin(2)2(cos()2sin(-+-+--= ∴)4,0(|πdz =dy dx 24ππ-4、设22),,(yx zz y x f += 求:)1,2,1(df )542(251dz dy dx +--5、讨论函数⎪⎩⎪⎨⎧=≠++=)0,0(),(,0)0,0(),(,1sin)(),(2222y x y x yx y x y x f 在(0,0)点处的连续性 、偏导数、 可微性解:)0,0(01sin )(lim 2222)0,0(),(f y x y x y x ==++→ 所以),(y x f 在(0,0)点处连续。
最新同济大学第六版高等数学上下册课后习题答案7-5
最新同济大学第六版高等数学上下册课后习题答案7-5同济大学第六版高等数学上下册课后习题答案7-5仅供学习与交流,如有侵权请联系网站删除谢谢4习题7-51. 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程. 解所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为 3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0.2. 求过点M 0(2, 9, -6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程.解所求平面的法线向量为n =(2, 9, -6), 所求平面的方程为 2(x -2)+9(y -9)-6(z -6)=0, 即2x +9y -6z -121=0.3. 求过(1, 1, -1)、(-2, -2, 2)、(1, -1, 2)三点的平面方程. 解 n 1=(1, -1, 2)-(1, 1, -1)=(0, -2, 3),n 1=(1, -1, 2)-(-2, -2, 2)=(3, 1, 0),所求平面的法线向量为 k j i k j i n n n 69301332021++-=-=?=, 所求平面的方程为-3(x -1)+9(y -1)+6(z +1)=0, 即x -3y -2z =0.4. 指出下列各平面的特殊位置, 并画出各平面:(1)x =0;解 x =0是yOz 平面.(2)3y -1=0;解 3y -1=0是垂直于y 轴的平面, 它通过y 轴上的点)0 ,31 ,0(. (3)2x -3y -6=0;仅供学习与交流,如有侵权请联系网站删除谢谢4解 2x -3y -6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和-2. (4)03=-y x ;解 03=-y x 是通过z 轴的平面, 它在xOy 面上的投影的斜率为33. (5)y +z =1;解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1.(6)x -2z =0;解 x -2z =0是通过y 轴的平面.(7)6x +5-z =0.解 6x +5-z =0是通过原点的平面.5. 求平面2x -2y +z +5=0与各坐标面的夹角的余弦.解此平面的法线向量为n =(2, -2, 1).此平面与yOz 面的夹角的余弦为 321)2(22||||) ,cos(cos 122^=+-+=??==i n i n i n α; 此平面与zOx 面的夹角的余弦为 321)2(22||||) ,cos(cos 122^-=+-+-=??==j n j n j n β; 此平面与xOy 面的夹角的余弦为 311)2(21||||) ,cos(cos 122^=+-+=??==k n k n k n γ.仅供学习与交流,如有侵权请联系网站删除谢谢46. 一平面过点(1, 0, -1)且平行于向量a =(2, 1, 1)和b =(1, -1, 0), 试求这平面方程.解所求平面的法线向量可取为 k j i k j i b a n 3011112-+=-=?=, 所求平面的方程为(x -1)+(y -0)-3(z +1)=0, 即x +y -3z -4=0.7. 求三平面x +3y +z =1, 2x -y -z =0, -x +2y +2z =3的交点.解解线性方程组=++-=--=++3220213z y x z y x z y x得x =1, y =-1, z =3. 三个平面的交点的坐标为(1, -1, 3).8. 分别按下列条件求平面方程:(1)平行于zOx 面且经过点(2, -5, 3);解所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为0?(x -2)-5(y +5)+0?(z -3)=0, 即y =-5.(2)通过z 轴和点(-3, 1, -2);解所求平面可设为Ax +By =0.因为点(-3, 1, -2)在此平面上, 所以-3A +B =0,将B =3A 代入所设方程得Ax +3Ay =0,所以所求的平面的方程为仅供学习与交流,如有侵权请联系网站删除谢谢4 x +3y =0,(3)平行于x 轴且经过两点(4, 0, -2)和(5, 1, 7).解所求平面的法线向量可设为n =(0, b , c ). 因为点(4, 0, -2)和(5, 1, 7)都在所求平面上, 所以向量n 1=(5, 1, 7)-(4, 0, -2)=(1, 1, 9)与n 是垂直的, 即b +9c =0, b =-9c ,于是 n =(0, -9c , c )=-c (0, 9, -1).所求平面的方程为9(y -0)-(z +2)=0, 即9y -z -2=0.9. 求点(1, 2, 1)到平面x +2y +2z -10=0的距离.解点(1, 2, 1)到平面x +2y +2z -10=0的距离为 1221|1012221|222=++-?+?+=d .。
高等数学第六版下册课后习题答案_同济大学
