等差数列的说课稿
等差数列及其前n项和说课稿
等差数列及其前n项和说课稿《等差数列及其前 n 项和说课稿》尊敬的各位评委、老师:大家好!今天我说课的内容是“等差数列及其前 n 项和”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“等差数列及其前 n 项和”是高中数学必修五第二章的重要内容。
等差数列是一种特殊的数列,它在现实生活中有着广泛的应用,如建筑物的楼梯台阶数量、银行存款的利息计算等。
同时,等差数列也是后续学习等比数列的基础,对于学生理解数列的概念和性质具有重要的作用。
本节课的主要内容包括等差数列的定义、通项公式以及前 n 项和公式。
通过对这些内容的学习,学生将掌握等差数列的基本特征和运算方法,提高数学思维能力和解决实际问题的能力。
二、学情分析授课对象是高一年级的学生,他们已经具备了一定的数列基础知识和数学运算能力,但对于抽象的数学概念和公式的理解和应用还存在一定的困难。
在学习过程中,学生可能会出现对等差数列定义的理解不够准确、通项公式和前n 项和公式的推导过程不清晰等问题。
因此,在教学过程中,需要通过具体的实例和直观的图形,引导学生理解和掌握等差数列的相关知识。
三、教学目标1、知识与技能目标(1)理解等差数列的定义,掌握等差数列的通项公式和前 n 项和公式。
(2)能够运用等差数列的通项公式和前 n 项和公式解决简单的数学问题。
2、过程与方法目标(1)通过观察、分析、归纳等方法,培养学生的数学思维能力和逻辑推理能力。
(2)经历等差数列通项公式和前 n 项和公式的推导过程,体会从特殊到一般、类比等数学思想方法。
3、情感态度与价值观目标(1)让学生在自主探索和合作交流中,感受数学的魅力,激发学生学习数学的兴趣。
(2)培养学生严谨的科学态度和勇于创新的精神。
四、教学重难点1、教学重点(1)等差数列的定义、通项公式和前 n 项和公式。
(2)等差数列通项公式和前 n 项和公式的应用。
《等差数列》说课稿
《等差数列》说课稿《等差数列》说课稿11篇作为一位不辞辛劳的人民教师,通常需要用到说课稿来辅助教学,认真拟定说课稿,那么应当如何写说课稿呢?以下是店铺为大家收集的《等差数列》说课稿,欢迎大家分享。
《等差数列》说课稿1第一方面:教材分析本节知识的学习既能加深对数列概念的理解,又为后面学习数列有关知识提供研究的方法,具有承上启下的重要作用。
而且等差数列求和在现实中有着广泛的应用,同时本节课的学习还蕴涵着倒序相加、数形结合、方程思想等深刻的数学思想方法。
第二方面:学情分析知识基础:学生已掌握了函数、数列等有关基础知识,并且在小学和初中已了解特殊的数列求和。
能力基础:高二学生已初步具备逻辑思维能力,能在教师的引导下解决问题,但处理抽象问题的能力还有待进一步提高。
第三方面:学习目标依据课标,以及学生现有知识和本节教学内容,制定教学目标如下:1.教学目标:(1)知识与技能目标:(ⅰ)初步掌握等差数列的前项和公式及推导方法;(ⅱ)当以下5个量(a1,d,n,an,Sn)中已知三个量时,能熟练运用通项公式、前n项和公式求其余两个量。
(2)过程与方法目标:通过公式的推导和公式的应用,使学生体会数形结合的思想方法,体验从特殊到一般,再从一般到特殊的思维规律。
(3)情感态度与价值观:通过经历等差数列的前项和公式的探究活动,培养学生探索精神和创新意识,提高学生解决实际问题的观念,激发学生的学习热情。
2.教学重、难点等差数列前项和公式的推导有助于培养学生的发散思维,而且在应用公式的过程中体现了方程(组)思想,所以等差数列前项和公式的推导和简单应用是本节课的重点。
但由于高二学生推理能力有待提高,所以难点在于一般等差数列前项和公式的推导方法上。
第四方面:教法学法毕达哥拉斯说过:“在数学的天地里,重要的不是我们知道什幺,而是我们怎幺知道什幺。
”针对本节课的特点,教师采用问题探究式教学法,学生的学法以发现式学习法为主。
教学手段上通过多媒体辅助教学,可以帮助学生直观理解,提高课堂效率。
等差数列的教学设计说课稿
等差数列的教学设计说课稿一、教学设计背景等差数列作为初中数学中的重要内容之一,是数列中最常见的形式之一。
在初中阶段,学生需要通过学习等差数列的定义、性质和应用,掌握等差数列的概念与计算方法,并能够灵活运用解决实际问题。
本次教学设计旨在通过直观的教学方法,帮助学生深刻理解等差数列,并能够主动运用所学,培养学生的数学思维能力与创新思维能力。
二、教学目标1. 知识目标:- 掌握等差数列的定义和性质;- 理解等差数列的概念;- 掌握等差数列通项公式和求和公式。
2. 能力目标:- 能够判断一个数列是否为等差数列;- 能够求等差数列的第n项和前n项和;- 能够通过等差数列解决实际问题。
3. 情感目标:- 培养学生对数学学科的兴趣和热爱;- 通过合作学习培养学生的团队合作能力;- 培养学生的自主学习能力和创新思维能力。
三、教学内容与教学过程1. 教学内容(1)等差数列的定义与性质;(2)等差数列的通项公式和求和公式;(3)等差数列的应用。
2. 教学过程(1)导入环节教师通过提出一个问题来导入本课的学习内容,如:小明每天早晨7点钟起床,然后在半小时内完成吃早饭、刷牙等活动,以此类推,问学生是否能够找出其中的规律。
(2)知识讲解教师结合一个具体的等差数列例子,向学生介绍等差数列的定义和性质,并通过引导问题,引导学生总结出等差数列的特点。
(3)示例与讲解教师给出一些等差数列的例子,让学生通过观察和总结,找出等差数列的通项公式和求和公式,然后进行讲解。
(4)练习与巩固学生进行一些简单的计算练习,巩固所学的知识,同时通过错题的反馈与解析,将学生对等差数列的理解进一步深化。
(5)拓展与应用学生根据所学的等差数列的知识,尝试解决一些与实际生活有关的问题,如:一个背包从地面往上抛,每次反弹的高度是上一次反弹高度的一半,求第n次反弹的高度。
四、教学评价方法1. 教师观察法:通过观察学生的学习状态和完成的练习情况,了解学生对等差数列的掌握程度。
高中数学等差数列说课稿
