常用温度传感器比较
三类常用的温度传感器
温度传感器对于环境温度的测量非常准确,广泛应用于农业、工业、车间、库房等场所。
对于温度传感器的种类非常多,不同的感温元件不同的型号,在国内比较常用的温度传感器型号有哪些呢,下面九纯健为大家简单介绍一下常用的温度传感器。
通过感温元件来分类可以大致分成铂热电阻温度传感器、热电偶温度传感器、热敏电阻温度传感器三大类。
1:铂热电阻温度传感器
铂热电阻是利用铂丝的电阻值随着温度的变化而变化这一基本原理设计和制作的,按0℃时的电阻值R(℃)的大小分为10欧姆(分度号为Pt10)和100欧姆(分度号为Pt100)等,测温范围均为-200~850℃。
利用PT100铂热电阻作为感温元件的型号有铠装式、装配式、插座式、端面热电阻。
可测温度:温度范围在-200摄氏度到150摄氏度,-50摄氏度到850度。
主要应用了需要温度误差小的行业或者是精密仪器仪表。
2:热电偶温度传感器
热电偶温度传感器主要是通过两根不同的金属材料焊接在一起的,主要温度发生改变,那么两端就会有不同的电势产生,通过电势的变化来得出相应的温度变化。
可测温度:最高达到2300度,在高温段比较准用的K 型正级
3:热敏电阻
由金属氧化物陶瓷组成,是低成本、灵敏度最高的温度传感器
测温范围:温度范围小-50到200度左右,体积小,响应时间快。
因为价格低廉所以在很多家用电器上都被应用到了。
以上就是常用的三类温度传感器型号以及它们的测温范围,许多常用的温度传感器大部分都是利用的它们作为感温元件来制作的,比如测量轴承用的JCJ100TLB温度传感器用的是铂热电阻作为核心。
各种温度传感器分类及其原理
各种温度传感器分类及其原理温度传感器是一种集成电路或器件,用于测量环境或物体的温度。
根据其工作原理和分类,常见的温度传感器包括热敏电阻、热电偶、热电阻、红外线传感器以及半导体温度传感器等。
1. 热敏电阻(Thermistor)热敏电阻是一种元件,其电阻值随温度的变化而变化。
根据电阻与温度之间的关系,热敏电阻分为两种类型:负温度系数(NTC)热敏电阻和正温度系数(PTC)热敏电阻。
NTC热敏电阻的电阻值随温度的升高而下降,常用于测量环境温度。
PTC热敏电阻的电阻值随温度的升高而增加,常用于过载保护和温度控制。
2. 热电偶(Thermocouple)热电偶是由两种不同金属线组成的开路回路。
当热电偶的两个接头处于不同温度下时,会产生温差电势。
该电势与两个接头之间的温差成正比。
通过测量温差电势,可以计算出温度值。
热电偶具有广泛的测温范围和较高的准确性,因此被广泛应用于工业领域。
3.热电阻(RTD)热电阻是一种利用材料的电阻与温度之间的关系来测量温度的传感器。
常见的热电阻材料是铂(Pt),因为铂的电阻与温度之间的关系比较稳定和预测性好。
热电阻的工作原理是利用热电阻材料的电阻随温度的变化而变化,通过测量电阻值来计算温度。
4. 红外线传感器(Infrared Sensor)红外线传感器是利用物体释放的热辐射来测量温度的传感器。
红外线传感器可以通过测量物体辐射的红外线能量来计算出物体的温度。
红外线传感器常用于非接触式测温,特别适用于测量高温、移动对象或远距离测温。
5. 半导体温度传感器(Semiconductor Temperature Sensor)半导体温度传感器是利用半导体材料的电特性随温度变化而变化的传感器。
根据不同的半导体材料和工作原理,半导体温度传感器可以分为基于PN结的温度传感器(比如二极管温度传感器)、基于电压输出的温度传感器(比如温度传感器芯片)以及基于电流输出的温度传感器(比如恒流源温度传感器)等。
半导体温度计的温度范围和精度比较
半导体温度计的温度范围和精度比较半导体温度计是一种常见的温度测量设备,被广泛应用于多个领域,包括工业控制、环境监测和生命科学等。
半导体温度计具有许多优点,例如响应速度快、可靠性高、体积小、功耗低等。
在本文中,我们将比较不同类型半导体温度计的温度范围和精度,并探讨其适用性和限制。
首先,让我们来了解一下几种主要类型的半导体温度计:负温度系数(NTC)热敏电阻、正温度系数(PTC)热敏电阻和硅基温度传感器。
NTC热敏电阻是一种负温度系数的传感器,其电阻值随温度的升高而降低。
NTC热敏电阻通常在-55℃至+150℃的温度范围内工作。
它们的响应速度较快,因此适用于需要实时反馈的应用。
然而,由于其较大的温度系数和温度响应的非线性性,NTC热敏电阻的精度相对较低。
通常情况下,NTC热敏电阻的精度为0.5%至5%。
PTC热敏电阻是一种正温度系数的传感器,其电阻值随温度的升高而增加。
PTC热敏电阻通常在-50℃至+250℃的温度范围内工作。
PTC热敏电阻具有较好的稳定性和线性性,并且在高温环境下表现出更好的性能。
然而,PTC热敏电阻的响应速度较慢,适用于不需要频繁温度变化的应用。
其精度通常为1%至5%。
硅基温度传感器是一种基于硅芯片的温度传感器,其工作原理基于硅元素的温度特性。
硅基温度传感器通常在-40℃至+125℃的温度范围内工作,但某些型号可以扩展到更广泛的温度范围。
硅基温度传感器具有较高的精度和稳定性,并且具有较低的电源电流消耗。
其精度通常为0.1%至1%。
