九年级数学(学案)切线的判定
九年级数学(教学设计)切线的判定

2020-2021学年切线的判定【教学目标】一、知识与技能:1.理解切线的判定定理和性质定理,并能灵活运用。
2.会过圆上一点画圆的切线。
二、过程与方法:以圆心到直线的距离和圆的半径之间的数量关系为依据,探究切线的判定定理和性质定理,领会知识的延续性,层次性。
三、情感态度与价值观:让学生感受到实际生活中存在的相切关系,有利于学生把实际的问题抽象成数学模型。
【教学重点】探索切线的判定定理和性质定理,并运用。
【教学难点】探索切线的判定方法。
【教学方法】自主探索,合作交流【教学准备】尺规【教学过程】一、导语:通过上节课的学习,我们知道,直线和圆的位置关系有三种:相离、相切、相交。
而相切最特殊,这节课我们专门来研究切线。
师生行为:教师联系近期所学知识,提出问题,引起学生思考,为探究本节课定理作铺垫。
二、探究新知(一)切线的判定定理1.推导定理:根据“直线l和⊙O相切d=r”,如图所示,因为d=r直线l和⊙O相切,这里的d是圆心O到直线l的距离,即垂直,并由d=r就可得到l经过半径r的外端,即半径OA的端点A,可得切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.分析: 1、垂直于一条半径的直线有几条?2、经过半径的外端可以做出半径的几条垂线?3、去掉定理中的“经过半径的外端”会怎样?去掉“垂直于半径”呢?师生行为:学生画一个圆,半径OA,过半径外端点A的切线l,然后将“d=r直线l和⊙O相切”尝试改写为切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
设计意图:过学生亲自动手画图,进行探究,得出结论。
思考1:根据上面的判定定理,要证明一条直线是⊙O的切线,需要满足什么条件?总结:①这条直线与⊙O有公共点;②过这点的半径垂直于这条直线。
思考2:现在可以用几种方法证明一条直线是圆的切线?①圆只有一个公共点的直线是圆的切线②到圆心的距离等于半径的直线是圆的切线③上面的判定定理.师生行为:教师引导学生汇总切线的几种判定方法思考3:已知一个圆和圆上的一点,如何过这个点画出圆的切线?2. 定理应用①完成课本例1分析:已知点C是直线AB和圆的公共点,只要证明OC⊥AB即可,所以需要连接OC,作出半径。
九年级数学上册《切线的判定》教案、教学设计

4.设计丰富的例题和练习题,让学生在解答过程中,巩固所学知识,提高学生的解题技巧和应变能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性,使其形成良好的学习习惯。
2.培养学生勇于探索、克服困难的意志品质,增强学生的自信心和自我成就感。
3.引导学生认识到数学知识在实际生活中的应用价值,培养学生运用数学知识解决实际问题的意识。
4.培养学生的审美观念,让学生感受几何图形的和谐美,提高学生的审美情趣。
二、学情分析
九年级的学生已经具备了一定的几何知识和逻辑思维能力,能够理解和运用基本的几何概念和定理。在本章节学习之前,学生已经掌握了圆的基本性质、圆的方程以及点与圆的位置关系等基础知识,这为学习切线的判定打下了良好的基础。然而,学生在面对几何问题的解决策略上,可能还存在一定的局限性,需要教师在教学过程中给予适当的引导和启发。此外,学生的空间想象能力和抽象思维能力的发展水平不一,教学中应关注个体差异,因材施教,激发学生的学习潜能。通过本章节的学习,旨在进一步提高学生的几何推理能力,培养他们运用数学知识解决实际问题的能力,增强学生对数学学科的兴趣和信心。
(二)过程与方法
1.通过观察、分析、归纳,培养学生发现问题和解决问题的能力。
2.采用问题驱动的教学方法,引导学生从特殊到一般,从具体到抽象地理解切线的判定定理。
3.创设合作学习情境,让学生在小组讨论、交流中共同探究,提高团队协作能力和沟通表达能力。
4.设计丰富的例题和练习题,巩固所学知识,提高解题技巧和应变能力。
4.让学生尝试编写一道关于切线的原创题目,并给出解题过程和答案。此举旨在激发学生的创新思维,提高学生对知识点的深入理解。
九年级《切线的判定》导学案

