高中数学空间向量与立体几何教案新课标人教A版选修

合集下载

人教A版高中数学选择性必修第一册精品课件 第1章 空间向量与立体几何 空间向量及其线性运算

人教A版高中数学选择性必修第一册精品课件 第1章 空间向量与立体几何 空间向量及其线性运算
能否用向量a,b表示?怎样表示?
提示:能.存在唯一确定的有序实数对(x,y),使向量p=xa+yb.
2.(1)两个向量共线(平行)的充要条件:对任意两个空间向量a,b(b≠0),a∥b
的充要条件是存在实数λ,使a=λb .
(2)直线的方向向量:如图,O是直线l上一点,在直线l上取非零向量a,则对
于直线l上任意一点P,存在实数λ,使得 = λa .我们把与向量a平行的非零
(1);(2)1 ;(3) + 1 .
解:(1)因为P是C1D1的中点,
所以 = 1 + 1 1 + 1 =a+ +
1
1
1
1 1 =a+c+ =a+c+ b.
2
2
2
(2)因为 N 是 BC 的中点,
所以1 = 1 + +
1
1
1
=-a+b+ =-a+b+ =-a+b+ c.
2
2
2
(3)因为 M 是 AA1 的中点,
所以 = + =
又1 = + 1 =
所以 + 1 =
1

2
1
+
2 1
1

2
+
1
=-2a+
+ 1 =
1

2
1

2
+ + +
++
1

2
+ 1 =
1

2
=
=
1

高中数学人教A版选修1-1第3章3-2立体几何中的向量方法教案

高中数学人教A版选修1-1第3章3-2立体几何中的向量方法教案

即 a2 = 3x2 + 2(3x2 cos )
x=
1a
3 + 6 cos
∴ 这个四棱柱的对角线的长可以确定棱长。
(3)本题的晶体中相对的两个平面之间的距离是多少?(提示:求
两个平行平面的距离,通常归结为求两点间的距离)
分析:面面距离 点面距离 向量的模 回归图形
解: 过 A1点作 A1H ⊥ 平面 AC 于点 H.
解:
设平面 AEF 的法向量为
则有
6,如图所示建立坐标系,有
为平面 AEF 的单位法向量。
分别求平面 SAB 与平面 SDC 的法向量,并求出它们夹角的余弦。 解:因为 y 轴 平面 SAB,所以平面 SAB 的法向量为 设平面 SDC 的法向量为, 由
§3.2.2 空间角与距离的计算举例
【学情分析】:
空间中的几何元素
如图,在空间中,我们取一点 O 作为基点,那么空间中任意一点 P 点、直线、平面的
的位置就可以用向量 OP 来表示.称向量 OP 为点的位置向量。
位置的向量表示方 法。
●P
基点 O●
2. 思考:在空间中给定一个定点 A 和一个定方向(向量),能确定一条直
线在空间的位置吗? l
a
P
A
AP = a( R)
∴ sin BAD = 1− 9 = 32 , 105 35
五、小结 六、作业
∴ S ABCD =| AB | | AD | sin BAD = 8 6 .
1. 点、直线、平面的位置的向量表示。 2. 线线、线面、面面间的平行与垂直关系的向量表示。 A,预习课本 105~110 的例题。 B,书面作业:
(1)求证: AP 是平面 ABCD 的法向量; (2)求平行四边形 ABCD 的面积.

