原子物理学习题解答
原子物理学习题与答案
![原子物理学习题与答案](https://img.taocdn.com/s3/m/9874ede99b89680203d825fe.png)
h
; B.E= h ,P= ;
C. E=h ,p=
;
D. E= ,p=
20 为使电子的德布罗意假设波长为 0.39nm , 应加多大的能量: A.20eV; B.10eV; C.100eV; D.150eV -7 21.如果一个原子处于某能态的时间为 10 S,原子这个能态能量的最小不确定数量级为 (以焦耳 为单位) : -34 -27 -24 -30 A.10 ; B.10 ; C.10 ; D.10 -13 22.将一质子束缚在 10 cm 的线度内,则估计其动能的量级为: -20 A. eV; B. MeV; C. GeV; D.10 J 23.按量子力学原理,原子状态用波函数来描述. 不考虑电子自旋,对氢原子当有确定主量子数 n 时,对应的状态数是: 2 2 A.2n; B.2n+1; C.n ; D.2n 24.按量子力学原理,原子状态用波函数来描述.不考虑电子自旋,对氢原子当 nl 确定后,对应的 状态数为: 2 A.n ; B.2n; C. l ; D.2 l +1 25.按原子力学原理,原子状态用波函数来描述.考虑电子自旋,对氢原子当 nl 确定后,对应的状 态数为: 2 A.2(2 l +1) ; B.2 l +1; C. n; D.n 26.按量子力学原理,原子状态用波函数来描述.考虑自旋对氢原子当 nl m 确定后对应的状态数 为:A.1; B.2; C.2 l +1; D. n 27.单个 f 电子总角动量量子数的可能值为: A. j =3,2,1,0; B .j=± 3; C. j= ± 7/2 , ±5/2; D. j= 5/2 ,7/2 28.单个 d 电子的总角动量投影的可能值为: A.2 ,3 ; B.3 ,4 ; C.
原子物理学课后答案
![原子物理学课后答案](https://img.taocdn.com/s3/m/a6ebbec777eeaeaad1f34693daef5ef7ba0d127b.png)
原⼦物理学课后答案原⼦物理学习题解答第⼀章原⼦的基本状况1.1若卢瑟福散射⽤的粒⼦是放射性物质镭放射的,其动能为电⼦伏特。
散射物质是原⼦序数的⾦箔。
试问散射⾓所对应的瞄准距离多⼤?解:根据卢瑟福散射公式:得到:⽶式中是粒⼦的功能。
1.2已知散射⾓为的粒⼦与散射核的最短距离为,试问上题粒⼦与散射的⾦原⼦核之间的最短距离多⼤?解:将1.1题中各量代⼊的表达式,得:⽶1.3若⽤动能为1兆电⼦伏特的质⼦射向⾦箔。
问质⼦与⾦箔。
问质⼦与⾦箔原⼦核可能达到的最⼩距离多⼤?⼜问如果⽤同样能量的氘核(氘核带⼀个电荷⽽质量是质⼦的两倍,是氢的⼀种同位素的原⼦核)代替质⼦,其与⾦箔原⼦核的最⼩距离多⼤?解:当⼊射粒⼦与靶核对⼼碰撞时,散射⾓为。
当⼊射粒⼦的动能全部转化为两粒⼦间的势能时,两粒⼦间的作⽤距离最⼩。
根据上⾯的分析可得:故有:⽶由上式看出:与⼊射粒⼦的质量⽆关,所以当⽤相同能量质量和相同电量得到核代替质⼦时,其与靶核的作⽤的最⼩距离仍为⽶。
1.4钋放射的⼀种粒⼦的速度为⽶/秒,正⾯垂直⼊射于厚度为⽶、密度为的⾦箔。
试求所有散射在的粒⼦占全部⼊射粒⼦数的百分⽐。
已知⾦的原⼦量为。
解:散射⾓在之间的粒⼦数与⼊射到箔上的总粒⼦数n的⽐是:其中单位体积中的⾦原⼦数:⽽散射⾓⼤于的粒⼦数为:所以有:等式右边的积分:故即速度为的粒⼦在⾦箔上散射,散射⾓⼤于以上的粒⼦数⼤约是。
1.5粒⼦散射实验的数据在散射⾓很⼩时与理论值差得较远,时什么原因?答:粒⼦散射的理论值是在“⼀次散射“的假定下得出的。
⽽粒⼦通过⾦属箔,经过好多原⼦核的附近,实际上经过多次散射。
⾄于实际观察到较⼩的⾓,那是多次⼩⾓散射合成的结果。
既然都是⼩⾓散射,哪⼀个也不能忽略,⼀次散射的理论就不适⽤。
所以,粒⼦散射的实验数据在散射⾓很⼩时与理论值差得较远。
1.6已知粒⼦质量⽐电⼦质量⼤7300倍。
试利⽤中性粒⼦碰撞来证明:粒⼦散射“受电⼦的影响是微不⾜道的”。
原子物理学习题答案
![原子物理学习题答案](https://img.taocdn.com/s3/m/a7da022969dc5022aaea00bf.png)
1. 一强度为I的粒子束垂直射向一金箔,并为该金箔所散射。
若 =90°对应的瞄准距离为b,则这种能量的粒子与金核可能达到的最短距离为: B (A) b(B) 2b(C) 4b(D) 0.5b2. 在同一粒子源和散射靶的条件下观察到粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为: C(A) 4:1 ( B) 1:2 (C) 1:4 (D) 1:83. 一次电离的氦离子(H e+)处于n=2的激发态,根据波尔理论,能量E为 C(A) -3.4eV ( B) -6.8eV (C) -13.6eV (D) -27.2eV4.夫兰克—赫兹实验证明了B(A) 原子内部能量连续变化(B) 原子内存在能级(C) 原子有确定的大小(D) 原子有核心5. 下列原子状态中哪一个是氦原子的基态?DA. 1P1B. 3P1C. 3S1D. 1S06. 若某原子的两个价电子处于2s2p组态,利用L-S耦合可得到其原子态个数:CA. 1B. 3C. 4D. 67. 一个p电子与一个 s电子在L-S耦合下可能有原子态为:CA. 3P0,1,2, 3S1B. 3P0,1,2 , 1S0C. 1P1 ,3P0,1,2D. 3S1 ,1P18. 设原子的两个价电子是p电子和d电子,在L-S耦合下可能的原子态有:CA. 4个B. 9个C. 12个D. 15个9. 氦原子有单态和三重态,但1s1s 3S1并不存在,其原因是: BA. 因为自旋为1/2, 1=2=0 故J=1/20B. 泡利不相容原理限制了1s1s 3S1的存在C. 因为三重态能量最低的是1s2s 3S1D. 因为1s1s 3S1和1s2s 3S1是简并态。
