第6章_控制系统的误差分析与计算_6.2输入引起的稳态误差
合集下载
控制工程基础6章

H(S) +
Xor(S)
+ N(S)
+
-
E(S)
G1(S)
G2(S)
X0(S)
设xor (t )是控制系统希望的输出信号,而 xo (t ) 是实际的输出信号, 一般把二者之差定义为 误差信号,记做e(t), e(t) = xor (t ) - xo (t )
m(p) 是理想算子,是认为规 定的。一般情况下, m( s) =1/H(s)。
时的系统输出端的稳态误差。
1 2 例题:求下图所示系统 在1(t), t, 和 t 分别作用下的稳态误差 。 2
五、扰动引起的误差
+
G1(s) N(s) G2(s) Xo(s)
Xi(s) +
+
Y(s) H(s)
要想求稳态偏差,可以利用叠加原理,分别求
出给定信号Xi(s) 和N(s)单独作用时的偏差,然
2 2
对于0型系统,Ka=0,ess=
对于I型系统, Ka=0, ess=
对于II型系统, Ka=K, ess= 1/K 对于III型及以上系统, Ka= , ess= 0
0和I型系统不能跟踪单位斜坡输入,I I型系统能跟踪单 位斜坡输入但有静差,需要III型以上系统才能消除静差。
10 G 例:设有一非单位反馈控制系统, ( s) = s 1 H(s)=Kh,输入为单位阶跃。试求, Kh=1和0.1
结构形式 输入形 式
1 例:设单位反馈控制系统的 G( s) = ,输 2 Ts t 入信sint , 2 试求系统的稳态误差。
为什么? 因为:E(s) = s (s 2 2 )(s 1 ) T T 1 T s T 2 3 1 =- 2 2 2 2 2 2 2 2 1 T 1 s 2 T 1 s 2 T 1 s T 求拉式反变换 T
Xor(S)
+ N(S)
+
-
E(S)
G1(S)
G2(S)
X0(S)
设xor (t )是控制系统希望的输出信号,而 xo (t ) 是实际的输出信号, 一般把二者之差定义为 误差信号,记做e(t), e(t) = xor (t ) - xo (t )
m(p) 是理想算子,是认为规 定的。一般情况下, m( s) =1/H(s)。
时的系统输出端的稳态误差。
1 2 例题:求下图所示系统 在1(t), t, 和 t 分别作用下的稳态误差 。 2
五、扰动引起的误差
+
G1(s) N(s) G2(s) Xo(s)
Xi(s) +
+
Y(s) H(s)
要想求稳态偏差,可以利用叠加原理,分别求
出给定信号Xi(s) 和N(s)单独作用时的偏差,然
2 2
对于0型系统,Ka=0,ess=
对于I型系统, Ka=0, ess=
对于II型系统, Ka=K, ess= 1/K 对于III型及以上系统, Ka= , ess= 0
0和I型系统不能跟踪单位斜坡输入,I I型系统能跟踪单 位斜坡输入但有静差,需要III型以上系统才能消除静差。
10 G 例:设有一非单位反馈控制系统, ( s) = s 1 H(s)=Kh,输入为单位阶跃。试求, Kh=1和0.1
结构形式 输入形 式
1 例:设单位反馈控制系统的 G( s) = ,输 2 Ts t 入信sint , 2 试求系统的稳态误差。
为什么? 因为:E(s) = s (s 2 2 )(s 1 ) T T 1 T s T 2 3 1 =- 2 2 2 2 2 2 2 2 1 T 1 s 2 T 1 s 2 T 1 s T 求拉式反变换 T
控制系统的误差分析和计算

第六章 控制系统的误差分析和计算
- Y (s)
×
ε ( s)
G (s ) H (s )
Xo ( s)
ε ( s) = X i ( s) − Y ( s) = X i ( s) − H ( s) X 0 ( s)
根据拉氏变换的终值定理 终值定理, 根据拉氏变换的终值定理,得到稳态偏差εss为
ε ss = lim ε (t ) = lim sε ( s)
中国石油大学机电工程学院
10
控制工程基础
第六章 控制系统的误差分析和计算
说明: 说明:
误差是从系统输出端 误差 输出端来定义的,是输出期望值与实际输 输出端 出值之差。误差在性能指标提法中经常使用,实际系统中 因为输入信号和输出信号往往量纲不同,一般只具有数学 上的意义。 偏差是从系统输入端 偏差 输入端来定义的,是系统输入信号与主反 输入端 馈信号之差。偏差在实际系统中是能测量的,具有一定的 物理意义。 对于单位反馈系统而言,误差与偏差是一致的。对于非 单位反馈系统,两者是不同的。 必须是稳定系统计算稳态误差(偏差)才有意义。
xo (t ) x i (t )
ess
瞬态响应
China university of petroleum
稳态响应
t
4
中国石油大学机电工程学院
控制工程基础
第六章 控制系统的误差分析和计算
是控制系统期望的输出值, 是其实际的输出值, 设xor(t)是控制系统期望的输出值, xo(t)是其实际的输出值, 是控制系统期望的输出值 是其实际的输出值 则误差函数e(t)定义为 则误差函数 定义为
China university of petroleum
控制工程基础
自控原理-第6章 控制系统的误差分析与计算

信 号 为 r(t)1t2时 ,控 制 系 统 的 稳 态 误 差 值 。 2
解:
e(s)
1 1G ( S )
S S 1/T
当
r(t)
1 2
t 2时
R(s)
1 S3
(1)
E(s)
(s)R(s)
1 S 2 ( S 1/T )
T S2
-
T2 S
T2 S 1/T
e(t)
T
e2
-
t T
T (t
-T)
t 时 ess (2) 由终值定理
ess
lim
s0
sE (s)
lim
s0
1 s ( s 1/T )
6.2.2 系统的“型”的概念
自控控制理论
闭环系统的开环传递函数一般可以表示为:
m
K ( is 1)
G(s)H (s)
i 1 n
s (Tis 1)
i 1
定义: ν=0时,称为0型系统,没有积分环节; ν=1时,称为I型系统,有1个积分环节; ν=2时,称为II型系统,有2个积分环节; 依次类推。
6.1 稳态误差的基本概念
自控控制理论
本课程与误差有关的概念都是建立在反馈控制系统基础 之上的。 稳态的定义:时间趋于无穷大(足够长)时的固定响应称 为控制系统的稳定状态,简称稳态。
稳态误差:当系统在特定类型输入信号作用下,达到稳态 时系统精度的度量。
说明:误差产生的原因是多样的,课程中只研究由于系统 结构、参量、以及输入信号的形式不同所引起的误差。
稳态加速度 误差系数
自控控制理论
6.2.4 不同类型反馈控制系统的稳态误差系数
➢0型系统的稳态误差
解:
e(s)
1 1G ( S )
S S 1/T
当
r(t)
1 2
t 2时
R(s)
1 S3
(1)
E(s)
(s)R(s)
1 S 2 ( S 1/T )
T S2
-
T2 S
T2 S 1/T
e(t)
T
e2
-
t T
T (t
-T)
t 时 ess (2) 由终值定理
ess
lim
s0
sE (s)
lim
s0
1 s ( s 1/T )
6.2.2 系统的“型”的概念
自控控制理论
闭环系统的开环传递函数一般可以表示为:
m
K ( is 1)
G(s)H (s)
i 1 n
s (Tis 1)
i 1
定义: ν=0时,称为0型系统,没有积分环节; ν=1时,称为I型系统,有1个积分环节; ν=2时,称为II型系统,有2个积分环节; 依次类推。
6.1 稳态误差的基本概念
自控控制理论
本课程与误差有关的概念都是建立在反馈控制系统基础 之上的。 稳态的定义:时间趋于无穷大(足够长)时的固定响应称 为控制系统的稳定状态,简称稳态。
稳态误差:当系统在特定类型输入信号作用下,达到稳态 时系统精度的度量。
说明:误差产生的原因是多样的,课程中只研究由于系统 结构、参量、以及输入信号的形式不同所引起的误差。
稳态加速度 误差系数
自控控制理论
6.2.4 不同类型反馈控制系统的稳态误差系数
➢0型系统的稳态误差
第六章 控制系统的误差分析和计算

