《自动控制理论 (夏德钤)》(第四版)习题答案详解

合集下载

自动控制理论第四版课后习题详细解答答案夏德钤翁贻方版)

自动控制理论第四版课后习题详细解答答案夏德钤翁贻方版)

《自动控制理论 (夏德钤)》习题答案详解第二章2-1 试求图2-T-1所示RC 网络的传递函数。

(a)11111111+=+⋅=Cs R R CsR Cs R z ,22R z =,则传递函数为: 2121221212)()(R R Cs R R R Cs R R z z z s U s U i o +++=+= (b) 设流过1C 、2C 的电流分别为1I 、2I ,根据电路图列出电压方程:⎪⎪⎩⎪⎪⎨⎧=++=)(1)()]()([)(1)(2221111s I s C s U s I s I R s I sC s U o i 并且有)()1()(122211s I sC R s I s C += 联立三式可消去)(1s I 与)(2s I ,则传递函数为:1)(1111)()(222111221212211112++++=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛++=s C R C R C R s C C R R R s C R s C s C R sC s U s U i o2-2 假设图2-T-2的运算放大器均为理想放大器,试写出以i u 为输入,o u 为输出的传递函数。

(a)由运算放大器虚短、虚断特性可知:dtduC dt du C R u i i 0+-=,0u u u i c -=, 对上式进行拉氏变换得到)()()(0s sU s sU RCs U i i +-= 故传递函数为RCsRCs s U s U i 1)()(0+=(b)由运放虚短、虚断特性有:022=-+--R u R u u dt du Cc c i c ,0210=+R u R u c ,联立两式消去c u 得到02220101=++⋅u R u R dt du R CR i 对该式进行拉氏变换得0)(2)(2)(20101=++s U R s U R s sU R CR i 故此传递函数为)4(4)()(10+-=RCs R R s U s U i (c)02/2/110=+-+R u R u u dt du Cc c c ,且21R uR u c i -=,联立两式可消去c u 得到 0222101=++⋅Ru R u dt du R CR ii 对该式进行拉氏变换得到0)(2)(2)(2011=++⋅s U Rs U R s sU R CR i i 故此传递函数为RCs R R s U s U i 4)4()()(110+-= 2-3 试求图2-T-3中以电枢电压a u 为输入量,以电动机的转角θ为输出量的微分方程式和传递函数。

自动控制理论第四版课后习题详细解答答案夏德钤翁贻方版

自动控制理论第四版课后习题详细解答答案夏德钤翁贻方版

自动控制理论第四版课后习题详细解答答案夏德钤翁贻方版集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#《自动控制理论 (夏德钤)》习题答案详解第二章2-1 试求图2-T-1所示RC 网络的传递函数。

(a)11111111+=+⋅=Cs R R CsR Cs R z ,22R z =,则传递函数为: (b) 设流过1C 、2C 的电流分别为1I 、2I ,根据电路图列出电压方程: 并且有联立三式可消去)(1s I 与)(2s I ,则传递函数为:2-2 假设图2-T-2的运算放大器均为理想放大器,试写出以i u 为输入,o u 为输出的传递函数。

(a)由运算放大器虚短、虚断特性可知:dtduC dt du C R u i i 0+-=,0u u u i c -=, 对上式进行拉氏变换得到 故传递函数为(b)由运放虚短、虚断特性有:022=-+--R u R u u dt du C c c i c ,0210=+R u R u c ,联立两式消去c u 得到 对该式进行拉氏变换得 故此传递函数为 (c)02/2/110=+-+R u R u u dt du Cc c c ,且21R uR u c i -=,联立两式可消去c u 得到 对该式进行拉氏变换得到 故此传递函数为2-3 试求图2-T-3中以电枢电压a u 为输入量,以电动机的转角θ为输出量的微分方程式和传递函数。

解:设激磁磁通f f i K =φ恒定2-4 一位置随动系统的原理图如图2-T-4所示。

电动机通过传动链带动负载及电位器的滑动触点一起移动,用电位器检测负载运动的位移,图中以c 表示电位器滑动触点的位置。

另一电位器用来给定负载运动的位移,此电位器的滑动触点的位置(图中以r 表示)即为该随动系统的参考输入。

两电位器滑动触点间的电压差e u 即是无惯性放大器(放大系数为a K )的输入,放大器向直流电动机M 供电,电枢电压为u ,电流为I 。

自动控制理论第四版课后习题详细解答答案(夏德钤翁贻方版)

自动控制理论第四版课后习题详细解答答案(夏德钤翁贻方版)

《自动控制理论 (夏德钤)》习题答案详解第二章2-1 试求图2-T-1所示RC 网络的传递函数。

(a),,则传递函数为:11111111+=+⋅=Cs R R CsR Cs R z 22R z =2121221212)()(R R Cs R R R Cs R R z z z s U s U i o +++=+=(b) 设流过、的电流分别为、,根据电路图列出电压方程:1C 2C 1I 2I ⎪⎪⎩⎪⎪⎨⎧=++=)(1)()]()([)(1)(2221111s I s C s U s I s I R s I s C s U o i 并且有)()1()(122211s I sC R s I s C +=联立三式可消去与,则传递函数为:)(1s I )(2s I 1)(1111)()(222111221212211112++++=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛++=s C R C R C R s C C R R R s C R s C s C R sC s U s U i o 2-2 假设图2-T-2的运算放大器均为理想放大器,试写出以为输入,为输出的传递函i u o u 数。