10. 泡利不相容原理说: DA.自旋为整数的粒子不能处于同一量子态中B.自旋为整数的粒子能处于同一量子态中C.自旋为半整数的粒子能处于同一量子态中D.自旋为半整数的粒子不能处于同一量子态中11. 硼(Z=5)的B+离子若处于第一激发态,则电子组态为:AA. 2s2pB. 2s2sC. 1s2sD. 2p3s12. 铍(Be)原子若处于第一激发态,则其电子组态:DA. 2s2sB. 2s3pC. 1s2pD. 2s2p13. 若镁原子处于基态,它的电子组态应为:CA.2s2s B. 2s2p C. 3s3s D. 3s3p14. 氦原子由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产生的谱线条数为:CA. 0B. 2C. 3D. 115. 氦原子由状态1s3d 3D3,2,1向1s2p 3P2,1,0跃迁时可产生的谱线条数为: CA. 3B. 4C. 6D. 516. 以下电子排布式是基态原子的电子排布的是 D12s1② 1s22s12p1① 1s22s22p63s2 ④ 1s22s22p63s23p1③ 1sA.①②B.①③C.②③D.③④17.在原子的第n层电子层中,当它为最外电子层时,最多容纳的电子数与(n-1)层相同,当它为次外层时,最多容纳的电子数比(n+1)层多容纳10个电子,则此电子层为 CA.K层B.L层C.M层D.N层18. 碱金属原子能级的双重结构是由于下面的原因产生: DA) 相对论效应B) 原子实极化C) 价电子的轨道贯穿D) 价电子自旋与轨道角动量相互作用19. 处于L=3, S=2原子态的原子,其总角动量量子数J的可能取值为: B(A) 3, 2, 1 (B) 5, 4, 3, 2, 1(C) 6, 5, 4, 3 (D) 5/2, 4/2, 3/2, 2/2, 1/220. 在LS耦合下,两个同科p电子能形成的原子态是:C(A) 1D,3D (B) 1P,1D,3P,3D(C) 1D,3P,1S (D) 1D,3D,1P,3P,1S,3S21.氩(Z=18)原子基态的电子组态及原子态是:A22s22p63s23p6 1S0 B. 1s22s22p62p63d8 3P0A. 1s22s22p63p8 1S0 D. 1s22s22p63p43d2 2D1/2C. 1s22. 满壳层或满次壳层电子组态相应的原子态是: B(A) 3S0(B)1S0(C) 3P0(D) 1P123. 由状态2p3p 3P到2s2p 3P的辐射跃迁:C(A) 可产生9条谱线( B) 可产生7条谱线(C) 可产生6条谱线( D) 不能发生24. 某原子的两个等效d电子组成原子态1G4、1D2、1S0、3F4,3,2和3P2,1,0,则该原子基态为: C(A) 1S0(B) 1G4(C) 3F2(D) 3F425.原子发射伦琴射线标识谱的条件是: CA. 原子外层电子被激发B. 原子外层电子被电离C. 原子内层电子被移走D. 原子中电子的自旋—轨道作用很强26. 用电压V加速的高速电子与金属靶碰撞而产生X射线,若电子的电量为- e,光速为c,普朗克常量为h,则所产生的X射线的短波限为:C(A) hc2/eV(B) eV/2hc(C) hc/eV(D) 2hc/eV27. X射线的连续谱有一定的短波极限,这个极限 A(A)只取决定于加在射线管上的电压, 与靶材料无关.(B)取决于加在射线管上的电压,并和靶材料有关(C)只取决于靶材料,与加在射线管上的电压无关(D)取决于靶材料原子的电离能.28. 利用莫塞莱定律,试求波长0.1935nm的K 线是属于哪种元素所产生的?B(A) Al(Z=13)(B) Fe(Z=26)(C) Ni(Z=28)(D) Zn(Z=30)。
原子物理学习题(参考答案)
![原子物理学习题(参考答案)](https://img.taocdn.com/s3/m/28ad210d7cd184254b3535b8.png)
【1-6】一束α 粒子垂直射到一重金属箔上,求α 粒子被金属箔散射后,散射角θ ≥600 的 α 粒子数与散射角θ ≥900 的α 粒子数之比。
Z Z e2 dN 1 2 sin 4 ( ) Nnt ( 1 2 2 ) 2 2 4 0 2Mv 解:由 d 可得散射角 90 的α 粒子数为
2
1 ) 180 0 sin 2
5.06 10 14 m
α 粒子与 7Li 核对心碰撞的最小距离(考虑质心系运动)
rm
1 4 0 1 4 0 1 4 0
Z1 Z 2 e 2 (1 v 2 Z1 Z 2 e 2 (1 2 Ec
2
1 sin 1 sin
2
)
2
原子物理学习题 一、选择10-8m ; C C、10-10m ;
D、10-13m 。 C
(2)原子核式结构模型的提出是根据 粒子散射实验中 A、绝大多数 粒子散射角接近 180 ; C、以小角散射为主也存在大角散射;
B、 粒子只偏 2 ~3 ; D、以大角散射为主也存在小角散射。
散射角 60 的α 粒子数
N dN (
1 4 0
) 2 Nnt (
Z1 Z 2 e 2 2 ) 2Mv 2
180
1 sin
4
2
d
散 射 角
60 的 α 粒子数与散 (
α 【2-2】 分别计算 H、 He+、 Li++: (1)第一波尔半径、第二波尔半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态到基态所辐射的光子的波长。 解: (1)由
原子物理学考试试题及答案
![原子物理学考试试题及答案](https://img.taocdn.com/s3/m/6cf6d67366ec102de2bd960590c69ec3d5bbdba0.png)
原子物理学考试试题及答案一、选择题1. 原子的最内层电子称为:A. 价电子B. 建筑电子C. 寄生电子D. 核电子答案:D2. 原子核由以下粒子组成:A. 质子和中子B. 质子和电子C. 电子和中子D. 电子和反电子答案:A3. 处于激发态的原子能通过放射射线来跃迁到基态,这种现象称为:A. 加速B. 衰变C. 俘获D. 减速答案:B4. 质子和中子的总数称为:A. 元数B. 核数C. 溶液D. 中性答案:B5. 薛定谔方程用于描述:A. 电子的运动B. 质子的运动C. 中子的运动D. 原子核的运动答案:A二、填空题1. 波尔模型中,电子在不同能级之间跃迁所产生的谱线称为________。
答案:光谱线2. 在原子核中不存在电子,否则将引起能量的________。
答案:不稳定3. 原子核的质子数称为原子的________。
答案:原子序数4. 核力是一种____________,它使质子和中子相互_________。
答案:强相互作用力,吸引5. 电子云代表了电子在空间中的________分布。
答案:概率三、简答题1. 什么是原子物理学?答案:原子物理学是研究原子及其结构、性质、相互作用原理以及与辐射的相互作用等的学科。
它主要探索原子的构成、原子核内的粒子、原子的能级结构、原子的光谱以及原子的物理性质等方面的知识。
2. 描述一下半导体材料的能带结构。
答案:半导体材料的能带结构是介于导体和绝缘体之间的一种情况。
它具有价带和导带两个能带,两者之间由能隙分隔。
在室温下,半导体材料的价带通常都被电子占满,而导带中几乎没有电子。
当外加电场或光照射时,价带中的电子可以跃迁到导带中,从而形成电流。
3. 解释原子的放射性衰变现象。
答案:原子的放射性衰变是指具有不稳定原子核的放射性同位素经过一系列放射性衰变过程,最终转化为稳定同位素的现象。
衰变过程中放出的射线包括α粒子、β粒子和γ射线。
这种衰变过程是由于原子核内部的质子和中子的改变导致了核内部的不稳定性,从而通过释放射线来恢复稳定。
完整版)原子物理学练习题及答案
![完整版)原子物理学练习题及答案](https://img.taocdn.com/s3/m/e229a33417fc700abb68a98271fe910ef12dae1b.png)