2021_2022高中数学第三章空间向量与立体几何2立体几何中的向量方法1教案新人教A版选修2_

2021_2022高中数学第三章空间向量与立体几何2立体几何中的向量方法1教案新人教A版选修2_

立体几何中的向量方法【教学目标】1. 向量运算在几何证明与计算中的应用;2. 掌握利用向量运算解几何题的方法,并能解简单的立体几何问题。

【导入新课】 复习引入1. 用向量解决立体几何中的一些典型问题的基本思考方法是:⑴如何把已知的几何条件(如线段、角度等)转化为向量表示; ⑵考虑一些未知的向量能否用基向量或其他已知向量表式; ⑶如何对已经表示出来的向量进行运算,才能获得需要的结论?2. 通法分析:利用两个向量的数量积的定义及其性质可以解决哪些问题呢?⑴利用定义a ·b =|a ||b |cos <a ,b >或cos <a ,b >=a ba b⋅⋅,可求两个向量的数量积或夹角问题;⑵利用性质a ⊥b ⇔a ·b =0可以解决线段或直线的垂直问题; ⑶利用性质a ·a =|a |2,可以解决线段的长或两点间的距离问题。

新授课阶段例1:已知空间四边形OABC 中,OA BC ⊥,OB AC ⊥.求证:OC AB ⊥。

证明:·OC AB =·()OC OB OA - =·OC OB -。

∵OA BC ⊥,OB AC ⊥, ∴·0OA BC =,·0OB AC =, ·()0OA OC OB -=,·()0OB OC OA -=. ∴··OA OC OA OB =,··OB OC OB OA =。

∴·OC OB =·OC OA ,·OC AB =0. ∴OC AB ⊥ 例2:如图,已知线段AB 在平面α内,线段AC α⊥,线段BD ⊥AB ,线段'DD α⊥,'30DBD ∠=,如果AB =a ,AC =BD =b ,求C 、D间的距离。

解:由AC α⊥,可知AC AB ⊥。

由'30DBD ∠=可知,<,CA BD >=120,∴2||CD =2()CA AB BD ++=2||CA +2||AB +2||BD +2(·CA AB +·CA BD +·AB BD )=22222cos120b a b b +++=22a b +。

人教A版高中数学选择性必修第一册精品课件 第1章 空间向量与立体几何 空间向量的数量积运算

人教A版高中数学选择性必修第一册精品课件 第1章 空间向量与立体几何 空间向量的数量积运算

【变式训练2】 如图,在正方体ABCD-A'B'C'D'中,CD'与DC'相交于点O,连
接AO,求证:
(1)AO⊥CD'; (2)AC'⊥平面B'CD'.
证明:(1)因为 = + = +
1
(' +
2
),' = ' − ,
所以 ·' =
1
('
+
|1 |= 2,| |= 2.
所以 cos<1 , >=
1 ·
|1 || |
=
又因为<1 , >∈[0,π],
所以<1 , >=60°.
故向量1 与的夹角为 60°.
1
2× 2
=
1
.
2
反思感悟 求两个非零向量夹角的途径
(1)转化为求平面角:把所求向量平移到同一个起点上,转化为平面几何中
.
5
探究四
利用数量积求距离(即线段长度)
【例 4】 已知正四面体 ABCD 的棱长为 a,M,N 分别是棱 AB,CD 上的点,
1
且| |=2||,||=2 ||,求线段
MN 的长.
解:∵ = + +
=
2
+(
3

∴ · =
=
1
2 2
|| -9
= ·' + · + ·' + · + ' ·' + ' ·
=| |2-|' |2=0,

高中数学 3.2.3立体几何中的向量方法教案 新人教A版选修2

高中数学 3.2.3立体几何中的向量方法教案 新人教A版选修2

§3.2.3立体几何中的向量方法——利用空间向量求空间角教学目标1、使学生学会求异面直线所成的角、直线与平面所成的角、二面角的向量方法;2、使学生能够应用向量方法解决一些简单的立体几何问题;3、使学生的分析与推理能力和空间想象能力得到提高.教学重点求解二面角的向量方法 教学难点二面角的大小与两平面法向量夹角的大小的关系 教学过程 一、复习引入1、用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)(3)把向量的运算结果“翻译”成相应的几何意义。

