第五章方差分析
第5章方差分析
5.1.4 方差分析中的基本假定
(基本前提:独立、同分布、同方差)
一、因素中的k个水平相当于r个正态总体。 每个水平下的n个观察数据(试验结果)相当 于从正态总体中抽取的容量为n的随机样本。 (同分布) 二、r个正态总体的方差是相同。 即:σ12=σ22…….=σr2=σ2 (同方差) 三、从不同的正态总体中抽取的各个随机样 本是相互独立的。(独立)
SSE
j1 i1
r
nj
xijxj
(续前)
方差分析的优点之二:增加了稳定性 由于方差分析将所有的样本资料结合在一起, 故而增加了分析结论的稳定性。 例如:30个样本,每一个样本中包括10个观 察单位(n=10)。如果采用t检验法,则在两 两检验中,一次只能研究2个样本和20个观察 单位,而在方差分析中,则可以把30个样本 和300个样本观察单位同时放在一起、结合进 行研究。 所以,方差分析是一种实用、有效的分析方 法。
r
2
j1 i r
xij xj 2 x
j1 i1 2 r
nj
ij
xj
x
2
j
x
j1 i1
r
nj
x j x
2
j1 i1
nj
xij xj xj x SSE SSA
nj
j1 i1
2、随机误差项离差平方和(SSE)的计算 SSE反映的是水平内部或组内观察值的离散状 况。它实质上反映了除所考察因素以外的其 他随机因素的影响,反映样本数据( x i j ) 与水平均值 ( x j )之间的差异,故而称之 为随机误差项离差平方和或组内误差。计算 公式如下:
5章 方差分析
3、检验两个或多个因素间有无交互作用。
应用条件(P63)
1、各个样本是相互独立的随机样本; 2、各个样本来自正态总体; 3、各个处理组的总体方差方差相等, 即方差齐。
不满足应用条件时处理方法
1、进行变量变换,以达到方差齐或 正态的要求;
H0:三种卡环抗拉强度的总体均数相等;各区组 卡环抗拉强度的总体均数相等
H1:三种卡环抗拉强度的总体均数不全相等;各 区组卡环抗拉强度的总体均数不全相等
0.05
2、计算F值
方差分析表
──────────────────────────
变异来源 SS
V
MS
F
──────────────────────────
2、如果方差分析无差别,分析结束。
多样本均数之间的多重比较
两两比较,又称基于方差分析的后续 检验(post hoc test)。
LSD-t检验和SNK检验
多个样本均数的比较一般分为两种情况:
①证实性实验研究:在设计阶段就根据研究目的或专业 知识决定某些均数间的两两比较,例如多个处理组与 对照组的比较,处理后不同时间与处理前的比较等。
MS组内 2
1 nA
1 nB
a 指样本均数排序后,比较的两组间包含的组数。
例5-3,SNK多重比较:
处理组
甲组
乙组
丙组
丁组
xi
ni
组次
0.2913 8 1
1.0200 8 2
2.1488 8 3
2.2650 8 4
S xA xB
MS组内 2
第五章方差分析
5.1.3方差分析的原理
方差分析认为,如果控制变量的不同水平对观测变量产生了显著影 响,那么它和随机变量共同作用必然使得观测变量值显著变动;反之, 如果控制变量的不同水平没有对观测变量产生显著影响,那么观测变量 值的变动就不明显,其变动可以归结为随机变量影响造成的。 建立在观测变量各总体服从正态分布和同方差的假设之上,方差 分析的问题就转化为在控制变量不同水平上的观测变量均值是否存在显 著差异的推断问题了。 综上所述,方差分析从对观测变量的方差分解入手,通过推断控 制变量各水平下各观测变量的均值是否存在显著差异,分析控制变量是 否给观测变量带来了显著影响,进而再对控制变量各个水平对观测变量 影响的程度进行剖析。 根据控制变量的个数可将方差分析分为单因素方差分析、多因素 方差分析;根据观测变量的个数可将方差分析分为一元方差分析(单因 变量方差分析)和多元方差分析(多因变量方差分析)。
从左侧的变量列表中选择观测变量“胰岛质量”到 Dependent List框中,选择控制变量“药物组”到 Factor框中。
10
选择各组间两两比较的方法,单击“One-Way ANOVA”对 话框下方的“Post Hoc…”按钮,出现上图对话框,在Equal Variances Assumed复选框中选择“LSD”。