九年级《切线的判定》导学案一、学习目标1.理解切线的定义;2.掌握判定一点是否在圆的切线上的方法;3.掌握判定两圆是否相切的方法。
二、学习内容1.切线的定义;2.判定一点是否在圆的切线上的方法;3.判定两圆是否相切的方法。
三、学习重点和难点3.1 学习重点1.理解切线的定义;2.掌握判定一点是否在圆的切线上的方法。
3.2 学习难点1.判定两圆是否相切的方法。
四、学习过程4.1 导入(5分钟)问题导入:小明正在研究圆的性质,他想知道如何判断一条直线是否为圆的切线。
你能告诉他吗?4.2 探究切线的定义(20分钟)1.请你利用教室桌子上的圆规和直尺,画出一个圆,并指出圆的中心点。
2.在圆上随意选取一个点P,并用直尺连接圆心和点P。
3.请在纸上写下此时你观察到的现象,并试着对切线的定义进行描述。
4.3 判定一点是否在圆的切线上的方法(30分钟)在探究了切线的定义后,我们来探讨一下如何判定一点是否在圆的切线上。
1.定义:切线是什么?根据我们刚才的探究,我们可以得出切线的定义:切线是与圆相切、且只与圆相交于一个点的直线。
切线上的点有什么特点?切线上的点与圆心的连线垂直。
2.判定方法:如何判定一点是否在圆的切线上?–方法一:连接圆心和该点,并垂直与该线段的延长线;如果该延长线与圆相交,则该点在圆的外部;如果与圆不相交,则该点在圆的切线上。
–方法二:通过计算圆心到该点的距离,如果与圆的半径相等,则该点在圆的切线上。
请根据上面的方法,判断下面各个点是否在圆的切线上。
示例图示例图点A、点B、点C、点D(教师可根据实际情况,出示示例图,学生判断是否在切线上)4.4 判定两圆是否相切的方法(25分钟)当我们学会了判定一点是否在圆的切线上后,我们还可以通过判定两圆是否相切来深入运用切线的概念。
1.定义:两圆相切是什么概念?两个圆相切,指的是两个圆只有一个公共点。
2.判定方法:如何判定两圆是否相切?–方法一:可以通过判断两圆的半径之和与两圆心之间的距离的关系来判定。
切线的判定和性质数学教案

切线的判定和性质数学教案标题:切线的判定与性质——数学教案一、教学目标1. 知识目标:理解和掌握圆的切线的定义,以及切线的判定和性质。
2. 能力目标:通过解决相关问题,提高学生的逻辑推理能力和空间想象能力。
3. 情感态度价值观目标:培养学生积极思考、勇于探索的学习态度,增强学生对数学学习的兴趣。
二、教学重点与难点1. 教学重点:切线的判定方法和性质。
2. 教学难点:理解并应用切线的判定定理和性质解决实际问题。
三、教学过程(一)引入新课教师引导学生回顾上节课关于圆的知识,提出问题:“如何判断一条直线是否为圆的切线?”以此引出本节课的主题——切线的判定和性质。
(二)讲解新知1. 切线的定义:与圆只有一个公共点的直线叫做圆的切线。
2. 切线的判定:(1) 判定定理1:经过半径的外端并且垂直于这条半径的直线是圆的切线。
(2) 判定定理2:到圆心的距离等于半径的直线是圆的切线。
3. 切线的性质:(1) 性质1:过圆心且垂直于切线的直线必经过切点。
(2) 性质2:从圆外一点引圆的两条切线,它们的切线长相等。
(三)课堂练习设计一些相关的练习题,让学生在实践中巩固所学知识。
如:例题1:已知OA,OB为圆O的两条半径,∠AOB=60°,P为劣弧AB上的动点,过P作圆O的切线PC,设∠APB=α,求证:tanα=2sinα。
例题2:已知△ABC中,∠A=90°,AB=AC,D是BC边的中点,E是AC边上的任意一点,DE与以C为圆心,CA为半径的圆相切于F点,证明:AF⊥BE。
(四)课堂小结引导学生总结本节课的主要内容,包括切线的定义、判定定理和性质,并强调这些知识在解题中的重要性。
(五)课后作业布置适量的课后作业,帮助学生进一步巩固和应用所学知识。
四、教学反思在教学过程中,应注重引导学生主动参与,鼓励他们通过独立思考和合作交流来解决问题。
同时,要关注学生的个体差异,提供有针对性的教学指导,以满足他们的不同学习需求。
九年级数学下册《切切线的定义及判定定理线的定义及判定定理》教案、教学设计

一、教学目标
(一)知识与技能
1.理解切线的定义,掌握切线与圆相切的唯一性和切点的性质;
2.学会运用判定定理判断直线是否为圆的切线,包括:圆心到直线的距离等于半径、过圆上一点的直线垂直于半径等;
3.能够运用切线性质解决实际问题,如求切线长度、切线与圆相交弦长等;
(1)研究圆的切线与半径的关系,总结出切线长度的计算公式;
(2)探讨弦切角与圆心角的关系,并尝试证明。
4.小组作业:
(1)分组讨论,共同解决以下问题:已知圆的方程和一点,求过该点的切线方程;
(2)每组将讨论成果整理成书面报告,并在课堂上展示。
作业要求:
1.独立完成作业,认真思考,规范书写,确保作业质量;
(3)注重培养学生的空间想象力和抽象思维能力,提高学生的数学素养;
(4)结合生活实际,创设有趣、富有挑战性的教学情境,激发学生的学习兴趣和探究欲望。
四、教学内容与过程
(一)导入新课
1.教学活动:教师展示自行车轮胎与地面接触点的图片,引导学生观察并思考:为什么轮胎与地面接触的点只有一个?这个点有什么特殊性质?
(1)求给定圆的切线方程;
(2)已知切线方程,求圆的方程;
(3)判断给定直线是否为圆的切线,若是,求切点坐标。
2.请同学们思考以下问题,并在课堂上进行分享:
(1)如何利用切线性质解决实际问题?
(2)在解决切线问题时,判定定理有哪些应用场景?
(3)结合生活实际,举例说明切线在现实中的胎与地面相切的点,相切的意思是两者在此处紧密接触,没有缝隙。
3.教师引导:很好,今天我们就来学习与这个相切点有关的知识——切线。首先,请同学们回忆一下我们已经学过的圆的性质和方程。
九年级数学(学案)切线的判定