同学们,淘00宝00搜00店00铺 春少爷33,美00鞋惊喜不断哦第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域;理解二重极限概念,注意A y x f y x y x =→),(lim ),(),(00是点),(y x 以任何方式趋于),(00y x ; 注意理解本节中相关概念与一元函数中相应内容的区分与联系。
习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++ (2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒=2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xyxy y x 42lim )0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-解二:(,)(0,0)(,)(,)1limlim lim 4x y x y x y →→→===-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x x y x y →→→→→→==⋅=++解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的?(1) yx z -=1解:x y =(2)xy xy z 2222-+=解:22y x =第二节 偏导数本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, y y x f y y x f y x f y y ∆∆∆),(),(lim),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴 的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可.2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:x y zy x z yz x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x ∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x xz ++=解:(1z x∂==∂z y ∂=∂ (4))ln(222z y x u ++= 解:222222222222,,u x u y u zx x y z y x y z z x y z∂∂∂===∂++∂++∂++(5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z uu u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y xz cos sin =解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim 1y y y e z y∆∆→-==-∆3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)zx y x y x y x ∂=-++=-+∂ 4cos(2)sin(2)2sin 2(2)zx y x y x y y ∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂(3)⎰+=22 y x xtdt e z , 求22xz ∂∂,y x z∂∂∂2 解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)limlim 0x x x f x f f x x ∆→∆→∆--===∆∆, 00(0,)(0,0)00(0,0)lim lim 0y y y f y f f yy ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f y f y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z yz y x z x 222=∂∂+∂∂解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y-+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂ 由轮换对称性, 2222222323,r r y r r z y r z r ∂-∂-==∂∂ 222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。
高数答案(下)习题册答案 第六版 下册 同济大学数学系 编
第八章 多元函数的微分法及其应用§ 1 多元函数概念一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ϕϕ求-=+=.二、求下列函数的定义域:1、2221)1(),(y x y x y x f ---= };1|),{(22≠+x y y x 2、xyz arcsin = };0,|),{(≠≤x x y y x三、求下列极限:1、222)0,0(),(sin lim y x yx y x +→ (0)2、x y x x y3)2,(),()1(lim+∞→ (6e )四、证明极限 242)0,0(),(lim y x yx y x +→不存在.证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2x y =趋于(0,0)时,极限为21, 二者不相等,所以极限不存在五、证明函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x y x xy y x f 在整个xoy 面上连续。
证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。