协变量“原工资”的相伴概率Sig为0.000,即 协变量对青年教师现工资的影响显著;“教师 级别”的相伴概率为0.997,大于0.05,即对青 年教师的工资影响不显著;“政策实施”的相 伴概率0.029,小于0.05,对青年教师工资影响 显著;两因素的交互作用的相伴概率为0.551, 大于0.05,即交互作用没有对结果造成显著影 响。
5.4.2 协方差分析的基本步骤 • 提出原假设:协变量对观测变量的线性影响是不显著的 ;在扣除协变量的影响条件下,控制变量各水平下观测 变量的各总体均值无显著差异。 • 计算检验统计量和概率P值 给定显著性水平与p值做比较:如果p值小于显著性水平 ,则应该拒绝原假设,反之就不能拒绝原假设。
第五章 方差分析
k
n
k
n
k
• 总平方和 SS T • =组内(误差)平方和 SS e • +处理平方和 SS t • 组间变异由k个 y i 的变异引起,故其自由度 • k 1 ,组间平方和为 SS : t • k k 2 2 SSt n ( y i y ) Ti n C
1 1
• 组内变异为各组内观察值与组平均数的变 异,故每组具有自由度 n 1 n • 和平方和 ( y y ) 2 ;
1 ij i
• 资料共有 k 组,故组内自由度 k (n 1) • 组内平方和 SSe 为: •
SSe [ ( y ij y i ) ] SST SSt
• 总变异是nk个观察值的变异,故其自由 度 nk 1 ,而其平方和 SST 则为:
SST ( yij y ) y C
2 1 1 2 ij nk nk
( y ) T C nk nk
2 2
•SST ( yij y) ( yij yi ) n ( yi y) 2
• [例5.10] 作一水稻施肥的盆栽试验,设5个 处理,A和B系分别施用两种不同工艺流程 的氨水,C施碳酸氢铵,D施尿素,E不施 氮肥。每处理4盆(施肥处理的施肥量每盆皆 为折合纯氮1.2克),共5×4=20盆,随机放 置于同一网室中,其稻谷产量(克/盆)列于 表6.11,试测验各处理平均数的差异显著性。
=0.01水平上否定H0,接受HA;若所得F
F分布曲线(随 1 和 2 的不同而不同)
f(F)
1.0
0.8
0.6
0.4
0.2
第五章方差分析[统计学经典理论]
第五章方差分析•如果要检验两个总体的均值是否相等,我们可以用t检验。
当要检验多个总体的均值是否相等,则需要采用方差分析。
•方差分析是R.A.Fister发明的,它是通过对误差的分析研究来检验两个或多个正态总体均值间差异是否具有统计意义的一种方法。
•由于各种因素的影响,研究所得的数据呈现波动,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果造成影响的可控因素,方差分析认为不同处理组的均值间的差异基本来源有两个:•组内差异:由随机误差造成的差异,用变量在各组的均值与该组内变量值之差平方和的总和表示,记作SSE。
•组间差异:由因素中的不同水平造成的差异,用变量在各组的均值与总均值之差平方和的总和表示,记作SSA。
•方差分析的基本思想是:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
•方差分析的三个条件:•被检验的各总体均服从正态分布;•各总体的方差皆相等;•从每一个总体中所抽出的样本是随机且独立的;方差分析的基本步骤:建立原假设H0:两个或多个总体均值相等。
将各不同水平间的总离差分成两个部分:组间差异SSA组内差异SSE构造检验统计量: F= MSA / MSE判断:在零假设为真时,F~F[(k-l),(n-k)]的F分布。
若各样本平均数的差异很大,则分子组间差异会随之变大,而F值也随之变大,故F检验是右尾检验。
当检验统计量F大于临界值时则拒绝原假设;或者根据 p值来判断,若p<α,则拒绝原假设§5.1 单因素方差分析(One-Way ANOVA过程)One-Way ANOVA过程用于进行两组及多组样本均数的比较,即成组设计的方差分析,如果做了相应选择,还可进行随后的两两比较,甚至于在各组间精确设定哪几组和哪几组进行比较。