解
+
E ( s)
10 s
X o ( s)
e ( s ) =
1 1 s = = 1 + G ( s ) 1 + 10 s + 10 s s ess = lim si iXi (s) s →0 s + 10 1 Xi ( s) = s s 1 ess = lim si i =0 s →0 s + 10 s
K a = lim s 2 iG ( s )
s →0
对0型系统 型系统
K a = lim s 2 i
s →0
K 0 (Ta s + 1)(Tb s + 1) (Tm s + 1) =0 (T1s + 1)(T2 s + 1) (Tn s + 1)
对Ⅰ型系统
K a = lim s 2 i
s →0
K1 (Ta s + 1)(Tb s + 1) (Tm s + 1) s (T1s + 1)(T2 s + 1) (Tn s + 1)
=0
自动控制原理
对Ⅱ型系统
K2 (Ta s +1)(Tb s +1)(Tms +1) Ka = lim s i 2 = K2 s→0 s (T1s +1)(T2s +1)(Tn s +1)
2
所以, 就是Ⅱ 所以,静态加速度误差系数 Ka 就是Ⅱ型系统的开环放大倍 对于Ⅲ型或高于Ⅲ型的系统, 数 K 2 。对于Ⅲ型或高于Ⅲ型的系统, K a 才为 ∞ 。 在单位加速度输入下 型系统, 对0型系统, ess = ∞ 型系统 型系统, 对Ⅰ型系统,
这就是求去单位反馈系统稳态误差的方法
+
E ( s)
10 s
X o ( s)
e ( s ) =
1 1 s = = 1 + G ( s ) 1 + 10 s + 10 s s ess = lim si iXi (s) s →0 s + 10 1 Xi ( s) = s s 1 ess = lim si i =0 s →0 s + 10 s
K a = lim s 2 iG ( s )
s →0
对0型系统 型系统
K a = lim s 2 i
s →0
K 0 (Ta s + 1)(Tb s + 1) (Tm s + 1) =0 (T1s + 1)(T2 s + 1) (Tn s + 1)
对Ⅰ型系统
K a = lim s 2 i
s →0
K1 (Ta s + 1)(Tb s + 1) (Tm s + 1) s (T1s + 1)(T2 s + 1) (Tn s + 1)
=0
自动控制原理
对Ⅱ型系统
K2 (Ta s +1)(Tb s +1)(Tms +1) Ka = lim s i 2 = K2 s→0 s (T1s +1)(T2s +1)(Tn s +1)
2
所以, 就是Ⅱ 所以,静态加速度误差系数 Ka 就是Ⅱ型系统的开环放大倍 对于Ⅲ型或高于Ⅲ型的系统, 数 K 2 。对于Ⅲ型或高于Ⅲ型的系统, K a 才为 ∞ 。 在单位加速度输入下 型系统, 对0型系统, ess = ∞ 型系统 型系统, 对Ⅰ型系统,
这就是求去单位反馈系统稳态误差的方法
第六章 控制系统的误差分析和计算.ppt

6.2 输入引起的稳态误差
6.2.1 误差传递函数与稳态误差
➢单位反馈控制系统
输入引起的系统的误差传递函数为
E(s) 1 Xi(s) 1G(s)
则
E(s) 1 1G(s)
Xi(s)
X i sE(s)源自G(s)X o s
图6-2 单位反馈系统
根据终值定理 e ss lt ie m (t) ls i0s m (E s) ls i0s m 1 G 1 (s)X i(s)
这就是求取输入引起的单位反馈系统稳态误差的方法.需要注意的 是,终值定理只有对有终值的变量有意义.如果系统本身不稳定,用 终值定理求出的值是虚假的.故在求取系统稳态误差之前,通常应 首先判断系统的稳定性.
➢ 非单位反馈控制系统
输入引起的系统的偏差传递函数为:
sXi(s)Y(s)
1
1G(s)H(s)
控制系统的方块图如图6-1所示.实线部分与实际系统有对应关系, 而虚线部分则是为了说明概念额外画出的.
控制系统的误差信号的象函数是 E ( s )s X is X o s (6-1)
而
偏差信号的象函数是 (s)X is Y s
(6-2)
考虑Xi(s)与Y(s)近似相等,且Y(s)=H(s)Xo(s),得
一般情况下,H为常值,故这时:
e ss
ss
H
例6-1 某反馈控制系统如图6-4,当xi(t)=1(t)时,求稳态误差.
解:该系统为一阶惯性系统,系统稳定.误差传递函数为:
Es 1 1 s
Xi(s) 1G(s) 110 s10 s
而
X
i
(s)
1 s
则
e ss ls i0s m s s1X 0 i(s) ls i0s m s s11 s0 0
控制工程基础 第6章 控制系统的误差分析和计算

C0 (s)
N (s)
R(s) B(s)
(s)
-
G1 ( s )
+ G2 (s)
H (s)
e(s) -
C(s)
(b)
误差
C0(s) (s) N(s)
R(s)
1 H(s)
R1(s) C0(s)
E1(s(s))H(s)
E(s)
G1(s)
G2(s) C(s)
(c)
e(s) -+ (s)
H (s)
E(s)
因为偏差 (s) R(s) B(s) H (s)C0 (s) H (s)C(s) H (s)e(s)
这里 R(s) H (s)C0 (s) 是基于控制系统在理想工作情况下
(s) 0 得到的。
即当控制系统的偏差信号 (s) 0 时,该控制系统无调节控制
作用,此时的实际输出信号C(s)就是希望输出信号 C0 (s) 。
G(s)H(s)
i1 nv
sv (Tis 1)
i1
(4)稳态误差系数和稳态误差的总结 (系统在控制信号作用下)
此表概括了0型、Ⅰ型和Ⅱ型反馈控制系统在不同输入信号作用下的
稳态误差。在对角线上,稳态误差为有限值;在对角线以上部分,
稳态误差为无穷大;在对角线以下部分,稳态误差为零。由此表可
以得如下结论:
何改变系统结构?
(s)
- G1 K1
解:(1)给定作用下的误差传递函数为
RE (s)
(s)
R(s)
1
1
K1
K2 s
s s K1K2
当给定输入为单位阶跃输入时,稳态误差为
N (s)
+
G2
K2 s
第6章_控制系统的误差分析和计算_6.2输入引起的稳态误差