完整版)原子物理学练习题及答案1、在电子偶素中,正电子与负电子绕共同质心运动。
在n=2状态下,电子绕质心的轨道半径等于2m。
2、氢原子的质量约为938.8 MeV/c2.3、一原子质量单位定义为原子质量的1/12.4、电子与室温下氢原子相碰撞,要想激发氢原子,电子的动能至少为13.6 eV。
5、电子电荷的精确测定首先是由XXX完成的。
特别重要的是他还发现了电荷是量子化的。
6、氢原子n=2.l=1与氦离子He+ n=3.l=2的轨道的半长轴之比为aH/aHe+=1/2,半短轴之比为bH/bHe+=1/3.7、XXX第一轨道半径是0.529×10-10 m,则氢原子n=3时电子轨道的半长轴a=2.12×10-10 m,半短轴b有两个值,分别是1.42×10-10 m,2.83×10-10 m。
8、由估算得原子核大小的数量级是10-15 m,将此结果与原子大小数量级10-10 m相比,可以说明原子核比原子小很多。
9、提出电子自旋概念的主要实验事实是XXX-盖拉赫实验和朗茨-XXX。
10、钾原子的电离电势是4.34 eV,其主线系最短波长为766.5 nm。
11、锂原子(Z=3)基线系(柏格曼系)的第一条谱线的光子能量约为1.19 eV。
12、考虑精细结构,形成锂原子第二辅线系谱线的跃迁过程用原子态符号表示应为2P1/2 -。
2S1/2.13、如果考虑自旋,但不考虑轨道-自旋耦合,碱金属原子状态应该用量子数n。
l。
XXX表示,轨道角动量确定后,能级的简并度为2j+1.14、32P3/2 -。
22S1/2与32P1/2 -。
22S1/2跃迁,产生了锂原子的红线系的第一条谱线的双线。
15、三次电离铍(Z=4)的第一玻尔轨道半径为0.529×10-10 m,在该轨道上电子的线速度为2.19×106 m/s。
16、对于氢原子的32D3/2态,其轨道角动量量子数j=3/2,总角动量量子数J=2或1,能级简并度为4或2.20、早期的元素周期表按照原子量大小排列,但是钾K(A=39.1)排在氩Ar(A=39.9)前面,镍Ni(A=58.7)排在钴Co(A=58.9)前面。
原子物理学课后答案
![原子物理学课后答案](https://img.taocdn.com/s3/m/4269573e0b4c2e3f5727637a.png)
第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K M vctgb b Z eZ eαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Z e ctgctgb K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K M v α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为222121()(1)4s inm Z e r M vθπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2m in 22121()(1)4sinZ e r M vθπε=+1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220m in124pZ eM vKr πε==,故有:2m in 04pZ er Kπε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米由上式看出:m in r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
《原子物理学》作业参考答案
![《原子物理学》作业参考答案](https://img.taocdn.com/s3/m/93ceb9d8d15abe23482f4d4b.png)
《原子物理学》作业参考答案一. 填空题1. 1010-m ;1510-m ;17103m kg2. )11(~222m nZ R A-=ν3. 21;53.0;51.14.3;6.13n a A eV eVeV --- 4. nm a eV 0177.03;4.541= 5. 单层;双层;自旋与轨道的相互作用 6. 2;3;4=j7. 12+l 8. 2121S ;2122S ;2323D ;2322P9. 原子的量子态 10. 相对论效应;自旋同轨道的相互作用。
11. j l n ,,12. 23=S ; 2;013. ),(211s s G ,),(212l l G > ),(113s l G ,),(224s l G ;),(211s s G ,),(212l l G < ),(113s l G ,),(224s l G 14. B B J g j j μμμ5353)1(;6=+= 15. 6;6 ;16. n 和l 相同的电子; 17. 32种 18. [1.51eV] 19.ph,h E 20. 6.626×10-34Js 21. 622. )exp(0x I I μ-=,随着X 光子的能量增加,吸收系数下降,吸收限,原子中电子壳层结构的实在性,导致的电子的电离23. 原子中量子态的存在,电子自旋的存在24. 一条谱线在外磁场下分为三且彼此间隔相等(间隔均为B B μ);总自旋角动量等于零()0=S 25. 高能光子与低能电子相碰撞,光子把一部分能量传递给电子从而变为低能光子,波长变长,频率变低 26. 轨道电子俘获、、-+ββ27. α+→--Y X A Z AZ 42 28. 能量和动量守恒29. 光电效应 30. 汤姆逊; 核式结构(或行星)模型 31. 氘)(D 32. 量子化的33. 康普顿效应;吴有训。
34. 液滴模型,费米气体模型,壳层模型, 集体模型35. 0.31nm 36. 电磁辐射与物质交换能量时是量子化的,即νh E = 二. 简答1. 卢瑟福的“核式结构”模型的意义、困难是什么?意义:第一,正确地提出了原子的“核式结构”将原子分为核外与核内两个部分。
《原子物理学》部分习题解答(杨福家)
![《原子物理学》部分习题解答(杨福家)](https://img.taocdn.com/s3/m/5a8276de7f1922791688e8a5.png)
gJ
2
z g J B
氢原子基态 氯原子基态
2
3 2 3
S1/ 2 P3 / 2
1 S ( S 1) L ( L 1) 2 2 J ( J 1)
两束
四束
2
gJ
1 S ( S 1) L ( L 1) 4 2 2 J ( J 1) 3
pc
E k ( E k 2m0c ) E k
2
所以
E k m in p m in c 6 2 M eV
4-2 解: 原子态
2
D3/2
1 2 , J 3 2
可得
gJ 3 2
L 2, S
mJ
1 2
,
3 2
1 S ( S 1) L ( L 1) 4 2 J ( J 1) 5
Ek Ek
3.1keV 0.0094keV
3-3 解:
Ek m0 c 0.511MeV
2