综上所述,不同类型的半导体温度计在温度范围和精度方面有所差异。
NTC热敏电阻适用于一般温度测量和监控应用,其温度范围通常为-55℃至+150℃,精度为0.5%至5%。
PTC热敏电阻适用于较高温度环境,其温度范围通常为-50℃至+250℃,精度为1%至5%。
硅基温度传感器在精度和稳定性方面表现出色,适用于更高精度要求的应用,其温度范围通常为-40℃至+125℃,精度为0.1%至1%。
NTC温度传感器及其他温度传感器的测量
NTC温度传感器及其他温度传感器的测量温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。
温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。
本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。
热敏电阻器用来测量温度的传感器种类很多,热敏电阻器就是其中之一。
许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。
在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。
表1是一个典型的NTC热敏电阻器性能参数。
这些数据是对热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。
其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。
以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为14.050KΩ。
图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。
虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。
如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下:这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。
热敏电阻一般有一个误差范围,用来规定样品之间的一致性。
根据使用的材料不同,误差值通常在1%至10%之间。
有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。
温度传感器的常见分类 温度传感器应用大全
温度传感器的常见分类温度传感器应用大全温度传感器在我们的日常生活中扮演着十分重要的角色,同时它也是使用范围最广,数量最多的传感器。
关于它你了解多少呢?本文主要介绍的就是各种温度传感器的分类及其原理,温度传感器的应用电路。
温度传感器从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器,近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速,由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用也更加方便。
1、热电偶传感器:两种不同导体或半导体的组合称为热电偶。
热电势EAB(T,T0)是由接触电势和温差电势合成的,接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关,当有两种不同的导体和半导体A和B组成一个回路,其相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势,这种由于温度不同而产生电动势的现象称为塞贝克效应。
2、热敏电阻传感器:热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变,与一般的固定电阻不同,属于可变电阻的一类,广泛应用于各种电子元器件中,不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物,正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件,热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90℃〜130℃。
3、模拟温度传感器:HTG3515CH是一款电压输出型温度传感器,输出电流1~3.6V,精度为±3%RH,0~100%RH相对湿度范围,工作温度范围-40~110℃,5s响应时间,0±1%RH迟滞,是一个带。
温度传感器分类及特点
温度传感器分类及特点温度传感器是用于测量物体温度的设备,通常由敏感元件和转换元件组成。
根据工作原理的不同,温度传感器可以分为热电偶、热敏电阻、热电阻、热辐射传感器等。
下面将对这几种温度传感器进行详细介绍。
一、热电偶热电偶是一种常见的温度传感器,其工作原理是基于塞贝克效应(Seebeck effect)。
当两种不同材料的导体接触时,在温度差异的作用下,会在接触点产生电动势,这种现象称为塞贝克效应。
热电偶就是利用这种效应来测量温度的。