(a)由运算放大器虚短、虚断特性可知:,,dtduC dt du C R u i i 0+-=0u u u i c -=对上式进行拉氏变换得到)()()(0s sU s sU RCs U i i +-=故传递函数为RCsRCs s U s U i 1)()(0+=(b)由运放虚短、虚断特性有:,,022=-+--R u R u u dt du Cc c i c 0210=+R u R u c联立两式消去得到c u 02220101=++⋅u R u R dt du R CR i 对该式进行拉氏变换得0)(2)(2)(20101=++s U R s U R s sU R CR i 故此传递函数为)4(4)()(10+-=RCs R R s U s U i (c),且,联立两式可消去得到02/2/110=+-+R uR u u dt du Cc c c 21R u R u c i -=c u 0222101=++⋅Ru R u dt du R CR i i 对该式进行拉氏变换得到0)(2)(2)(2011=++⋅s U Rs U R s sU R CR i i 故此传递函数为RCs R R s U s U i 4)4()()(110+-=2-3 试求图2-T-3中以电枢电压为输入量,以电动机的转角为输出量的微分方程式和a u θ传递函数。

夏德钤《自动控制原理》(第4版)-名校考研真题-第2章 线性系统的数学模型【圣才出品】

夏德钤《自动控制原理》(第4版)-名校考研真题-第2章 线性系统的数学模型【圣才出品】
2 / 28
圣才电子书

【答案】C
十万种考研考证电子书、题库视频学习平 台
二、填空题
1.系统的微分方程是 输入量,该系统是______。[南京邮电大学研]
其中 c(t)为输出量,r(t)为
【答案】线性系统
【解析】由于系统的微分方程中没有交叉项,也没有高于一次的项,满足线性系统要

于是该系统的传递函数模型为
10.由运算放大器组成的控制系统模拟电路如图 2-7 所示,求闭环传递函数 [中科院研]
8 / 28
圣才电子书

十万种考研考证电子书、题库视频学习平 台
图 2-7 解:设第一个运算放大器的输出电压为 ,第二个运算放大器的输出电压为 ,则可 以得到:
求,为线性系统。
2.函数
的拉氏变换式是______。[华南理工大学 2006 年研]
【答案】3/(s+6)
3.积分环节的传递函数表达式为 G(s)=______。[华南理工大学 2006 年研] 【答案】
三、计算题 1.试判断下列用微分方程描述的系统是线性系统还是非线性系统?[大连理工大学研]
解:(1)线性系统; (2)非线性系统; (3)非线性系统; (4)非线性系统。
解:(1)
图 2-3
6.已知 解:
,求
[大连理工大学研]
7.某系统如图 2-4 所示,已知: 研]
,试确定
[大连理工大学
解:由
图 2-4 在零初始条件下两边同时拉普拉斯变换并整理得
6 / 28
圣才电子书

十万种考研考证电子书、题库视频学习平 台
8.设定描述系统的微分方程。图 2-5 中 B 是阻尼器摩擦因数, 是弹簧的弹性系

(NEW)夏德钤《自动控制理论》(第4版)笔记和考研真题详解

(NEW)夏德钤《自动控制理论》(第4版)笔记和考研真题详解

目 录
第1章 引 论
1.1 复习笔记
1.2 名校考研真题详解
第2章 线性系统的数学模型2.1 复习笔记
2.2 名校考研真题详解
第3章 线性系统的时域分析3.1 复习笔记
3.2 名校考研真题详解
第4章 线性系统的根轨迹分析4.1 复习笔记
4.2 名校考研真题详解
第5章 线性系统的频域分析5.1 复习笔记
5.2 名校考研真题详解
第6章 线性系统的校正
6.1 复习笔记
6.2 名校考研真题详解
第7章 非线性系统的分析
7.1 复习笔记
7.2 名校考研真题详解
第8章 采样控制系统
8.1 复习笔记
8.2 名校考研真题详解
第9章 平稳随机信号作用下线性系统的分析
9.1 复习笔记
9.2 名校考研真题详解
第1章 引 论
1.1 复习笔记
自动控制,就是采用控制装置使被控对象自动地按照给定的规律运行,使被控对象的一个或数个物理量能够在一定的精度范围内按照给定的规律变化。

一、开环控制和闭环控制
自动控制系统有两种最基本的形式:开环控制和闭环控制。

1.开环控制
(1)开环控制的框图
开环控制的示意框图如图1-1所示
图1-1 开环控制示意框图
(2)开环控制的特点
在控制器与被控对象之间只有正向控制作用而没有反馈控制作用,即系统的输出量对控制量没有影响。

2.闭环控制
(1)闭环控制的框图
闭环控制的示意框图如图1-2所示。

夏德钤自动控制理论(第4版)知识点总结笔记课后答案

夏德钤自动控制理论(第4版)知识点总结笔记课后答案

第1章引论1.1复习笔记自动控制,就是采用控制装置使被控对象自动地按照给定的规律运行,使被控对象的一个或数个物理量能够在一定的精度范围内按照给定的规律变化。

一、开环控制和闭环控制自动控制系统有两种最基本的形式:开环控制和闭环控制。

1.开环控制(1)开环控制的框图开环控制的示意框图如图1-1所示图1-1 开环控制示意框图(2)开环控制的特点在控制器与被控对象之间只有正向控制作用而没有反馈控制作用,即系统的输出量对控制量没有影响。

2.闭环控制(1)闭环控制的框图闭环控制的示意框图如图1-2所示图1-2 闭环控制示意框图(2)闭环控制的特点在控制器与被控对象之间,不仅存在着正向作用,而且存在着反馈作用,即系统的输出量对控制量有直接影响。