2020-2021学年切线的判定一、学习目标1.理解切线的判定定理和性质定理。
2.熟练掌握以上内容解决一些实际问题。
3.提升数学学习能力。
二、自主探究请你先阅读课本,然后解决下面的问题:(一)引入新知1、【画一画】请你自己动手画一个圆的切线,你怎么知道它是圆的切线?作法:(1)(2)(3)2、【想一想】为什么:圆的切线垂直于经过切点的半径?下面的证法对吗?已知:直线a 切⊙O于点A.求证:OA⊥直线a证明:假设不垂直,作OM⊥a因“垂线段最短”,故OA>OM,即圆心到直线距离小于半径.这与线圆相切矛盾.故:圆的切线垂直于经过切点的半径.3、【说一说】通过以上两个问题的交流,在阅读课本P95的基础上,你能用一句话描述什么是圆··MAOa的切线吗?(1)(2)(3)4、【议一议】(1).如图,点D 是∠AOB 的平分线OC 上任意一点,过D 作DE ⊥OB 于E ,以DE 为半径作⊙D ,判断⊙D 与OA 的位置关系, 并证明你的结论。
(2)如图,直线AB 经过⊙O 上的点C ,并且OA=OB,CA=CB,求证直线AB 是⊙O 的切线。
(二)尝试运用1、【动动笔】请你阅读课本,将上面两题中任选一题证出来。
2、【动动手】在理解概念的基础上,请你自己动手来画图,说明圆的切线与判定,再用数学语言描述出来,然后跟你的同学进行交流。
3、【动动脑】已知:如图,A 是⊙O 外一点,AO 的延长线交⊙O 于点C,点B 在圆上,且AB=BC, ∠A=30.求证:直线AB 是⊙O 的切线.B AB E O (1) (2)。
九年级数学下册《切线的性质和判定》教案、教学设计

4.设计不同难度的例题和练习题,由浅入深,让学生逐步掌握切线相关知识,培养逻辑推理能力和数学运算能力。
(三)情感态度与价值观
1.培养学生对几何图形的审美情趣,激发他们对数学学科的兴趣和热爱。
2.培养学生勇于探索、严谨治学的学习态度,让他们在解决问题的过程中体验成功的喜悦。
九年级数学下册《切线的性质和判定》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握切线的定义,能够准确判断一个直线是否为给定圆的切线。
2.掌握切线的性质,如切线与半径垂直、切线段为半径的外切三角形的一条边等。
3.学会使用判定定理判断一个直线是否为圆的切线,如通过圆心到直线的距离等于圆的半径来判断。
4.能够运用切线相关知识解决实际问题,如求圆的切线长度、切线与弦的交点等。
(二)过程与方法
在本章节的教学过程中,学生将通过以下方法培养数学思维与解题能力:
1.通过实际操作和观察,引导学生发现切线的性质,培养观察能力和动手能力。
2.引导学生运用几何画板等教学软件,进行动态演示,激发学生的学习兴趣,提高直观想象能力。
6.开展课堂小结活动,鼓励学生分享自己在学习过程中的收获和困惑,及时反馈教学效果,为后续教学提供参考。
7.教学评价方面,注重过程性评价与终结性评价相结合,关注学生在课堂上的表现、作业完成情况以及解决问题的能力。
8.加强课后辅导,针对学生在学习过程中遇到的问题,提供个性化指导,帮助他们克服难点,提高学习效果。
(2)在平面直角坐标系中,已知圆心为(3,4),半径为5,求过点A(1,1)的切线方程。
3.拓展练习题:
人教版数学九年级上册24.2.2切线的性质与判定(教案)