若按非相对论处理
Ek 1 2 m0 v ,有
2
1 2
m0 v m0 c
2
2
v 2c
显然不合理,需要用相对论来处理。
E Ek m0 c 2m0c
2 2
又E mc m0 c
有磁场
m mg
1 2
3
S
1
0
1
0
2
g 2
h 0
3
P0
0
0
m 2 g 2 m1 g 1
2
0
2
相邻谱线的频率差
c
原子物理学课后答案
![原子物理学课后答案](https://img.taocdn.com/s3/m/227029dffab069dc50220146.png)
速度:米/秒 加速度: 2.2 试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激 发电势。 解:电离能为,把氢原子的能级公式代入,得:=13.60电子伏特。 电离电势:伏特 第一激发能:电子伏特 第一激发电势:伏特 2.3 用能量为12.5电子伏特的电子去激发基态氢原子,问受激发的氢 原子向低能基跃迁时,会出现那些波长的光谱线? 解:把氢原子有基态激发到你n=2,3,4……等能级上去所需要的能量 是: 其中电子伏特 电子伏特 电子伏特 电子伏特 其中小于12.5电子伏特,大于12.5电子伏特。可见,具有12.5电子伏特 能量的电子不足以把基态氢原子激发到的能级上去,所以只能出现的能 级间的跃迁。跃迁时可能发出的光谱线的波长为: 2.4 试估算一次电离的氦离子、二次电离的锂离子的第一玻尔轨道
1.8 设想铅(Z=82)原子的正电荷不是集中在很小的核上,而是均 匀分布在半径约为米的球形原子内,如果有能量为电子伏特的粒子射向 这样一个“原子”,试通过计算论证这样的粒子不可能被具有上述设想结 构的原子产生散射角大于的散射。这个结论与卢瑟福实验结果差的很 远,这说明原子的汤姆逊模型是不能成立的(原子中电子的影响可以忽 略)。
(完整版)原子物理学练习题及答案
![(完整版)原子物理学练习题及答案](https://img.taocdn.com/s3/m/628875453186bceb19e8bbe4.png)
填空题1、在正电子与负电子形成的电子偶素中,正电子与负电子绕它们共同的质心的运动,在n = 2的状态, 电子绕质心的轨道半径等于 nm 。
2、氢原子的质量约为____________________ MeV/c 2。
3、一原子质量单位定义为 原子质量的 。
4、电子与室温下氢原子相碰撞,欲使氢原子激发,电子的动能至少为 eV 。
5、电子电荷的精确测定首先是由________________完成的。
特别重要的是他还发现了_______ 是量子化的。
6、氢原子 n=2,n φ =1与H +e 离子n=•3,•n φ•=•2•的轨道的半长轴之比a H /a He •=____,半短轴之比b H /b He =__ ___。
7、玻尔第一轨道半径是0.5291010-⨯m,则氢原子n=3时电子轨道的半长轴a=_____,半短轴b•有____个值,•分别是_____•, ••, .8、 由估算得原子核大小的数量级是_____m,将此结果与原子大小数量级• m 相比,可以说明__________________ .9、提出电子自旋概念的主要实验事实是-----------------------------------------------------------------------------和_________________________________-。
10、钾原子的电离电势是4.34V ,其主线系最短波长为 nm 。
11、锂原子(Z =3)基线系(柏格曼系)的第一条谱线的光子能量约为 eV (仅需两位有效数字)。
12、考虑精细结构,形成锂原子第二辅线系谱线的跃迁过程用原子态符号表示应为——————————————————————————————————————————————。
13、如果考虑自旋, 但不考虑轨道-自旋耦合, 碱金属原子状态应该用量子数————————————表示,轨道角动量确定后, 能级的简并度为 。
原子物理练习题答案
![原子物理练习题答案](https://img.taocdn.com/s3/m/5307dcba960590c69ec37634.png)
一、选择题1.如果用相同动能的质子和氘核同金箔正碰,那么用质子作为入射粒子测得的金原子核半径上限是用氘核子作为入射粒子测得的金原子核半径上限的几倍?A. 2B.1/2 √C.1 D .42.在正常塞曼效应中,沿磁场方向观察时将看到几条谱线:A .0; B.1; √C.2; D.33. 按泡利原理,当主量子数确定后,可有多少状态?A.n 2B.2(2l+1)_C.2l+1 √D.2n 24.锂原子从3P 态向基态跃迁时,产生多少条被选择定则允许的谱线(不考虑精细结构)?√A.一条 B.三条 C.四条 D.六条5.使窄的原子束按照施特恩—盖拉赫的方法通过极不均匀的磁场 ,若原子处于5F 1态,试问原子束分裂成A.不分裂 √B.3条C.5条D.7条6.原子在6G 3/2状态,其有效磁矩为:A .B μ315; √ B. 0; C. B μ25; D. B μ215- 7.氦原子的电子组态为1s 2,根据壳层结构可以判断氦原子基态为:A.1P1; B.3S1; √ C .1S0; D.3P0 .8.原子发射伦琴射线标识谱的条件是:A.原子外层电子被激发;B.原子外层电子被电离;√C.原子内层电子被移走;D.原子中电子自旋―轨道作用很强。
9.设原子的两个价电子是p 电子和d 电子,在L-S耦合下可能的原子态有:A.4个 ;B.9个 ;C.12个 ; √D.15个。
10.发生β+衰变的条件是A.M (A,Z)>M (A,Z -1)+m e ;B.M (A,Z)>M (A,Z +1)+2m e ;C. M (A,Z)>M (A,Z -1); √D. M (A,Z)>M (A,Z -1)+2m e11.原子核式结构模型的提出是根据α粒子散射实验中A.绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒√C.以小角散射为主也存在大角散射 D.以大角散射为主也存在小角散射12.基于德布罗意假设得出的公式V26.12=λ Å的适用条件是: A.自由电子,非相对论近似 √B.一切实物粒子,非相对论近似C.被电场束缚的电子,相对论结果D.带电的任何粒子,非相对论近似13.氢原子光谱形成的精细结构(不考虑蓝姆移动)是由于:A.自旋-轨道耦合B.相对论修正和原子实极化、轨道贯穿√C.自旋-轨道耦合和相对论修正D. 原子实极化、轨道贯穿、自旋-轨道耦合和相对论修正14.某原子处于4D 1/2态,若将其放于弱磁场中,则能级分裂为:√A.2个; B.9个; C.不分裂; D.4个15.氩(Z=18)原子基态的电子组态是:√A.1s 22s 22p 63s 23p 6 B.1s 22s 22p 62p 63d 8C.1s 22s 22p 63p 8 D. 1s 22s 22p 63p 43d 216.