高中数学等差数列说课稿高中数学等差数列说课稿1尊敬的各位考官:大家好,我是某某号考生,今天我说课的题目是《等差数列的前n项和》。
新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。
今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材本节课选自人教A版高中数学必修5第二章。
本节课是等差数列概念和特点等知识的延续和深化,也是后面学习等比数列及其前n项和的基础。
本节课既加深了对数列相关概念的'理解,又蕴含了倒序相加法、特殊到一般的数学思想方法。
在整个高中教学中起到承上启下的重要作用。
二、说学情接下来谈谈学生的实际情况。
本阶段的学生已经具备了一定的抽象逻辑思维能力,能在教师的引导下独立地解决问题。
因此在教学过程中要给学生留置充分的思考时间和空间。
此外要注重在学生的已有认知基础上建构知识。
三、说教学目标根据以上分析,我制定了如下教学目标:(一)知识与技能掌握等差数列前n项和公式,理解其推导方法,能用公式解决简单问题。
(二)过程与方法经历观察、思考、计算等探究过程,渗透从特殊到一般的数学思想方法。
(三)情感、态度与价值观在学习活动中获得积极的、成功的情感体验,激发学习兴趣。
四、说教学重难点在教学目标的实现过程中,教学重点是等差数列前n项和公式,教学难点是公式的推导过程。
五、说教法和学法现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。
根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我将采用讲授法、练习法、自主探究、小组讨论等教学方法。
六、说教学过程下面重点谈谈我对教学过程的设计。
(一)导入新课导入环节我会设置情境。
200多年前,高斯的算术老师提出了下面的问题:1+2+3+…+100=?据说,当时其他同学忙于把100个数逐项相加时,10岁的高斯却用非常巧妙的方法迅速得出了答案。
《等差数列》说课稿
《等差数列》说课稿一、说教材《等差数列》是高中数学中的重要章节,它位于数列学习的第一阶段,起着承前启后的作用。
在这一节中,学生将首次接触到数列的递推关系,这不仅是后续学习等比数列、数列求和等复杂知识的基础,而且对于培养学生的逻辑推理、抽象思维能力具有重要意义。
(1)作用与地位:等差数列作为基本的数列形式,不仅是数列理论的基础,而且在实际生活中有着广泛的应用。
它可以帮助学生建立数学模型,解决一些线性增长或减少的问题。
在数学学科体系中,等差数列是连接算术与代数、初等数学与高等数学的桥梁。
(2)主要内容:本节课主要围绕等差数列的定义、通项公式、性质以及等差数列的前n项和公式进行展开。
内容包括等差数列的识别、如何从第一项和公差推导出任意项的公式,以及如何运用这些性质解决实际问题。
二、说教学目标学习本课,学生应达到以下教学目标:(1)理解并掌握等差数列的定义,能够识别等差数列。
(2)能够推导出等差数列的通项公式,理解公差在等差数列中的作用。
(3)掌握等差数列的前n项和的公式,并能运用其解决实际问题。
(4)通过等差数列的学习,培养学生的逻辑推理能力,提高数学抽象思维能力。
(5)激发学生学习数学的兴趣,体会数学在实际生活中的应用。
三、说教学重难点(1)重点:等差数列的定义、通项公式以及前n项和公式的理解与运用。
(2)难点:如何从实际问题中抽象出等差数列模型,理解并灵活运用等差数列的通项公式和求和公式解决问题。
在教学过程中,对于重点内容需要反复强调,并通过不同类型的例题进行巩固;对于难点内容,则需通过具体实例分析,逐步引导学生理解,采用直观演示和逐步引导的方法,帮助学生克服难点。
四、说教法在教学《等差数列》这一节时,我计划采用以下几种教学方法,旨在提高学生的学习兴趣,增强理解力和应用能力。
1. 启发法:我将通过提出问题,引导学生思考,激发学生的好奇心和探究欲。
例如,我会提问:“在生活中,你们遇到过按照一定规律递增或递减的数列吗?”通过这个问题的引导,让学生从生活经验中抽象出等差数列的概念。
等差数列说课稿及教学设计
等差数列说课稿及教学设计一、说课稿尊敬的教师们:大家好!今天我将要为大家介绍的是关于等差数列的课程教学设计。
本课程设计适用于中学初中阶段的数学教学,主要目标是让学生掌握等差数列的基本概念、性质以及求解等差数列的方法。
一、教学内容分析等差数列是数学中的重要概念之一,也是数学学习的基础。
在中学阶段,学生需要明确等差数列的定义、性质和求解方法。
本课程设计将从以下三个方面进行讲解:1. 等差数列的定义:通过示例,引导学生理解等差数列的定义,即数列中每一项与它的前一项之差都是相等的。
2. 等差数列的性质:介绍等差数列的常见性质,如公差、首项、通项公式等,并通过例题让学生熟练掌握这些性质。
3. 求解等差数列的方法:通过具体的例题,引导学生运用等差数列的性质和公式,解决等差数列相关的问题。
二、教学目标本课程设计的教学目标如下:1. 知识与技能目标:学生能够准确理解等差数列的定义,掌握等差数列的常见性质和求解方法。
2. 过程与方法目标:培养学生的逻辑思维能力,引导学生运用等差数列的性质和公式解决问题。
3. 情感、态度与价值观目标:培养学生对数学学习的兴趣,激发学生对于数学的探索精神。
三、教学重点与难点教学重点:等差数列的定义、性质和求解方法。
教学难点:培养学生对于等差数列的抽象思维能力,运用性质解决问题。
四、教学步骤1. 导入部分:通过观察一些生活中的例子引发学生对等差数列的思考,激发学生的学习兴趣。
2. 概念讲解:通过简洁明了的语言对等差数列的定义进行解释,并给出一些例子帮助学生理解。
3. 性质介绍:通过演示和讲解,引导学生了解等差数列的公差、首项、通项公式等性质,帮助学生熟悉这些概念。
4. 解题示范:选择几个典型例题进行解题示范,并引导学生参与解题过程,培养学生的解题能力。
5. 巩固练习:设计一些练习题,让学生巩固所学知识,并提供答案解析进行自我评价。
6. 总结部分:对本节课的学习内容进行总结,并引导学生思考等差数列在实际问题中的应用。