(回到图形)2、向量的有关知识:(1)两向量数量积的定义:(2)两向量夹角公式:(3)平面的法向量:与平面垂直的向量二、知识讲解与典例分析知识点1、异面直线所成的角(范围: )(1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a´与b´,那么直线a´与b´ 所成的不大于90°的角 ,叫做异面直线a 与b 所成的角。

(2)用向量法求异面直线所成角bab a ⋅=,cos⎝⎛∈θθb a ⋅⋅=⋅a ´b ´•oθ设两异面直线a 、b 的方向向量分别为m 和 ,问题1 当m 与n 的夹角不大于90°时,异面直线a 、b 所成的角 与m 和的夹角的关系? 相等问题 2 当m 与的夹角大于90°时,异面直线a 、b 所成的角 与m 和的夹角的关系? 互补所以,异面直线a 、b 所成的角的余弦值为典型例题1:在到△A1O1B1的位置,已知BD1与AF1所成的角的余弦值。

解:以点O 为坐标原点建立空间直角坐标系,并设OA=1,则A(1,0,0) B(0,1,0)F1(21 ,0,1) D1(21 , 21,1)所以,异面直线BD1与AF1所成的角的余弦值为知识点2、直线与平面所成的角(范围: )=cos θ =),1,0,21(1-=∴AF )1,21,21(1-=BD =⋅=BD =⋅++-23451041⎥⎦⎤⎢⎣⎡∈2,0πθθθ10301030据图分析平面所成弦值为典型正方体ABCD-A1B1C1D1的棱长为1,点E 、F 分别为CD 、DD1的中点, (1)求直线B1C1与平面AB1C 所成的角的正弦值; (2)求二面角F-AE-D 的余弦值。