一、教学内容
人教版数学九年级上册24.2.2切线的性质与判定:
1.理解并掌握切线的定义;
2.掌握切线的判定定理:经过半径外端且垂直于半径的直线为圆的切线;
3.掌握切线的性质:圆的切线垂直于过切点的半径;
4.学会运用切线的性质解决有关切线长度、角度等问题;
五、教学反思
在今天的教学过程中,我发现同学们对切线的性质与判定这一章节的内容兴趣浓厚,这让我感到很欣慰。在导入新课环节,通过提出与日常生活相关的问题,成功吸引了学生的注意力,激发了他们的学习兴趣。但在后续的教学中,我也注意到一些需要改进的地方。
在理论介绍环节,我发现部分学生对切线定义的理解还不够深入,对切线判定定理的掌握也不够牢固。在接下来的教学中,我需要更加注重对基础概念的讲解,通过生动的例子和实际操作,帮助学生更好地理解切线的定义和判定定理。
-切线的性质:理解并掌握圆的切线垂直于过切点的半径,以及切线与圆的相切关系。
-实际问题中的应用:学会将切线的性质和判定定理应用于解决直线与圆的位置关系问题。
举例解释:
(1)通过图形演示和实际操作,让学生理解切线的定义,强调切线与圆只有一个交点。
(2)通过具体例题,如给定一个圆和一点,让学生画出经过该点且为圆的切线,从而加深对切线判定定理的理解。
(3)通过分析切线与过切点的半径的垂直关系,让学生明白切线的性质,并能够应用这一性质解决相关问题。
2.教学难点
-切线判定定理的理解:学生可能难以理解为什么经过半径外端且垂直于半径的直线是圆的切线。
-切线性质的应用:学生在应用切线性质解决实际问题时,可能不知道如何建立数学模型和运用相关定理。
-解决实际问题时图形分析能力:学生在面对复杂的图形时,可能难以识别切线与圆的关系。
切线的判定教案

切线的判定教案
教案:切线的判定
一、教学目标
1. 知识目标:了解切线的定义和性质,学会判定一条直线是曲线的切线的方法。
2. 技能目标:掌握使用切线的定义和性质进行判定的方法,能够应用所学知识解决相关问题。
3. 情感目标:培养学生对几何知识的兴趣,激发学生思考和发问的能力,培养学生学习几何的态度。
二、教学重点
1. 掌握切线的定义和性质。
2. 学会使用切线的定义和性质进行判定。
三、教学难点
学会应用所学知识解决相关问题。
四、教学过程
1. 导入(5分钟)
引导学生回顾之前学过的直线和曲线的定义,复习直线和曲线的性质。
2. 讲解(10分钟)
(1)引入切线的概念,给出切线的定义和性质。
(2)讲解切线的判定方法,包括两种常见的情况:切线与曲线的切点只有一个、切线与曲线的切点有多个。
3. 案例分析(15分钟)
使用切线的定义和性质,结合几个实际问题进行讲解和分析,帮助学生理解和掌握切线的应用。
4. 练习(20分钟)
根据所学知识进行练习,巩固切线的判定方法。
提供不同难度的题目,让学生逐渐提高解题能力。
5. 总结(5分钟)
对本节课所学内容进行总结,强调切线的判定方法和应用。
六、作业布置
布置相关的作业题,要求学生独立完成,并及时批改和讲解。
七、教学反思
本节课的教学重点是切线的判定方法和应用,通过案例分析和实际练习,帮助学生理解和掌握切线的相关知识。
教学过程中,需注意引导学生主动思考和发问,激发学生的学习兴趣。
此外,教师要及时给予学生指导和反馈,及时纠正错误,提高学生的学习效果。
初中数学《切线的判定》教案

初中数学《切线的判定》教案35.4《切线的判定》备课分析一、教材分析1、教材所处的地位和作用切线的判定是九年制义务教育课本数学九年级第二学期第三十五章“圆”中的内容之一,是在学完直线和圆三种位置关系概念的基础上进一步研究直线和圆相切的特性,是“圆”这一章的重点之一,是学习圆的切线长和切线长定理等知识的基础。
2、教学内容“切线的判定和性质”共两个课时,课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时。
为了突出本节课的重点、突破难点,我没有采用教材安排的顺序,而是依据初三学生认知特点,将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,让教学呈现一个循序渐进、温过知新的过程。
本节课主要有三部分内容:(1)切线的判定定理(2)切线的判定定理的应用(3)切线的两种判定方法。
教学重点是切线的判定定理及其应用。
教学难点是切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一。
二、教学对象分析在学习本节内容之前学生已经掌握了圆的切线的定义,直线和圆的三种位置关系和一种直线与圆相切的判定方法(用d=r)。
在学习用d=r来判定直线与圆相切的内容时曾为本节内容打过伏笔,设置过悬念,所以学生对本节内容的学习充满期待的。
三、教案设计思路为了实现教学目标,本节课我主要突出抓好以下五个环节:1.复习提问打好基础,为新课作铺垫。
问题1是例2的基础,问题2则起着复旧孕新、引入新课的作用。
2.发现、证明、理解定理学好基础知识。
根据初三学生有一定创造、自学能力的特点,在教学中,教师通过启发和指导学生阅读教材,教会学生通过自己观察,发现结论,再设法证明结论的学习方法,同时也强化了学生的阅读、自学能力。
九上数学《切线的判定和性质(教学设计)》