《等差数列》第课时说课稿
《等差数列》第课时说课稿《等差数列》第 1 课时说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《等差数列》的第 1 课时。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析1、教材的地位和作用“等差数列”是高中数学必修 5 第二章数列中的重要内容。
数列作为一种特殊的函数,是反映自然规律的基本数学模型。
等差数列在实际生活中有着广泛的应用,如储蓄、分期付款等问题。
同时,等差数列也是后续学习等比数列的基础,对于学生进一步理解数列的概念和性质,提高数学思维能力具有重要的意义。
2、教材的内容和结构本节课主要介绍等差数列的定义、通项公式以及等差中项的概念。
通过对一些具体数列的观察、分析和归纳,引导学生得出等差数列的定义和通项公式,并通过例题和练习加深学生对所学知识的理解和应用。
二、学情分析1、知识基础学生在初中已经学习了数列的初步知识,对数列的概念有了一定的了解。
同时,在高中数学必修 1 中,学生已经学习了函数的概念和性质,具备了一定的函数思想和数学抽象能力。
2、学习能力经过高中阶段的学习,学生已经具备了一定的自主学习能力和探究能力,但对于抽象概念的理解和应用还存在一定的困难,需要教师在教学中加以引导和启发。
3、学习态度学生对数学学习有一定的兴趣,但在学习过程中可能会因为遇到困难而产生畏难情绪,需要教师及时给予鼓励和帮助,激发学生的学习积极性。
三、教学目标1、知识与技能目标(1)理解等差数列的定义,掌握等差数列的通项公式。
(2)能够运用等差数列的通项公式解决相关问题。
(3)了解等差中项的概念,并能运用等差中项解决简单问题。
2、过程与方法目标(1)通过对具体数列的观察、分析和归纳,培养学生的观察能力、归纳能力和抽象思维能力。
(2)通过等差数列通项公式的推导过程,让学生体会从特殊到一般、从具体到抽象的数学思维方法。
3、情感态度与价值观目标(1)让学生在自主探究和合作交流中体验数学学习的乐趣,增强学习数学的自信心。
等差数列说课稿
等差数列说课稿一、说教材本文“等差数列”在数学课程中具有重要的作用和地位。
它是高中数学的一个基础知识点,是学生接触数列概念的入门章节。
等差数列作为一种基本的数列形式,不仅在数学理论中具有广泛的应用,还与现实生活紧密相连,如工资增长、物价调整等方面。
通过学习等差数列,可以帮助学生建立良好的数学思维,提高解决问题的能力。
主要内容:1. 等差数列的定义及性质:等差数列是指数列中相邻两项的差值(公差)相等的数列。
2. 等差数列的通项公式:an=a1+(n-1)d,其中an表示第n项,a1表示首项,d表示公差。
3. 等差数列的前n项和公式:Sn=n/2*(a1+an),其中Sn表示前n项和。
4. 等差数列的判定方法及其应用。
二、说教学目标学习本课需要达到以下教学目标:1. 知识目标:理解并掌握等差数列的定义、性质、通项公式及前n项和公式。
2. 能力目标:能够运用等差数列的知识解决实际问题,培养逻辑思维和解决问题的能力。
3. 情感目标:激发学生对数学学习的兴趣,培养严谨、踏实的科学态度。
三、说教学重难点1. 教学重点:等差数列的定义、通项公式及前n项和公式的推导和应用。
2. 教学难点:(1)等差数列性质的推导过程。
(2)等差数列在实际问题中的应用。
(3)如何引导学生从具体实例中抽象出等差数列的一般规律。
在教学过程中,要注意对重难点的详细讲解和反复强调,确保学生能够真正理解和掌握。
同时,通过举例、练习等方式,帮助学生巩固知识点,提高解题能力。
四、说教法在教学等差数列这一部分时,我计划采用以下几种教学方法,旨在提高学生的理解和应用能力,同时凸显我的教学特色。
1. 启发法:- 通过现实生活中的实例引入等差数列的概念,例如存款利息的计算、阶梯电价的计算等,让学生感受到数学与生活的紧密联系。
- 在讲解等差数列的性质时,设计问题引导学生思考,如“为什么等差数列的相邻两项之差是常数?”通过提问激发学生的探究欲望。
2. 问答法:- 在教学过程中,我将频繁使用提问的方式,检查学生对知识点的掌握情况,并及时给予反馈。
《等差数列》第课时说课稿
《等差数列》第课时说课稿《<等差数列>第课时说课稿》尊敬的各位评委老师:大家好!今天我说课的课题是《等差数列》第课时。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析本节课是高中数学必修中数列这一章的重要内容。
等差数列在实际生活中有着广泛的应用,同时它也是后续学习等比数列的基础。
通过本节课的学习,学生将掌握等差数列的定义、通项公式以及相关性质,为进一步研究数列的相关问题奠定基础。
教材首先通过几个具体的例子引出等差数列的概念,然后通过归纳推理得出等差数列的通项公式,最后通过例题和练习让学生巩固所学知识。
教材的编排注重知识的形成过程,符合学生的认知规律。
二、学情分析在学习本节课之前,学生已经掌握了数列的基本概念和函数的相关知识,具备了一定的观察、分析和归纳能力。
但是,对于等差数列的概念和通项公式的理解和应用,还需要进一步的引导和训练。
此外,学生在学习过程中可能会遇到一些困难,比如对通项公式的推导过程理解不透彻,在应用通项公式解决问题时容易出错等。
针对这些情况,在教学过程中我将注重引导学生思考,通过多种方式帮助学生理解和掌握知识。
三、教学目标1、知识与技能目标(1)理解等差数列的概念,掌握等差数列的通项公式。
(2)能够运用等差数列的通项公式解决相关问题。
2、过程与方法目标(1)通过对具体例子的观察、分析和归纳,培养学生的观察能力、分析能力和归纳能力。
(2)通过等差数列通项公式的推导,培养学生的逻辑推理能力和数学运算能力。
3、情感态度与价值观目标(1)让学生在探索等差数列的过程中,体验数学的乐趣,感受数学的魅力。
(2)培养学生勇于探索、敢于创新的精神,以及严谨的科学态度。
四、教学重难点1、教学重点(1)等差数列的概念和通项公式。
(2)等差数列通项公式的应用。