5.1.1 界面说明【Dependent List框】选入需要分析的变量,可选入多个结果变量(应变量)。
方差分析
假设从总体中抽取容量为 n i 的样本: X i 1 , X i 2 ,..., X in , i 1,2,3,4
i
• 假设4个样本相互独立,则 X ij相互独立, 这里 4
n ni
i 1
• 提出假设:
H0 : 1 2 3 4
原假设等价于
H0 : 1 2 ... r 0
5.4
5.1.3. 统计分析
(一)假设检验 • 构造(5.4)的统计量。 n 1 记 X X ,
i
ni
j 1 ni j 1
i
ij
1 2 Si ni
(X
ij
Xi ) ,
2
i 1,2,...,r
分别为第i个总体的样本均值和方差。
——单因素方差分析数学模型
• 假设
H 0 : 1 2 ... r
• 引入记号: n ni(总次数)
i 1 r
1 r ni i n i 1
(理论总均值)
i i
(因素对指标的效应)
•
i 之间的差异等价于 i 之间的差异,
且
n
Tests of Between-Subjects Effects Dep endent Variable: 杀 虫率 Source Corrected Model Intercept 农药 Error Total Corrected Total Type III Sum of Squares 3794.500a 95340.115 3794.500 178.000 118693.000 3972.500 df 5 1 5 12 18 17 Mean Square 758.900 95340.115 758.900 14.833 F 51.162 6427.424 51.162 Sig . .000 .000 .000
第5章 方差分析
F检验
若实际计算的F值大于 F 0 . 0 5 ( d f , d f ) ,则 F 值在 α=0.05的水平上显著,我们以95% 的可靠性推断 2 2 St代表的处理间方差大于Se 代表的处理内方差。
1 2
这种用F值出现概率的大小推断两个总体方差 是否相等的方法称为 F检验。
F检验时,是将由试验资料所算得的F值与根 ,F 据df1=dft 和df2=dfe查表所得的临界F值F 相比较作出统计推断的。
1 1
k
n
x ) n (x i x )
2 2 1
k
(x
1 1
k
n
xi )
2
上式可简写成:SST=SSt+SSe 分别表示总 平方和,处理间平方和,处理内平方和。 即:总平方和=处理间平方和+处理内平
方和。
C=T2/kn:
SST
x C
2
1 2 SS t Ti C n SS e SS T SS t
P ( F F ) 1 F ( F )
F
f (F )d F
F表列出的是不同df1和df2下, P(F≥Fα)=0.05和P(F≥Fα)=0.01时的F值, 即右尾概率α=0.05和α=0.01时的临界F 值,一般记作F0.05(df1,df2), F0.01(df1,df2) 。
所以 d f T d f t d f e 综合以上各式得:
df T kn 1 df t k 1 df e df T df t
均方差,均方(mean square,MS)
变异程度除与离均差平方和的大小有关外, 还与其自由度有关,由于各部分自由度不相等, 因此各部分离均差平方和不能直接比较,须将 各部分离均差平方和除以相应自由度,其比值 称为均方差,简称均方 (mean square , MS )。组 间均方和组内均方的计算公式为 :
第五章 方差分析和正交试验
r
i 表示组内理论均值, eij 表示随机误差, eij ~ N (0, 2 ), i 称为效应值. ni i 0.
单因素方差分析的数学模型为 : Yij i eij (i 1, 2, , r; j 1, 2, , ni ) 2 e ~ N ( 0 , ), eij 互相独立; ij n n 0. i i i 1
•步骤2:表头设计.见下表:一般至少安排有一个空列.
17
结束
•步骤3:制订试验方案, 见下表:
18
结束
•步骤4:作试验得到得率 yi .填入表中.作试验时采用随机顺序. •步骤5:计算统计量,填入表5.4.5中.