九上数学《切线的判定和性质(教学设计)》第7课时《切线的判定和性质》【知识与技能】能判定一条直线是否为一条切线,会过圆上一点作圆的切线.会运用切线的判定定理和性质定理解决问题.【过程与方法】经历切线的判定定理及性质定理的探究过程,养成学生既能自主探究,又能合作探究的良好学习习惯.【情感态度】体验切线在实际生活中的应用,感受数学就在我们身边,感受证明过程的严谨性及结论的正确性.【教学重点】切线的判定定理及性质定理的探究和运用.【教学难点】切线的判定定理和性质的应用.一、情境导入,初步认识情境1 下雨天,小孩子总喜欢转动雨伞,你发现雨伞的水珠顺着伞面的边缘飞出,水珠是顺着什么方向飞出的?情况二用机器磨削铁件时,铁屑朝哪个方向飞出?情境3用细线系一个球。
当你快速旋转细线时,球会移动形成一个圆。
突然,球掉了下来,沿着圆的边缘飞了起来。
你知道球会朝哪个方向飞吗?【教学说明】通过观察生活中的实例,使学生初步感知直线与圆相切的情景,深化学生思想中的数学模型.二、思考探究,获取新知 1.切线的判定定理思考1 如图,在⊙O中,经过半径OA的外端点A,作直线l⊥OA,则圆心O到直线l的距离是多少?直线l和⊙O有什么位置关系?分析:∵直线l⊥OA,而点A是⊙O的半径OA的外端点.∴直线l与⊙O只有一个交点,并且圆心O到直线l的距离是垂线段OA,即是⊙O的半径.∴直线l与⊙O相切.【归纳总结】切线的判定定理:经过半径的外端(点)并且垂直于这条半径的直线是圆的切线.【教学说明】结合切线的定义以及“如果圆心到直线的距离等于半径,那么直线和圆相切”,引导学生得出结论.在切线的判定定理中,“经过外端”和“垂直于半径”两者缺一不可.试一试(1)已知一个圆和圆上的一点,如何过这个点画出圆的切线?(只能作一条直线)(2)下图中的直线是圆的切线吗?(都不是圆的切线)2.切线的性质定理思考2 已知直线l是⊙O的切线,切点为A,那么半径OA与直线l是不是一定垂直呢?为什么?(学生讨论,由学生代表回答)教师点评:由于l是⊙O的切线,点A为切点,∴圆心O到l 的距离等于半径,所以OA就是圆心O到直线l的距离.∴OA⊥直线l.切线的性质定理:圆的切线垂直于过切点的半径.符号语言:∵直线l是⊙O的切线,切点为A.∴OA⊥直线l.【教学说明】这个问题在引导学生分析时,直接证明比较困难,我们可以运用反证法.假设OA与l不垂直,过点O作OM⊥l,垂足为M,根据垂线段最短的性质,有OM<OA,这说明圆心O到直线l的距离小于半径OA,直线l与⊙O就相交了,而这与直线l与⊙O相切矛盾.因此,OA垂直于直线l.三、典例精析,掌握新知例1 教材98页例1.(要证明一条直线是圆的切线,必须符合两个条件,即“经过半径外端”和“垂直于这条半径”.引导学生分析.例2(1)如图(1),AB是⊙O的弦,PA是⊙O的切线,A是切点,∠PAB=30°,求∠AOB.(2)如图(2),AB 是⊙O的直径,DC切⊙O于点C,连接CA、CB,AB=12,∠ACD=30°,求AC的长.解:(1)∵△OAB为等腰三角形,∴∠OAB=∠OBA.又∵PA是⊙O的切线,∴由切线的性质可知:PA⊥OA,∴∠OAP=90°,∴∠OAB=∠OAP-∠BAP=90°-30°=60°,∴∠AOB=180°-2∠OAB=180°-2×60°=60°.(2)连接OC,∵CD是⊙O的切线,∴OC⊥CD,而∠ACD=30°,.∴∠OCA=60°,∴△OAC是等边三角形,AC=OA=r=1/2×AB=1/2×12=6.【教学说明】例1是对切线的判定定理的应用,要使学生掌握用这个定理来证明切线的关键(紧扣两点).例2是利用切线的性质解题.在解决与圆有关的切线的问题时,常见辅助线有:(1)已知直线是圆的切线时,通常连接过切点的半径,则这条半径垂直于切线.(2)要证明一条直线是圆的切线:①若直线过圆上某一点,则连接这点和圆心得到辅助半径,再证这条半径与直线垂直.即:已知公共点,连半径证垂直.②若直线与圆的公共点不确定,则过圆心作直线的垂线段,证明这条垂线段长等于圆的半径长.即:未知公共点,作垂线证半径.这种题型后面会给出练习.四、运用新知,深化理解 1.完成教材第98页练习1、2.2.如图,已知PA是∠BA C的平分线,AB是⊙O的切线,切点为E,求证:AC是⊙O的切线.【教学说明】教材上的练习1、2由学生自主完成,加深对切线的判定及性质的理解掌握;第2题是对切线的性质与判定的综合应用,教师可先让学生独立思考,再加以提示.最后,师生共同完成解题.【答案】1.(1)∵AT=AB,∴∠B=∠T=45°,∴∠A=180°-∠B-∠T=90°.又∵AB是⊙O的直径,∴AT是⊙O的切线.(2)l1∥l2,理由如下:∵AB是⊙O的直径,且l1、l2是⊙O的切线,∴l1⊥AB,l2⊥AB,∴l1∥l2.2.过O点作OF⊥AC于点F,连接OE.则OE⊥AE.∴∠OEA=∠OFA=90°,又∵PA是∠BAC的平分线,∴∠OAE=∠OAF,∵AO=AO,∴△OAF≌△OAE,∴OF=OE.又∵OE是半径,∴OF也为半径长.∴AC是⊙O的切线.五、师生互动,课堂小结1.让学生回顾本堂课的两个知识点.2.试着让学生自己总结切线的证明方法,然后相互交流.【教学说明】在这一环节,教师要尽可能地让学生自主总结与交流,然后适当地予以点评和补充.1.布置作业:从教材“习题24.2”中选取.2.完成练习册中本课时练习的“课后作业”部分.本节课从常见的生活情况入手,引入切线的概念,能激发学生的求知欲,接着又得出切线的判定方法及过圆上一点作已知圆的切线,又从另一侧面利用反证法,证明了切线的性质定理,这样,既证明了定理又复习了反证法.黄麓镇中心学校2013-2014学第一学期九年级数学教案24.2.2.2切线的判定和性质教学设计备课人:杨智刚时间:2013年11月18日【教学目标】1.知识和技能:1。
九年级《切线的判定》导学案