2、教学难点(1)等差数列通项公式的推导。
(2)等差数列性质的应用。
等差数列的说课稿
等差数列的说课稿一、说教材本文“等差数列”在数学教育中具有重要的作用和地位。
它不仅是高中数学中的重要内容,也是学生接触数学序列概念的第一个重要序列类型。
等差数列作为数列学习的基础,为后续学习等比数列、数列的极限等更复杂的数学概念打下基础。
主要内容方面,等差数列涉及定义、通项公式、前n项和公式以及其性质。
本文通过实例引入等差数列的概念,接着展开对等差数列的性质进行数学论证,最后引入等差数列的应用问题。
(1)作用与地位等差数列在数学课程中占据着承前启后的作用。
它承继了学生对数的基本认知,同时为后续学习高级数学序列提供模型和方法。
在生活实际中,等差数列的概念广泛应用于金融、科学计数等领域,具有很高的实用价值。
(2)主要内容概述本文主要包含以下部分:- 等差数列的定义:介绍了等差数列的基本构成,即每一项与前一项的差是常数。
- 等差数列的通项公式:推导出第n项的表达式,即 \(a_n = a_1 + (n-1)d\)。
- 等差数列的前n项和公式:给出求和公式,即 \(S_n = \frac{n}{2} (a_1 + a_n)\) 或 \(S_n = \frac{n}{2} [2a_1 + (n-1)d]\)。
- 等差数列的性质:包括对称性、周期性等性质,并探讨它们在解题中的应用。
二、说教学目标学习本课,学生应达到以下教学目标:(1)知识与技能- 理解并掌握等差数列的定义、通项公式及前n项和公式。
- 能够运用等差数列的性质解决实际问题。
(2)过程与方法- 通过观察、归纳和论证,培养学生的逻辑思维能力。
- 通过数学问题的解决,提高学生运用数学知识解决实际问题的能力。
(3)情感态度与价值观- 培养学生对数学序列的兴趣,激发他们探索数学规律的欲望。
- 强调数学在生活中的应用,提高学生对数学价值的认识。
三、说教学重难点(1)教学重点- 等差数列的定义、通项公式与前n项和公式的理解和应用。
- 等差数列性质的逻辑推导和运用。
等差数列及其前n项和说课稿
等差数列及其前n项和说课稿《等差数列及其前 n 项和说课稿》尊敬的各位评委、老师:大家好!今天我说课的内容是“等差数列及其前 n 项和”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“等差数列及其前 n 项和”是高中数学必修 5 第二章数列中的重要内容。
数列作为一种特殊的函数,是反映自然规律的基本数学模型。
等差数列在现实生活中有着广泛的应用,如在经济领域中的储蓄计算、生产中的产量增长等问题。
本节课的内容既是对数列基本知识的深化和拓展,又为后续学习等比数列奠定了基础。
通过对等差数列的研究,可以让学生进一步体会从特殊到一般、从有限到无限的数学思想方法,提高学生的观察、分析和推理能力。
二、学情分析在学习本节课之前,学生已经掌握了数列的基本概念和简单的通项公式,具备了一定的函数思想和数学运算能力。
但对于等差数列的定义、性质以及前 n 项和公式的推导和应用,还需要进一步的引导和启发。
此外,学生在抽象思维和逻辑推理方面还有待提高,对于一些复杂的数学问题可能会感到困难。
因此,在教学过程中,要注重引导学生从具体实例出发,逐步抽象出数学概念和规律,帮助学生克服学习中的困难。
三、教学目标1、知识与技能目标(1)理解等差数列的定义,掌握等差数列的通项公式和前 n 项和公式。
(2)能够运用等差数列的通项公式和前 n 项和公式解决相关的数学问题。
2、过程与方法目标(1)通过对等差数列定义的探究,培养学生观察、分析和归纳的能力。
(2)通过等差数列通项公式和前 n 项和公式的推导,让学生体会从特殊到一般、类比、转化等数学思想方法。
3、情感态度与价值观目标(1)让学生在自主探究和合作交流的过程中,体验数学学习的乐趣,增强学习数学的信心。
(2)通过等差数列在实际生活中的应用,让学生感受数学与生活的密切联系,培养学生的应用意识和创新精神。
四、教学重难点1、教学重点(1)等差数列的定义、通项公式和前 n 项和公式。
高中数学等差数列说课稿(通用8篇)
高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿篇1一、教材分析^p1、教材的地位和作用:《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的根底上,对数列的知识进一步深化和拓广。
同时等差数列也为今后学习等比数列提供了学习比照的根据。
2、教学目的根据教学大纲的要求和学生的实际程度,确定了本次课的教学目的a知识与技能:理解并掌握等差数列的概念;理解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
培养学生观察、分析^p 、归纳、推理的才能;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移才能;通过阶梯性练习,进步学生分析^p 问题和解决问题的才能。
b.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深化的理解不完全归纳法。
c.情感态度与价值观:通过对等差数列的研究,培养学生主动探究、勇于发现的求知精神;养成细心观察、认真分析^p 、擅长总结的良好思维习惯。
3、教学重点和难点重点:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
难点:①等差数列的通项公式的推导②用数学思想解决实际问题二、学情教法分析^p :对于高一学生,知识经历已较为丰富,具备了一定的抽象思维才能和演绎推理才能,所以我本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学理论活动,以独立考虑和互相交流的形式,在教师的指导下发现、分析^p 和解决问题。