热电偶具有精度高、稳定性好、测量范围广等优点,因此在工业生产和科研领域得到广泛应用。
常用的热电偶材料有铜-镍、镍铬-镍铝等,可以根据不同的测量温度和环境选择合适的热电偶。
二、热敏电阻热敏电阻是一种半导体材料制成的温度传感器,其电阻值会随着温度的变化而变化。
热敏电阻可以分为正温度系数(PTC)和负温度系数(NTC)两种类型。
PTC热敏电阻的阻值随着温度的升高而增大,而NTC热敏电阻的阻值随着温度的升高而减小。
热敏电阻具有体积小、响应速度快、灵敏度高等优点,因此在自动控制、测温仪表等领域得到广泛应用。
同时,热敏电阻的缺点是精度较低,稳定性较差,容易受到环境因素的影响。
三、热电阻热电阻是一种金属导体材料制成的温度传感器,其电阻值会随着温度的变化而变化。
常用的热电阻材料有铜、镍、铂等。
在常温下,热电阻的阻值会随着温度的升高而增大,但在高温下,其阻值会受到金属的磁化效应影响而发生变化。
热电阻具有精度高、稳定性好、耐腐蚀等优点,因此在低温测量领域得到广泛应用。
同时,热电阻的缺点是响应速度较慢,容易受到金属导体材料本身特性的影响。
四、热辐射传感器热辐射传感器是一种利用物体辐射的热量来测量温度的传感器,其工作原理是基于普朗克辐射定律(Planck's law)。
当物体受到辐射时,其辐射的热量与物体的温度和波长有关。
热辐射传感器通过测量物体辐射的热量来推算物体的温度。
热辐射传感器具有非接触、无损、高精度等优点,因此在高温、高压、腐蚀等恶劣环境下得到广泛应用。
温度传感器——精选推荐
温度传感器温度是表征物体冷热程度的物理量,是工农业生产过程中一个很重要而普遍的测量参数。
温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用。
由于温度测量的普遍性,温度传感器的数量在各种传感器中居首位。
温度的变化会改变物体的某种特性,如体积、电阻、电容、电动势、磁性能、频率、光学特性及热噪声等,温度传感器就是以此为原理对温度进行间接测量的。
很多材料的特性都会随温度的变化而变化,所以能作温度传感器的材料相当多。
工农业生产中温度测量的范围极宽,从零下上百度到零上几千度,而不同材料做成的温度传感器只能在一定的温度范围内使用。
随着生产的发展,新型温度传感器还在不断涌现,如微波测温温度传感器、噪声测温温度传感器、温度图测温温度传感器、热流计、射流测温计、核磁共振测温计、穆斯保尔效应测温计、约瑟夫逊效应测温计、低温超导转换测温计、光纤温度传感器等。
按照温度传感器与被测介质的接触方式划分,可以将其分为两大类:接触式和非接触式。
•接触式温度传感器需要与被测介质保持接触,使两者进行充分的热交换而达到同一温度,这一类传感器主要有电阻式、热电偶式、PN结式等。
这类传感器的优势是测量稳定,精度高,不容易受到环境因素的干扰,可以长时间的对目标进行连续测量。
缺点是受被测物体影响较大,容易损坏,空间局限性大。
•非接触式温度传感器则无需与被测介质接触,而是通过检测被测介质的热辐射或对流传来达到测温的目的,这一类传感器最典型是红外测温传感器。
这类传感器的优势是可以测量运动状态物体的温度(如慢速行使的火车的轴承温度,运动中的活塞温度)及热容量小的物体(如集成电路中的温度分布),因为不需要接触所以受空间局限小,更加灵活。
劣势是容易受到环境干扰。
按照传感器的输出方式及接口方式划分,可以将其分为模拟式和数字式两大类。
模拟式温度传感器输出的是模拟信号,必须经过专门的接口电路转换成数字信号后才能由微处理器进行处理。
常用温度传感器
医疗健康:监测人体体温辅 助诊断疾病
农业种植:监测土壤和空气 温度优化种植环境
Prt Three
热电偶温度传感器
热电偶工作原理
热电偶由两种不同的金属或金属合金组成 当两种金属或金属合金的温度不同时会产生电压 电压的大小与温度差成正比 热电偶通过测量电压来测量温度
热电偶种类及材料
热电偶种类:K型、J型、T型、E型等 K型热电偶:镍铬-镍硅适用于高温环境 J型热电偶:铁-康铜适用于中低温环境 T型热电偶:铜-康铜适用于低温环境 E型热电偶:镍铬-康铜适用于中低温环境 热电偶材料:镍铬、镍硅、铁、康铜等
汽车电子:发动机温度监测、 空调温度控制等
Prt Six
红外线温度传感器
红外线温度传感器工作原理
红外线辐射: 物体温度越高 辐射的红外线
越多
传感器接收: 红外线温度传 感器接收物体 辐射的红外线
信号处理:传 感器将接收到 的红外线信号 转换为电信号
显示温度:将 电信号处理后 显示为物体温
度
红外线温度传感器种类及特点
热敏电阻工作原理
热敏电阻是一种半导体器件其电阻随温度变化而变化 热敏电阻的电阻随温度升高而减小随温度降低而增大 热敏电阻的电阻变化率与温度变化率成正比 热敏电阻的电阻变化率可以通过测量电阻值来计算从而得到温度值
热敏电阻种类及材料
正温度系数热敏电阻(PTC):由半导体材料制成电阻随温度升高而增大 负温度系数热敏电阻(NTC):由金属氧化物制成电阻随温度升高而降低 临界温度系数热敏电阻(CTR):由半导体材料制成电阻随温度升高而减小 热敏电阻材料:包括陶瓷、金属氧化物、半导体等
红外线温度传感器应用场景及注意事项
应用场景:工业生产、医 疗健康、环境监测等领域