二、自动控制系统的类型根据不同的分类方法,自动控制系统的类型有如下分类:1.随动系统与自动调整系统(1)随动系统:输入量总在频繁地或缓慢地变化,要求系统的输出量能够以一定的准确度跟随输入量而变化。

(2)自动调整系统:输入保持为常量,或整定后相对保持常量,而系统的任务是尽量排除扰动的影响,以一定准确度将输出量保持在希望的数值上。

2.线性系统和非线性系统(1)线性系统:组成系统的元器件的特性均为线性(或基本为线性),能用线性常微分方程描述其输入与输出关系的系统。

(2)非线性系统:组成系统的元器件中,只要有一个元器件的特性不能用线性方程描述,该系统即为非线性系统。

3.连续系统与离散系统(1)连续系统:各部分的输入和输出信号都是连续函数的模拟量。

(2)离散系统:某一处或数处的信号以脉冲列或数码的形式传递的系统。

4.单输入单输出系统与多输入多输出系统(1)单输入单输出系统:其输入量和输出量各为一个,系统结构较为简单。

(2)多输入多输出系统:其输入量和输出量多于一个,系统结构较为复杂,回路多。

5.确定系统与不确定系统(1)确定系统:系统的结构和参数是确定的、已知的,系统的输入信号(包括参考输入及扰动)也是确定的,可用解析式或图表确切表示。

夏德钤《自动控制原理》(第4版)章节题库-第1章 引 论【圣才出品】

夏德钤《自动控制原理》(第4版)章节题库-第1章 引 论【圣才出品】

第1章 引 论1.工作台位置液压控制系统如图1-1所示。

系统可以使工作台按照控制电位器给定的规律变化。

要求:(1)指出系统的被控对象,被控量和给定量,画出系统框图。

(2)说明控制系统中控制装置各组成部分。

图1-1工作台液压伺服系统工作原理图解:(1)控制系统的功能是使工作台随控制电位器给定规律移动,因此被控对象是工作台,被控量是工作台的位移,给定量是控制电位器滑臂的转角(表征工作台的希望位置)。

系统框图如图1-2所示。

图1-2 工作台液压伺服系统框图(2)控制装置各组成部分及其作用如下:手柄是给定元件,给出表征工作台希望位置的转角信号齿条齿轮传动机构完成测量元件的功能。

由控制电位器、反馈电位器组成的电桥电路完成和(表征工作台实际位置)的比较,给出偏差电压△u。

放大器是放大元件.电磁阀。

作动筒组成执行机构,推动工作台移动。

2.图1-3所示为电动水位控制系统,其图中Q 1、Q 2分别为进水流量和出水流量。

控制的目的是保持水位为一定的高度。

试说明该系统的工作原理并画出其方框图。

图1-3解:当输入流量与输出流量相等时,水位的测量值和给定值相等,系统处于相对平衡状态,电动机输出状态保持,阀门位置不变。

当输出流量增加时,系统水位下降,通过浮子检测后带动电位器抽头移动,电动机获得一个正电压,通过齿轮减速器传递,使阀门打开,从而增加入水流量使水位上升,当水位回到给定值时,电动机的输入电压又会回到零,系统重新达到平衡状态,反之亦然。

系统框图如图1-4所示。

图1-43.图1-5是自整角机随动系统原理示意图。

系统的功能是使接收自整角机TR 的转子角位移与发送自整角机TX 的转子角位移始终保持一致。

试说明系统是如何工作的,并指出被控对象、被控量以及控制装置各部件的作用并画出系统框图。

图1-5 自整角机随动系统原理图解:当负载(与接收自整角机TR 的转子固联)的角位置与发送机TX 转子的输入角位置一致时,系统处于相对静止状态,自整角机输出电压(即偏差电压)为0,放大器输出为0,电动机不动,系统保持在平衡状态。

夏德铃《自动控制理论》(第4版)笔记和考研真题详解(非线性系统的分析)【圣才出品】

夏德铃《自动控制理论》(第4版)笔记和考研真题详解(非线性系统的分析)【圣才出品】
(2)饱和特性 ①特点 当输入信号超过某一范围后,输出信号不再随输入信号变化,而是保持某一常值。 饱和特性如图 7-2(b)所示。 ②数学描述
2 / 50
圣才电子书

十万种考研考证电子书、题库视频学习平 台
(3)间隙特性 ①特点 由于间隙存在,输入信号达到一定值后开始反方向输入时,输出信号保持不变,直到 间隙消除后才有输出信号。 间隙特性如图 7-2(c)所示。 ②数学描述
是指相应的状态平面轨迹,如图 7-4 所示。
(3)平衡点
①定义
状态[x10,x20]称为式 7-1 在 t0 时刻的一个平衡点,其条件为对于所有的 t≥t0,有
②特点 所有时间的平衡状态,在相轨迹上满足条件
6 / 50
圣才电子书

2.二阶线性系统的特征
十万种考研考证电子书、题库视频学习平 台
③框图表示 一般可以将构成系统的环节分为线性与非线性两部分,如图 7-1 所示
图 7-1 非线性系统框图的基本形式 2.非线性特性的分类 按非线性环节的物理性能及非线性特性的形状划分,非线性特性有死区、饱和、间隙 和继电器等,如图 7-2 所示。
1 / 50
圣才电子书

十万种考研考证电子书、题库视频学习平 台
(7-1)
②状态平面图
状态平面是一般的二维平面,其水平轴记为 x1,垂直轴记为 x2,如图 7-4 所示,其运
动轨迹称为状态平面轨迹。
图 7-4 二阶系统的时间响应和相轨迹
(2)相平面及相轨迹
①微分方程
方程的形式由式 7-1 的形式变为