水平数r 3, 每水平在 1列中出现次数 m 3, 试验数n rm 9, 试验结果为Y1 , Y2 , , Yn , K jl为j列中水平为l (l 1,2, , r )的试验结果之和 . 这里K11 y1 y2 y3 , K 23 y3 y6 y9 . 记K K jl , 显然, K Yi , 与j无关.
l 1 i 1 n 1 2 1 r 2 2 2 P K , Q j K jl , S j Q j P, Q Yi 2 , ST Q P. n m l 1 i 1 r n
S Yi Y
2 T j 1
r
2
1 2 2 2 2 S , Y K , 这里, ST S12 S 2 S3 S4 . n j 1
EYi i , EY ,
2 总离差平方和 ST Yij Y , r ni 2 i 1 r j 1
组间差平方和 S 组内差平方和 S
6第五章 方差分析
x
x
1.总变异 1.总变异
将4组综合起来看,40只小鼠的瘤重 组综合起来看,40只小鼠的瘤重 有差异,称为总变异 总变异, 有差异,称为总变异,用总的离均差 2 平方和表示。 平方和表示。
( SS总 = ∑∑ xij − x)
i j
2.组间变异 2.组间变异
• 从表中可见,4组小鼠瘤重的均数有差别,称 从表中可见, 组小鼠瘤重的均数有差别 组小鼠瘤重的均数有差别, 组间变异,用离均差平方和(SS 表示。 为组间变异,用离均差平方和 组间)表示。 表示 • 造成组间变异的原因是:①处理差异:即药 造成组间变异的原因是: 处理差异: 物及其不同剂量对瘤重有影响造成了各组均 数不同。 个体差异: 数不同。 ②个体差异:即小鼠的个体因素造 成各组均数不同。 成各组均数不同。
例题
将40只接种肿瘤的小白鼠随机分 只接种肿瘤的小白鼠随机分 为4组,给予不同剂量的三菱莪术 组 注射液,半月后称量瘤重,其数 注射液,半月后称量瘤重, 据见下表。表中1组为接种后不加 据见下表。表中1组为接种后不加 任何处理, 、 、 组分别为接种 任何处理,2、3、4组分别为接种 后注射0.5ml、1.0ml和1.5ml三菱 后注射 、 和 三菱 莪术液。 莪术液。试比较各组瘤重间有无 差别? 差别?
四、F 检验的基本思想
• F 检验的基本思想 是分析变异 , 即 检验的基本思想是分析变异 是分析变异, 将所有测量值间的总变异按照其变 异的来源分解为多个部分, 异的来源分解为多个部分 , 通过比 较不同来源的变异推断各处理组间 的差异有无统计学意义。 的差异有无统计学意义。 • 实质上是关于观测值变异原因的数 量分析。 量分析。
SS组 = ∑ i ( xi − x) n 间
第五章方差分析
1方差分析的基本步骤:①建立假设和确定检验水准②计算检验统计量③查表确定P值和作出推断结论2两样本均数比较的t检验与完全随机化设计多个样本均数比较的方差分析之间的关系:①当比较的均数为两组时,F = t2 ,此时方差分析与t检验所得结果是等价的。
②两样本均数比较的t检验只能用于两个样本,而完全随机化设计多个样本均数比较的方差分析还可以用于多个样本。
配对设计的t检验与随机区组设计的方差分析之间的关系:①当比较的均数为两组时,F = t2 ,此时方差分析与t检验所得结果是等价的。
②配对设计的t检验只能用于同一对象或者匹配的两个对象接受两种处理的情况,而随机区组设计的方差分析可以用于两种以上的处理。
③配对设计的t检验只能分析处理因素的作用,随机区组设计的方差分析除了可以分析处理因素外,还可以分析区组因素。
3ν1= 3,ν2 = 21,查表得F0.05,(3,21) = 3.07 < F,得出p<0.05,可以认为这四组结果不等或者不全相等,但并非任两组之间都有差别。
若想进一步知道任两组之间的关系,还需要进行两两比较。
4①建立假设和确定检验水准H0:四组大鼠的血清SOD活性的总体均数相等,即μ1=μ2=μ3=μ4。
H1:四组总体均数不等或不全相等。
α=0.05②计算检验统计量F值SS总=6134.890,SS组间=3166.012,SS组内=2968.869ν组间=k-1=4-1=3,ν组内=N-k=40-4=36MS组间=1055.340,MS组内=82.469,将上述结果列成方差分析表:③确定p值,作出推断结论查表得F0.05,(3,36)=2.87,F> F0.05,(3,36),p<0.05,故拒绝H0,接受H1,差别有统计学意义,可以认为四组大鼠的血清SOD活性的总体均数不等或不全相等。