根据拉普拉斯变换的终值定理,计算稳态误差: 根据拉普拉斯变换的终值定理,计算稳态误差:
ε ( s)
Φε (s) ⋅ X i ( s) ess = lim e(t ) = lim s ⋅ E ( s ) = lim s ⋅ t →∞ s →0 s →0 H (s) 1 1 = lim s ⋅ ⋅ ⋅ X i (s) s →0 H (s) 1 + G (s) H (s)
单位阶跃输入
X i (s) =
1 s
定义: 定义: 稳态位置
s →0
误差系数 1 1 1 1 ess = lim s = = s → 0 1 + G ( s ) H ( s ) s 1 + lim G ( s ) H ( s ) 1 + K p
单位斜坡输入
e ss = lim s
s →0
X i (s) =
1 , 试求当输入信号为 Ts
1 解 : Φ ε (s) = 1+G (S) =
当 r(t) = 1 t 2时 R(s) = S13 2 (1) E(s) = Φ ε (s)R(s) =
t 2 -T
1 2 S (S+1/T)
=
T S2
-
T2 S
+
T2 S+1/T
e(t) = T e + T(t - T) t → ∞时 ess = ∞ (2) 由终值定理 ess = lim sE(s) = lim s(s+11/T) = ∞
(2)稳态误差系数的概念 )
对于单位反馈系统,偏差就是误差,误差就是偏差,二者往往不加区分。 对于单位反馈系统,偏差就是误差,误差就是偏差,二者往往不加区分。 实际上,单位反馈系统与非单位反馈系统之间可以相互转换,如下所示。 实际上,单位反馈系统与非单位反馈系统之间可以相互转换,如下所示。
ε ( s)
Φε (s) ⋅ X i ( s) ess = lim e(t ) = lim s ⋅ E ( s ) = lim s ⋅ t →∞ s →0 s →0 H (s) 1 1 = lim s ⋅ ⋅ ⋅ X i (s) s →0 H (s) 1 + G (s) H (s)
单位阶跃输入
X i (s) =
1 s
定义: 定义: 稳态位置
s →0
误差系数 1 1 1 1 ess = lim s = = s → 0 1 + G ( s ) H ( s ) s 1 + lim G ( s ) H ( s ) 1 + K p
单位斜坡输入
e ss = lim s
s →0
X i (s) =
1 , 试求当输入信号为 Ts
1 解 : Φ ε (s) = 1+G (S) =
当 r(t) = 1 t 2时 R(s) = S13 2 (1) E(s) = Φ ε (s)R(s) =
t 2 -T
1 2 S (S+1/T)
=
T S2
-
T2 S
+
T2 S+1/T
e(t) = T e + T(t - T) t → ∞时 ess = ∞ (2) 由终值定理 ess = lim sE(s) = lim s(s+11/T) = ∞
(2)稳态误差系数的概念 )
对于单位反馈系统,偏差就是误差,误差就是偏差,二者往往不加区分。 对于单位反馈系统,偏差就是误差,误差就是偏差,二者往往不加区分。 实际上,单位反馈系统与非单位反馈系统之间可以相互转换,如下所示。 实际上,单位反馈系统与非单位反馈系统之间可以相互转换,如下所示。
第6章 控制系统的误差分析和计算

H(s) H(s)
ess = lime(t ) = lims ⋅ E(s) = lims ⋅
t →∞ s→0 s→0
H(s)
ε (s)
H(s)
控制系统的误差分析和计算
输入及干扰引起的稳态误差计算 输入作用下的偏差传递函数及稳态偏差计算
1 ΦRε (s) = = R(s) 1+ G1(s)G2 (s)H(s)
满足由0<K<6,显然调整 值也无法使稳态误差小于 。 调整K值也无法使稳态误差小于 调整 值也无法使稳态误差小于0.1。
式中:K − 开环放大系数; ν − 积分环节个数; 控制系统的误差分析和计算 G0 (s) −开环传递函数去掉积分和比例环节; 输入及干扰引起的稳态误差分析
G 0 (0) = 1 ,
s→0
KP的大小反映了系统在阶跃输入下的稳态精度。KP越大, 的大小反映了系统在阶跃输入下的稳态精度。 越大, ess越小。所以说 P 反映了系统跟踪阶跃输入的能力。 越小。所以说K 反映了系统跟踪阶跃输入的能力。 稳态误差为零的系统称为无差系统,为有限值称有差系统。 稳态误差为零的系统称为无差系统,为有限值称有差系统。 无差系统 有差系统 在单位阶跃作用下, 的系统为有差系统, 在单位阶跃作用下,υ=0 的系统为有差系统, 系统为无差系统 为无差系统。 υ>=1 的系统为无差系统。
ν = 0 → Kν = lims ⋅ Gk (s) = 0 → ess−r = ∞
s→0
ν = 1 → Kν = lims ⋅ Gk (s) = K → ess−r = 1/ K
s→0
ν ≥ 2 → Kν = lims ⋅ Gk (s) = ∞ → ess−r = 0
s→0
Kυ的大小反映了系统在斜坡输入下的稳态精度。K υ越大, 的大小反映了系统在斜坡输入下的稳态精度。 越大, 斜坡输入下的稳态精度 ess越小。所以说 Kυ 反映了系统跟踪斜坡输入的能力。 越小。 反映了系统跟踪斜坡输入的能力。 斜坡输入的能力
ess = lime(t ) = lims ⋅ E(s) = lims ⋅
t →∞ s→0 s→0
H(s)
ε (s)
H(s)
控制系统的误差分析和计算
输入及干扰引起的稳态误差计算 输入作用下的偏差传递函数及稳态偏差计算
1 ΦRε (s) = = R(s) 1+ G1(s)G2 (s)H(s)
满足由0<K<6,显然调整 值也无法使稳态误差小于 。 调整K值也无法使稳态误差小于 调整 值也无法使稳态误差小于0.1。
式中:K − 开环放大系数; ν − 积分环节个数; 控制系统的误差分析和计算 G0 (s) −开环传递函数去掉积分和比例环节; 输入及干扰引起的稳态误差分析
G 0 (0) = 1 ,
s→0
KP的大小反映了系统在阶跃输入下的稳态精度。KP越大, 的大小反映了系统在阶跃输入下的稳态精度。 越大, ess越小。所以说 P 反映了系统跟踪阶跃输入的能力。 越小。所以说K 反映了系统跟踪阶跃输入的能力。 稳态误差为零的系统称为无差系统,为有限值称有差系统。 稳态误差为零的系统称为无差系统,为有限值称有差系统。 无差系统 有差系统 在单位阶跃作用下, 的系统为有差系统, 在单位阶跃作用下,υ=0 的系统为有差系统, 系统为无差系统 为无差系统。 υ>=1 的系统为无差系统。
ν = 0 → Kν = lims ⋅ Gk (s) = 0 → ess−r = ∞
s→0
ν = 1 → Kν = lims ⋅ Gk (s) = K → ess−r = 1/ K
s→0
ν ≥ 2 → Kν = lims ⋅ Gk (s) = ∞ → ess−r = 0
s→0
Kυ的大小反映了系统在斜坡输入下的稳态精度。K υ越大, 的大小反映了系统在斜坡输入下的稳态精度。 越大, 斜坡输入下的稳态精度 ess越小。所以说 Kυ 反映了系统跟踪斜坡输入的能力。 越小。 反映了系统跟踪斜坡输入的能力。 斜坡输入的能力
控制工程实验-第6章

定义静态位置误差系数为
Kpls i0m G (s)G (0)
用静态位置误差系数表示的单位阶跃输入
下的稳态误差为
1
ess 1 K p
K, 0型系统 Kpls i0m G (s)G (0) , I型或 I型 高系 于
ess11Kp
11K, 0,
0型系统 I型或高 I型于 系统
• 如果单位反馈控制系统前向通道中没有包 含积分环节,那么它对阶跃输入的响应中 包含稳态误差。
及稳态误差的方法。
6.2.1 误差传递函数与稳态误差
对于下图所示的单位反馈控制系统,
输入引起的系统误差传递函数为
e(s)X E i((ss))1G 1(s)1G c(s)
则
E(s) 1 1G(s)
Xi(s)
如果系统稳定,根据终值定理,可计
算稳态误差
1 e ss e( ) ls i0s m (E s) ls i0s m 1 G (s)X i(s)
本节的要点:
掌握有干扰时的稳态误差计算方法。
s1G 2 G (2 s()G s)1 H ssH sN s
根据终值定理,干扰引起的稳态偏差为
则干扰引起ss的lt稳 i 态m 误(t)差为ls i0s m (s)
ess
ss
H 0
干扰引起的稳态误差也可以这样来求:
由于干扰产生的输出全是系统误差,因此, 干扰引起的稳态误差等于干扰产生的稳态 输出乘以(-1)。
静态速度误差系数
系统对单位斜坡(速度)输入的稳态误差是
essls i0m s1G 1(s)s12s1 G (s)
定义静态速度误差系数为
Kv
limsG(s) s0
用静态速度误差系数表示的单位速度输入下
Kpls i0m G (s)G (0)
用静态位置误差系数表示的单位阶跃输入
下的稳态误差为
1
ess 1 K p
K, 0型系统 Kpls i0m G (s)G (0) , I型或 I型 高系 于
ess11Kp
11K, 0,
0型系统 I型或高 I型于 系统
• 如果单位反馈控制系统前向通道中没有包 含积分环节,那么它对阶跃输入的响应中 包含稳态误差。
及稳态误差的方法。
6.2.1 误差传递函数与稳态误差
对于下图所示的单位反馈控制系统,
输入引起的系统误差传递函数为
e(s)X E i((ss))1G 1(s)1G c(s)
则
E(s) 1 1G(s)
Xi(s)
如果系统稳定,根据终值定理,可计
算稳态误差
1 e ss e( ) ls i0s m (E s) ls i0s m 1 G (s)X i(s)
本节的要点:
掌握有干扰时的稳态误差计算方法。
s1G 2 G (2 s()G s)1 H ssH sN s
根据终值定理,干扰引起的稳态偏差为
则干扰引起ss的lt稳 i 态m 误(t)差为ls i0s m (s)
ess
ss
H 0
干扰引起的稳态误差也可以这样来求:
由于干扰产生的输出全是系统误差,因此, 干扰引起的稳态误差等于干扰产生的稳态 输出乘以(-1)。
静态速度误差系数
系统对单位斜坡(速度)输入的稳态误差是
essls i0m s1G 1(s)s12s1 G (s)
定义静态速度误差系数为
Kv
limsG(s) s0
用静态速度误差系数表示的单位速度输入下
第六章 控制系统的误差分析与计算