当)0,0(),(=y x 时,)0,0(01s i n l i m 22)0,0(),(f y x xy y x ==+→,所以函数在(0,0)也连续。
所以函数 在整个xoy 面上连续。
六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数1、设z=x yxe xy + ,验证 z xy +=∂∂+∂∂yzyx z x 证明:x y x y x y e x ,e x y e y +=∂∂-+=∂∂y z x z ,∴z xy xe xy xy x y+=++=∂∂+∂∂yzy x z x42244222222)()),,((y y x x y y x y y x f +-=+-=ϕ答案:2、求空间曲线⎪⎩⎪⎨⎧=+=Γ21:22y y x z 在点(1,21,23)处切线与y 轴正向夹角(4π) 3、设yx y xy y x f arcsin )1(),(2-+=, 求)1,(x f x ( 1)4、设yz x u =, 求x u ∂∂ ,yu ∂∂ ,z u ∂∂ 解:1-=∂∂y z x y z x u ,x x yz y u y zln 2-=∂∂ x x y z u y zln 1=∂∂5、设222z y x u ++=,证明 : uz u y u x u 2222222=∂∂+∂∂+∂∂6、判断下面的函数在(0,0) 处是否连续?是否可导(偏导)?说明理由⎪⎩⎪⎨⎧≠+≠++=0,00,1sin ),(222222y x y x yx x y x f )0,0(0),(lim 0f y x f y x ==→→ 连续; 21s i n l i m)0,0(x f x x →= 不存在, 000lim)0,0(0=--=→y f y y7、设函数 f(x,y)在点(a,b )处的偏导数存在,求 xb x a f b x a f x ),(),(lim--+→(2f x (a,b)) § 3 全微分 1、单选题(1)二元函数f(x,y)在点(x,y)处连续是它在该点处偏导数存在的 __________(A) 必要条件而非充分条件 (B )充分条件而非必要条件(C )充分必要条件 (D )既非充分又非必要条件 (2)对于二元函数f(x,y),下列有关偏导数与全微分关系中正确的是___(A) 偏导数不连续,则全微分必不存在 (B )偏导数连续,则全微分必存在 (C )全微分存在,则偏导数必连续 (D )全微分存在,而偏导数不一定存在2、求下列函数的全微分:1)x y e z = )1(2dy x dx xy e dz x y+-=2))sin(2xy z = 解:)2()cos(22xydy dx y xy dz +=3)zyx u = 解:xdz x zyxdy x z dx x z y du z yz y z y ln ln 121-+=-3、设)2cos(y x y z -=, 求)4,0(πdz解:dy y x y y x dx y x y dz ))2sin(2)2(cos()2sin(-+-+--= ∴)4,0(|πdz =dy dx 24ππ-4、设22),,(yx zz y x f += 求:)1,2,1(df )542(251dz dy dx +--5、讨论函数⎪⎩⎪⎨⎧=≠++=)0,0(),(,0)0,0(),(,1sin)(),(2222y x y x yx y x y x f 在(0,0)点处的连续性 、偏导数、 可微性解:)0,0(01sin )(lim 2222)0,0(),(f y x y x y x ==++→ 所以),(y x f 在(0,0)点处连续。
同济大学第六版高等数学上下册课后习题答案5-1
同济大学第六版高等数学上下册课后习题答案5-11. 利用定积分定义计算由抛物线y =x 2+1, 两直线x =a 、x =b (b >a )及横轴所围成的图形的面积.解 第一步: 在区间[a , b ]内插入n -1个分点i nab a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 把区间[a , b ]分成n 个长度相等的小区间, 各个小区间的长度为: nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 第二步: 在第i 个小区间[x i -1, x i ] (i =1, 2, ⋅ ⋅ ⋅, n )上取右端点i nab a x i i -+==ξ, 作和 nab i n a b a x f S ni i i ni n -⋅+-+=∆=∑∑==]1)[()(211ξ ∑=+-+-+-=n i i na b i n a b a a n a b 12222]1)()(2[]6)12)(1()(2)1()(2[)(222n n n n na b n n n a b a na n a b +++⋅-++⋅-+-= ]16)12)(1()()1)(()[(222+++-++-+-=nn n a b n n a b a a a b . 第三步: 令λ=max{∆x 1, ∆x 2, ⋅ ⋅ ⋅ , ∆x n }nab -=, 取极限得所求面积 ∑⎰=→∆==ni i i ba x f dx x f S 10)(lim )(ξλ]16)12)(1()()1)(()[(lim 222+++-++-+-=∞→nn n a b n n a b a a a b n a b a b a b a b a a a b -+-=+-+-+-=)(31]1)(31)()[(3322.2. 利用定积分定义计算下列积分:(1)xdx ba ⎰(a <b ); (2)dx e x ⎰10.