学生在初中时只是简单的接触过等差数列,详细的公式还不会用,因些在公式应用上加强学生的理解三、学法分析^p :在引导分析^p 时,留出学生的考虑空间,让学生去联想、探究,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
等差数列说课稿等奖
等差数列说课稿等奖《等差数列说课稿》尊敬的各位评委老师:大家好!今天我说课的内容是等差数列。
一、教材分析等差数列是高中数学必修五第二章的重要内容。
它不仅是数列这一板块的核心知识,也为后续学习等比数列等内容奠定了基础。
等差数列在实际生活中有着广泛的应用,如银行利息计算、建筑设计等。
从教材的编排来看,通过对一些具体数列的观察、分析,逐步引出等差数列的定义、通项公式等内容,体现了从特殊到一般的数学思维方法。
二、学情分析学生在之前已经学习了数列的基本概念,具备了一定的观察、分析和推理能力。
但对于抽象的数学概念和公式的理解和应用还存在一定的困难。
因此,在教学过程中,要注重引导学生通过具体的实例来理解和掌握等差数列的相关知识。
三、教学目标1、知识与技能目标学生能够理解等差数列的定义,掌握等差数列的通项公式,并能运用公式解决简单的问题。
2、过程与方法目标通过观察、归纳、猜想等数学活动,培养学生的逻辑思维能力和创新能力。
3、情感态度与价值观目标让学生感受数学的美,激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。
四、教学重难点1、教学重点等差数列的定义和通项公式。
2、教学难点等差数列通项公式的推导及应用。
五、教法与学法1、教法为了突出重点,突破难点,我将采用启发式、探究式教学方法,引导学生自主思考、合作探究。
2、学法指导学生采用观察、类比、归纳等学习方法,让学生在学习过程中主动参与,提高学习能力。
六、教学过程1、导入新课通过展示一些生活中常见的等差数列的例子,如楼梯的台阶数、电影院的座位号等,引导学生观察这些数列的特点,从而引出本节课的主题——等差数列。
2、新课讲授(1)等差数列的定义给出几个数列,让学生观察并讨论它们的共同特点,从而得出等差数列的定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母 d 表示。
(2)等差数列的通项公式引导学生通过不完全归纳法,从等差数列的定义出发,推导等差数列的通项公式。
等差数列及通项公式说课稿1
等差数列及通项公式说课稿1一、说教材(1)作用与地位本文为数学课程中“数列”知识模块的重要组成部分,主要围绕等差数列的概念、性质以及通项公式的推导与应用展开。
等差数列作为数列中的基础类型,不仅在数学理论中具有举足轻重的地位,而且在实际生活、科学研究等领域也具有广泛的应用。
通过学习等差数列及其通项公式,有助于培养学生严密的逻辑思维能力和解决实际问题的能力。
(2)主要内容本文主要包括以下几个部分:1. 等差数列的定义:介绍等差数列的概念,使学生理解等差数列的基本性质。
2. 等差数列的性质:探讨等差数列的通项公式、求和公式等,为解决相关问题提供理论依据。
3. 等差数列的通项公式推导:通过分析等差数列的递推关系,引导学生掌握通项公式的推导过程。
4. 等差数列的应用:介绍等差数列在实际问题中的应用,提高学生解决问题的能力。
(3)与前后知识的联系本文与前后知识的联系如下:1. 前置知识:数列的基本概念、数列的通项公式、数列的求和公式等。
2. 后续知识:等差数列的求和、等差数列的判定、等差数列的线性方程组等。
二、说教学目标(1)知识与技能1. 理解等差数列的概念,掌握等差数列的性质。
2. 学会推导等差数列的通项公式,并能熟练应用。
3. 能够运用等差数列的知识解决实际问题。
(2)过程与方法1. 通过分析等差数列的特点,培养学生严密的逻辑思维能力。
2. 通过推导等差数列的通项公式,提高学生的问题解决能力。
3. 通过实际应用,使学生掌握等差数列的解题技巧。
(3)情感态度与价值观1. 培养学生对数学的兴趣和热情。
2. 培养学生团结协作、积极探究的精神。
3. 增强学生对数学美的认识,提高审美情趣。
三、说教学重难点(1)重点1. 等差数列的概念及其性质。
2. 等差数列通项公式的推导与应用。
(2)难点1. 等差数列通项公式的推导过程。
2. 等差数列在实际问题中的应用。
在教学过程中,应注重引导学生理解等差数列的本质,突破推导过程这一难点,同时,通过实例分析,使学生掌握等差数列在实际问题中的应用。
2024《等差数列》说课稿范文
2024《等差数列》说课稿范文今天我说课的内容是《等差数列》,下面我将就这个内容从以下几个方面进行阐述。
一、说教材1、《等差数列》是人教版高中数学必修二第一章的内容。
它是在学生已经学习了数列的概念和性质以及等差数列的定义和通项公式的基础上进行教学的,是高中数学领域中的重要知识点,而且等差数列在数学和实际生活中都有着广泛的应用。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解等差数列的概念,掌握等差数列的性质和通项公式②能力目标:在等差数列的应用中,培养学生分析问题和解决问题的能力。
③情感目标:在等差数列的学习中,培养学生的探索精神和团队合作精神。
3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:掌握等差数列的通项公式和性质。
难点是:应用等差数列解决实际问题。
二、说教法学法有这样一句话:听见了,忘记了;看见了,记住了;做了,理解了。
可见让学生亲身参与、实际操作是学生学习数学的最佳方式。
因此,这节课我采用的教法:示范引导法,启发式教学法;学法是:主动探究法,合作学习法。
三、说教学准备在教学过程中,我准备了多媒体课件和实物示范,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增强教学效果。
四、说教学过程新课标要求教学活动是师生互动、共同发展的过程,本着这个教学理念,我设计了如下教学环节。
环节一、谈话引入,导入新课。
课堂伊始,我会通过提出一个问题来引入新知识:“你们有没有遇到过每天都要做同样的事情,比如早晨起床刷牙洗脸,每天都要重复一遍。