九年级《切线的判定》导学案关键信息项:1、导学案的适用对象:九年级学生2、学习目标:掌握切线的判定方法及应用3、学习重点:切线判定定理的理解与应用4、学习难点:切线判定定理的推导及灵活运用5、学习方法:自主学习、合作探究、教师指导6、学习资源:教材、相关练习题、多媒体资料11 学习目标111 理解切线的定义,掌握切线的判定定理。
112 能够熟练运用切线的判定定理解决相关问题。
113 培养学生的逻辑推理能力和空间想象能力。
12 学习重点121 切线判定定理的内容:经过半径的外端并且垂直于这条半径的直线是圆的切线。
122 对定理中两个条件“经过半径外端”和“垂直于半径”的理解和应用。
13 学习难点131 切线判定定理的推导过程,理解为什么满足这两个条件的直线就是切线。
132 在不同的几何图形中,灵活运用切线的判定定理进行证明和计算。
14 学习方法141 自主学习:学生通过阅读教材、查阅相关资料,初步了解切线的判定相关知识。
142 合作探究:学生分组讨论,共同解决在学习过程中遇到的问题,交流不同的解题思路和方法。
143 教师指导:教师针对学生在自主学习和合作探究中出现的问题进行点拨和指导,帮助学生突破难点。
15 学习资源151 教材:仔细研读教材中关于切线判定的内容,包括定义、定理、例题和练习题。
152 相关练习题:通过做练习题巩固所学知识,提高解题能力。
153 多媒体资料:利用多媒体展示圆的切线的相关图形和动画,帮助学生直观理解。
21 知识回顾211 圆的相关概念,如圆心、半径、直径等。
212 直线与圆的位置关系:相交、相切、相离。
22 切线的定义221 直线和圆只有一个公共点时,这条直线叫做圆的切线,这个公共点叫做切点。
23 切线的判定定理231 经过半径的外端并且垂直于这条半径的直线是圆的切线。
232 对定理的详细分析:条件一:经过半径的外端。
条件二:垂直于这条半径。
缺一不可。
24 定理的证明241 利用反证法证明切线的判定定理。
九年级数学切线的性质及判定

九年级数学切线的性质及判定一.切线的判定方法:⑴.切线的定义:与圆有唯一公共点的直线叫做圆的切线。
⑵.到圆心的距离等于半径的直线是圆的切线⑶.经过半径的外端,并且垂直于这条半径的直线是圆的切线。
二.辅助线规律:(1)直线与圆有公共点时,辅助线的作法是“连结圆心和公共点”,再证直线与半径垂直简称:“有点,连接,证垂直”。
即当条件中已知直线与圆满有公共点时,利用“⑶.经过半径的外端,并且垂直于这条半径的直线是圆的切线”证明。
(2)当直线与圆并没明确有公共点时,辅助线的作法是“过圆心向直线作垂线”,再证圆心到直线的距离等于半径简称:“无点,作垂线,证(等于)半径”。
即当条件没有告诉直线与圆有公共点时,利用“(2)到圆心的距离等于半径的直线是圆的切线;”证明。
三.例题讲析:例1. 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB求证:直线AB是⊙O的切线。
例2. 如图,已知OA=OB=5厘米,AB=8厘米,⊙O的直径为6厘米求证:AB与⊙O相切例3. 如图,已知AB是⊙O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30°,求证:DC是⊙O的切线。
例4. 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,求证:AC平分∠DAB。
例5. 已知:AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于AD求证:DC是⊙O的切线。
例6. 如图,A是⊙O外一点,连OA交⊙O于C,过⊙O上一点P作OA的垂线交OA于F,交⊙O于E,连结PA,若∠FPC=∠CPA,求证:PA是⊙O的切线例7. 如图,AB=AC,以AB为直径的⊙O交BC于D,DE⊥AC于E求证:DE与⊙O相切例8. 如图,已知AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=EB,E点在BC上。
求证:PE是⊙O的切线。
四.练习:1、如图7,AB为⊙O直径,PA、PC为⊙O的切线,A、C为切点,∠BAC=30°(1)求∠P大小。
九年级数学上册《切线的判定定理》优秀教学案例