解 (1)取分点为i n a b a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点i nab a x i i -+==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是∑∑⎰=∞→=∞→-⋅-+=∆=ni n n i i i n ba nab i n a b a x xdx 11)(lim lim ξ )(21]2)1()()([lim )(22222a b n n n a b a b a a b n -=+-+--=∞→. (2)取分点为n i x i =(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nx i 1=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点nix i i ==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是) (1lim 1lim 21110n n n n n n i n i n xe e e nn e dx e +⋅⋅⋅++==∞→=∞→∑⎰1)1(]1[lim1])(1[1lim 11111-=--=--⋅=∞→∞→e e n e e e e e nnn n nn n n n .3. 利用定积分的几何意义 说明下列等式: (1)1210=⎰xdx ; (2)41102π=-⎰dx x ;(3)⎰-=ππ0sin xdx ;(4)⎰⎰=-2022cos 2cos πππxdx xdx .解 (1)⎰102xdx 表示由直线y =2x 、x 轴及直线x =1所围成的面积, 显然面积为1.(2)⎰-1021dx x 表示由曲线21x y -=、x 轴及y 轴所围成的四分之一圆的面积, 即圆x 2+y 2=1的面积的41:41411212ππ=⋅⋅=-⎰dx x . (3)由于y =sin x 为奇函数, 在关于原点的对称区间[-π, π]上与x 轴所夹的面积的代数和为零, 即⎰-=ππ0sin xdx .(4)⎰-22cos ππxdx 表示由曲线y =cos x 与x 轴上]2,2[ππ-一段所围成的图形的面积. 因为cos x为偶函数, 所以此图形关于y 轴对称. 因此图形面积的一半为⎰20cos πxdx , 即⎰⎰=-2022cos 2cos πππxdx xdx .4. 水利工程中要计算拦水闸门所受的水压力, 已知闸门上水的压强p (单位面积上的压力大小)是水深h 的函数, 且有p =9⋅8h (kN/m 2). 若闸门高H =3m , 宽L =2m , 求水面与闸门顶相齐时闸门所受的水压力P .解 建立坐标系如图. 用分点i nHx i =(i =1, 2, ⋅ ⋅ ⋅, n -1)将区间[0, H ]分为n 分个小区间, 各小区间的长为nHx i =∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间[x i -1, x i ]上, 闸门相应部分所受的水压力近似为 ∆P i =9.8x i l ⋅∆x i . 闸门所受的水压力为22118.42)1(lim 8.9lim 8.98.9lim H L nn n H L n Hi n H L x L x P n ni n ni i i n ⋅=+⋅=⋅=∆⋅⋅=∞→=∞→=∞→∑∑.将L =2, H =3代入上式得P =88.2(千牛).5. 证明定积分性质: (1)⎰⎰=ba ba dx x f k dx x kf )()(; (2)ab dx dx ba ba -==⋅⎰⎰1.证明 (1)⎰∑∑⎰=∆=∆==→=→ba ni i i ni i i ba dx x f k x f k x kf dx x kf )()(lim )(lim )(1010ξξλλ.(2)a b a b x x dx ni i ni i ba -=-=∆=∆⋅=⋅→=→=→∑∑⎰)(lim lim 1lim 101010λλλ.6. 估计下列各积分的值: (1)⎰+412)1(dx x ; (2)⎰+ππ4542)sin 1(dx x ;(3)⎰331arctan xdx x ;(4)⎰-022dx e xx.解 (1)因为当1≤x ≤4时, 2≤x 2+1≤17, 所以 )14(17)1()14(2412-⋅≤+≤-⋅⎰dx x , 即 51)1(6412≤+≤⎰dx x . (2)因为当ππ454≤≤x 时, 1≤1+sin 2x ≤2, 所以 )445(2)sin 1()445(14542ππππππ-⋅≤+≤-⋅⎰dx x ,即 ππππ2)sin1(4542≤+≤⎰dx x .(3)先求函数f (x )=x arctan x 在区间]3 ,31[上的最大值M 与最小值m .21arctan )(x x x x f ++='. 因为当331≤≤x 时, f '(x )>0, 所以函数f (x )=x arctan x 在区间]3 ,31[上单调增加. 于是3631arctan31)31(π===f m , 33arctan 3)3(π===f M .因此)313(3arctan )313(36331-≤≤-⎰ππxdx x ,即32arctan 9331ππ≤≤⎰xdx x . (4)先求函数xx e x f -=2)(在区间[0, 2]上的最大值M 与最小值m .)12()(2-='-x e x f xx , 驻点为21=x .比较f (0)=1, f (2)=e 2,41)21(-=e f ,得41-=e m , M =e 2. 于是)02()02(220412-⋅≤≤-⎰--e dx e e xx,即 41022222---≤≤-⎰e dx dx e e xx .7. 设f (x )及g (x )在[a , b ]上连续, 证明:(1)若在[a , b ]上 f (x )≥0, 且0)(=⎰ba dx x f , 则在[a ,b ]上f (x )≡0; (2)若在[a , b ]上, f (x )≥0, 且f (x )≢0, 则0)(>⎰ba dx x f ;(3)若在[a , b ]上, f (x )≤g (x ), 且⎰⎰=b a ba dx x g dx x f )()(, 则在[ab ]上f (x )≡g (x ).