②相平面是指对应于上式这种特殊情况下的状态平面;相平面轨迹,又称为相轨迹,
③逆系统法:运用内环非线性反馈控制,使非线性系统实现反馈线性化,然后再设计 构建形成外环控制器。

夏德铃《自动控制理论》(第4版)笔记和考研真题详解(线性系统的频域分析)【圣才出品】

夏德铃《自动控制理论》(第4版)笔记和考研真题详解(线性系统的频域分析)【圣才出品】

第5章 线性系统的频域分析5.1 复习笔记频域分析法是一种图解分析方法,其特点是可以根据系统的开环频率特性去判断闭环控制系统的性能,并能较方便地分析系统中的参量对系统暂态响应的影响,从而进一步指出改善系统性能的途径。

一、频率特性1.基本概念(1)定义频率特性是将传递函数中的s 以jω代替。

当电路的输入为正弦信号时,其输出的稳态响应(频率响应)也是一个正弦信号,其频率和输入信号的频率相同,但幅值和相角发生了变化,其变化取决于ω。

(2)分类①幅频特性:输出信号的幅值与输入信号幅值之比;②相频特性:输出信号的相角与输入信号的相角之差。

2.频率特性的图形表示(1)极坐标图①定义极坐标图是指在平面上,以横坐标表示,纵坐标表示,采用极坐标系的频率特性图,又叫做奈奎斯特图。

②表达式(2)伯德图①定义伯德(Bode)图是指将频率特性画成对数坐标图的形式,又叫做对数坐标图②表达式对数幅值表达式为单位为dB。

③优点利用对数运算可以将幅值的乘除运算化为加减运算,并且可以用简便的方法绘制近似的对数幅频特性,从而使绘制过程大为简化。

3.线性定常系统的频率特性(1)定义频率特性是指,它反映了在正弦输入信号作用下,系统稳态响应与输入正弦信号之间的关系。

(2)分类①幅频特性:系统稳态输出信号与输入正弦信号的幅值比;②相频特性:系统稳态输出信号对输入正弦信号的相移。

二、典型环节的频率特性1.比例环节(1)比例环节的频率特性为(2)比例环节的对数幅频特性和相频特性为(3)比例环节的伯德图如图5-1所示(K>1的情况)。

图5-1 比例环节的伯德图2.惯性环节(1)惯性环节的频率特性为(2)惯性环节的对数幅频特性和相频特性为式中,。

惯性环节的幅频特性随着角频率的增加而衰减,呈低通滤波特性。

而相频特性呈滞后特性。

3.积分环节(1)积分环节的频率特性为(2)积分环节的对数幅频特性和相频特性为它的幅频特性与角频率ω成反比,而相频特性恒为(3)积分环节的极坐标图和伯德图如图5-2和图5-3所示图5-2积分环节频率特性的极坐标图图5-3 积分环节的伯德图4.微分环节(1)微分环节的频率特性为(2)微分环节的对数幅频和相频特性分别为理想微分环节的幅频特性等于角频率ω,相频特性恒等于即90°。

自动控制理论第四版教(学)案(夏德钤翁贻方版)

自动控制理论第四版教(学)案(夏德钤翁贻方版)

式中,c(t) 是被控量,r(t) 是系统输入量。系数 a0、a1an,b1、b2 bm 是常数时,称为定常系统;系数 a0、a1an,b1、b2 bm 随时间变 化时,称为时变系统。 (1)恒值控制系统(调节器)
参据量是常值,要求被控量也为常值 设计重点是研究各种扰动对被控对象的影响及抗扰动 措施 (2)随动系统(跟踪系统) 参据量是预先未知的随时间任意变化的函数,要求被 控量以尽可能小的误差跟随参据量变化。 重点研究被控量跟随的快速性和准确性 伺服系统:随动系统 被控量是机械位置或其导数
例1 人取物
反馈控制原理就是偏差控制原理 通常,我们把取出输出量送回到输入端,并与输入 信号相比较产生偏差的过程,称为反馈。 在工程实践中,为实现反馈控制,必须配有以下设 备: 测量元件 比较元件 统称为控制装置 执行元件
4、反馈控制系统的基本组成
(1)外作用 有用输入:决定系统被控量的变化规律 扰动:破坏有用输入对系统的控制。如:电源电压的 波动、飞行中的气流、航海中的波浪等 (2)给定元件 给出与期望的被控量相对应的系统输入量(参据量) 如书的位置 (3)校正元件(补偿元件) 结构和参数便于调整的元部件,以串联或反馈方式连 接在系统中
拉氏变换 微分方程→s的代数方程;
2)由s的代数方程求出输出量拉氏变换函数的表达式; 3)对输出量拉氏变换函数进行拉氏反变换,得出
输出量时域表达式,即为所求微分方程的解。 例:P25 例2-6
复习拉氏变换 P597附录
拉氏变换与拉氏反变换
一、拉氏变换£ £-1
1、定义

L[ f (t)]

f

1 C
i(t)dt
消去中间变量 i(t) ,便得到描述网络输入输出关系 的微分方程为

夏德钤《自动控制原理》(第4版)-名校考研真题-第1章 引 论【圣才出品】

夏德钤《自动控制原理》(第4版)-名校考研真题-第1章 引 论【圣才出品】

名校考研真题第1章 引 论一、选择题1.系统的传递函数与下列因素有关()。

[华中科技大学2009年研]A.系统结构B.初始条件C.系统结构和参数D.系统结构、参数和初始条件【答案】C2.传递函数的概念除了适用于线性定常系统之外,还可用于描述()系统。