常见温度传感器的性能优缺点
一、模块温度传感器:模块温度传感器用于测量变频模块(IGBT或IPM)的温度,目前用的感温头的型号是602F-3500F,基准电阻为25℃对应电阻6KΩ±1%。
1、常数B值为4100K±3%,基准电阻为25℃对应电阻10KΩ±3%。
温度越高,阻值越小;温度越低,阻值越大。
离25℃越远,对应电阻公差范围越大;在0℃和55℃对应电阻公差约为±7%;而0℃以下及55℃以上,对于不同的供应商,电阻公差会有一定的差别。
除个别老产品外,美的空调电控使用的室温管温传感器均使用这种类型的传感器。
2、常数B值为3470K±1%,基准电阻为25℃对应电阻5KΩ±1%。
同样,温度越高,阻值越小;温度越低,阻值越大。
离25℃越远,对应电阻公差范围越大。
二、排气温度传感器:排气温度传感器用于测量压缩机顶部的排气温度,常数B值为3950K±3%,基准电阻为90℃对应电阻5KΩ±3%。
三、室温管温传感器:室温传感器用于测量室内和室外的环境温度,管温传感器用于测量蒸发器和冷凝器的管壁温度。
室温传感器和管温传感器的形状不同,但温度特性基本一致。
按温度特性划分,目前常用的室温管温传感器有二种类型:当然,除了以上三种常见的温度传感器外,还有其他类型也是经常性使用的,如热电阻:PT100、PT1000、Cu50、Cu100;热电偶:B、E、J、K、S等。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。
常用测温方案对比以及数字温度传感器的优势
D-NTC ™系列数字温度传感器NST1001应用指南 温度传感器种类繁多,应用也极为广泛,在我们日常所需的汽车、消费电子、家用电器等产品上都存在一个至数个温度传感器。
较比其他种类传感器,温度传感器出现的最早,相继出现了热电偶传感器、RTD 铂电阻和集成半导体温度传感器等多种温度传感器,并且随着技术的发展,新型温度传感器还在不断涌现。
本文要介绍的就是一种新型的温度传感器——纳芯微电子D-NTC ™系列高精度双引脚数字脉冲输出温度传感器芯片NST1001。
这里会介绍它的产品特性和应用电路,让大家全面了解下这款革命性的数字测温产品。
常用测温方案对比温度传感器的使用非常广泛,大到工业过程控制中的温度变送器,小到家庭必备的电子体温计都需要通过温度传感器来实现温度检测,但在这些应用场景中,所采用的测温方案是不同的。
根据测温原理,测温方案主要有如下几大类:• 热电偶• 铂电阻RTD•热敏电阻NTC•CMOS 温度传感器图1:不同种类的测温方案热电偶温度范围最宽,可达-200℃~2000℃,使用时需要外部参考端,较为复杂。
铂电阻RTD 精度高,范围范围也比较宽,但成本较高,外围电路复杂。
NTC 热敏电阻成本较低,但精度有限,本身具有温度系数大和非线性输出的特点。
CMOS 温度传感器又称为IC 温度传感器,包括模拟输出和数字输出两种类型。
与上述三种温度传感器相比,CMOS 温度传感器具有非常高的线性度,低系统成本,功能集成度高,外围简单,能支持数字输出,主要缺点是测温范围一般集中在-40℃~125℃,较为局限。
用一张图表来对比,更加直观:NST1001G N D N C D Q表1:几种常见测温方案对比通过以上对比,大家已经了解了几种测温方案的差异,这些差异也决定了不同的应用场景。
热电偶和RTD两种方案测温范围宽,使用复杂,所以基本局限在工业应用。
热敏电阻NTC因为低成本和相对易于使用的优点使其应用非常广泛,例如汽车上的水温、油温、发动机进气温度、缸内温度到尾气温度,家电和小家电中的空调、冰箱电饭煲等等这些都是NTC的主战场,物联网应用中的环境温度测量、水温探头,电子体温计等也都是采用以NTC为主的测温方案。
传感器型号大全
传感器型号大全
1. 温度传感器
温度传感器是一种用于测量周围环境温度的传感器。
以下是一
些常见的温度传感器型号:
- DS18B20:数字温度传感器,具有高精度和快速响应的特点。
- LM35:模拟温度传感器,可提供线性输出。
- DHT11:数字湿温度传感器,能够同时测量温度和湿度。
2. 光敏传感器
光敏传感器是用于检测光强度或光线的传感器。
以下是一些常
见的光敏传感器型号:
- LDR(光敏电阻):根据光照强度变化提供不同的电阻值。
- Photodiode(光电二极管):将光能转化为电能的传感器。
3. 气体传感器
气体传感器用于检测周围环境中的气体浓度。
以下是一些常见
的气体传感器型号:
- MQ-2:可检测烟雾、液化气、甲烷等气体。
4. 水质传感器
水质传感器用于检测水体中的各种物质和参数。
以下是一些常见的水质传感器型号:
- pH传感器:用于测量水体的酸碱度。
- 温度传感器:用于测量水体的温度。
- 溶解氧传感器:用于测量水中的溶解氧含量。
- 浊度传感器:用于测量水的浊度。
5. 加速度传感器
加速度传感器用于测量物体的加速度。
以下是一些常见的加速度传感器型号:
- ADXL345:数字三轴加速度传感器,可测量三个方向上的加速度。
以上是一些常见的传感器型号,供参考使用。
对于不同的应用领域和具体需求,还有更多种类的传感器可供选择和使用。
请注意,本文档提供的型号仅供参考,具体的应用和选型还需根据实际需求进行评估和选择。