5①建立假设和确定检验水准H0:三种降糖药降糖效果的总体均数相等,即μ1=μ2=μ3。
第五章方差分析
SAS软件与统计应用教程
STAT
5.2
单因素方差分析
5.2.1 用INSIGHT作单因素方差分析
5.2.2 用“分析家”作单因素方差分析
5.2.3 用过程进行单因素方差分析
SAS软件与统计应用教程
STAT
5.2.1 用INSIGHT作单因素方差分析
1. 实例
【例5-1】消费者与产品生产者、销售者或服务的提供 者之间经常发生纠纷。当发生纠纷后,消费者常常会向 消费者协会投诉。为了对几个行业的服务质量进行评价, 消费者协会在零售业、旅游业、航空公司、家电制造业 分别抽取了不同的企业作为样本。每个行业各抽取5家 企业,所抽取的这些企业在服务对象、服务内容、企业 规模等方面基本上是相同的。然后统计出最近一年中消 费者对总共20家企业投诉的次数,结果如表5-4。
SAS软件与统计应用教程
STAT
3. 方差分析表
通常将上述计算结果表示为表5-1所示的方差分析表。
表5-1 单因素方差分析表
来源Source 自由度DF 平方和Sun of Square 平均平方和 Mean Square F统计量 F value p值Pr > F
组间
组内 全部(C-tatol)
对于给定的显著性水平α 当值p = P{FA > FA0} < α时拒绝H0A; 当值p = P{FB > FB0} < α时拒绝H0B。 其中,FA0为FA统计量的观测值,FB0为FB统计量的观 测值。
SAS软件与统计应用教程
STAT
2. 有交互作用的多因素方差分析
对于有交互作用的观测{xijk},采用以下的模型: xijk= + i + j + ij + ijk, 1≤i≤l,1≤j≤m,1≤k≤n 其中表示平均的效应,i和j分别表示因素A的第i个 水平和因素B的第j个水平的附加效应, ij 表示因素A的 第i个水平和因素B的第j个水平交互作用的附加效应。 ijk为随机误差,这里也假定它是独立的并且服从等方差 的正态分布。 注意,其中n必须大于1,即为了检验交互作用,必须 有重复观测。
第五章方差分析Word文档
第五章方差分析方差分析是通过实验数据对影响产品的质量、产量的多个可控因素作统计分析,以分清因素的主次及水平组合形式,并求出最优组合形式,以提高产品质量、产量的一种数学分析方法。
1单因素方差分析,设影响指标的因素仅有一个,设为A 因素,该因素有a 个水平(状态)A 1,A 2^\A a ,在每个水平下,分别作 ni 次实验,i=1,2,|||a 其样本值X jj 〜N (7d 2), i =1,2,|||a ,2或 X j =斗• ;ij , ;ij 〜N (0,二)。
(1)方差分析主要解决: 1、检验A 因素对指标是否有影响及影响的程度,首先提出假设:H 。
「打=二川=4 (在各水平下的均值相等)H i : " i = " j j = j i, j,二 1 112 a (至少有一对不相等)其检验的思想方法是若组间(各水平间)平方和大,表明 A 因素对指标是有影响的,否则,组间平方和小,表明A 因素对指标没有影响。
又组内(随机误差)平方和小, 用F -检验法即F 值大可拒绝 H 0,表明 A 因素影响显著,否则接受 H 0,表明 A 因素影响不 显著。
2、计总体的均值和方差 7,「2川 叮二2。