产生钠原子的两条黄谱线的跃迁是:√A.2P 1/2→2S 1/2 , 2P 3/2→2S 1/2; B. 2S 1/2→2P 1/2 , 2S 1/2→2P 3/2;C. 2D 3/2→2P 1/2, 2D 3/2→2P 3/2;D. 2D 3/2→2P 1/2, 2D 3/2→2P 3/2.17.电子组态2p4d 所形成的可能原子态有:A .1P 3P 1F 3F ; √B. 1P 1D 1F 3P 3D 3F; C .3F 1F ;D. 1S 1P 1D 3S 3P 3D.18.窄原子束按照施特恩—盖拉赫方法通过极不均匀的磁场 ,若原子处于5F 1态,则原子束分裂成A.不分裂; √B.3条;C.5条;D.7条19.原子核可近似看成一个球形,其半径R 可用下述公式来描述: √A.R =r 0A 1/3 ; B. R =r 0A 2/3 ; C. R =3034r π; D.R=334A π.20.在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:A .4:1 B.2:2 √C.1:4 D 1:8二 填空题1.在α粒子散射实验中α粒子大角散射的结果说明了否定了汤姆孙原子模型,支持卢瑟福建立了原子的核式结构模型。
原子物理试题库及答案
![原子物理试题库及答案](https://img.taocdn.com/s3/m/082c5e1b03768e9951e79b89680203d8ce2f6ad8.png)
原子物理试题库及答案一、单项选择题(每题2分,共20分)1. 原子核外电子的能级是量子化的,这意味着电子只能在特定的能级上存在。
以下哪个选项正确描述了这一现象?A. 电子可以在任何能级上存在B. 电子只能在特定的能级上存在C. 电子只能在最低能级上存在D. 电子可以在任意两个能级之间存在答案:B2. 根据玻尔模型,氢原子的能级是量子化的。
当电子从较高能级跃迁到较低能级时,会释放出光子。
以下哪个选项描述了正确的能级跃迁?A. n=3到n=2B. n=2到n=1C. n=1到n=2D. n=3到n=1答案:A3. 放射性衰变中,原子核通过哪种方式释放能量?A. 核聚变B. 核裂变C. 放射性衰变D. 核反应答案:C4. 以下哪种粒子不带电?A. 质子B. 中子C. 电子D. 正电子答案:B5. 原子核的组成包括质子和中子,以下哪个选项正确描述了它们的关系?A. 质子和中子都是带电的B. 质子和中子都是不带电的C. 质子带正电,中子不带电D. 质子不带电,中子带负电答案:C6. 根据泡利不相容原理,一个原子轨道最多可以容纳几个电子?A. 1B. 2C. 3D. 4答案:B7. 以下哪种元素的原子序数是26?A. 铁B. 铜C. 锌D. 铁答案:C8. 原子核的自旋量子数I为0的核素被称为什么?A. 偶核B. 奇核C. 偶偶核D. 奇奇核答案:C9. 以下哪种放射性衰变过程中,原子核的质量数增加?A. α衰变B. β衰变C. γ衰变D. 电子俘获答案:B10. 原子核的结合能是指什么?A. 原子核分裂成两个或多个较小核所需的能量B. 将原子核中的所有核子分离所需的能量C. 原子核形成时释放的能量D. 原子核中的质子和中子相互作用的能量答案:B二、多项选择题(每题3分,共15分)11. 以下哪些因素会影响原子核的稳定性?A. 质子数B. 中子数C. 核子数D. 核子的相对大小答案:ABC12. 以下哪些现象属于放射性衰变?A. α衰变B. β衰变C. γ衰变D. 核聚变答案:ABC13. 以下哪些粒子是基本粒子?A. 质子B. 中子C. 电子D. 光子答案:ABCD14. 以下哪些因素会影响原子的电子排布?A. 原子序数B. 电子的自旋方向C. 电子的能级D. 电子的轨道形状答案:ABC15. 以下哪些是正确的放射性衰变方程?A. 《^{14}C → ^{14}N + ^{0}_{-1}e + ν_e》B. 《^{238}U → ^{234}Th + ^{4}_{2}He》C. 《^{60}Co → ^{60}Ni + ^{0}_{-1}e + ν_e》D. 《^{131}I → ^{131}Xe + ^{4}_{2}He》答案:BCD三、填空题(每题2分,共20分)16. 原子核的组成包括________和________。
原子物理学试题及答案
![原子物理学试题及答案](https://img.taocdn.com/s3/m/9973101a178884868762caaedd3383c4bb4cb49f.png)
原子物理学试题及答案一、选择题(每题2分,共20分)1. 原子物理学研究的主要对象是()。
A. 原子核B. 原子C. 分子D. 电子答案:B2. 原子核的组成是()。
A. 质子和电子B. 质子和中子C. 电子和中子D. 原子和电子答案:B3. 原子的核外电子排布遵循()。
A. 泡利不相容原理B. 能量最低原理C. 洪特规则D. 所有上述规则答案:D4. 原子核的放射性衰变包括()。
A. α衰变B. β衰变C. γ衰变D. 所有上述衰变答案:D5. 原子核的结合能是指()。
A. 原子核中所有核子的总能量B. 原子核中所有核子的总质量C. 原子核中所有核子的总动量D. 原子核中所有核子的总能量与原子核总能量之差答案:D6. 原子核的自旋量子数是()。
A. 0B. 1/2C. 1D. 2答案:B7. 原子核的同位素是指()。
A. 具有相同原子序数但不同质量数的原子核B. 具有相同质量数但不同原子序数的原子核C. 具有相同原子序数和质量数的原子核D. 具有不同原子序数和质量数的原子核答案:A8. 原子核的磁矩是由()产生的。
A. 电子的自旋B. 电子的轨道运动C. 原子核的自旋D. 原子核的轨道运动答案:C9. 原子核的磁共振现象是由于()。
A. 原子核的自旋B. 原子核的磁矩C. 外部磁场D. 外部磁场与原子核磁矩的相互作用答案:D10. 原子核的衰变常数是()。
A. 与时间无关的常数B. 与衰变物质的质量有关C. 与衰变物质的体积有关D. 与衰变物质的密度有关答案:A二、填空题(每题2分,共20分)1. 原子物理学的奠基人是______。
答案:尼尔斯·玻尔2. 原子核由______和______组成。
答案:质子;中子3. 原子的电子排布遵循______原理。
答案:泡利不相容4. 原子核的放射性衰变包括______衰变、______衰变和______衰变。
答案:α;β;γ5. 原子核的结合能是______与______之差。
(完整版)《原子物理学》经典例题及答案
![(完整版)《原子物理学》经典例题及答案](https://img.taocdn.com/s3/m/57562a41b14e852459fb571c.png)
《原子物理学》经典题一、简答题【每题满分15分,满分合计60分】1、简述原子的样子(结构、大小、质量)。
答:(1)α粒子散射的实验与理论充分证明了原子具有核式结构:原子具有一个集中了原子绝大部分质量和所有正电荷但尺度较小的中心体——原子核,原子核所带正电的数值是原子序数乘单位正电荷,原子核周围散布着带负电的电子。