第三章 时域分析法 不同类型系统的稳态误差系数及稳态误差 0型系统
K (1s 1)( 2 s 1) ( m s 1) G( s) H ( s) (T1s 1)(T2 s 1) (Tnv s 1)
K p lim G(s) H (s) K
s0
ss
G (s) H (s) K ( 1s 1)( 2 s 1) ( m s 1) s 2 (T1s 1)(T2 s 1) (Tnv s 1)
1 0 1 K p
K p lim G(s) H (s)
s0
ss
Kv lim sG(s) H (s)
2 2
cost
T 2 2 T 1
2 2
sin t
而如果采用拉氏变换的终值定理求解,将得 到错误得结论:
Ts ess lim s 0 2 2 s 0 Ts 1 s
此例表明,输入信号不同,系统的稳态误差 也不相同。
第三章 时域分析法 稳态误差系数 稳态误差系数的概念 稳态位置误差(偏差)系数 单位阶跃输入时系统的稳态偏差
G ( s) H ( s) K (1s 1)( 2 s 1) ( m s 1) s v (T1s 1)(T2 s 1) (Tnv s 1) K ~ G ( s) v s
则: ss
sX i (s) lim (t ) lim s (s) lim t s0 s0 1 G( s) H ( s)
在单位加速度输入下的稳态误差为:
ess lim s
s0
1 Ts 1 X i ( s) lim s 3 s0 Ts 1 s 1 G( s)
第三章 时域分析法
机械工程控制基础控制系统的误差分析和计算

12
对单位阶跃输入,稳态误差为
ess
lim
s0
s 1
G
1
s
H (s)
1 s
1
G
1
0 H (0)
静态位置误差系数的定义:
Kp
lim G
s0
s
H (s)
G
0 H (0)
则
ess
1 1 Kp
13
对0型系统
Gs
K 1s 1 2s 1 T1s 1 T2s 1
Kp
lim
s0
K0 t1s 1t2s 1L T1s 1T2s 1L
Gs
K 1s 1 2s 1 T1s 1 T2s 1
Kv
lim
s0
s
K 1s 1 2s 1 T1s 1 T2s 1
0
16
对I型系统
Gs
K 1s 1 2s 1 s T1s 1 T2s 1
Kv
lim
s0
s
K 1s 1 2s 1 s T1s 1 T2s 1
K1
对II型系统
Gs
K 1s 1 2s 1 s2 T1s 1 T2s 1
ε(s) =Xi(s) - Y(s) Y(s)=H(s)Xo(s)
(s) 1
H (s)
p202
Xi (s)
X oi (s)
(s)
(s)
G1 ( s )
N(s)
+ G2 (s)
Y (s)
H (s)
E(s)
1 H (s)
Xi (s)
X o (s)
ε(s) =Xi(s) - H(s)Xo(s)
1 (s)
t
s0
2. 利用终值定理计算系统的稳态误差:
自动控制系统1_第6章 控制系统的误差分析与计算

6.1.1 误差定义
6.1.1 误差定义 1.从输入端定义 2.从输出端定义 3.两种定义之间的联系 由于输入r(t)是期望输出cr(t)的函数,而 主反馈b(t)又与实际输出c(t)有关,所以两种定义e(t)与er(t)有一定 的联系。
6.1.1 误差定义
系统误差的定义为:被控量期望值(理论理想值)与实际值(实际测量值)之差。
6.1.1 误差定义
图6-1 控制系统的典型结构
1.从输入端定义
1.从输入端定义 将给定输入信号作为期望值,反馈信号作为实际值,可以得到从输入端
相应的传递函数为
2.从输出端定义
2.从输出端定义 从输出端定义,控制系统的误差er(t)为被控制量的期望值 cr(t)与实际值c(t)之差,如图6 1所示,即
(3)静态加速度(s误)=差的系稳数态K误a:差系也统称对为加加速速度度输误入差信系号数r(t)=1/2t2、R
表6-1 系统型别、静态误差系数及稳态误差与输入信号之间关系
首先,判别系统的稳定性。由图6 3可写出系统的开环传递函数
(3)静态加速度(s误)=差的系稳数态K误a:差系也统称对为加加速速度度输误入差信系号数r(t)=1/2t2、R
图6-3 位置随动系统
(3)静态加速度(s误)=差的系稳数态K误a:差系也统称对为加加速速度度输误入差信系号数r(t)=1/2t2、R
图6-4 化为单位反馈的位置随动系统
由系统闭环特征方程式4s 2+4s+10=0可知系统是稳定的. 然后求系统的稳态误差。由于开环传递函数中含有一个积分环节,即N=1属Ⅰ型 系统,且开环放大系数为K=2 5,所以,根据表6 1
相应的传递函数
3.两种定义之间的联系
两种定义之间的联系 由于输入r(t)是期望输出cr(t)的函数,而主反馈b(t)又 与实际输出c(t)有关,所以两种定义e(t)与er(t)有一定的联系。当实际输出值 c(t)等于期望输出值cr(t)时,由输入端定义误差信号e(t)等于零,有
第6章系统误差计算分析

Xi(s)
+ −
ε(s) G1(s)
+ +
N(s) G2(s)
Xo(s)
Y(s)
H(s)
干扰引起稳态偏差为
ss lim ( t ) lim s ( s )
t s0
( s)
G2 ( s ) H ( s ) N ( s) 1 G2 ( s )G1 ( s ) H ( s )
lim G0 ( s ) 1
s0
E ( s) 1 e ( s) R( s ) 1 G1 ( s ) H ( s )
1 K 1 v G0 ( s ) s 1 ess lim s e ( s ) R( s ) lim s R( s ) s0 s0 K 1 v G0 ( s ) s
X i ( s) E ( s) X 0 ( s) H ( s)
( s)
X i ( s) X o ( s) H ( s) H ( s) X i ( s) E ( s) X o ( s) H ( s)
1 E (s)= ( s) H ( s)
A 1 A s 1 G1 ( s ) H ( s ) 1 lim G1 ( s ) H ( s )
s0
静态位置误差系数 K p lim G1 ( s ) H ( s ) lim
s 0
s 0
K sv
A 1 K p
r (t ) A t
e ssv lim s e ( s ) R( s ) lim s
s0 s0
A 1 A s 2 1 G1 ( s ) H ( s ) lim s G1 ( s ) H ( s )
+ −
ε(s) G1(s)
+ +
N(s) G2(s)
Xo(s)
Y(s)
H(s)
干扰引起稳态偏差为
ss lim ( t ) lim s ( s )
t s0
( s)
G2 ( s ) H ( s ) N ( s) 1 G2 ( s )G1 ( s ) H ( s )
lim G0 ( s ) 1
s0
E ( s) 1 e ( s) R( s ) 1 G1 ( s ) H ( s )
1 K 1 v G0 ( s ) s 1 ess lim s e ( s ) R( s ) lim s R( s ) s0 s0 K 1 v G0 ( s ) s
X i ( s) E ( s) X 0 ( s) H ( s)
( s)
X i ( s) X o ( s) H ( s) H ( s) X i ( s) E ( s) X o ( s) H ( s)
1 E (s)= ( s) H ( s)
A 1 A s 1 G1 ( s ) H ( s ) 1 lim G1 ( s ) H ( s )
s0
静态位置误差系数 K p lim G1 ( s ) H ( s ) lim
s 0
s 0
K sv
A 1 K p
r (t ) A t
e ssv lim s e ( s ) R( s ) lim s
s0 s0
A 1 A s 2 1 G1 ( s ) H ( s ) lim s G1 ( s ) H ( s )
第6章_控制系统的误差分析和计算_6.3干扰引起的稳态误差