新教材高中数学第1章空间向量及其线性运算教案新人教A版选择性必修第一册

新教材高中数学第1章空间向量及其线性运算教案新人教A版选择性必修第一册

新教材高中数学教案新人教A 版选择性必修第一册:第1章 空间向量与立体几何1.1 空间向量及其运算 1.1.1 空间向量及其线性运算学 习 目 标核 心 素 养1.理解空间向量的概念.(难点)2.掌握空间向量的线性运算.(重点)3.掌握共线向量定理、共面向量定理及推论的应用.(重点、难点)1.通过空间向量有关概念的学习,培养学生的数学抽象核心素养.2.借助向量的线性运算、共线向量及共面向量的学习,提升学生的直观想象和逻辑推理的核心素养.国庆期间,某游客从上海世博园(O )游览结束后乘车到外滩(A )观赏黄浦江,然后抵达东方明珠(B )游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程?图1 图2如果游客还要登上东方明珠顶端(D )俯瞰上海美丽的夜景,如图2,那么他实际发生的位移是什么?又如何表示呢?1.空间向量(1)定义:在空间,具有大小和方向的量叫做空间向量. (2)长度或模:空间向量的大小. (3)表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作:AB →,其模记为|a |或|AB →|.2.几类常见的空间向量名称 方向 模 记法 零向量 任意 0 0 单位向量 任意 1相反向量 相反 相等 a 的相反向量:-aAB →的相反向量:BA →相等向量相同相等a =b3.空间向量的线性运算 (1)向量的加法、减法 空间向量的运算加法 OB →=OA →+OC →=a +b减法CA →=OA →-OC →=a -b加法运算律①交换律:a +b =b +a②结合律:(a +b )+c =a +(b +c )①定义:实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算. 当λ>0时,λa 与向量a 方向相同; 当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0;λa 的长度是a 的长度的|λ|倍. ②运算律a .结合律:λ(μa )=μ(λa )=(λμ)a .b .分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb . 思考:向量运算的结果与向量起点的选择有关系吗? [提示] 没有关系. 4.共线向量(1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.(2)方向向量:在直线l 上取非零向量a ,与向量a 平行的非零向量称为直线l 的方向向量.规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(3)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使a =λb .(4)如图,O 是直线l 上一点,在直线l 上取非零向量a ,则对于直线l 上任意一点P ,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP →=λa .5.共面向量(1)定义:平行于同一个平面的向量叫做共面向量.(2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间一点P 位于平面ABC 内的充要条件:存在有序实数对(x ,y ), 使AP →=xAB →+yAC →或对空间任意一点O ,有OP →=OA →+xAB →+yAC →.思考:(1)空间中任意两个向量一定是共面向量吗?(2)若空间任意一点O 和不共线的三点A ,B ,C ,满足OP →=13OA →+13OB →+13OC →,则点P 与点A ,B ,C 是否共面?[提示] (1)空间中任意两个向量都可以平移到同一个平面内,成为同一个平面的两个向量,因此一定是共面向量.(2)由OP →=13OA →+13OB →+13OC →得OP →-OA →=13(OB →-OA →)+13(OC →-OA →)即AP →=13AB →+13AC →,因此点P 与点A ,B ,C 共面.1.思考辨析(正确的打“√”,错误的打“×”) (1)空间向量a ,b ,c ,若a ∥b ,b ∥c ,则a ∥c . ( ) (2)相等向量一定是共线向量. ( ) (3)三个空间向量一定是共面向量. ( ) (4)零向量没有方向.( )[提示] (1)× 若b =0时,a 与c 不一定平行. (2)√ 相等向量一定共线,但共线不一定相等.(3)× 空间两个向量一定是共面向量,但三个空间向量可能是共面的,也可以是不共面的.(4)× 零向量有方向,它的方向是任意的.2.如图所示,在四棱柱ABCD ­A 1B 1C 1D 1所有的棱中,可作为直线A 1B 1的方向向量的有( )A .1个B .2个C .3个D .4个 D [共四条AB ,A 1B 1,CD ,C 1D 1.]3.点C 在线段AB 上,且|AB |=5,|BC |=3,AB →=λBC →,则λ=________.-53 [因为C 在线段AB 上,所以AB →与BC →方向相反,又因|AB |=5,|BC |=3,故λ=-53.] 4.在三棱锥A ­BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________.0 [延长DE 交边BC 于点F ,连接AF ,则有AB →+12BC →=AF →,32DE →+AD →=AD →+DF →=AF →,故AB →+12BC →-32DE →-AD →=0.]空间向量的有关概念【例1】 (1)给出下列命题: ①若|a |=|b |,则a =b 或a =-b ;②若向量a 是向量b 的相反向量,则|a |=|b |; ③在正方体ABCD ­A 1B 1C 1D 1中,AC →=A 1C 1→;④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p . 其中正确命题的序号是________.(2)如图所示,在平行六面体ABCD ­A ′B ′C ′D ′中,顶点连接的向量中,与向量AA ′→相等的向量有________;与向量A ′B ′→相反的向量有________.(要求写出所有适合条件的向量)(1)②③④ (2)BB ′→,CC ′→,DD ′→ B ′A ′→,BA →,CD →,C ′D ′→[(1)对于①,向量a 与b 的方向不一定相同或相反,故①错;对于②,根据相反向量的定义知|a |=|b |,故②正确; 对于③,根据相等向量的定义知,AC →=A 1C 1→,故③正确; 对于④,根据相等向量的定义知正确.