常用温度传感器
热电阻测温系统一般由热电阻、连接导线和显示仪表等
组成,电路装在指示仪表、置于控制室中,热电阻装在金属
护套内置于现场被测介质中,由导线将两者连接起来。
热电阻两线测量桥路:热电阻的两端 各引出一根导线与指示仪表连接, 称为二线制接法,二线制接法仅适 用于热电阻与指示仪表距离较近、 连接导线较短或精度不高的场合。
模块2 常用温度传感器
学习要点
常用温度传感器 热电阻温度传感器
1
2.1 温度传感器概述
温度传感器有3个发展阶段:即传统的分 立式温度传感器、模拟集成温度传感器、 智能温度传感器。目前,国际上新型温度 传感器正从模拟式向数字式、由集成化向 智能化、网络化的方向发展。
2
一、温度与温标
温度是衡量物体(或物质)冷热程度的物 理量,能够把温度的变化转化为电量(电压、 电流或阻抗等)变化的传感器称为温度传感 器。
R2 R110 Rt R3
二、热电阻材料、结构及参数
1、热电阻材料 对电阻体材料的基本要求:
➢电阻温度系数大----提高灵敏度 ➢电阻率尽可能大----减小电阻尺寸 ➢材料的化学、物理性质稳定----减小误差 ➢材料易于加工----提高工艺性
较为广泛应用的电阻体材料有: 铂、铜、镍、铁等,而常用的是铂、铜 。
➢铜的机械强度较差,一般用双绕法:
先将铜丝对折,两根丝平行绕制,1两4 个端头处于支架的同一端。
热电阻式传感器的结构:由电阻体(感温元件)、引出线、绝缘套管和接线 盒等部件组成。其中,电阻体(感温元件)是主要部件。
玻璃骨架铂热 电阻感温元件
云母骨架铂热电阻
普通工业用热电阻基型产品结构
铜热电阻感温元件
机械强度较差,热惯性较大,在温度高于100℃时,易氧化,稳定性较差。
盘点四种常用的温度传感器
盘点四种常用的温度传感器温度传感器是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。
温度传感器是温度测量仪表的核心部分,品种繁多。
按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。
设计中最常用的温度传感器有:热电偶传感器、热敏电阻传感器、铂电阻传感器(RTD)、集成(IC)温度传感器。
下图给出代表性的实物照片。
1. 热电偶传感器热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,由该原理可知热电偶的一个优势是其无需外部供电。
另外,热电偶还有测温范围宽、价格便宜、适应各种大气环境等优点,但其缺点是测量精度不高,故在高精度的测量和应用中不宜使用热电偶。
热电偶两种不同成份的材料连接是标准的,根据采用材料不同可分为K型热电偶、S型热电偶、E型热电偶、N型热电偶、J 型热电偶等等。
2. 热敏电阻传感器热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变。
按照温度系数不同分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。
正温度系数热敏电阻(PTC)在温度越高时电阻值越大,负温度系数热敏电阻(NTC)在温度越高时电阻值越低,它们同属于半导体器件,被广泛应用于各种电子元器件中。
热敏电阻通常在有限的温度范围内可实现较高的精度,通常是-90℃〜130℃。
3. 铂电阻传感器铂电阻,又称为铂热电阻,它的阻值会随着温度的变化而改变。
并且铂电阻阻值会随着温度的升高匀速有规律的变大。
铂电阻可分为PT100和PT1000等系列产品,PT100即表示它在0℃时阻值为100欧姆,PT1000即表示它在0℃时阻值为1000欧姆。
铂电阻具有抗振动、稳定性好、准确度高、耐高压等优点,被广泛应用于医疗、电机、工业、温度计算、卫星、气象、阻值计算等高精温度设备中。
4. 集成(IC)温度传感器集成(IC)温度传感器是将温度传感器集成在一个芯片上、可完成温度测量及信号输出功能的专用IC。
常用温度传感器
一、 热电阻的测温原理
热电阻效应:
物质的电阻率随温度变化而变化的物理现象。
热电阻温度传感器是利用物质的电阻率随温度变化而变化的特 性来进行温度测量的。
金属的电阻温度系数为正值,如图。
因为:在金属中,载流子为自由电子, 当温度升高时,每个自由电子的动能 将增加,因而在一定的电场作用下, 要使这些杂乱无章的电子作定向运动 就会遇到更大的阻力,导致金属电阻 值随温度的升高而增加 。
➢当介质流动时,由于介质流动要带走热 量, Rt1所耗散的热量与被测介质的平均 流速成正比。因而Rt1温度下降,引起电阻 下降,电桥失去平衡,检流计有相应指示, 可用流量或流速标定。
突断型温度传感器
➢ 电热水壶接通电源加热 后,水温逐步上升到100度, 水开始沸腾,蒸汽冲击蒸 汽开关上面的双金属片, 由于热胀冷缩的作用,双 金属片膨胀变形,顶开开 关触点断开电源。 ➢ 如果蒸汽开关失效,壶 内的水会一直烧下去,直 到水被烧干,发热元件温 度急剧上升,位于发热盘 底部的有两个双金属片, 会因为热传导作用温度急 剧上升,膨胀变形,断开 电源。
R2 R1 Rt R3
二、热电阻材料、结构及参数
1、热电阻材料 对电阻体材料的基本要求:
➢电阻温度系数大----提高灵敏度 ➢电阻率尽可能大----减小电阻尺寸 ➢材料的化学、物理性质稳定----减小误差 ➢材料易于加工----提高工艺性
较为广泛应用的电阻体材料有: 铂、铜、镍、铁等,而常用的是铂、铜 。
如果热电阻安装的位置与仪表相距较远, 当环境温度变化时,其连接导线电阻也要 变化。为消除连接导线电阻变化带来的测 量误差,测量时采用三线制连接法。除了 三线制接法,另外还有四线制接法,主要 用于精密测量。
(Rt 2r)R2 R1R3 R2 R1
常用热电阻
常用热电阻
常用热电阻
热电阻是一种温度传感器,它通过测量电阻值的变化来确定温度的变化。
热电阻通常由金属或陶瓷材料制成,具有较高的灵敏度和稳定性。
在工业、医疗、环保等领域广泛应用。
1. PT100
PT100是最常见的热电阻之一,它由纯铂制成,其电阻值随温度的变
化呈线性关系。
PT100可测量范围为-200℃至+850℃,精度高达
0.1℃。
2. PT1000
PT1000与PT100类似,但其电阻值比PT100大10倍。
因此,它比PT100更适合于长距离传输和低功耗应用。
PT1000可测量范围为-50℃至+200℃。
3. NTC
NTC是负温度系数热敏电阻的缩写,其电阻值随温度升高而下降。
NTC通常由氧化物陶瓷材料制成,可测量范围为-50℃至+150℃。
4. PTC
PTC是正温度系数热敏电阻的缩写,其电阻值随温度升高而上升。
PTC通常由聚合物材料制成,可测量范围为-50℃至+150℃。
5. KTY81
KTY81是一种硅基热敏电阻,具有高精度和稳定性。
KTY81可测量范围为-55℃至+150℃。
6. PT10
PT10是一种小型热电阻,通常用于测量小型设备的温度。
PT10可测量范围为-50℃至+150℃。
总结
以上是常用的几种热电阻,它们各自具有不同的特点和应用场景。
在选择热电阻时,需要根据实际需求考虑其测量范围、精度、稳定性等因素。
机舱中常用的传感器
机舱中常用的传感器一、温度传感器较低温度场合——用热电阻或热敏电阻式(用半导体材料制成,具有负的电阻温度系数),如冷却水、滑油温度、主轴承温度等。
较高温度场合——热电偶式,如主机排气温度。
1.热电阻式温度传感器热电阻常由铜丝或铂丝用双线并绕在绝缘骨架上,再插入护套内组成。
其电阻与温度成正比(正的电阻温度系数)。
铜热电阻——测温范围-500C~+1200C。
铂热电阻——测温范围-1200C~+8000C(监视系统多用铂电阻)热电阻测温电桥Rt:热电阻; R0:调零(调迁移)电位器W:调桥臂电流(调量程)电位器;R1=R2为固定电阻(R1>> Rt,R2>>R0)i1=i2=i主要取决于R1、R2的大小。
设Rt=起始电阻Rt0+随温度变化电阻ΔRt,则输出电压:Uab=Ua--Ub=i Rt--i R0=i(Rt0+ΔRt)--iR0当t=00C时,ΔRt=0,则Rt=R0,这时可调整R0使Uab=0(调零)。
如果起始温度为TL,对应热电阻起始电阻为RL,可调整R0=RL,同样可使Uab=0,即将测温始点迁移到TL。
当温度在TL的基础上升时,Rt增大ΔRt,此时Ua↑,而Ub不变,Uab↑,即:Uab=Ua--Ub =i(Rt0+ΔRt)--iR0= iΔRt可见电桥输出Uab与热电阻随测量温度而变化的阻值ΔRt成正比,此即热电阻的温度检测原理。
其量程可由W改变电流值来调整,即t=tmax时,使Uab=Uabmax热电阻的温度修正——热电阻三线制接法热电阻插入需检测的监视点,与测量电桥之间用铜丝线连接,铜丝线的阻值也会随温度而变化,引起测量误差。
实际测量电桥中采用热电阻“三线制”连接法来实现环境温度的补偿,即增加一根电源线LC,将热电阻的两根导线La和Lb分别接在测量桥臂和调零桥臂上Uab=Ua--Ub =i(Rt+Ra)--i(R0+Rb)=i(Rt--R0)+i(Ra--Rb)只要Ra恒等于Rb,则Uab与环境温度无关。
常用温度传感器的对比分析及选择
常用温度传感器的对比分析及选择常用的温度传感器有热电偶、热电阻和智能温度传感器。
这些传感器在测量温度方面有各自的特点和适应场景。
以下是对这些传感器的对比分析及选择建议。
热电偶是最常用的温度传感器之一、它由两种不同金属的导线焊接在一起组成,当温度发生变化时,导线间会产生电压差。
热电偶具有广泛的温度范围,可以适应从低温到高温的环境。
它的优点是响应速度快、稳定性好和抗干扰能力强。
然而,热电偶也存在一些缺点,例如需要外部电源供电、准确性相对较低和易受外界电磁干扰等。
热电阻是另一种常用的温度传感器。
它使用电阻值的变化来测量温度。
热电阻的最常见类型是铂电阻,具有较高的准确性和稳定性。
热电阻在低温范围内具有较好的性能,并且对温度变化的响应速度较快。
然而,热电阻的优点也带来了它的一些限制,例如价格相对较高、响应速度相对较慢和不适用于超高温环境等。
智能温度传感器是近年来兴起的一种新型温度传感器。
它采用数字技术和微处理器,可以实现更精确的温度测量和数据处理。
智能温度传感器通常具有高准确性、灵敏度和可靠性,并且具有数据存储和通信功能。
这些传感器可以适用于各种应用场景,例如医疗、环境监测和工业控制等。