N (s ) R (s ) E (s )
-
G1 = K1
+
G2 =
K2 s
C (s )
(2)扰动作用下的误差传递函数为 K2 − E(s) − K2 s ΦNE (s) = = = N(s) 1+ K K2 s + K1K2 1 s 当扰动输入为单位阶跃输入时,稳态误差为
essn
1 − K2 1 1 = lim s ⋅ Φ NE ⋅ = lim s ⋅ ⋅ =− s →0 s s →0 s + K1 K 2 s K1
N (s )
X i (s )
ε (s )
B (s )
-
G1 ( s )
+
H (s )
G2 (s)
X o (s )
(2)稳态误差的计算 )
①给定作用下的偏差传递函数
N (s )
X i
X i (s )
-
G1 ( s )
+
H (s )
G2 (s)
X o (s )
ε (s )
ess = essr + essn 1 =− K1
(3)输入作用与扰动作用共同作用下的稳态误差为
N (s ) R (s ) E (s )
-
G1 =
K1 s
+
G2 =
K2 s
C (s )
(4)如果要求稳态误差为零,可以在G1中串联积分环节,令 K1 G1 = s 1 s2 1 essr = lim s ⋅ Φ RE ⋅ = lim s ⋅ 2 ⋅ =0 则有 s →0 s s →0 s + K1 K 2 s
④对于稳定的系统,采用拉氏变换的终值定理计算稳态偏差
控制系统的误差分析

6.2 输入引起的稳态误差
6.2.1 误差传递函数与稳态误差
先讨论单位反馈的控制系统,如图6-2所示。
Xi(s)X0(s)11 G G((ss))Xi(s)1GG (s()s)Xi(s) X i s
E(s)
G(s)
X o s
1G 1(s)Xi(s)
根据终值定理
图6-2 单位反馈系统
这就是求取输入引起的单位反馈系统稳态误差的方法。
ess
1 1Kp
1 1K
对于Ⅰ型或高于Ⅰ型以上系统
K p ls i0s K m ((T 1 1 s s 1 1 ))T (2 (2 s s 1 1 )) ((T m ns s 1 1 ) )
ess 0 可编辑ppt
6
(3) 静态速度误差系数Kv
当系统的输入为单位斜坡信号时r(t)=t·1(t),即R(s)
误差定义为控制系统希望的输出量与实际的输出量之差,记
做e(t),误差信号的稳态分量被称为稳态误差,或称为静态误差, 记作 。输入信号和反馈信号比较后的信号 也能反映系统误
差的大小,称之为偏差。应该指出,系统的误差信号e(t)与偏差 信号 ,在一般情况下并不相同(见图6-1)。
控制系统的误差信号的象函数是
essK1
对于Ⅱ型或Ⅱ型以上系统:
Kls i0m ssK ((T11ss 1 1))T ((22ss 1 1)) ((Tm nss 1 1))
ess0
可编辑ppt
,则有
7
(4) 静态加速度误差系数Ka
当系统输入为单位加速度信号时,即 r(t)1t21(t)R ,(s)1
2
s3
则系统稳态误差为
1
ess
lims s0 1G(s)
第6章_控制系统的误差分析和计算_6.4减小系统误差的途径

Φ n ( s) = 0
G1 ( s )
即可以使得干扰信号N(s)所产生的输出信号C(s)=0,从而 N(s) C(s)=0 消除了干扰信号N(s)对输出信号C(s)的影响。 该系统由两个通道组成,属于复合控制系统。实际上,该 系统就是利用双通道原理,实现了对干扰信号N(s)的补偿作用。 一个通道是干扰信号N(s)直接到达相加点,另一个通道是干扰信 号N(s)经过Gc(s)G1(s)后到达同一个相加点。如果满足上述选择 Gc(s)G1(s)=-1,则从两个通道过来的干扰信号在此相加点处, 大小相等,方向相反,从而实现了干扰信号的全补偿。
《控制工程基础》 控制工程基础》
第6章 控制系统的误差分析和计算 6.4 减小系统误差的途径
为了减小系统误差,可以考虑以下途径: (1)反馈通道的精度对于减小系统误差至关 重要。反馈通道元部件的精度要高,避免在反馈通 道引入干扰。 (2)在系统稳定的前提下: 对于输入引起的误差,增大系统开环放大倍数 或提高系统型次,可以使之减小。 对于干扰引起的误差,在前向通道干扰点前加 积分器或增大放大倍数,可以使之减小。 (3)既要求稳态误差小,又要求良好的动态 性能,只靠加大开环放大倍数或串入积分环节不能 同时满足要求时,可以采用复合控制(顺馈)方法 对误差进行补偿。补偿的方式可分为按干扰补偿和 按输入补偿。
6.4.2 按输入补偿(顺馈补偿闭环控制) 按输入补偿(顺馈补偿闭环控制)
顺馈补偿闭环控制系统的典型结构如图所示,其中R(s) 是输入信号,C(s)是输出信号,E(s)是偏差,Gc(s)是顺馈补偿 通道传递函数。该系统由两个通道组成,属于复合控制系统。 一个通道是由G1(s)G2(s)组成的主控制通道,为闭环控制。另 一个通道是由Gc(s)G2(s)组成的顺馈补偿控制通道,为开环控 制。系统的输出不仅与系统的误差有关,而且还与补偿信号有 关。补偿信号所产生的作用,可以用来补偿原来的误差信号。
G1 ( s )
即可以使得干扰信号N(s)所产生的输出信号C(s)=0,从而 N(s) C(s)=0 消除了干扰信号N(s)对输出信号C(s)的影响。 该系统由两个通道组成,属于复合控制系统。实际上,该 系统就是利用双通道原理,实现了对干扰信号N(s)的补偿作用。 一个通道是干扰信号N(s)直接到达相加点,另一个通道是干扰信 号N(s)经过Gc(s)G1(s)后到达同一个相加点。如果满足上述选择 Gc(s)G1(s)=-1,则从两个通道过来的干扰信号在此相加点处, 大小相等,方向相反,从而实现了干扰信号的全补偿。
《控制工程基础》 控制工程基础》
第6章 控制系统的误差分析和计算 6.4 减小系统误差的途径
为了减小系统误差,可以考虑以下途径: (1)反馈通道的精度对于减小系统误差至关 重要。反馈通道元部件的精度要高,避免在反馈通 道引入干扰。 (2)在系统稳定的前提下: 对于输入引起的误差,增大系统开环放大倍数 或提高系统型次,可以使之减小。 对于干扰引起的误差,在前向通道干扰点前加 积分器或增大放大倍数,可以使之减小。 (3)既要求稳态误差小,又要求良好的动态 性能,只靠加大开环放大倍数或串入积分环节不能 同时满足要求时,可以采用复合控制(顺馈)方法 对误差进行补偿。补偿的方式可分为按干扰补偿和 按输入补偿。
6.4.2 按输入补偿(顺馈补偿闭环控制) 按输入补偿(顺馈补偿闭环控制)
顺馈补偿闭环控制系统的典型结构如图所示,其中R(s) 是输入信号,C(s)是输出信号,E(s)是偏差,Gc(s)是顺馈补偿 通道传递函数。该系统由两个通道组成,属于复合控制系统。 一个通道是由G1(s)G2(s)组成的主控制通道,为闭环控制。另 一个通道是由Gc(s)G2(s)组成的顺馈补偿控制通道,为开环控 制。系统的输出不仅与系统的误差有关,而且还与补偿信号有 关。补偿信号所产生的作用,可以用来补偿原来的误差信号。
控制系统的误差分析