(2)方差分析的方法:a1、样本值 X j ,i =1,2,1 Ha ,j =1,2^|n i ,n^n ,共有n个样本值,7a n i设X L = 7、Xij ,表所有样本值之和,总平均值1 j m又X x- X 表示第i 个的水平下样本值之和,i =1,2,1"a , X L =乙 X ijj 亠和=丄:X,表示第i 个的水平下样本均值,'m j± n '',且有:a门)a aa门) _1 1X L = ' n i X i_ =' X i X j = nX ,1 2 1 2X X L , X 2X_,nnyjm i¥i 1 i =1 j :in. ii' (Xj —X [)»X j —n i XT =n i 可—n 区=0, j 4 j 4 ~~ ~2、平方和:a n称S T(X j -X)2为总的离差平方和,其计算公式为i 2 j 二a na gS r =、、(X i j -X)X ij—X 二二(X j-X)i =1 j =1i = 1j 1a m x2ija n=E Z-X" 'X j -X(nX -nX)i4 'j = 1i= 1 = :1a n i =s zx 2ij—2- nXi 4 j 4a niX j-丄X[2i 4 j 4na m称S A■ (X^ -X)2为因素A 的组间平方和,其计算公式为:i二 j 二a m _ _ a ni _S A ' (X^ -X)X T - X! 1 (X T -X)i J j 1-i 4 j ±- ani ___ 2=、'' X i || i士 j 吕a2二、nX j|_i z !a _______ ,=、n X Li妊「丄xl i i 口a m _-X' '、■ X i -X(nX -nX) i 4 j 4 -a-X 二 r )i X ii =1—2—nX -X : n(X ; —- X j =丄人」,),n j 壬n iani称S E —' (X ij -XL 2为第i 个水平下的组内平方和,其计算公式为:i =i j =1a n i__ ______ _____由 S r 一 a a (X jj —X jL X j_ — X)2i :1 j :1…i2 a □ …•二二(X j —X iL )2+、、(瓦 _X )2 + 2'、(X j —X i"* —X)i A j Aa二 S ES A 2、 i丄二 S ES A即有:S^S T -S A ,3统计分析又由 E^) =E 2(n - a)匕 n -a ,有 E (--;「2, n —a 得方差二2的估计量为;「=旦。
方差分析ppt课件
在观测变量总离差平方和中,如果组
间离差平方和所占比例较大,则说明观 测变量的变动主要是由控制变量引起的, 可以由控制变量来解释,控制变量给观 测变量带来了显著影响;反之,如果组 间离差平方和所占比例小,则说明观测 变量的变动不是主要由控制变量引起的, 不可以主要由控制变量来解释,控制变 量的不同水平没有给观测变量带来显著 影响,观测变量值的变动是由随机变量 因素引起的。
不同饲料对牲畜体重增长的效果等, 都可以使用方差分析方法去解决。
方差或叫均方,是标准差的平方,是
表示变异的量。在一个多处理试验中, 可以得到一系列不同的观测值。造成观 测值不同的原因是多方面的,有的是处 理不同引起的,叫处理效应或条件变异, 有的是试验过程中偶然性因素的干扰和 测量误差所致,称为实验误差。
dfT nk 1 20 1 19
dft k 1 5 1 4
dfe 5(4 1) 15
st 2
SSt dft
103.94 3
34.65
se2
SSe dfe
109.36 12
9.11
进行F检验:
F st2 34.65 50.15 se2 9.11
F0.05(4,15) 3.06, F0.01(4,15) 4.89, F
x1 x2
ts x1 x2
x1 x2
LSD0.05 t s 0.05 x1x2
LSD0.01
t0.01
s x1 x2
若
x1
x 2 >t0.05
s x1
x2
或
x1
ห้องสมุดไป่ตู้
x2
>
t0.01
s x1 x2
第五章SPSS方差分析课件
TARGET DEVICE
1
1
2
1
3
1
4
1
1
2
2
2
3
2
4
2
1
3
2
3
3
3
4
3
…………
LIGHT SCORE 12 19 1 10 18 11 19 1 10 1 11 15 15 17 12
数据准备:一个分析变量SCORE ,三个因素 变量TARGET, DEVICE , LIGHT 。
数据文件:spssjiaoan\例题数据\多维交互效 应方差分析
误差Error),还有很多选项相应的结果。
结果解释:两种药物A和B均对治疗缺铁性贫 血有显著疗效,两种药物A和B的协同作用也 很显著。