【9分】(2)原子半径:10-10米。
【2分】(3)原子核半径:10-15米。
【2分】(4)原子质量:10-27千克。
【2分】2、简述氢原子光谱的特征和实验规律。
答:(1)氢原子光谱是线状分离谱,谱线分为赖曼线系(紫外光区)、巴尔末线系(可见光区)、帕邢线系(近红外光区)、布喇开线系(中红外光区)、普丰德线系(远红外光区)五个线系。
【7分】(2)氢原子光谱的每一条谱线的波数都可以表达为: 【4分】 氢原子光谱的每一条谱线的波数都可以表达为两光谱项之差:()()T m T n ν=-% ——里兹并合原理。
其中,()H R T n n 2= (n 为正整数)【4分】【备注:照抄课本P26页的(1)、(2)、(3)条而且抄全的得9分】3、简述玻尔理论对氢原子光谱实验规律的解释。
2271111()1231.096775810%L H HR k n k n k n k R m νλ-==-=>=⨯其中:、为整数,、 、 、 ;; 里德堡常数答:(1)玻尔理论的三个基本假设:定态假设、频率假设、量子化假设。
【6分】(2)将氢原子的库仑作用力和势能表达式联立玻尔理论的角动量量子化和频率假设,可得:【4分】【4分】 和氢原子光谱实验规律吻合。
【1分】二、计算题【满分合计40分】1、试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。
【本题满分16分】解:电离能为i E E E 1∞=-,【4分】氢原子的能级公式n E Rhc n 2/=-,【2分】 代入,得:i H H E R hc R hc 211()1=-=∞=13.6eV 。
原子物理学习题 解答
![原子物理学习题 解答](https://img.taocdn.com/s3/m/e63a4f4a2e3f5727a5e96217.png)
故
N0 dn ' 1 2Ze2 2 2 t ( ) ( ) n AAu 4 0 Mu2
8 .5 1 0 6 8 .5 1 0 4
7
0
0
即速度为 1.597 10 米 / 秒 的 粒子在金箔上散射,散射角大于 90 以上的粒子数大约是
8.5 104 0 0 。
Ei R H hc(
1 1 ) Rhc =13.60 电子伏特。 12
Ei 13.60 伏特 e
电离电势: Vi
第一激发能: Ei
RH hc (
1 1 3 3 2 ) Rhc 13.60 10.20 电子伏特 2 1 2 4 4
第一激发电势: V1
0
K b Ze2
Ze 2 ctg 79 (1.60 1019 ) 2 ctg 150 2 2 b 3.97 10 15 米 12 6 19 4 0 K (4 8.85 10 ) (7.68 10 10 )
式中 K 1 2 Mv 是 粒子的功能。 1.2 已知散射角为 的 粒子与散射核的最短距离为
0 0 0
第二章 原子的能级和辐射
2.1 试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。 解:电子在第一玻尔轨道上即年 n=1。根据量子化条件,
p mvr
可得:频率
n
h 2
v nh h 2a1 2ma12 2ma12
6.58 1015 赫兹
2
所以有:
d n n
'
N t d
2
N0 1 t ( A Au 4
2024高考物理原子物理学练习题及答案精选
![2024高考物理原子物理学练习题及答案精选](https://img.taocdn.com/s3/m/30308db4710abb68a98271fe910ef12d2af9a92a.png)
2024高考物理原子物理学练习题及答案精选一、选择题1. 下列元素中,属于惰性气体的是:A) 氢气 (H2)B) 氮气 (N2)C) 氧气 (O2)D) 氩气 (Ar)答案:D2. 以下哪种粒子在原子核中的数量最多?A) 质子B) 中子C) 电子D) 引力子答案:B3. 以下关于原子核的说法哪个是错误的?A) 原子核带有正电荷B) 原子核由质子和中子组成C) 原子核占据整个原子的体积D) 原子核的质量约等于整个原子的质量答案:C4. 电离能是指:A) 电子从原子中进入自由状态所需的能量B) 两个原子之间发生化学反应所需要的能量C) 电子在原子核附近运动所受到的力D) 电子在金属中的自由运动所需的能量答案:A5. 以下关于原子核中质子和中子的说法哪个是正确的?A) 质子质量和中子质量相等B) 质子带有正电荷,中子带有负电荷C) 质子和中子的质量和电荷都相等D) 质子带有正电荷,中子不带电荷答案:D二、填空题1. 原子序数为20的钙元素的简化电子结构为_________。
答案:2, 8, 8, 22. 原子核中质子的数量等于_________。
答案:电子的数量3. 电离能越大,原子结构中的电子越_________。
答案:稳定4. 氢原子的质子数为_________,中子数为_________。
答案:1,05. 氯元素的电子结构为_________。
答案:2, 8, 7三、解答题1. 将下列原子按照质子数从小到大排列:氢、铜、锌、氧。
答案:氢、氧、铜、锌2. 简要说明半导体材料与导体材料以及绝缘体材料的区别。
答案:半导体材料具有介于导体材料和绝缘体材料之间的电导率,在适当的条件下可以导电。
导体材料具有很高的电导率,能够自由传导电流。
绝缘体材料的电导率非常低,不容易传导电流。
3. 简述原子核聚变与原子核裂变。
答案:原子核聚变是指两个或两个以上轻原子核融合成较重的新原子核的过程,同时产生巨大能量。
原子核裂变是指重原子核分裂成两个或多个轻原子核的过程,同样会释放大量能量。
原子物理学试题及答案
![原子物理学试题及答案](https://img.taocdn.com/s3/m/ec35b563eef9aef8941ea76e58fafab069dc4436.png)
原子物理学试题及答案一、单项选择题(每题2分,共20分)1. 原子物理学是研究()的科学。
A. 原子核内部结构B. 原子核外电子的运动规律C. 原子核和核外电子的运动规律D. 原子核内部结构和核外电子的运动规律答案:D2. 原子物理学中,下列哪个量不是量子化的?()A. 能量B. 动量C. 角动量D. 质量答案:D3. 根据玻尔模型,氢原子的能级是()。
A. 连续的B. 分立的C. 随机的D. 无规律的答案:B4. 电子云模型中,电子在空间中出现的概率密度与下列哪个量有关?()A. 电子的动能B. 电子的势能C. 电子的总能量D. 电子的角动量答案:C5. 根据泡利不相容原理,一个原子轨道中最多可以容纳()个电子。