[杭州电子科技大学2008年研]A.线性时变B.非线性定常C.非线性时变D.以上都不是【答案】D二、填空题1.对于任何种类的自动控制系统而言,对其被控量变化全过程的共同要求基本相同,即:______、______、______。

[湖南大学2006年研]【答案】稳定性快速性准确性2.在闭环控制系统中,通过检测元件将输出量转变成与给定信号进行比较的信号,这个信号称为______。

[华南理工大学2006年研]【答案】反馈信号三、判断题1.如果一个控制系统开环不稳定,则闭环系统也不稳定()。

[重庆大学研]【答案】×【解析】系统开环不稳定,闭环可能稳定,所以这种说法是错误的。

2.在控制系统中,直接改变控制变量的装置称为控制器或控制元件()。

[杭州电子科技大学2008年研]【答案】×【解析】在控制系统中,直接改变控制变量的装置称为执行元件。

3.开环控制系统的控制器和控制对象之间只有正向作用,系统输出量不会对控制器产生任何影响()。

[杭州电子科技大学2008年研]【答案】√四、问答题1.试比较闭环系统与开环系统的优缺点?[厦门大学研]答:(1)在开环控制系统中优点:由于没有反馈的作用,开环控制系统反应较快,结构简单。

缺点:系统输出只受输入的控制,控制精度和抑制干扰的特性都相对比较差;(2)闭环控制系统是建立在反馈原理基础之上的优点:利用输出量同期望值的偏差对系统进行控制,可获得比较好的控制性能,缺点:闭环控制系统由于反馈作用,一般有个调节过程,动态响应相对较慢,如果参数设计不合理,可能不稳定而出现振荡,通常大多数重要的自动控制系统都采用闭环控制的方式。

自动控制理论课后习题详细解答答案(夏德钤翁贻方版)

自动控制理论课后习题详细解答答案(夏德钤翁贻方版)
求同时满足上述条件的系统开环传递函数 。
解:按照条件(2)可写出系统的特征方程
将上式与 比较,可得系统的开环传递函数
根据条件(1),可得
解得 ,于是由系统的开环传递函数为
3-10 已知单位反馈控制系统的开环传递函数为
试求在下列条件下系统单位阶跃响应之超调量和调整时间。
(1) (2) (3)
解:系统单位阶跃响应的象函数为
(2)整个系统的特征方程为
求三阶开环传递函数 ,使得同时满足上述要求。
解:设开环传递函数为
根据条件(1) 可知: ;
根据条件(2) 可知: , , 。
所以有
3-9 一单位反馈控制的三阶系统,其开环传递函数为 ,如要求
(1)由单位斜坡函数输入引起的稳态误差等于2.0。
(2)三阶系统的一对主导极点为 。
解:当输入为单位斜坡响应时,有

所以有
分三种情况讨论
(1)当 时,
(2)当 时,
(3)当 时,
设系统为单位反馈系统,有
系统对单位斜坡输入的稳态误差为
3-2 试求下列单位反馈控制系统的位置、速度、加速度误差系数。) (4)
解:(1) ;
(2) ;
(3) ;
(4)
3-3 设单位反馈系统的开环传递函数为
系统的传递函数为
2-11试绘出图2-T-11所示系统的信号流程图,并求传递函数 和 (设 )。
解:系统信号流程图如图所示。
题2-11系统信号流程图
2-12求图2-T-12所示系统的传递函数 。
解:(a)系统只有一个回环: ,
在节点 和 之间有四条前向通道,分别为: , , , ,相应的,有:

(b)系统共有三个回环,因此, ,

夏德铃《自动控制理论》(第4版)笔记和考研真题详解(线性系统的根轨迹分析)【圣才出品】

夏德铃《自动控制理论》(第4版)笔记和考研真题详解(线性系统的根轨迹分析)【圣才出品】

(3)如果系统具有一对主导极点,则系统的暂态响应呈振荡性质,其超调量主要决
定于主导极点的衰减率
,并与其他零、极点接近坐标原点的程度有关,
而调整时间主要取决于主导极点的实部
(4)如果在系统中存在偶极子。如偶极子的位置接近坐标原点,其影响往往需要考
虑。
(5)如果除了一对主导复数极点之外,系统还具有若干实数零、极点,则零点的存
③规则七:根轨迹的出射角为:
3 / 52
圣才电子书

十万种考研考证电子书、题库视频学习平 台
入射角为:
其他规则均不变。
四、滞后系统的根轨迹 滞后环节的存在使系统的根轨迹具有一定的特殊性,并往往对系统的稳定性带来不利 的影响。 1.绘制滞后系统根轨迹的相位条件和幅值条件 (1)幅值条件
4.2 名校考研真题详解
6 / 52
圣才电子书

十万种考研考证电子书、题库视频学习平 台
一、选择题
1.开环系统传递函数为 上,有( )根轨迹趋于无穷远。[东南大学研]
有( )根轨迹完全落在实轴
A.3 条,1 条
B.1 条,3 条
C.2 条,3 条
D.2 条,2 条
【答案】C
3.闭环极点的确定 (1)闭环极点的定义 闭环极点是指当 K1(或 K)值满足幅值条件时,对应的根轨迹上的点。 (2)闭环极点的作用 利用幅值条件,可以确定根轨迹上任一点所对应的 K1 值。
三、广义根轨迹 根轨迹一般都是以系统的开环增益 K1 为可变参量,还有许多其他种类的根轨迹,它们 是:参数根轨迹,多回路系统的根轨迹,正反馈回路和零度根轨迹。 1.参数根轨迹 (1)定义 参数根轨迹是指以所选可变参量 α 代替 K1 的位置所画出的根轨迹。 (2)表达式