然而,智能温度传感器的价格相对较高,而且在极端温度环境和高电磁干扰环境下的表现可能略有不足。
在选择温度传感器时,需要综合考虑以下几个因素:1.测量范围:根据实际需求确定温度范围,选择能够适应所需范围的传感器。
2.精确度:根据应用场景的要求选择合适的传感器精确度,例如工业控制领域通常需要较高的精确度。
3.响应速度:根据测量要求选择响应速度较快的传感器,特别是在需要实时监测的应用场景中。
4.价格:根据预算限制选择适当的传感器,智能温度传感器通常价格较高。
5.环境适应性:考虑传感器在环境条件下的性能,例如抗干扰能力、适应高温或低温环境等。
综上所述,选择合适的温度传感器应根据实际应用需求进行综合考虑。
热电偶具有快速响应、广泛适应性等特点;热电阻具有高准确性、稳定性和低温性能等特点;智能温度传感器具有高精确度、数据处理和通信功能等特点。
温度传感器:温度传感器的四种类型
温度传感器:温度传感器的四种类型温度传感器是一种应用广泛的传感器,用于检测温度。
它们在许多领域中都有用,例如工业、医疗、环境和农业等。
本文将介绍温度传感器的四种常见类型,及其工作原理和应用。
热电偶传感器热电偶传感器是一种基于热电现象的传感器。
它由两种不同的金属制成的导线连接在一起,在一个端子处,形成了一个称为热电极的结构,当温度改变时,它会产生一个电势差,这个电势差与温度成正比。
热电偶传感器可以测量非常高的温度,常用于高温环境中,例如炉膛、熔炉和火箭发动机中。
热敏电阻传感器热敏电阻传感器是一种基于电阻变化的传感器。
它是由一种材料制成,其电阻会随温度的变化而变化。
当物体的温度变化时,电阻值也会随之变化。
通过测量电阻值的变化,可以确定物体的温度。
热敏电阻传感器常用于温度测量和控制中,例如恒温器、温度计和烤箱中。
热电阻传感器热电阻传感器是一种基于电阻变化的传感器,与热敏电阻传感器相似。
它是由金属或合金制成的导线,其电阻会随温度的变化而变化。
当物体的温度变化时,电阻值也会随之变化。
与热敏电阻传感器相比,热电阻传感器更加精确和稳定。
热电阻传感器常用于实验室、工业和医疗设备中。
红外线温度传感器红外线温度传感器是一种基于红外线辐射的传感器。
它测量物体表面的辐射温度,而不是接触温度。
当物体表面的温度变化时,其辐射率也会随之变化。
红外线温度传感器会测量这些变化,并转换成温度值。
与其他传感器相比,红外线传感器可以在不接触物体的情况下测量其温度,因此常用于工业和生活中的非接触式温度测量。
总结以上四种类型的温度传感器在不同的领域中得到了广泛的应用。
热电偶传感器常用于测量高温,热敏电阻传感器和热电阻传感器常用于实验室、工业和医疗设备中,而红外线温度传感器则常用于工业和生活中的非接触式温度测量。
在选择温度传感器时,需要考虑其应用环境、精确度和可靠性等因素。
传感器种类大全
传感器种类大全引言传感器是一种能够感知、测量和转换各种物理量和化学量的设备。
它们在生活和工业中扮演着重要的角色,广泛应用于自动化、仪器仪表、工业生产、环境监测等领域。
本文将介绍一些常见的传感器种类及其应用。
1. 温度传感器温度传感器可以测量物体或环境的温度。
常见的温度传感器包括热电偶、热电阻和红外线传感器。
•热电偶:通过两种不同金属的接触产生电势差,根据电势差的变化推断温度。
•热电阻:利用金属或半导体导体材料的电阻随温度变化的特性来测量温度。
•红外线传感器:通过感知物体表面发射的红外线辐射来测量温度。
温度传感器广泛应用于空调、供暖系统、食品加工、医疗设备等领域。
2. 湿度传感器湿度传感器用于测量空气或其他气体中的湿度。
最常见的湿度传感器是电容式湿度传感器和电阻式湿度传感器。
•电容式湿度传感器:通过测量电容的变化来确定湿度水平。
•电阻式湿度传感器:利用基于吸湿材料的电阻测量湿度。
湿度传感器广泛应用于自动化温控系统、气象观测、农业温室、工厂等各个领域。
3. 压力传感器压力传感器测量介质(液体或气体)中的压力变化。
常见的压力传感器包括压电式传感器、电阻式传感器和电容式传感器。
•压电式传感器:利用介质的压力作用下,压电材料产生电荷从而测量压力。
•电阻式传感器:通过介质对电阻的作用测量压力。
•电容式传感器:通过介质对电容的影响测量压力。
压力传感器广泛应用于汽车制造、工业自动化、石油化工、医疗仪器等领域。
4. 光传感器光传感器用于检测光的强度、颜色以及检测光的频率。
常见的光传感器包括光敏电阻、光敏二极管和光电管。
•光敏电阻:根据光照的强度而改变电阻值,从而实现光的测量。
•光敏二极管:将光转化为电荷产生电流来测量光的强度。
•光电管:通过光电效应将光转化为电信号测量光的强度。
光传感器广泛应用于光电测量、图像识别、光控开关、安全监控等领域。
5. 加速度传感器加速度传感器测量物体在空间中的加速度。
常见的加速度传感器包括振动传感器、MEMS传感器和压电传感器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用红外温度传感器比较:
传感器型号
测温范围
典型应用
OTP-538F2S
-40~+500℃
医学(耳温机),家庭设施(吹风机等)
TS105-1
-20~100℃(精确度:-0.45±0.08 %/K)
红外测温仪,非接触温度测量,移动物体温度测量