A. 1B. 2C. 3D. 4答案:B6. 原子物理学中,下列哪个量是守恒的?()A. 能量B. 动量C. 角动量D. 所有选项答案:D7. 原子物理学中,下列哪个现象不能用经典物理学解释?()A. 光电效应B. 光的折射C. 光的反射D. 光的干涉答案:A8. 原子物理学中,下列哪个现象是量子化的?()A. 原子的振动B. 原子的转动C. 原子的电子跃迁D. 原子的平动答案:C9. 原子物理学中,下列哪个量是矢量?()A. 质量B. 能量C. 动量D. 角动量答案:C10. 原子物理学中,下列哪个量是标量?()A. 质量B. 能量C. 动量D. 角动量答案:B二、填空题(每题2分,共20分)11. 原子物理学中,电子的轨道量子数用______表示。
答案:n12. 根据玻尔模型,氢原子的能级公式为E_n = -13.6 eV / n^2,其中n是______量子数。
答案:主量子数13. 原子物理学中,电子的自旋量子数用______表示。
答案:s14. 原子物理学中,电子的磁量子数用______表示。
答案:m_l15. 原子物理学中,电子的自旋磁量子数用______表示。
答案:m_s16. 原子物理学中,电子的轨道角动量量子数用______表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章习题解答4-1 一束电子进入的均匀磁场时,试问电子的自旋平行于和反平行于磁场的电子的能量差为多大解:∵磁矩为μ的磁矩,在磁场B 中的能量为: U = -μ·B = -sz μB 电子自旋磁矩 sz μ=±B μ∴电子自旋平行于和反平行于磁场的能量差u =B μ B – (-B μB) =2B μB∴u = 2B μ B =2 ××410-eV ·1T -× T = ×410- eV4-2 试计算原子处于23/2D 状态的磁矩μ及投影μz 的可能值. 解:由23/2D 可知 S=12J=32L=2∴j g =32+12(1)(1)(1)S S L L J J +-++=32+121323223522⨯-⨯⨯=45又j μ=j g Bμ45B μ = B μ∴μ= B μ又,j z j j B m g μμ= 又3113,,,2222j m =-- ∴,142×255j z B B μμμ=±=± 或,346×255j z B B μμμ=±=±即,6226(,,,)5555j zB μμ=--4-3 试证实:原子在63/2G 状态的磁矩等于零,并根据原子矢量模型对这一事实作出解释.解:由63/2G 可知:S =52J = 32L = 4∴574531(1)(1)3122··03522(1)22×22J S S L L g J J ⨯-⨯+-+=+=+=+∴ (1)0J j B j j g μμ=+= 即原子在63/2G 状态的磁矩等于零。
解释:∵原子的总角动量为 J L S =+,而处于63/2G 态原子各角动量为:(1)4(41)20 4.47L L L =+=+== 5535(1)(1) 2.9622S S S =+=+==3315(1)(1) 1.9422J J J =+=+==则它们的矢量关系如图示:L 和S 同时绕J 旋进,相对取项保持不变由三角形余弦定理可知:22222211()[(1)(1)(1)]22L J L J S L L J J S S ⋅=+-+++-+=22355715[45]222222=⨯+⨯-⨯=而222221573515()(45)2222224S J S J L ⋅=+-=⨯+⨯-⨯=-∴相应的磁矩 2BBS Sg S S μμμ=-=-BBLg L L μμμ∆=-=-S L μμμ=+由于磁矩μ随着角动量绕J 旋进,因而对外发生效果的是μ在J 方向上的分量。
其大小计算如下:()(2)L S B J JJL J S J JJ Jμμμμμ⋅+⋅===-⋅+⋅1515(2)024B Jμ=--⨯=此结果说明,μ垂直于J ,因而原子总磁矩0J μ=4-4 在史特恩-盖赫拉实验中,处于基态的窄的银原子束通过极不均匀的横向磁场,并射到屏上,磁极的纵向范围d=10cm,磁极中心到屏的距离D=25cm.如果银原子的速率为400m/s,线束在屏上的分裂间距为2.0mm,试问磁场强度的梯度值应为多大银原子的基态为21/2S ,质量为.解:原子束通过非均匀磁场时,如果磁场B 在Z 方向,可以证明:落在屏幕上的原子束偏离中心的距离为:,33J Z Z BB d D B d DZ Mg KT Z Z KTμμ∂⋅∂⋅==∂∂ (式中T 为炉温,d 为不均匀磁场的线度,D 是磁场中心到屏的距离,ZB Z∂∂是横向不均匀磁场梯度,,J Zμ是原子的总磁矩在Z 方向的分量),分裂后的原子束偏离中心的最大距离 Z = 3B Z g B d DJ KT Zμ∂⋅∂ 对21/2S : S=12,L=0,J=12∴1333122213222222g ⨯=+=+=⨯⨯Z ′=2Z又 Z ′=2.0mm ∴ Z=10mmZ B Z ∂∂=2223B BZ KT Z mv JgdD JgdD μμ⋅⋅=327212310107.87 1.6610400120.10.250.9274102T m ----⨯⨯⨯⨯=⋅⨯⨯⨯⨯⨯ 23252.868102.3210--⨯=⨯211.2410T m --=⨯⋅4-5 在史特恩-盖赫拉实验中(图,不均匀横向磁场梯度为/ 5.0/Z B Z T cm ∂∂= ,磁极的纵向范围d=10cm, 磁极中心到屏的距离D=30cm,使用的原子束是处于基态4F3/2的钒原子,原子的动能Ek=50meV.试求屏上线束边缘成分之间的距离. 解:设在屏上偏离x 轴的距离为2Z∴2Z =3Z BZ B dDmjgj KTμ∂-∂由 43/2F 可知 32S = 32J = 3L =∴353431(1)(1)31222·3522(1)22522J S S L L g J J ⨯-⨯+-+=+=+=+⨯3113,,,2222J m =- 要求线束边缘间的距离,则J m 取32热平衡时 232250100K mV KT E meV meV ===⨯=∴23Z BZ B dDZ mjgj KTμ∂=∂=533210305.7881052510010cm --⨯⨯⨯⨯⨯⨯⨯ =0.52cm∴222 2.52 1.04Z Z cm cm ==⨯=4-6 在史特恩-盖赫拉实验中,原子态的氢从温度为400K 的炉中射出,在屏上接受到两条氢束线,间距为0.60cm.若把氢原子换成氯原子(基态为23/2P ),其它实验条件不变,那么,在屏上可以接受到几条氯束线其相邻两束的间距为多少解:在史—盖实验中,原子束分裂条数等于2J+1,对Cl ,基态为23/2P ,即32J =,因此屏上可接受到的氯束线为32142⨯+=条,而原子束在屏上分裂的相邻两束的间距为:dD Z=g3KT ZB B Zμ∂∆∂对于确定的实验装置和实验条件,dD g3KT ZB B Zμ∂∂=A 为一定值,于是有:1122Z g Z g ∆=∆ 因为加热原子蒸气的炉温为400K ,远小于510K ,此时,炉中的氢原子处于基态(21/2S ),对于基态氢原子 L=0 S ≠0 则1g =2 对于基态氯原子 L=1 S=1/2 J=3/2 朗德因子为2131234223523222g ⨯-⨯=+=⨯⨯∴ 22114/30.600.402g Z Z g ∆=∆=⨯=(cm )4-7 试问波数差为29.6cm-1的赖曼系主线双重线,属于何种类氢离子 解:赖曼系第一条谱线是由n=2向n=1跃迁产生的,不考虑精细结构时,其波数为2222113()124RZ RZ υ=-=当n=1时,L=0 电子态为1S当n=2时,L=0,1 电子态为2S 和2P ,按选择定则,此谱线只能来自2P →1S 的跃迁。