”学生可能会有类似的经历,我会进一步引导他们思考:这种每天都重复的操作,有没有办法总结出规律?这个规律和数学有什么关系?从而引出等差数列的概念和意义。
环节二、示范引导,概念解释。
在引入概念之后,我会通过多媒体课件和实物示范的方式,展示一段每天重复的操作场景,比如每天上学时同学们排队进门。
然后向学生解释这种每天重复的操作有一个数学名词叫做等差数列,并给出等差数列的定义。
《等差数列》第课时说课稿
《等差数列》第课时说课稿《<等差数列>第课时说课稿》尊敬的各位评委老师:大家好!今天我说课的课题是“等差数列”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析“等差数列”是高中数学必修 5 第二章数列中的重要内容。
数列作为一种特殊的函数,是反映自然规律的基本数学模型。
等差数列在实际生活中有着广泛的应用,如储蓄、人口增长等问题。
本节课是在学生已经学习了数列的基本概念和函数特性的基础上,进一步研究一种特殊的数列——等差数列。
通过本节课的学习,学生将掌握等差数列的定义、通项公式及其推导方法,为后续学习等比数列以及数列求和等内容奠定基础。
二、学情分析在知识储备方面,学生已经掌握了数列的基本概念和函数的相关知识,具备了一定的观察、分析和归纳能力。
但对于抽象的数学概念和公式的推导,可能会存在一定的困难。
在学习能力方面,高中生具有较强的好奇心和求知欲,但他们的思维能力还不够成熟,需要教师在教学过程中引导他们进行思考和探索。
三、教学目标1、知识与技能目标理解等差数列的定义,掌握等差数列的通项公式。
能够运用等差数列的通项公式解决相关问题。
2、过程与方法目标通过对等差数列定义的探究,培养学生观察、分析和归纳的能力。
通过通项公式的推导,培养学生的逻辑推理能力和数学建模能力。
3、情感态度与价值观目标让学生感受数学与生活的紧密联系,激发学生学习数学的兴趣。
通过合作学习,培养学生的团队合作精神和创新意识。
四、教学重难点1、教学重点等差数列的定义和通项公式。
2、教学难点等差数列通项公式的推导。
五、教法与学法1、教法启发式教学法:通过设置问题,引导学生思考,激发学生的学习兴趣。
讲授法:讲解等差数列的定义、通项公式及其推导过程,使学生掌握重点知识。
练习法:通过课堂练习,巩固学生所学知识,提高学生的应用能力。
2、学法自主探究法:让学生自主观察、分析、归纳等差数列的定义和通项公式。
等差数列说课稿
等差数列说课稿一、教学目标1、知识与技能目标理解等差数列的概念,掌握等差数列的通项公式。
能够运用等差数列的通项公式解决相关问题。
2、过程与方法目标通过对等差数列实例的分析,培养学生观察、分析、归纳和推理的能力。
引导学生经历等差数列通项公式的推导过程,体会从特殊到一般的数学思维方法。
3、情感态度与价值观目标让学生感受数学与生活的紧密联系,激发学生学习数学的兴趣。
通过合作探究,培养学生的团队合作精神和创新意识。
二、教学重难点1、教学重点等差数列的概念及通项公式。
通项公式的推导及应用。
2、教学难点对等差数列概念的理解。
通项公式的灵活运用。
三、教学方法讲授法、讨论法、探究法相结合。
四、教学过程1、导入新课通过列举生活中常见的等差数列实例,如银行存款利息计算、楼梯台阶高度等,引出等差数列的概念。
2、新课讲授给出等差数列的定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母 d 表示。
引导学生观察等差数列的特点,通过实例分析,让学生理解等差数列的定义。
推导等差数列的通项公式:设等差数列{a<sub>n</sub>}的首项为 a<sub>1</sub>,公差为 d,则 a<sub>n</sub> = a<sub>1</sub> +(n 1)d 。
对通项公式进行分析,让学生理解公式中各字母的含义及公式的用途。
3、例题讲解通过典型例题,让学生掌握等差数列通项公式的应用,如求等差数列的某一项、求公差、判断一个数列是否为等差数列等。
4、课堂练习安排适量的课堂练习,让学生巩固所学知识,教师巡视并进行个别指导。
5、课堂小结回顾等差数列的概念和通项公式。
总结本节课的重点和难点。
6、布置作业布置适量的课后作业,包括书面作业和拓展性作业,以加深学生对知识的理解和应用。
等差数列及其前n项和说课稿
等差数列及其前n项和说课稿《等差数列及其前 n 项和说课稿》尊敬的各位评委老师:大家好!今天我说课的内容是“等差数列及其前 n 项和”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“等差数列及其前 n 项和”是高中数学必修五第二章数列中的重要内容。
数列作为一种特殊的函数,是反映自然规律的基本数学模型。
等差数列在现实生活中有着广泛的应用,如银行利息计算、产品产量统计等。
本节课是在学生已经学习了数列的基本概念和函数相关知识的基础上进行的,既是对前面知识的深化和拓展,也为后续学习等比数列奠定了基础。
二、学情分析我所授课的班级是高____年级的学生,他们已经具备了一定的逻辑思维能力和抽象概括能力,但对于数学概念的理解和应用还需要进一步的培养和提高。
在学习本节课之前,学生已经掌握了数列的定义和通项公式的求法,但对于等差数列的概念和性质的理解可能还存在一定的困难。
因此,在教学过程中,我将注重引导学生通过观察、分析、归纳等方法来理解和掌握等差数列的相关知识。
三、教学目标1、知识与技能目标(1)理解等差数列的概念,掌握等差数列的通项公式和前 n 项和公式。
(2)能够运用等差数列的通项公式和前 n 项和公式解决相关的数学问题。
2、过程与方法目标(1)通过观察、分析、归纳等方法,培养学生的逻辑思维能力和抽象概括能力。
(2)通过等差数列通项公式和前 n 项和公式的推导过程,让学生体会从特殊到一般、类比等数学思想方法。
3、情感态度与价值观目标(1)让学生感受数学与生活的密切联系,激发学生学习数学的兴趣。
(2)培养学生勇于探索、敢于创新的精神,以及严谨的科学态度。