TS105-2
-20~100℃
温度计,微波炉,室内空调,高温计,汽车环境控制
一.主题:温度传感器
二.内容
接触式温度传感器
1.热电偶:
(1)测温原理:
两种不同成分的导体(称为热电偶丝或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电动势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表连接,显示出热电偶所产生的热电动势,通过查询热电偶分度表,即可得到被测介质温度。
TS118-1
跟处理电路相关(普通-20~300℃)
无接触温度测量,移动物体温度测量,温度控制,火灾报警
TS118-3
跟处理电路相关(普通-20~300℃)
无接触温度测量,温度控制,火灾报警,气候控制系统
TSEV01
0~300℃(精确度:0.1℃)
家庭,医疗,汽车,安全,工业
三.参考文献
孔力、梁福平.传感器原理及检测技术.华中科技大学出版社
4.数字式温度传感器:
(1)原理:
将敏感元件、A/D转换单元、存储器等集成在一个芯片上,直接输出反应被测温度的数字信号,使用方便,但响应速度较慢(100ms数量级)。
(2)实例:
DS18B20是美国Dallas半导体公司生产的世界上第一片支持"一线总线"
接口的数字式温度传感器,供电电压范围为3~5.5V,测温范围为-55℃~+125℃,可编程的9~12位分辨率,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,出厂设置默认为12位,在12位分辨率时最多在750ms内把温度值转换为数字。
(3)实例:
LM135\235\335系列是美国国家半导体公司(NS)生产的一种高精度易校正的集成温度传感器,是电压输出型温度传感器,工作特性类似于齐纳稳压管。该系列器件灵敏度为10mV/K,具有小于1Ω的动态阻抗,工作电流范围从400μA到5mA,精度为1℃,LM135的温度范围为-55℃~+150℃,LM235的温度范围为-40℃~+125℃,LM335为-40℃~+100℃。封装形式有TO-46、TO-92、SO-8。该器件广泛应用于温度测量、温差测量以及温度补偿系统中。详细信息见LM135,235,335.pdf。
四.检索方式
传感器用的有R0=10Ω、R0=100Ω和R0=1000Ω等几种,它们的分度号分别为Pt10、Pt100、Pt1000;铜电阻有R0=50Ω和R0=100Ω两种,它们的分度号为Cu50和Cu100。其中Pt100和Cu50的应用最为广泛。
(4)实例:
Pt100为正温度系数热敏电阻传感器,测量范围-200℃~850℃,允许温度偏差值0.15+0.002|t|,最小置入深度200mm,最大允许电流5mA。
3.集成温度传感器:
<1>模拟式温度传感器:
(1)原理:
将驱动电路、信号处理电路以及必要的逻辑控制电路集成在单片IC上,具有实际尺寸小、使用方便、灵敏度高、线性度好、响应速度快等优点。
(2)常见模拟式温度传感器:
电压输出型:
LM3911、LM335、LM45、AD22103。
电流输出型:
AD590。
(2)测温范围:
金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠。
半导体热敏电阻测温范围只有-50~300℃左右,且互换性较差,非线性严重,但温度系数更大,常温下的电阻值更高(通常在数千欧以上)。
(3)常用热电阻:
目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150℃易被氧化。
(2)测温范围:
常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
(3)常用热电偶型号:
(4)实例:
T型热电偶,测温范围-40~350℃。
2.热电阻:
(1)测温原理:
热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。
目前主要有金属热电阻和半导体热敏电阻两类。
金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即:
Rt=Rt0[1+α(t-t0)]
式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。半导体热敏电阻的阻值和温度关系为:
Rt =AeB/t
式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。
AD590是美国模拟器件公司的电流输出型温度传感器,供电电压范围为3~30V,可以承受44V正向电压和20V反向电压,测温范围为-55℃~+150℃,输出电流为223μA~423μA,输出电流变化1μA相当于温度变化1℃,最大非线性误差为±0.3℃,响应时间仅为20μs,重复性误差低至±0.05℃,功耗约为2mW,输出电流信号的传输距离可达到1km以上,作为一种高阻电流源,最高可达20MΩ,所以它不必考虑选择开关或CMOS多路转换器所引入的附加电阻造成的误差,适用于多点温度测量和远距离温度测量的控制。