证明 (1)假如f (x )≢0, 则必有f (x )>0. 根据f (x )在[a , b ]上的连续性, 在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是0)(2)()()()()()(0>-≥≥++=⎰⎰⎰⎰⎰c d x f dx x f dx x f dx x f dx x f dx x f dc bd d c c a b a . 这与条件0)(=⎰ba dx x f 相矛盾. 因此在[a ,b ]上f (x )≡0.(2)证法一 因为f (x )在[a , b ]上连续, 所以在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是⎰⎰>-≥≥badcc d x f dx x f dx x f 0)(2)()()(0. 证法二 因为f (x )≥0, 所以0)(≥⎰ba dx x f . 假如0)(>⎰ba dx x f 不成立. 则只有0)(=⎰ba dx x f , 根据结论(1), f (x )≡0, 矛盾. 因此0)(>⎰ba dx x f . (3)令F (x )=g (x )-f (x ), 则在[a ,b ]上F (x )≥0且0)()()]()([)(=-=-=⎰⎰⎰⎰ba b a b a b a dx x f dx x g dx x f x g dx x F ,由结论(1), 在[a , b ]上F (x )≡0, 即f (x )≡g (x ).4. 根据定积分的性质及第7题的结论, 说明下列积分哪一个的值较大: (1)⎰102dx x 还是⎰103dx x ?(2)⎰212dx x 还是⎰213dx x ? (3)⎰21ln xdx 还是⎰212)(ln dx x ? (4)⎰10xdx 还是⎰+10)1ln(dx x ? (5)⎰10dx e x 还是⎰+10)1(dx x ?解 (1)因为当0≤x ≤1时, x 2≥x 3, 所以⎰⎰≥103102dx x dx x . 又当0<x <1时, x 2>x 3, 所以⎰⎰>103102dx x dx x . (2)因为当1≤x ≤2时, x 2≤x 3, 所以⎰⎰≤213212dx x dx x . 又因为当1<x ≤2时, x 2<x 3, 所以⎰⎰<213212dx x dx x .(3)因为当1≤x ≤2时, 0≤ln x <1, ln x ≥(ln x )2, 所以⎰⎰≥21221)(ln ln dx x xdx . 又因为当1<x ≤2时, 0<ln x <1, ln x >(ln x )2, 所以⎰⎰>21221)(ln ln dx x xdx . (4)因为当0≤x ≤1时, x ≥ln(1+x ), 所以⎰⎰+≥1010)1ln(dx x xdx . 又因为当0<x ≤1时, x >ln(1+x ), 所以⎰⎰+>1010)1ln(dx x xdx .(5)设f (x )=e x -1-x , 则当0≤x ≤1时f '(x ) =e x -1>0, f (x )=e x -1-x 是单调增加的. 因此当0≤x ≤1时, f (x )≥f (0)=0, 即e x ≥1+x , 所以⎰⎰+≥1010)1(dx x dx e x . 又因为当0<x ≤1时, e x >1+x , 所以⎰⎰+>1010)1(dx x dx e x .。
高等数学第六版下册课后习题答案-同济大学
本答案由大学生必备网 免费提供下载第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim ),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。
习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xy xy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-解二:(,)(0,0)(,)(0,0)(,)(0,0)1limlim lim 4x y x y x y →→→===-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x x y x y →→→→→→==⋅=++解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可.2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂==∂z y ∂==∂(4))ln(222z y x u ++= 解:222222222222,,u x u y u zx x y z y x y z z x y z∂∂∂===∂++∂++∂++(5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z uu u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)zx y x y x y x ∂=-++=-+∂ 4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂(3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z ∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f y f y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y-+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂ 由轮换对称性, 2222222323,r r y r r z y r z r ∂-∂-==∂∂222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。