四、教学重难点1、教学重点(1)等差数列的概念和通项公式。
(2)等差数列前 n 项和公式的推导和应用。
2、教学难点(1)等差数列通项公式和前 n 项和公式的推导。
(2)灵活运用等差数列的通项公式和前n 项和公式解决实际问题。
高中等差数列说课稿
高中等差数列说课稿一、说教材本文《等差数列》在高中数学课程中具有重要作用和地位。
它是数列这一章的核心内容,既是重点也是难点。
等差数列作为一种基本的数列形式,不仅在数学理论中具有广泛应用,而且在实际生活中也随处可见。
本节课主要内容包括等差数列的定义、通项公式、前n项和公式及其性质。
通过学习等差数列,可以帮助学生掌握数列的基本概念,培养他们的数学思维能力,为后续学习等比数列、数列的极限等知识打下坚实基础。
(1)作用与地位等差数列是数列单元的基础知识,与其他数学知识有着紧密的联系。
例如,在函数、方程、不等式等方面,等差数列都有所体现。
此外,等差数列在实际问题中的应用也较为广泛,如经济、物理等领域。
因此,掌握等差数列的相关知识对于学生来说具有重要意义。
(2)主要内容本文主要围绕等差数列的定义、通项公式、前n项和公式及其性质展开。
具体包括:1. 等差数列的定义:数列{an}称为等差数列,如果从第二项起,每一项与前一项的差是一个常数,这个常数称为公差,通常用d表示。
2. 等差数列的通项公式:an=a1+(n-1)d,其中a1为首项,d为公差。
3. 等差数列的前n项和公式:Sn=n/2[2a1+(n-1)d]。
4. 等差数列的性质:等差数列具有许多性质,如对称性、单调性、周期性等。
二、说教学目标学习本课,学生需要达到以下教学目标:1. 知识与技能:(1)理解等差数列的定义,掌握等差数列的通项公式和前n项和公式;(2)能够运用等差数列的性质解决相关问题;(3)了解等差数列在实际问题中的应用。
2. 过程与方法:(1)通过观察、分析、归纳等差数列的性质,培养学生的数学思维能力;(2)学会运用等差数列的知识解决实际问题,提高学生的应用能力。
3. 情感态度与价值观:(1)激发学生对数学学习的兴趣,培养他们的探究精神;(2)使学生认识到数学知识在实际生活中的价值,增强他们的学习动力。
三、说教学重难点本节课的教学重点是等差数列的定义、通项公式、前n项和公式及其性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列说课稿各位老师,大家好!我说课的课题是《等差数列》,我将从以下七个方面来分析本课题。
一、教材分析1、教学内容《等差数列》是人教版普通高中课程标准实验教科书《数学》必修5第二章第二节的内容。
2、教材的地位与作用本节课是学生在学习了数列的有关概念和给出数列的两种方法—通项公式和递推公式的基础上展开的,这节内容既是对数列知识的进一步深入和拓展,同时也为后面学习等比数列提供了学习对比的依据。
另一方面,等差数列作为一种特殊的函数,它与函数思想密不可分,有着广泛的实际应用。
二、教学目标1、知识与技能:要求学生理解并掌握等差数列的概念,了解等差数列的通项公式的推导过程及思想,初步引入“数学建模”的思想方法并能简单运用。
2、过程与方法:让学生对日常生活中实际问题进行分析,引导学生通过观察,推导,归纳抽象出等差数列的概念及通项公式;在领会函数与数列关系的前提下,把研究函数的方法迁移过来研究数列,培养学生的知识、方法迁移能力。
3、情感与价值:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
三、教学重、难点重点:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
难点:概括通项公式推导过程中体现出的数学思想方法。
(不完全归纳法)四、教法与学法分析1.教法:针对高一学生的思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过提问激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析并解决问题。
2.学法:在引导学生分析问题的同时,给学生留出思考空间,让学生去联想、去探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
五、教学过程(一)创设情境,提出问题通过多媒体给出现实生活中的四个特殊的数列,包括数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题,概括出数组特点。
1、问题情境(1)在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,____,____,____,____,……①(2)2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目。
该项目共设置了7个级别。
其中较轻的4个级别体重组成数列(单位:kg):48, 53, 58, 63 ②(3)水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。
如果一个水库的水位为18cm,自然放水每天水位降低 2.5m,最低降至5m。
那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5 ③(4) 我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。
某人按期存入10 000元钱,年利率是0.72%。
那么按照单利,5年内各年末的本利和(单位:元)组成了数列:10 072,10 144,10 216, 10 288,10 360 ④2、[教师活动]引导学生观察以上数列,提出问题:问题1.请说出这四个数列的后面一项是多少?问题2.说出这四个数列有什么共同特点?(从第2项起,每一项与前一项的差都等于同一个常数)设计意图:从学生熟悉的问题入手,通过设置一个容易和一个较抽象的问题,促使学生联系已有的知识,激发其求知欲。