输出文件:spssjiaoan\例题数据\ 2×2析因实验
方差分析
5.1.4拉丁方区组设计的方差分析 拉丁方实验设计的特点:有两个以上因素变量,
每个因素变量的水平数相等。
分析过程:
Analyze->General Linear Model-> Univariate
Dependent:Score Fixed Factors: Target、 Device、 Light Model:保留全模型选项(不对Model操作) 选择输出Option选项:选Target*Device* Light进
Dependent:redcell Fixed Factors:drugA、drugB 保留全模型选项(不对Model操作) 选择Plot选项: 作三个图drugA、drugB、
drugA*drugB 选择输出Option选项:选 drugA、drugB、
第5章 方差分析
x1
x2
xi
K xk
1 xi = ni
∑x
j =1
ni
ij
1 总均数 x = N
1 ∑∑ xij = N i j
∑n x
i =1
k
i i
总离差平方和: 总离差平方和:即所有样本值与其总均数偏差的平方和
SS = ∑∑ ( xij − x ) = ∑∑ ( xij − xi ) + ( xi − x )
有六种不同的中药杀虫剂,为了分析它们的杀虫效果, 例2 有六种不同的中药杀虫剂,为了分析它们的杀虫效果,对其 杀虫率做了如下试验, 杀虫率做了如下试验,推断这六种杀虫剂的效果差异是否有显 著意义. 著意义. 药物
杀 虫 率 一 87.4 85.0 80.2 二 90.5 88.5 87.3 94.7 361.0 三 56.2 62.4 四 55.0 48.2 五 92.0 99.2 95.3 91.5 378.0 六 75.2 72.3 81.3
∑n (x − x)
i =1 i i
2
它表示系统误差, 它表示系统误差,即各组均数对总均数的离差平方和 结论:总离差平方和=组内离差平方和+ 结论:总离差平方和=组内离差平方和+组间离差平方和
根据:自由度=统计量中独立变量的个数根据:自由度=统计量中独立变量的个数-约束条件个数
SSe中
∑( x
j =1
− xi ) + ∑ ni ( xi − x )
2 k i =1
2
从上式可看出,SS可分解成两项之和 从上式可看出,SS可分解成两项之和 组内离差平方和: 组内离差平方和: =1 j =1
k
ij
− xi
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序言
方差分析的基本思想:
通过分析研究中不同变量的变异对总变异的贡献大小, 确定控制变量对研究结果影响力的大小。
通过方差分析,分析不同水平的控制变量是否对结果产 生了显著影响。
如果控制变量的不同水平对结果产生了显著影响,那么它 和随机变量共同作用,必然使得结果有显著变化;如果控 制变量的不同水平对结果没有显著影响,那么结果的变化 主要由随机变量起作用,和控制变量无关。
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
3组之间存在显著差别
13
(4) 用LSD法进行两两比较
Post Hoc Tests
组间样本离差平方和:是各水平组均值和总体均值离差的平方
和,反映控制变量的影响。
k ni
SSE
(xij xi )2
i1 j1
组内离差平方和:是每个数据与本水平组平均值离差的平方和,
反映数据抽样误差的大小程度。
7
5.1 单因素方差分析
F统计量计算公式:
F SSA (k 1) SSE (n k)
11
(2) 方差分析结果表
l u ng
Between Groups
Within Groups T o ta l
(Com b in e d ) Linear Term
Un wei g hte d Wei g hte d De vi a ti o n
ANOVA
Sum of Squares
9.266 9.165 9.165
单因素方差分析
9
图5-1 选择菜单 图5-2 One-Way ANONA 对话框
图5-3 Options对话框