同济大学第六版高等数学上下册课后答案全集word资料104页
同济第六版高等数学课后答案全集第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xxy +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=.解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f xx x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 多元函数的微分法及其应用§ 1 多元函数概念一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ϕϕ求-=+=.二、求下列函数的定义域:1、2221)1(),(yx y x y x f ---= };1|),{(22≠+x y y x 2、xyz arcsin= };0,|),{(≠≤x x y y x 三、求下列极限:1、222)0,0(),(sin lim y x yx y x +→ (0) 2、x y x x y3)2,(),()1(lim+∞→ (6e )四、证明极限 242)0,0(),(lim y x yx y x +→不存在. 证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2x y =趋于(0,0)时,极限为21, 二者不相等,所以极限不存在五、证明函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x y x xy y x f 在整个xoy 面上连续。
证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。
当)0,0(),(=y x 时,)0,0(01sin lim 22)0,0(),(f yx xy y x ==+→,所以函数在(0,0)也连续。
所以函数42244222222)()),,((y y x x y y x y y x f +-=+-=ϕ答案:在整个xoy 面上连续。
六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222§ 2 偏导数1、设z=xy xe xy + ,验证 z x y +=∂∂+∂∂yz y x z x证明:x yx yx ye x ,e x y e y +=∂∂-+=∂∂y z x z ,∴z xy xe xy xy x y+=++=∂∂+∂∂yzy x z x2、求空间曲线⎪⎩⎪⎨⎧=+=Γ21:22y y x z 在点(1,21,23)处切线与y 轴正向夹角(4π) 3、设yxy xy y x f arcsin)1(),(2-+=, 求)1,(x f x ( 1) 4、设yzx u =, 求x u ∂∂ ,y u ∂∂ ,zu ∂∂解:1-=∂∂y zx y z x u ,x x yz y u y zln 2-=∂∂ x x y z u y zln 1=∂∂ 5、设222z y x u ++=,证明 : u zu y u x u 2222222=∂∂+∂∂+∂∂6、判断下面的函数在(0,0) 处是否连续是否可导(偏导)说明理由⎪⎩⎪⎨⎧≠+≠++=0,00,1sin ),(222222y x y x yx x y x f )0,0(0),(lim 00f y x f y x ==→→ 连续; 201sin lim )0,0(x f x x →= 不存在, 0000lim)0,0(0=--=→y f y y 7、设函数 f(x,y)在点(a,b )处的偏导数存在,求 xb x a f b x a f x ),(),(lim--+→(2f x (a,b)) § 3 全微分 1、单选题(1)二元函数f(x,y)在点(x,y)处连续是它在该点处偏导数存在的 __________(A) 必要条件而非充分条件 (B )充分条件而非必要条件 (C )充分必要条件 (D )既非充分又非必要条件 (2)对于二元函数f(x,y),下列有关偏导数与全微分关系中正确的是___ (A) 偏导数不连续,则全微分必不存在 (B )偏导数连续,则全微分必存在 (C )全微分存在,则偏导数必连续 (D )全微分存在,而偏导数不一定存在2、求下列函数的全微分:1)xy e z = )1(2dy x dx x y edz xy +-=2))sin(2xy z = 解:)2()cos(22xydy dx y xy dz +=3)zyx u = 解:xdz x zyxdy x z dx x z y du z yz yz yln ln 121-+=-3、设)2cos(y x y z -=, 求)4,0(πdz解:dy y x y y x dx y x y dz ))2sin(2)2(cos()2sin(-+-+--= ∴)4,0(|πdz =dy dx 24ππ-4、设22),,(yx zz y x f += 求:)1,2,1(df )542(251dz dy dx +--5、讨论函数⎪⎩⎪⎨⎧=≠++=)0,0(),(,0)0,0(),(,1sin )(),(2222y x y x yx y x y x f 在(0,0)点处的连续性 、偏导数、 可微性 解:)0,0(01sin)(lim2222)0,0(),(f yx y x y x ==++→ 所以),(y x f 在(0,0)点处连续。
0)0,0(),0(lim )0,0(,0)0,0()0,(lim)0,0()0,0(),()0,0(),(=∆-∆==∆-∆=→→y f y f f x f x f f y x y y x x0)()(0),(22→∆+∆-∆∆y x y x f ,所以可微。