一、案例背景
在我国九年级数学上册的教学中,平面几何占据了重要的地位,其中切线的判定定理是学生难以掌握的一个知识点。针对这一情况,本教学案例旨在通过生活实例引入,激发学生兴趣,运用探究与合作的学习方式,帮助学生理解并掌握切线的判定定理。本案例结合教材内容,注重培养学生的几何直观和逻辑思维能力,提高他们解决实际问题的能力。
3.能够运用圆的性质和切线的判定定理推导出相关结论,如圆的切线垂直于过切点的半径等。
4.掌握切线方程的求解方法,能够根据实际问题列出切线方程并求解。
5.提高学生的几何直观和空间想象能力,培养他们在解决几何问题时运用直观和逻辑思维的能力。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法引导学生学习:
1.采用生活实例引入切线的概念,激发学生的学习兴趣。
2.通过观察、猜想、验证、总结等步骤,引导学生发现并掌握切线的判定定理。
3.创设问题情境,鼓励学生独立思考、合作交流,培养他们的探究能力和团队协作精神。
4.设置不同难度的练习题,使学生在实践中巩固所学知识,提高解决问题的能力。
5.引导学生运用所学知识解决实际问题,培养学生的创新意识和实践能力。
a.除了判定定理,还有哪些方法可以判断直线是否为圆的切线?
b.在解决实际问题时,如何灵活运用切线的判定定理?
3.提醒学生注意作业的规范性和解题思路的清晰性,培养良好的学习习惯。
五、案例亮点
1.生活情境的巧妙运用
本教学案例的最大亮点之一是巧妙地运用生活情境导入新课。通过引入公园湖泊与直线的图片,激发学生的好奇心,使他们在生活实例中感受数学的魅力。这种情境创设不仅拉近了数学与生活的距离,还激发了学生的学习兴趣,提高了课堂参与度。
九年级数学上册《切线的概念切线的判定和性质》教案、教学设计

(五)总结归纳
1.回顾本节课所学内容,引导学生总结切线的定义、判定定理和性质。
2.强调切线在实际问题中的应用,如最短路线、圆的切线方程等。
3.提醒学生注意切线知识在后续学习中的重要性,为后续课程打下基础。
4.鼓励学生在生活中观察、发现切线相关的现象,将数学知识运用到实际中。
4.老师将根据作业完成情况,给予评价和反馈,帮助学生不断提高。
3.实践应用:
-设计具有挑战性的问题,让学生运用切线知识解决实际问题,提高学生的应用能力。
-组织学生进行小组讨论,分享解题思路,培养学生的合作精神和交流能力。
-针对不同难度的练习题,给予学生适当的指导,帮助他们突破难点,提高解题能力。
4.教学方法:
-采用启发式教学,引导学生主动思考,培养他们的创新意识。
2.切线的判定定理:讲解切线的判定定理,如“过圆上一点的直线,若与圆的切线垂直,则该直线为圆的切线”。
3.切线的性质:引导学生观察切线与半径的关系,推导出切线的性质,如“切线垂直于过切点的半径”。
4.实例讲解:通过具体实例,讲解切线判定定理和性质的应用。
(三)学生小组讨论ຫໍສະໝຸດ 1.分组:将学生分成若干小组,每个小组讨论以下问题:
在教学过程中,注重学生的个体差异,关注学生的成长需求,充分调动学生的积极性、主动性和创造性,使学生在轻松愉快的环境中掌握知识,提高能力。同时,注重情感教育,培养学生的道德品质和人文素养,为学生的全面发展奠定基础。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了圆的基本概念和相关性质,但对于切线的概念及其判定与性质的理解尚浅。在学习本章节时,学生可能面临以下问题:对切线定义的理解不够深入,难以区分切线与割线;对切线判定方法的掌握不够熟练,容易混淆判定条件;对切线性质的应用不够灵活,难以解决实际问题。因此,在教学过程中,应注重以下几点:
九年级数学上册《切线的判定定理》教案、教学设计