(二)归纳概括,给出定义1、等差数列定义[教师活动]为引导学生得出等差数列的概念,我对学生的表述进行归类,引导学生得出关键词“从第2项起”、“每一项与前一项的差”、“同一个常数”,告诉他们把满足这些条件的数列叫做等差数列,之后由学生集体给出等差数列的概念及其数学表达式。
等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
这个常数叫做等差数列的公差,公差通常用字母d表示。
同时为了配合概念的理解。
用多媒体给出三个数列,由学生进行判断。
判断下面的数列是否为等差数列,是等差数列的找出公差(1)1,2,3,4,5,6…(是,d=1大于0)(2)0.9,0.7,0.5,0.3,0.1…(是,d=-0.2小于0)(3)0,0,0, 0, 0, 0,… (是,d=0) 由此强调:公差可以是正数、负数、也可以是2、等差中项[教师活动]提出问题3:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列数列,那么A 应满足什么条件?[学生活动]因为a ,A ,b 组成了一个等差数列,那么由定义可以知道:A-a=b-A所以就有由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,这时,A 叫做a 与b 的等差中项。
不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。
如数列:1,3,5,7,9,11,13…中5是3和7的等差中项,1和9的等差中项。
9是7和11的等差中项,5和13的等差中项。
看来,从而可得在一等差数列中,若m+n=p+q 则设计意图:通过学生观察概括四个数列的特点,抽象出等差数列的概念,同时对问题的总结也能培养学生由具体到抽象、由特殊到一般的认知能力。
(三)探究论证,得出通项1、在理解等差数列概念的基础上,[教师活动]提出问题4:如果等差数列的首项是,公差是d ,如何用首项和公差将通项公式表示出来?为引导学生得出通项公式,我采用讨论式的教学方法。
让学生自由分组讨论,由同学们根据通项公式的定义,引导他们得出d a a d a a 39,314014,进而猜想d n a a n )1(1。
此时指出:这就是不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:2、在迭加法的证明过程中,我采用启发式教学方法。
利用等差数列概念启发学生写出n-1个等式。
对照已归纳出的通项公式启发学生想出将n-1个等式相加。
最后证出通项公式d n a a n )1(1。
3、接着举例说明:若一个等差数列{an }的首项是1,公差是2,得出这个数列的通项公式是:n a =1+(n-1)×2,即n a =2n-1,以此来巩固等差数列通项公式的运用4、要求学生画出该数列图象,由此说明等差数列是关于正整数n 一次函数,其图像是均匀排开的无穷多个孤立点。
用函数的思想来研究数列,使数列的性质显现得更加清楚。
设计意图:整个过程由老师引导,学生完成,一方面,通过互相讨论的方式既培养了学生的合作意识又化解了教学难点;通过知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想”的教学要求。
另一方面,通过学生画图象,使学生在领会函数与数列关系的前提下,能想到把研究函数的方法迁移过来研究数列,培养学生的知识、方法迁移能力。
(四)例题分析,强化应用例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?在第(1)问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第(2)问实际上是求正整数解的问题,而关键是求出数列的通项公式n a 。
练习: 在等差数列{n a }中,已知5a =10,12a =31,求首项1a 与公差d 。
设计意图:通过例1和练习向学生表明:要用运动变化的观点看等差数列通项公式中的1a 、d 、n 、n a 这4个量之间的关系,当其中的部分量已知时,可根据该公式求出另一部分量。
使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用。
(放投影片)例2.某市出租车的计价标准为 1.2元/km ,起步价为10元,即最初的4km (不含4千米)计费10元。
如果某人乘坐该市的出租车去往14km 处的目的地,且一路畅通,等候时间为0,需要支付多少车费?设计意图:通过解答,使学生学会从实际问题中抽象出等差数列模型,用等差数列的知识解决实际问题。
加强对“数学建模”思想的认识。
(放投影片)思考例题3:例3 已知数列的通项公式为其中p 、q 为常数,且p ≠0,那么这个数列一定是等差数列吗?设计意图:通过这个例题使学生知道判断一个数列是否是等差数列的方法:如果一个数列的通项公式是关于正整数n的一次型函数,那么这个数列必定是等差数列。
(五)练习巩固,归纳总结1、课后练习中的第1题和第2题(要求学生在规定时间内完成)设计意图:使学生熟悉通项公式,对学生进行基本技能训练,同时加强建模思想训练。
2、归纳小结(由学生总结这节课的收获)(1)等差数列的概念及数学表达式。
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数。
(2)等差数列的通项公式a= 1a+(n-1)d,会知三求一。
n(3)用“数学建模”思想方法解决实际问题。
设计意图:通过小结,使学生本节所学的知识系统化、条理化,进一步巩固所学知识,明确方法。
六、板书设计§2.2 等差数列1、等差数列的定义(注:“从第二项起”及“同一常数”用红色粉笔标注)2、等差中项3、等差数列的通项公式例题与练习七、布置作业课本P40习题2.2 A组第1、3、4题本节课根据高一学生的心理特征及认知规律,通过一系列问题贯穿教学始终,符合新课标要求的“以教师为主导,学生为主体”的思想,最终达到预期的教学效果。
我的说课完毕,谢谢!。