§4 多元复合函数的求导法则1、 设tve v t u u z ===,sin ,,求dtdz 解:dtdz =1cos .(sin )lnsin (sin )t te t e t t t e t t e -⋅+⋅⋅2、 设,)(32yx y x z -+=,求yz x z ∂∂∂∂,23123(23)()3()ln(),x y x y zx y x y x y x y y---∂=-+-++∂ 3、 设)(2xy f x z n=,f 可微,证明nz y z y x z x =∂∂+∂∂2 4、 设)2,(22xy y x f z -=,其中f 具有二阶连续偏导数,求22x z ∂∂,y x z∂∂∂2, 22yz ∂∂ 解:1222zxf yf x∂''=+∂ , 1222z yf xf y ∂''=-+∂ ,21112221222((2)2)22((2)2)z x f y f x f y f y f x x y∂'''''''''=-+++-+∂∂ =221111222244()4f xyf xy f xyf '''''''-+-+222111122222484z f x f xyf y f x∂'''''''=+++∂,222111122222484z f y f xyf x f y ∂'''''''=-+-+∂ 5、 设)(),(y x g x y xy f z +=,其中f 具有二阶连续偏导数、g 具有二阶连续导数,求yx z∂∂∂2解:1221z y f y f g x x y∂'''=-+∂ , 2111122122222231111()()z y x f y f x f f f x f g g x y x x x x y y∂'''''''''''''=++--+--∂∂6、 设),,(z y x F u =,),(y x f z =,)(x y ϕ=,求dxdu解:dxdu ))(()(321x f f F x F F y x ϕϕ''+''+''+'=。
7、设),(v u z z =,且变换⎩⎨⎧+=-=ay x v y x u 2 可把方程+∂∂226x z y x z ∂∂∂222y z∂∂-=0 化为 02=∂∂∂v u z , 其中z 具有二阶连续偏导数,求常数a 的值 )3(=a证明:v zu z x z ∂∂+∂∂=∂∂v z a u z y z ∂∂+∂∂-=∂∂2 2222222vu v u z u z x z ∂∂+∂∂∂+∂∂=∂∂ 2222222244v u a v u z a u zy z ∂∂+∂∂∂-∂∂=∂∂ 222222)2(2vu a v u z a u z y x z ∂∂+∂∂∂-+∂∂-=∂∂∂ 得:0)6()510(2222=∂∂-++∂∂∂+vu a a v u z a a=3 8、设函数f(x,y)具有连续的一阶偏导数,f(1,1)=1,a f =)1,1(/1,b f =)1,1(/2 又,{})],(,[,)(x x f x f x f x =ϕ 求 ).1(ϕ和)1(/ϕ (1) , (a+ab+ab 2+b 3)§ 5 隐函数的求导公式1、 设y x y y +=ln ,求dxdy 解:令(,)ln F x y y y x y =--,11,ln ,ln x y dy F F y dx y=-=∴=2、 设),(y x z z =由方程)(222yz yf z y x =++确定,其中f 可微,证明xz yz xy x z z y x 22)(222=∂∂+∂∂-- 3、 设),(y x z z =由方程zy e z x +=所确定,其中f 可微,求y x z ∂∂∂2,1,)1(z z y z z x z x z +-=∂∂+=∂∂ yx z∂∂∂23)1(z x z +-=4、 设⎩⎨⎧+==++222221y x z z y x ,求dx dy ,dx dz( dy x dx y =-,0dz dx =) 5、 设),(y x z z =由方程0),,(=+xz z y xy F 所确定,F 可微,求yzx z ∂∂∂∂, 解:令(,,)F x y z =(,,)F xy y z xz + ,则13122323,y x z z F F F y zF F x F zz x F y F F xF F xF ''''++∂∂=-=-=-=-∂∂''''++ 6、设),(y x f z =由方程0=-++++y x z e y x z 所确定,求dz (dy dx dz --=) 7、设z=z(x,y)由方程 y z yz x xy =-+3)cos(3所确定,求x z ∂∂, yz∂∂ , )sin(3)cos(3ln .32yz xy z yz y x z xy ++=∂∂ , )sin(31)sin(3ln 3.2yz xy z yz xz x y z xy +--=∂∂§ 6 微分法在几何中的应用1、 求螺旋线t z t y t x 3,sin 2,cos 2=== 在对应于4π=t处的切线及法平面方程解:切线方程为343z π-== 法平面方程0)43(3)2(2)2(2=-+-+--πz y x2、 求曲线⎩⎨⎧+==++22222250yx z z y x 在(3,4,5)处的切线及法平面方程 解:切线方程为53443-=--=-z y x ,法平面方程:034=-y x 3、 求曲面932222=++z y x 在(1,-1,2)处的切平面及法线方程 解:切平面方程为0)2(2)1(3)1(2=-++--z y x 及法线方程223121-=-+=-z y x 4、 设),(v u f 可微,证明由方程0),(=--bz ay bz ax f 所确定的曲面在任一点处的切平面与一定向量平行证明:令),(),,(bz ay bz ax f z y x F --=,则),,(,,,21212121'-'-''=∴'-'-='='=bf bf a f a f bf bf F a f F a f F z y x0),,(=⋅∴a b b ,所以在(000,,z y x )处的切平面与定向量(a b b ,,)平行。