4.实践应用,巩固提高
设计不同难度的练习题,让学生运用切线判定定理解决实际问题。在解答过程中,教师关注学生的解题思路和方法,及时给予指导和反馈。
5.知识拓展,提升能力
结合学生的实际水平,适当拓展相关知识,如切线长度的求解、切线与圆的位置关系等。通过知识拓展,提高学生的综合运用能力。
4.培养学生面对困难时,勇于挑战、积极进取的精神风貌。
二、学情分析
九年级的学生已经具备了一定的几何知识基础,对圆的性质和方程有一定的了解。在此基础上,学生对切线的判定定理的学习将更加深入。然而,由于切线判定定理涉及到图形的直观理解和逻辑推理,学生可能在实际应用中存在以下问题:对定理的理解不够深入,不能熟练运用定理解决实际问题;对判定过程的逻辑推理能力有待提高;空间想象能力不足,难以在复杂图形中找到切线。因此,在教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,引导他们通过观察、思考和合作交流,逐步提高解决问题的能力。同时,注重培养学生的几何直观和逻辑思维能力,为后续数学学习打下坚实基础。
1.教学活动设计
在讲授新知环节,我将采用讲授与演示相结合的方式,引导学生学习切线判定定理。首先,我会通过几何画板展示切线的生成过程,让学生观察并总结切线与圆的内在联系。
2.教学内容
(1)切线判定定理的推导:利用圆的性质,引导学生推导出切线判定定理——圆的半径垂直于切线于切点。
(2)切线判定定理的应用:通过示例,演示如何利用切线判定定理求解实际问题,如求切线长度、切点坐标等。
4.能够运用勾股定理、相似三角形等知识,解决与切线相关的问题,提高综合运用数学知识的能力。
初三数学切线的判定和性质导学案

初三数学切线的判定和性质导学案【】初三数学切线的判定和性质导学案通过学习判定定理和切线判定方法的学习,培养学生观看、分析、归纳问题的能力。
教学目标:1、使学生深刻明白得切线的判定定理,并能初步运用它解决有关问题;2、通过判定定理和切线判定方法的学习,培养学生观看、分析、归纳问题的能力;3、通过学生自己实践发觉定理,培养学生学习的主动性和积极性.教学重点:切线的判定定理和切线判定的方法;教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是通过半径外端;二是直线垂直于这条半径;学生开始时把握不行并极容易忽视.教学过程设计(一)复习、发觉问题观看、提出问题、分析发觉(教师引导)中直线l是⊙O的切线,如何样判定?依照切线的定义能够判定一条直线是不是圆的切线,但有时使用定义判定专门不方便.我们从另一个侧面去观看,那确实是直线和圆的位置如何样时,直线也是圆的切线呢?直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观看直线l与⊙O的位置.发觉:(1)直线l通过半径OC的外端点C;(2)直线l垂直于半径0C.如此我们就得到了从位置上来判定直线是圆的切线的方法切线的判定定理.(二)切线的判定定理:1、切线的判定定理:通过半径外端同时垂直于这条半径的直线是圆的切线.2、对定理的明白得:引导学生明白得:①通过半径外端;②垂直于这条半径.请学生摸索:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.图(1)中直线了l通过半径外端,但不与半径垂直;直线l与半径垂直,但不通过半径外端.从以上两个反例能够看出,只满足其中一个条件的直线不是圆的切线.(三)切线的判定方法教师组织学生归纳.切线的判定方法有三种:①直线与圆有唯独公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.(四)应用定理,强化训练例1已知:直线AB通过⊙O上的点C,同时OA=OB,CA=CB.求证:直线AB是⊙O的切线.分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则A B过半径OC的外端,只需证明OCOB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年
切线的判定
一、学习目标
1.理解切线的判定定理和性质定理。
2.熟练掌握以上内容解决一些实际问题。
3.提升数学学习能力。
二、自主探究
请你先阅读课本,然后解决下面的问题:
(一)引入新知
1 、【画一画】
请你自己动手画一个圆的切线,你怎么知道它是圆的切线?
作法:(1)
(2)
(3)
2、【想一想】
为什么:圆的切线垂直于经过切点的半径?下面的证法对吗?
已知:直线a 切⊙O 于点A.
求证:OA ⊥直线a
证明:假设不垂直,
作OM ⊥a
因“垂线段最短”,
故OA>OM,
即圆心到直线距离小于半径.
这与线圆相切矛盾.
故:圆的切线垂直于经过切点的半径.3、【说一说】
通过以上两个问题的交流,在阅读课本P 95的基础上,你能用一句话描述什么是圆的切线吗?
(1)
··M
A O a
(2)
(3)
4、【议一议】
(1).如图,点D 是∠AOB 的平分线OC 上任意一点,过D 作DE ⊥OB 于E ,以DE 为半径作
⊙D ,判断⊙D 与OA 的位置关系, 并证明你的结论。
(2)如图,直线AB 经过⊙O 上的点C ,并且OA=OB,CA=CB,求证直线AB 是⊙O 的切线。
这两题的辅助线的作法有什么不同?
(二)尝试运用
1、【动动笔】请你阅读课本,将上面两题中任选一题证出来。
2、【动动手】在理解概念的基础上,请你自己动手来画图,说明圆的切线与判定,再用数学语言描述出来,然后跟你的同学进行交流。
3、【动动脑】已知:如图,A 是⊙O 外一点,AO 的延长线交⊙O 于点C,点B 在圆上,且AB=BC, ∠A=30.
求证:直线AB 是⊙O 的切线.
B A
(1)
(2)。