夏德铃《自动控制理论》(第4版)笔记和考研真题详解(采样控制系统)【圣才出品】

夏德铃《自动控制理论》(第4版)笔记和考研真题详解(采样控制系统)【圣才出品】

第8章 采样控制系统8.1 复习笔记1.模拟信号与数字信号(1)模拟信号模拟信号是指在时间上连续,在幅值上也连续的信号。

(2)数字信号离散信号是指有一处或数处的信号在时间上离散的信号。

2.采样系统(1)系统框图典型的采样系统框图如图8-1所示:图8-1 采样系统(2)控制流程①由输入信号和反馈信号确定误差信号;②误差信号经过采样开关后变成脉冲序列;③控制器对采样信号进行处理;④处理后的采样信号经过保持器去控制被控对象。

(3)采样控制特点②用计算机实现的数字控制器具有很好的通用性;③可以用一台计算机分时控制若干个对象。

一、采样过程及采样定理1.采样过程(1)定义采样过程是指按照一定的时间间隔对连续信号进行采样,将其变成在时间上离散的脉冲序列的过程。

用来实现采样过程的装置叫做采样器或采样开关。

(2)采样简介①采样时间:采样持续时间ε远小于采样周期T,也远小于系统中连续部分的时间常数。

因此,在分析采样控制系统时,可以近似地认为ε→0。

②采样过程:采样过程可以看成是一个脉冲调制过程。

如图8-2所示。

图8-2 单位脉冲序列(3)采样表达式①单位脉冲序列δT(t)的数学表达式为:②脉冲调制器的输出信号e*(t)可表示为2.采样定理(1)离散信号频谱①采样信号e*(t)的傅里叶变换②离散信号频谱图上式所对应的离散信号频谱如图8-3所示图8-3 离散信号频谱(2)香农采样定理只有在(即采样频率大于等于两倍连续信号的最大频率)的条件下,才能将采样后的离散信号无失真的恢复为原来的连续信号。

二、保持器保持器是一种采用时域外推原理的装置,常用的有零阶保持器和一阶保持器。

1.零阶保持器(1)定义零阶保持器是指采用恒值外推规律的保持器。

它把前一采样时刻nT 的采样值e (nT )不增不减地保持到下一个采样时刻。

(2)输出信号零阶保持器的输入信号和输出信号的关系如图8-4所示。

图8-4 零阶保持器的输入和输出信号(3)幅频特性零阶保持器的幅频特性如8-5所示:图8-5 零阶保持器的幅频特性(4)特点①零阶保持器的幅值随角频率w 的增大而衰减,具有明显的低通滤波特性;②采用零阶保持器将产生相位滞后,会降低系统的相对稳定性。

自动控制理论第四版课后习题详细解答答案解析(夏德钤翁贻方版)

自动控制理论第四版课后习题详细解答答案解析(夏德钤翁贻方版)

《自动控制理论 (夏德钤)》习题答案详解第二章2-1 试求图2-T-1所示RC 网络的传递函数。

(a)11111111+=+⋅=Cs R R CsR Cs R z ,22R z =,则传递函数为: 2121221212)()(R R Cs R R R Cs R R z z z s U s U i o +++=+= (b) 设流过1C 、2C 的电流分别为1I 、2I ,根据电路图列出电压方程:⎪⎪⎩⎪⎪⎨⎧=++=)(1)()]()([)(1)(2221111s I s C s U s I s I R s I sC s U o i 并且有)()1()(122211s I sC R s I s C += 联立三式可消去)(1s I 与)(2s I ,则传递函数为:1)(1111)()(222111221212211112++++=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛++=s C R C R C R s C C R R R s C R s C s C R sC s U s U i o 2-2 假设图2-T-2的运算放大器均为理想放大器,试写出以i u 为输入,o u 为输出的传递函数。

(a)由运算放大器虚短、虚断特性可知:dtduC dt du C R u i i 0+-=,0u u u i c -=, 对上式进行拉氏变换得到)()()(0s sU s sU RCs U i i +-= 故传递函数为RCsRCs s U s U i 1)()(0+=(b)由运放虚短、虚断特性有:022=-+--R u R u u dt du Cc c i c ,0210=+R u R u c ,联立两式消去c u 得到02220101=++⋅u R u R dt du R CR i 对该式进行拉氏变换得0)(2)(2)(20101=++s U R s U R s sU R CR i 故此传递函数为)4(4)()(10+-=RCs R R s U s U i (c)02/2/110=+-+R u R u u dt du Cc c c ,且21R uR u c i -=,联立两式可消去c u 得到 0222101=++⋅Ru R u dt du R CR ii 对该式进行拉氏变换得到0)(2)(2)(2011=++⋅s U Rs U R s sU R CR i i 故此传递函数为RCs R R s U s U i 4)4()()(110+-= 2-3 试求图2-T-3中以电枢电压a u 为输入量,以电动机的转角θ为输出量的微分方程式和传递函数。