图5-4 One-Way ANONA: Post Hoc Multiple Compairisons对话框 图5-3 One-Way ANONA: Options对话框
10
5.1 单因素方差分析
5.1.3 结果和讨论 (1) 单因素方差分析的前提检验结果 (Homogeneity of variance test)
Oneway
Test of Homogeneity of Variances 各个组方差相等
l u ng
Levene Stati sti c
2.852
df1 2
df2 28
Si g. .075
Dependent Variable: lung
3组之间存在显著差别
Multiple Comparisons
LSD
(I) group (J) group
5.1.2 SPSS中实现
研究问题
某职业病防治院对31名石棉矿工种的石棉肺患者、可疑患者 进行了用力肺活量(L)测定,如下表,问3组石棉矿工的 用力肺活量有无差别。
表5-1
用力肺活量测定数据
肺患者 1.8 1.4 1.5 2.1 1.9 1.7 1.8 1.9 1.8 1.8 2.0 可疑患者 2.3 2.1 2.1 2.1 2.6 2.5 2.3 2.4 2.4 非患者 2.9 3.2 2.7 2.8 2.7 3.0 3.4 3.0 3.4 3.3 3.5 实现步骤
方差分析分类:
单因素方差分析
多因素方差分析
4
5.1 单因素方差分析
5.1.1 定义和计算公式
定义:单因素方差分析测试某一控制变量的不同水平是否对 观察变量造成了显著差异和变动。
前提条件:
各个总体服从正态分布
各个总体方差相同
观察值是独立的
方差分析问题 著差异
不同水平下各个总体的均值是否存在显
平均组间平方和 平均组内平方和
F统计量服从 (k 1, n k) 个自由度的F分布。
k 为水平数;n 为个案数。
相伴概率值 < 显著性水平 拒绝零假设 认为控制 变量不同水平下个总体均值有显著差异;
相伴概率值 >显著性水平 认为控制变量不同水平下 个总体均值无显著差异。
8
5.1 单因素方差分析
5
5.1 单因素方差分析
零假设:每个水平下各个总体的均值相等。 计算公式:
SST=SSA+SSE
总的变异平方和 =控制变量引起的变异+随机变量引起的变异
总变异
组间变异
组内变异
6
5.1 单因素方差分析
其中:
k
SSA ni (xi x)2
i 1
其中 k 为水平数,ni 为第 i 个水平下的样本容量。
.100 1.534 10.800
df 2 1 1 1
28 30
Mean Square 4.633 9.165 9.165 .100 .055
F 84.544 167.259 167.259
1.829
Si g. .000 .000 .000 .187
3组矿工用力肺活量不完全相同
ቤተ መጻሕፍቲ ባይዱ
12
(3) S-N-K法两两比较的结果
Homogeneous Subsets
lung
Subset for alpha = .05
Stud e n t-Ne wma n -Keu l sa,b
group 1 2 3 Si g.
N 11 9 11
1 1.7909
1.000
2 2.3111
1.000
3
3.0818 1.000
Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 10.241.
第五章 方差分析
5.1 单因素方差分析 5.2 多因素方差分析 5.3 协方差分析
1
序言
方差分析:由R.A.Fister发明的,用于两个及两个以上样本 均数差别的显著性检验。
造成结果差异的原因: 随机变量 控制变量
方差分析的基本概念: 因素:方差分析中,所要检验的对象。 水平:因素的不同表现。 观测值:每个因素中得到样本的数据。
2
序言
例如:在学校教学中,希望得到一种有效的教学方法和手段, 使学校的教学效果最好。
问题关键点:众多影响因素中寻找主要因素,加以控制。 影响教学效果和学生掌握知识的效果的因素:
教学方法 教材使用 学生接受知识的能力 寻找主要因素,以提高教学水平: 可控变量:教学的方法、教材的使用。 随机变量:学生接受知识的能力。 措施: 分别使用不同的教学方法,一段时间后测试。