显然,稳态误差取决于系统结构参数和输入信号的性质。 例6-1,见书本P199。给学生5分钟自学。
6.2.2 静态误差系数
(1)系统的类型。对于单位反馈控制系统,设其开环传递函数为:
m
K ( j s 1)
G(s)
j 1 n
, =0,1,2,…,表示系统为0、Ⅰ、Ⅱ型等
s (Ti s 1)
i 1
(2) 静态位置误差系数Kp
6.3 干扰引起的稳态误差
对于如图6-7所示系统:
利用叠加原理:
图6-7 干扰引起误差的系统
X0
1
G1(s)G2 (s) G1(s)G2 (s)H (s)
Xi (s)
1
G 2 (s) G1(s)G2 (s)H (s)
N (s)
Xi (s) Y (s) Xi (s) X0(s)H (s)
Xi (s)
控制系统的误差信号的象函数是
(6-1)
而控制系统的偏差信号的象函数是
(6-2)
考虑 与 近似相等,
,得
(6-3)
及
(6-4)
比较(6-3)和(6-4)两式,求得误差信号与偏差信号之间的关系为
或
对于实际使用的控制系统来所, 往往是一个常数,因此通常误差信号 与偏差信号之间存在简单的比例关系,求出稳态偏差就得到稳态误差。
图6-3 非单位反馈系统
从图6-3可以看出,输入引起的系统的偏差传递函数为:
Xi (s)
Y (s)
1 G(s)H (s) 1 G(s)H (s)
X
i
(s)
1
G(s) G(s)H
(s)
Xi (s)H (s)
1 1 G(s)H (s)
第六章 系统的稳态误差(第十五讲)

j 1 m i 1 n −ν
ν
, n≥m
(6(6-11)
06-7-20
控制工程基础
13
K:系统开环增益
ν = 0 0型系统 Ι型系统 ν : 为系统中含有的积分环节数ν = 1 ν = ΙΙ型系统 2 ν > 2时,ΙΙ型以上的系统,实际上很难使之稳定,所以这种类型的 系统在控制工程中一般不会碰到。
06720控制工程基础23静态位置误差系数静态加速度误差系数误差系数类型静态速度误差系数不同类型系统误差系数表06720控制工程基础24输入类型有关开环传递函数有就越小与系统稳态误差静态误差系数不同类型系统稳态误差表06720控制工程基础254多种典型函数组合信号作用下的稳态误差对于线性系统在多种典型函数组合信号的作用如
1 s +1.6 E(s) = Xi (s) = 2 1+ G(s) s +1.6s + 4
0.2
0
-0.2
ess = lims • E(s) = 0
s−0
-0.4
-0.6
Xi (s)
_
ωn2 S(S+2ξωn)
Xo (s)
-0.8
-1
0
100
200
300
400
500
600
图6-4 标准形式的二阶系统方块图
lim
lim
lim
误差为零,即系统能够很好地跟踪阶跃输入,稳态精度很高。 误差为零,即系统能够很好地跟踪阶跃输入,稳态精度很高。
06-7-20 控制工程基础 10
例2 二阶系统在单位阶跃输入作用下的响应的误差曲线
Φ(s) = 4 s2 +1.6s + 4
G(s) = 4 s(s +1.6)
ν
, n≥m
(6(6-11)
06-7-20
控制工程基础
13
K:系统开环增益
ν = 0 0型系统 Ι型系统 ν : 为系统中含有的积分环节数ν = 1 ν = ΙΙ型系统 2 ν > 2时,ΙΙ型以上的系统,实际上很难使之稳定,所以这种类型的 系统在控制工程中一般不会碰到。
06720控制工程基础23静态位置误差系数静态加速度误差系数误差系数类型静态速度误差系数不同类型系统误差系数表06720控制工程基础24输入类型有关开环传递函数有就越小与系统稳态误差静态误差系数不同类型系统稳态误差表06720控制工程基础254多种典型函数组合信号作用下的稳态误差对于线性系统在多种典型函数组合信号的作用如
1 s +1.6 E(s) = Xi (s) = 2 1+ G(s) s +1.6s + 4
0.2
0
-0.2
ess = lims • E(s) = 0
s−0
-0.4
-0.6
Xi (s)
_
ωn2 S(S+2ξωn)
Xo (s)
-0.8
-1
0
100
200
300
400
500
600
图6-4 标准形式的二阶系统方块图
lim
lim
lim
误差为零,即系统能够很好地跟踪阶跃输入,稳态精度很高。 误差为零,即系统能够很好地跟踪阶跃输入,稳态精度很高。
06-7-20 控制工程基础 10
例2 二阶系统在单位阶跃输入作用下的响应的误差曲线
Φ(s) = 4 s2 +1.6s + 4
G(s) = 4 s(s +1.6)
《自动控制基础》第6章 控制系统稳态误差和计算