《自动控制理论(第4版)》第三章习题参考答案

《自动控制理论(第4版)》第三章习题参考答案

第三章习题参考答案(缺1张图)3-1 分三种情况讨论 (a) 当1>ζ时()()()()()⎥⎥⎦⎤⎢⎢⎣⎡-+----+-=-+-=---=⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛---221221222211112121,122ζζζζωζωζωζζωζζωζζωζζt t n n nn n n e e t t c s s (b) 当10<<ζ时()()()⎪⎪⎭⎫⎝⎛-----+-=---+---=-+-=---=---22222222222121121sin 1121sin 1211cos 221,1ζζζωζωζωζωζωζζωζωζωζωζζωζζζωζωζωarctg t et t e t et t c j s j s n tnnn t nn tnnn n n n n(c) 当1=ζ时3-3 (1)())24.0,/12.2(,%286.7%,6.46==±==ζωs rad s t M n s p ;(2)())5.0,/1(,%28%,3.16==±==ζωs rad s t M n s p ;(3)s t s 15=)25.1,/4.0(,==ζωs rad n ,过阻尼系统,无超调。

3-4 s rad n /588.19,598.0==ωζ. 3-7 (1) %).2(33.3,96.1,%49.9±===s t s t M s p p(2)44.240)()(2++=s s s R s C ,s rad n /2,6.0==ωζ. 3-8 (1) t te e t g 10601212)(--+-=;(2)60070600)()(2++=s s s R s C , s rad n /49.24,429.1==ωζ. 3-10 (1)系统稳定。

()⎪⎭⎫⎝⎛++-=-=-t e t t c s n t n nn n 21222,1ωωωωω(2)劳斯阵列第一列符号改变两次,根据劳斯判据,系统有两个极点具有正实部,系统不稳定。

自动控制原理课后答案第四版_夏德钤(主要老师布置的作业) [兼容模式] [修复的]

自动控制原理课后答案第四版_夏德钤(主要老师布置的作业) [兼容模式] [修复的]

rs(t ) R1
rs( t ) 0
动态误差系数
C 0 lim e ( s ) 0
s0
C1 lim e ( s ) 0 .1
s0
∴给定稳态误差级数
essr (t ) C0 rs (t ) C1rs(t ) 0.1R1
作 业
3-6 系统的框图如图所示,试计算在单位斜坡输入下的稳态误 差的终值。如在输入端加入一比例微分环节,试证明当适当 选取α 值后,系统跟踪斜坡输入的稳态误差可以消除。
H2
R( s )
G2 X 4 G3
X 3 H1 X5
1 X6 1
C ( s)
G4
作 业
H2
R( s )
1 X 1 1 X 2 G1
H1
G2 X 4 G3
X 3 H1 X5
1 X6 1
C ( s)
G4
两条前向通道: P1 G1G2G3 三个回环: L1 G2 H1
P2 G4
解: 闭环传递函数
( s ) G( s ) K 1 G( s ) 0.1s 2 1.1s 1 K
特征方程: 0.1s 2 1.1s 1 K 0
这是一个二阶系统,只要特征方程各系数均大于0, 系统就稳定。
即要求: 1 K 0
K 1
作 业
3-16 根据下列单位反馈系统的开环传递函数,确定使系统 稳定的K值范围。
若输入信号如下,求系统的给定稳态误差级数。
(2) r (t ) R0 R1t
解: 误差传递函数
s(0.1s 1) 0.1s 2 s 1 e ( s) s(0.1s 1) 10 0.1s 2 s 10 1 G( s )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G1G2 R( s) G2 D1 ( s) G2 D2 ( s) G1G2 H1D3 ( s) 1 G2 H 2 G1G2 H1
当仅有 D3 ( s ) 作用时, 根据叠加原理得出
C ( s) C1 ( s) C2 ( s) C3 ( s) C4 ( s)
第三章
2-11 试 绘 出 图 2-T-11 所 示 系 统 的 信 号 流 程 图 , 并 求 传 递 函 数 。 R2 ( s) 0 )
C (s) C1 ( s ) 和 2 (设 Rs) +
_ G1 + H2 H1 G2 G3
C1(s)
R2(s) +
+
+ _
C2(s) G4 G5 G6
2-10 绘出图 2-T-10 所示系统的信号流程图,并根据梅逊公式求出传递函数
C (s) 。 R( s)
H2 R(s) + + G1 + _ H1 G4 图 2-T-10 + G2 G3 + C(s)
系统的传递函数为
G1G2 G3 C s G4 Rs 1 G2 H 1 G1G2 H 1 G2 G3 H 2
对该式进行拉氏变换得到
CR1 2 2 sUi ( s) U 0 ( s) U i ( s) 0 2R R1 R
故此传递函数为
U 0 (s) R ( R Cs 4) 1 1 U i (s) 4R
2-3 试求图 2-T-3 中以电枢电压 u a 为输入量, 以电动机的转角 为输出量的微分方程式和传 递函数。 解:设激磁磁通 K f i f 恒定
解:
C s Rs
K A C m 60 iL a Js 3 iL a f Ra J s 2 i Ra f C eC m s K A C m 2
2-5 图 2-T-5 所 示 电 路 中 , 二 极 管 是 一 个 非 线 性 元 件 , 其 电 流 id 与 u d 间 的 关 系 为
2-13 确定图 2-T-13 中系统的输出 C ( s) 。
D1(s) R(s) + _ G1 + + + _ +
D2(s) _ G2 H2
C(s)
H1
+ + D3(s) 图 2-T-13
解:采用叠加原理,当仅有 R ( s ) 作用时,
C1 ( s) G1G2 , R( s) 1 G2 H 2 G1G2 H1
2
2-2 假设图 2-T-2 的运算放大器均为理想放大器,试写出以 ui 为输入, u o 为输出的传递函 数。 (a)由运算放大器虚短、虚断特性可知: 对上式进行拉氏变换得到
ui du du C i C 0 , uc ui u0 , R dt dt
U i ( s) sUi ( s) sU 0 ( s) RC
代入 v1
dy1 dy 、 v2 2 得 dt dt
d 2 y1 m F (t ) k 2 ( y2 y1 ) f k1 y1 1 dt 2 2 m d y2 k ( y y ) 2 2 2 1 dt 2
2-7 图 2-T-7 为插了一个温度计的槽。槽内温度为 i ,温度计显示温度为 。试求传递函数
C (s) 。 R( s)
2-12 求图 2-T-12 所示系统的传递函数
解:(a) 系统只有一个回环: L1 cdh , 在 节 点 R ( s ) 和 C ( s) 之 间 有 四 条 前 向 通 道 , 分 别 为 : P 1 abcdef , P 2 abcdi ,
P3 agdef , P4 agdi ,相应的,有: 1 2 3 4 1
对该式进行拉氏变换得
CR 2 2 sU 0 ( s) U i ( s) U 0 ( s) 0 2 R1 R R1
故此传递函数为
U 0 (s) 4 R1 U i (s) R( RCs 4)
(c) C
u u duc uc u0 u c 0 ,且 i c ,联立两式可消去 uc 得到 R R1 2 dt R1 / 2 R1 / 2 CR1 dui 2u0 2ui 0 2 R dt R1 R