由于电子自旋和轨道运动的相互作用,2P 能级具有双层结构—21/22P 和23/22P 。
双层能级间隔: 243(1)R Z T n l l α∆=+。
1S 能级 L=0 S=12故j 只能取12一种值,能级是单层的,故2P →1S 谱线的精细结构波数差仅决定于2P 的双能级间隔T υ∆=∆=243(1)R Z n l l α+即 342(1)n l l Z R υα+=∆35221(11)29.6811.09710(1/137)⨯⨯+⨯==⨯⨯ ∴ Z = 34-8 试估计作用在氢原子2P 态电子上的磁场强度.解:2P 态电子绕核的半径为:r =02220120.53 2.12n r n a A A ==⨯=轨道运动的速率 v =86310 1.110/2137cm s n α⨯==⨯⨯ ∴196922892011 1.610 1.1109104(3100.21210)Zev B T c r πε--⨯⨯⨯⨯⨯⨯==⨯⨯⨯=4-10 锌原子光谱的一条谱线(3S1-3P0)在B 为的磁场中发生塞曼分裂,试问:从垂直于磁场方向观察,原谱线分裂为几条相邻两谱线的波数差等于多少是否属于正常塞曼效应并请画出相应的能级跃迁图. 解:锌原子的谱线(3310S P →)的塞曼效应图如下:由图可知,原谱线分裂成3条,塞曼效应中分裂后的谱线与原谱线波数差可表示为:2211()v m g m g L ∆=-其中, 11146.710046.74e eBL m T T m m cπ---==⋅⨯= 对于31S :0S ≠,0L = ∴22g = 对于30P :3112122201g ⨯-⨯=+⨯ 不确定∵21J = 有21m =,0,-1 ∴22(2,0,2)m g =- ∵10J =,有10m = ∴110m g =∴11(2,0,2)(2.0.2)46.7(93.4,0,93.4)v L m m --∆=-=-⨯=- ∴沿垂直于B 方向可看到三条谱线。
由于0S ≠,且谱线分裂间隔不是一个洛仑兹单位,故属于反常塞曼效应。
4-11 试计算在B 为的磁场中,钠原子的D 双线所引起的塞曼分裂.解:a N 原子D 双线,1589.0D nm =,谱线由223/21/233P S →跃迁产生,2589.6D nm =,由221/21/233P S →产生。
(1)1D 的塞曼分裂223/21/233P S →上能级23/23P :2222131,,,4/322L S J g ====,在外磁场中,上能级分裂为4个支能级:23113,,,2222M =--,它们的原能级之差为:2262(,)33B m g B μ=±± B B μ下能级21/23S :1111111110,,,2,,2222L S J g M =====-,在外磁场中,下能级分裂为两个支能级,它们个原能级之差为11B B m g B B μμ=±根据选择定则0,1m ∆=±共有6种跃迁方式,分裂后的谱线和原谱线的波数差:~2211()v m g m g L ∆=-可计算如下:2211531135()(,,,,,)333333m g m g -=--~531(,,)333v L ∆=±±±、而~1146.746.7 2.5116.754e eBL Bm m m lπ--===⨯= ~22(589.0)116.750.405L nm A λ=⨯=∴分裂后的6条谱线和原谱线的波长差为:~22531(,,)333v L λλλ∆=∆=±±±0531(,,)0.45333A =±±±⨯(0.675,0.405,0.135)A =±±±(2)对2589.6D nm =,访上讨论,有221/21/2P S →222111,,22L S J ===22112,,223M g =-=111110,,22L S J ===1111,,222M g =-=∴2211()m g m g -=(4224,,,3333--)∴~42(,)33v L ∆=±±0(0.54,0.27)A =±±4-12 钾原子的价电子从第一激发态向基态跃迁时,产生两条精细结构谱线,其波长分别为和,现将该原子置于磁场B 中(设为弱场),使与此两精细结构谱线有关的能级进一步分裂.(1)试计算能级分裂大小,并绘出分裂后的能级图.(2)如欲使分裂后的最高能级与最低能级间的差距ΔE2的倍,所加磁场B 应为多大解:(1)钾和双线产生于223/2,1/21/244p S →,这三个能级的g 因子分别为243g =,123g =,g=2 23/2P 能级在磁场中分裂成4层,21/2P 和21/2S 能级在磁场中分裂成两层,能级间距为 B E g B μ∆=∴'2243B B E g B B μμ∆=='1123B B E g B B μμ∆=='02B B E g B B μμ∆== 次能级分裂后的能级如图:(2)由题意有: '222max 11min 13()()2E E E E E E ⎡⎤∆=+∆-∆+∆=∆⎣⎦ 即 212max 21min 113()()2B B E E j g B j g B E μμ-+-=∆∵ 2max 3()2j = 1min 1()2j =-212134123()()23232B E E B E E μ-+⨯+⨯=-∴ []212010711()()()322B B E E E E E E μ=-=---1221121()22hc hc hc λλλλλλ-=-=⋅431769.9766.41.2410 3.678102769.9766.4ev ev --=⨯⨯⋅=⨯⨯∴3214313() 3.678107270.578810B B E E T μ--=⨯-=⨯⨯⨯⨯ 27.2T =4-13 假如原子处于的外磁场B 大于该原子的内磁场,那么,原子的L ·S 耦合将解脱,总轨道角动量L 和总自旋角动量S 将分别独立地绕B 旋进. (1)写出此时原子总磁矩μ的表达式;(2)写出原子在此磁场B 中的取向能ΔE 的表达式;(3)如置于B 磁场中的原子是钠,试计算其第一激发态和基态的能级分裂,绘出分裂后的能级图,并标出选择定则(Δms=0,Δml=0,±1)所允许的跃迁.解:(1)在强磁场中,忽略自旋一轨道相互作用,这时原子的总磁矩是轨道磁矩和自旋磁矩的矢量和,即有: 2L S L S e e e e P P m c m cμμμ=+=-- (2)2L S e e P P m c=-+ (2)此时,体系的势能仅由总磁矩与外磁场之间的相互作用来确定,于是有:V B μ=-⋅ (2)2L S e e P P B m c=+⋅ (2)2L S e eB m m m c =+ (2)L S B m m B μ=+(3)全内原子的基点为223y S ,第一激发点为23P 。