六、单位反馈系统的动态误差分析 单位反馈系统的误差传递函数:
E s 1 1 e (s) e 0 0s 0s 2 X i s 1 Gs 2!
误差象函数:
1 E s e 0X i s 0sX i s 0s 2 X i s 2!
单位反馈控制系 统的稳态误差
1 ess lim et lim sE s lim sX i s t s 0 s 0 1 G s
二、静态误差系数 单位反馈控制系统的开环传递函数记为:
K (b0 s m b1s m 1 bm 1s 1) G s m m 1 s a0 s a1s an 1s 1
(2)按输入进行补偿
用顺馈对输入信号引起的误差进行补偿
Gs E s Rs C s Rs Rs 1 Gr s 1 Gs 1 Gr s G s E s Rs 1 Gs
1 令E s 0 Gr s G s
不能跟踪单位斜坡信号 能跟踪单位斜坡信号,但 有一定的稳态位置误差 能准确跟踪单位斜坡信号
K (b0 s m b1s m 1 bm 1s 1) G s s a0 s m a1s m 1 an 1s 1 单位加速度信号输入下的稳态误差为:
第六章 控制系统稳态误差和计算
一、误差传递函数和稳态误差 1. 单位反馈控制系统的误差传递函数
Gs 1 E s X i s X o s X i s X i s X i s 1 Gs 1 Gs E s 1 —— 单位反馈控制系统的误差传递函数 X i s 1 Gs
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当r(t) A Bt Ct 2 时, 2
有essr
A 1 Kp
B Kv
C Ka
下面再说明几个问题。 用稳态误差系数Kp、Kv和Ka表示的稳态误差分别被称为
位置误差、速度误差和加速度误差,都表示系统的过渡过程结束 后,虽然输出能够跟踪输入,但是却存在着位置误差。速度误差 和加速度误差并不是指速度上或加速度上的误差,而是指系统在 速度输入或加速度输入时所产生的在位置上的误差。位置误差、 速度误差和加速度误差的量纲是一样的。
Xi (s)
1 s3
定义: 稳态加速度
ess
lim s
1
1
s0 1 G(s)H(s) s3
1 lim s2G(s)H(s)
s0
1 Ka
误差系数
(3)不同类型反馈控制系统的稳态误差系数
0型系统的稳态误差:
m
K (is 1)
ν=0
m
K(is 1)
G(s)H(s)
i1 nv
K
p
lim G(s)H (s)
减小和消除稳态误差方法: ·提高系统的开环增益。 ·增加系统开环传递函数中积分环节的个数。 但是这两种方法会降低系统的稳定性。 由此可见,对稳态误差的要求往往与系统的稳定性和 动态特性的要求是矛盾的。 因此,系统的稳定性、准确性与快速性之间的关系是 相互关联和相互矛盾的。
系统在多个信号共同作用下总的稳态偏差(误差), 等于多个信号单独作用下的稳态偏差(误差)之和。 当系统的输入信号由位置、速度和加速度等分量组成 时,即
lim (t)
t
lim
s0
s (s)
lim
s0
s
(s)
Xi (s)
lim
s0
s
1
1 G(s)
H
(s)
X
i
(
s)
根据误差E(s) 和偏差 (s)的关系: E(s) (s)
H (s)
得系统的误差为:
E(s)
(s)
H (s)
(s) Xi (s) H (s)
1 H (s)
1
1 G(s)H (s)
s0
0
e ssa
1 Ka
II型系统的稳态误差:
ν=2
m
K(is 1)
G(s)H(s) i1 nv sv (Tis 1) i1
Kp
lim G(s)H(s)
s0
e ssp
1 1 Kp
0
Kv
lim sG(s)H(s)
s0
e ssv
1 Kv
0
Ka
lim s2G(s)H(s)
s0
K
e ssa
1 Ka
1 K
(4)稳态误差系数和稳态误差的总结
此表概括了0型、Ⅰ型和Ⅱ型反馈控制系统在不同输入信号作用下的 稳态误差。在对角线上,稳态误差为有限值;在对角线以上部分,稳态误差 为无穷大;在对角线以下部分,稳态误差为零。由此表可以得如下结论:
(1) 同一个系统,如果输入的控制信号不同,其稳态误差也不同。 (2) 同一个控制信号作用于不同的控制系统,其稳态误差也不同。 (3) 系统的稳态误差与其开环增益有关,开环增益越大,系统的稳态 误差越小;反之,开环增益越小,系统的稳态误差越大。
e ss
lim
s0
sE(s)
lim
s0
1 s(s1/T)
6.2.2 稳态误差系数(静态误差系数)
(1)系统的“型”的概 念闭环系统的开环传递函数一般可以表示为:
m
K ( is 1)
G(s)H (s)
i 1 n
s (Tis 1)
i 1
定义: 当ν=0时,称为0型系统,没有积分环节; 当ν=1时,称为I型系统,有1个积分环节; 当ν=2时,称为II型系统,有2个积分环节; 依次类推。
i1 n
0
1
e ssa
Ka
(Tis 1)
i1பைடு நூலகம்
I型系统的稳态误差:
ν=1
m
K(is 1)
G(s)H(s) i1 nv sv (Tis 1) i1
Kp
lim G(s)H(s)
s0
1
e ssp
1 Kp
0
Kv
lim sG(s)H(s) s0
K
e ssv
1 Kv
1 K
Ka
lim s2G(s)H(s)
例6-2:某单位反馈系统如图所示,求闭环系统在单位 阶跃、斜坡、加速度输入时的稳态误差。
解:闭环系统的开环传递函数为I型。 单位阶跃输入时的稳态误差: 单位斜坡输入时的稳态误差: 单位加速度输入时的稳态误差:
影响稳态误差的因素: ·给定作用下的稳态误差与外作用有关。对同一系统 加入不同的输入,稳态误差不同。 ·与时间常数形式的开环增益有关。开环增益K↑,稳 态误差↓,但同时系统的稳定性和动态特性变差。 ·与积分环节的个数有关。积分环节的个数↑,稳态 误差↓,但同时系统的稳定性和动态特性变差。
在以上的分析中,习惯地称输出量是“位置”, 输出量 的变化率是“速度”,但是,对于误差分析所得到的结论同样适 用于输出量为其它物理量的系统。例如在温度控制中,上述的 “位置”就表示温度,“速度”就表示温度的变化率,等等。因 此,对于“位置”、“速度”等名词应当作广义的理解。
作业 P.211:6-1
H (s) C0 (s) -E(s)
H (s) (s) G1(s)
C0 (s) N (s)
+ G2 (s)
E(s)
-
C(s)
定于稳态误差系数:
ess
lim e(t)
t
lim s E(s)
s0
lim
s0
s
e
(s)
X
i
(s)
lim s
1
s0 1 G(s)H (s)
Xi (s)
➢单位阶跃输入
Xi
r(t) 1 t 2时,控制系统的稳态误差值。 2
解:
(s)
1 1G (S)
S S 1/T
当
r(t)
1 2
t
2时
R(s)
1 S3
(1)
E(s)
(s)R(s)
1 S2 (S1/T)
T S2
-
T2 S
T2 S1/T
e(t)
T e2
-
t T
T(t - T)
t 时 ess (2) 由终值定理
0型系统:
GsH s
K0 1s 1 2s 1 m s 1 T1s 1T2s 1 Tn s 1
I型系统:
GsH s
K11s 1 2s 1 m s 1 sT1s 1T2s 1 Tn1s 1
II型系统:
GsH s
K 2 1s 1 2s 1 m s 1 s 2 T1s 1T2 s 1 Tn2 s 1
《控制工程基础》
第6章 控制系统的误差分析和计算 6.2 输入引起的稳态误差
6.2.1 偏差传递函数(误差传递函数)与稳态误差
偏差传递函数:
(s)
s X s s
1
1 G(s)H (s)
得系统的偏差:
(
s)
(s)
X
i
(
s)
1
1 G(s)
H
(
s)
X
i
(s)
根据拉普拉斯变换的终值定理,计算稳态偏差:
ss
s0
lim
s0
i 1 n
K
(Tis 1)
sv (Tis 1) i1
1
1
e ssp
1 Kp
1 K
i 1
m
K(is 1)
Kv
lim sG(s)H(s)
s0
lim s
s0
i1 n
0
(Tis 1)
1
i1
essv K v
m
K(is 1)
Ka
lim s2G(s)H(s) lim s2
s0
s0
Xi (s)
根据拉普拉斯变换的终值定理,计算稳态误差:
ess
lim
t
e(t)
lim
s0
s E(s)
lim
s0
s
(s) Xi (s) H (s)
lim
s0
s
1 H (s)
1
1 G(s)
H
(s)
X
i
(s)
例6-1:某单位反馈系统如图所示,求当xi(t)=1(t)时 的稳态误差。
解:
例: 设单位反馈系统的开环传递函数为G(s) 1 ,试求当输入信号为 Ts