C ( s) 1 n abcdef abcdi agdef agdi Pk k R( s) k 1 1 cdh
(b) 系统共有三个回环,因此, L1
1 1 1 , R1C1s R2C2 s R1C2 s
1 1 1 R1C1s R2C2 s R1 R2C1C2 s 2
G1+G2
G1+H1
R(s)
G1+G2
G3 1 G3 (G1 H 1 )
C(s)
R(s)
G3 (G1 G2 ) 1 G3 (G1 H 1 )
C(s)
传递函数为
G3 (G1 G2 ) C (s) R( s ) 1 G3 (G1 H1 )
(b) 化简过程如下 H1 _ R(s) + _ H2 H3 R(s) + _ 1/G1 G1 G2 G3 + G2 G4 + C(s)
d 0.u026 。 假 设 电 路 中 的 R 103 , 静 态 工 作 点 u0 2.39V , id 10 6 e 1
i0 2.19 103 A 。试求在工作点 (u0 , i0 ) 附近 id f (ud ) 的线性化方程。
图 2-T-11
解:系统信号流程图如图所示。
题 2-11 系统信号流程图
G1G2 G3 C1 s Rs 1 G1G2 G4 G1G2 G4 G5 H 1 H 2
G1G2 G4 G5 G6 H 2 C 2 s Rs 1 G1G2 G4 G1G2 G4 G5 H 1 H 2
2-9 试简化图 2-T-9 所示系统的框图,并求系统的传递函数
C (s) 。 R( s)
C(s)
R(s) + _ 0.7
+ _ 0.5
0.4 1 2s
1 2 s 0.3s 1
+
+
0.4
Ks
解:化简过程如下 R(s) + _ 0.7 + _
1 s 0.3s 1
2
C(s)
0 .2 s 0 .6
《自动控制理论 (夏德钤) 》习题答案详解 第二章
2-1 试求图 2-T-1 所示 RC 网络的传递函数。
1 Cs R1 , z R ,则传递函数为: (a) z1 2 2 1 R1Cs 1 R1 Cs R1
U o ( s) z2 R1 R2Cs R2 U i ( s) z1 z2 R1R2Cs R1 R2
(b) 设流过 C1 、 C 2 的电流分别为 I1 、 I 2 ,根据电路图列出电压方程:
1 U i ( s) I1 ( s) R1[ I1 ( s) I 2 ( s)] C1s 1 U o (s) I 2 ( s) C2 s
并且有
1 1 I1 ( s) ( R2 ) I 2 ( s) C1s C2 s
0.4
Ks C(s) + _
s 0.6 ( s 2 0.3s 1)( s 0.6) 0.08
0.7 Ks
R(s)
R(s)
0.7 s 0.42 s 3 (0.9 0.7k ) s 2 (1.18 0.42k ) s 0.52
C(s)
系统的传递函数为
C s 0.7 s 0.42 3 Rs s 0.9 0.7k s 2 1.18 0.42k s 0.52
G1 1 G1G2 H1
H3+H2/G
1
G4+G2G
3
C(s)
R(s)
G1 (G2G3 G4 ) 1 G1G2 H1 (G2G3 G4 )( H 2 G1 H 3 )
C(s)
传递函数为
G1 (G2G3 G4 ) C ( s) R( s) 1 G1G2 H1 (G2G3 G4 )( H 2 G1G3 )
故传递函数为
U 0 ( s ) RCs 1 U i (s) RCs
(b)由运放虚短、虚断特性有: C
duc ui uc uc u u 0, c 0 0, dt R2 R2 R 2 R1
联立两式消去 u c 得到
CR du0 2 2 ui u0 0 2 R1 dt R R1
3-1 设系统的传递函数为
2 n C (s) 2 2 R( s ) s 2 n s n
C (s) 。 R( s)
G2 R(s) + _ + + G3 _ H1 C(s)
G1
a) H1 R(s) + _ + G1 + _ G2 H2 H3 b) 图 2-T-8
G4 G3 + + C(s)
解:(a) 化简过程如下 G2 R(s) G1 + + _ + + G1 R(s) + _ G3 C(s) G3 H1 C(s)
( s ) (考虑温度计有贮存热的热容 C 和限制热流的热阻 R) 。 i ( s)
解:根据能量守恒定律可列出如下方程:
C
对上式进行拉氏变换得到
d i dt R i ( s) ( s) R
Cs( s)
则传递函数为
( s) 1 i ( s) RCs 1
相关文档
最新文档