(s)
1 s
定义:
ess
lim s
1
s0 1 G(s)H (s)
1 s
1
lim
1 G(s)H (s)
1 1 Kp
s0
➢单位斜坡输入
Xi
(s)
1 s2
定义:
e ss
lim s
1
1
s0 1 G(s)H(s) s2
1 lim sG(s)H(s)
s0
1 Kv
稳态位置 误差系数
稳态速度 误差系数
➢单位抛物线输入
(2)稳态误差系数的概念
对于单位反馈系统,偏差就是误差,误差就是偏差,二者往往不加区分。 实际上,单位反馈系统与非单位反馈系统之间可以相互转换,如下所示。
C0 (s)
N (s)
R(s) (s)
G1 ( s )
B(s) -
+ G2 (s)
H (s)
E(s)
-
C(s)
R(s)
1 R1(s) 1(s)
有essr
A 1 Kp
B Kv
C Ka
下面再说明几个问题。 用稳态误差系数Kp、Kv和Ka表示的稳态误差分别被称为
位置误差、速度误差和加速度误差,都表示系统的过渡过程结束 后,虽然输出能够跟踪输入,但是却存在着位置误差。速度误差 和加速度误差并不是指速度上或加速度上的误差,而是指系统在 速度输入或加速度输入时所产生的在位置上的误差。位置误差、 速度误差和加速度误差的量纲是一样的。
Xi (s)
1 s3
定义: 稳态加速度
ess
lim s
1
1
s0 1 G(s)H(s) s3
1 lim s2G(s)H(s)
s0
1 Ka
误差系数
(3)不同类型反馈控制系统的稳态误差系数
0型系统的稳态误差:
m
K (is 1)
ν=0
m
K(is 1)
G(s)H(s)
i1 nv
K
p
lim G(s)H (s)
减小和消除稳态误差方法: ·提高系统的开环增益。 ·增加系统开环传递函数中积分环节的个数。 但是这两种方法会降低系统的稳定性。 由此可见,对稳态误差的要求往往与系统的稳定性和 动态特性的要求是矛盾的。 因此,系统的稳定性、准确性与快速性之间的关系是 相互关联和相互矛盾的。
系统在多个信号共同作用下总的稳态偏差(误差), 等于多个信号单独作用下的稳态偏差(误差)之和。 当系统的输入信号由位置、速度和加速度等分量组成 时,即
lim (t)
t
lim
s0
s (s)
lim
s0
s
(s)
Xi (s)
lim
s0
s
1
1 G(s)
H
(s)
X
i
(
s)
根据误差E(s) 和偏差 (s)的关系: E(s) (s)
H (s)
得系统的误差为:
E(s)
(s)
H (s)
(s) Xi (s) H (s)
1 H (s)
1
1 G(s)H (s)
s0
0
e ssa
1 Ka
II型系统的稳态误差:
ν=2
m
K(is 1)
G(s)H(s) i1 nv sv (Tis 1) i1
Kp
lim G(s)H(s)
s0
e ssp
1 1 Kp
0
Kv
lim sG(s)H(s)
s0
e ssv
1 Kv
0
Ka
lim s2G(s)H(s)
s0
K
e ssa
1 Ka
1 K
(4)稳态误差系数和稳态误差的总结
此表概括了0型、Ⅰ型和Ⅱ型反馈控制系统在不同输入信号作用下的 稳态误差。在对角线上,稳态误差为有限值;在对角线以上部分,稳态误差 为无穷大;在对角线以下部分,稳态误差为零。由此表可以得如下结论:
(1) 同一个系统,如果输入的控制信号不同,其稳态误差也不同。 (2) 同一个控制信号作用于不同的控制系统,其稳态误差也不同。 (3) 系统的稳态误差与其开环增益有关,开环增益越大,系统的稳态 误差越小;反之,开环增益越小,系统的稳态误差越大。
e ss
lim
s0
sE(s)
lim
s0
1 s(s1/T)
6.2.2 稳态误差系数(静态误差系数)
(1)系统的“型”的概 念闭环系统的开环传递函数一般可以表示为:
m
K ( is 1)
G(s)H (s)
i 1 n
s (Tis 1)
i 1
定义: 当ν=0时,称为0型系统,没有积分环节; 当ν=1时,称为I型系统,有1个积分环节; 当ν=2时,称为II型系统,有2个积分环节; 依次类推。
i1 n
0
1
e ssa
Ka
(Tis 1)
i1பைடு நூலகம்
I型系统的稳态误差:
ν=1
m
K(is 1)
G(s)H(s) i1 nv sv (Tis 1) i1
Kp
lim G(s)H(s)
s0
1
e ssp
1 Kp
0
Kv
lim sG(s)H(s) s0
K
e ssv
1 Kv
1 K
Ka
lim s2G(s)H(s)
例6-2:某单位反馈系统如图所示,求闭环系统在单位 阶跃、斜坡、加速度输入时的稳态误差。
解:闭环系统的开环传递函数为I型。 单位阶跃输入时的稳态误差: 单位斜坡输入时的稳态误差: 单位加速度输入时的稳态误差:
影响稳态误差的因素: ·给定作用下的稳态误差与外作用有关。对同一系统 加入不同的输入,稳态误差不同。 ·与时间常数形式的开环增益有关。开环增益K↑,稳 态误差↓,但同时系统的稳定性和动态特性变差。 ·与积分环节的个数有关。积分环节的个数↑,稳态 误差↓,但同时系统的稳定性和动态特性变差。
在以上的分析中,习惯地称输出量是“位置”, 输出量 的变化率是“速度”,但是,对于误差分析所得到的结论同样适 用于输出量为其它物理量的系统。例如在温度控制中,上述的 “位置”就表示温度,“速度”就表示温度的变化率,等等。因 此,对于“位置”、“速度”等名词应当作广义的理解。
作业 P.211:6-1
H (s) C0 (s) -E(s)
H (s) (s) G1(s)
C0 (s) N (s)
+ G2 (s)
E(s)
-
C(s)
定于稳态误差系数:
ess
lim e(t)
t
lim s E(s)
s0
lim
s0
s
e
(s)
X
i
(s)
lim s
1
s0 1 G(s)H (s)
Xi (s)
➢单位阶跃输入
Xi
r(t) 1 t 2时,控制系统的稳态误差值。 2
解:
(s)
1 1G (S)
S S 1/T
当
r(t)
1 2
t
2时
R(s)
1 S3
(1)
E(s)
(s)R(s)
1 S2 (S1/T)
T S2
-
T2 S
T2 S1/T
e(t)
T e2
-
t T
T(t - T)
t 时 ess (2) 由终值定理
0型系统:
GsH s
K0 1s 1 2s 1 m s 1 T1s 1T2s 1 Tn s 1
I型系统:
GsH s
K11s 1 2s 1 m s 1 sT1s 1T2s 1 Tn1s 1
II型系统:
GsH s
K 2 1s 1 2s 1 m s 1 s 2 T1s 1T2 s 1 Tn2 s 1
《控制工程基础》
第6章 控制系统的误差分析和计算 6.2 输入引起的稳态误差
6.2.1 偏差传递函数(误差传递函数)与稳态误差
偏差传递函数:
(s)
s X s s
1
1 G(s)H (s)
得系统的偏差:
(
s)
(s)
X
i
(
s)
1
1 G(s)
H
(
s)
X
i
(s)
根据拉普拉斯变换的终值定理,计算稳态偏差:
ss
s0
lim
s0
i 1 n
K
(Tis 1)
sv (Tis 1) i1
1
1
e ssp
1 Kp
1 K
i 1
m
K(is 1)
Kv
lim sG(s)H(s)
s0
lim s
s0
i1 n
0
(Tis 1)
1
i1
essv K v
m
K(is 1)
Ka
lim s2G(s)H(s) lim s2
s0
s0
Xi (s)
根据拉普拉斯变换的终值定理,计算稳态误差:
ess
lim
t
e(t)
lim
s0
s E(s)
lim
s0
s
(s) Xi (s) H (s)
lim
s0
s
1 H (s)
1
1 G(s)
H
(s)
X
i
(s)
例6-1:某单位反馈系统如图所示,求当xi(t)=1(t)时 的稳态误差。
解:
例: 设单位反馈系统的开环传递函数为G(s) 1 ,试求当输入信号为 Ts
(s)
1 s
定义:
ess
lim s
1
s0 1 G(s)H (s)
1 s
1
lim
1 G(s)H (s)
1 1 Kp
s0
➢单位斜坡输入
Xi
(s)
1 s2
定义:
e ss
lim s
1
1
s0 1 G(s)H(s) s2
1 lim sG(s)H(s)
s0
1 Kv
稳态位置 误差系数
稳态速度 误差系数
➢单位抛物线输入
(2)稳态误差系数的概念
对于单位反馈系统,偏差就是误差,误差就是偏差,二者往往不加区分。 实际上,单位反馈系统与非单位反馈系统之间可以相互转换,如下所示。
C0 (s)
N (s)
R(s) (s)
G1 ( s )
B(s) -
+ G2 (s)
H (s)
E(s)
-
C(s)
R(s)
1 R1(s) 1(s)