(2)根据相等向量的定义知,与向量AA ′→相等的向量有BB ′→,CC ′→,DD ′→.与向量A ′B ′→相反的向量有B ′A ′→,BA →,CD →,C ′D ′→.]解答空间向量有关概念问题的关键点及注意点(1)关键点:紧紧抓住向量的两个要素,即大小和方向. (2)注意点:注意一些特殊向量的特性.①零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性.②单位向量方向虽然不一定相同,但它们的长度都是1.③两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.[跟进训练]1.下列关于空间向量的命题中,正确命题的个数是( ) ①长度相等、方向相同的两个向量是相等向量; ②平行且模相等的两个向量是相等向量; ③若a ≠b ,则|a |≠|b |;④两个向量相等,则它们的起点与终点相同. A .0 B .1 C .2 D .3B [根据向量的定义,知长度相等、方向相同的两个向量是相等向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是相反向量,②不正确;当a =-b 时,也有|a |=|b |,③不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点与终点无关,④不正确.综上可知只有①正确,故选B.]空间向量的线性运算【例2】 (1)如图所示,在正方体ABCD ­A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1的有( )①(AB →+BC →)+CC 1→; ②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→; ④(AA 1→+A 1B 1→)+B 1C 1→.A .1个B .2个C .3个D .4个(2)已知正四棱锥P ­ABCD ,O 是正方形ABCD 的中心,Q 是CD 的中点,求下列各式中x ,y ,z 的值.①OQ →=PQ →+yPC →+zPA →; ②PA →=xPO →+yPQ →+PD →.[思路探究] (1)合理根据向量的三角形和平行四边形法则,以及在平行六面体中,体对角线向量等于从同一起点出发的三条棱向量的和.如AC 1→=AB →+AD →+AA 1→.(2)根据数乘向量及三角形或平行四边形法则求解. (1)D [对于①,(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→; 对于②,(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→; 对于③,(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→; 对于④,(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.] (2)[解] ①如图,∵OQ →=PQ →-PO →=PQ →-12(PA →+PC →)=PQ →-12PC →-12PA →,∴y =z =-12.②∵O 为AC 的中点,Q 为CD 的中点, ∴PA →+PC →=2PO →,PC →+PD →=2PQ →, ∴PA →=2PO →-PC →,PC →=2PQ →-PD →, ∴PA →=2PO →-2PQ →+PD →,∴x =2,y =-2.1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.[跟进训练]2.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A .32DB →B .3MG →C .3GM →D .2MG → B [MG →-AB →+AD →=MG →-(AB →-AD →)=MG →-DB → =MG →+BD →=MG →+2MG →=3MG →.]共线问题【例3】 (1)设e 1,e 2是空间两个不共线的向量,已知AB =e 1+k e 2,BC =5e 1+4e 2,DC =-e 1-2e 2,且A ,B ,D 三点共线,实数k =________.(2)如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.[思路探究] (1)根据向量共线的充要条件求解.(2)根据数乘向量及三角形法则,把MN →表示成λCE →的形式,再根据向量共线的充要条件求解.(1)1 [AD →=AB →+BC →+CD →=(e 1+k e 2)+(5e 1+4e 2)+(e 1+2e 2)=7e 1+(k +6)e 2. 设AD →=λAB →,则7e 1+(k +6)e 2=λ(e 1+k e 2),所以⎩⎪⎨⎪⎧λ=7λk =k +6,解得k =1.](2)[解] 法一:因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.法二:因为四边形ABEF 为平行四边形,所以连接AE 时,AE 必过点N . ∴CE →=AE →-AC →=2AN →-2AM → =2(AN →-AM →)=2MN →.所以CE →∥MN →,即CE →与MN →共线.证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线. (1)存在实数λ,使PA →=λPB →成立. (2)对空间任一点O ,有OP →=OA →+tAB →(t ∈R ). (3)对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).[跟进训练]3.如图,在正方体ABCD ­A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F→=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c , 因为A 1E →=2ED 1→,A 1F →=23FC →,所以A 1E →=23A 1D 1→,A 1F →=25A 1C →,所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c ,所以EF →=A 1F →-A 1E →=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,所以E ,F ,B 三点共线.向量共面问题1.什么样的向量算是共面向量?[提示] 能够平移到同一个平面内的向量称为共面向量. 2.能说明P ,A ,B ,C 四点共面的结论有哪些? [提示] (1)存在有序实数对(x ,y ),使得AP →=xAB →+yAC →.(2)空间一点P 在平面ABC 内的充要条件是存在有序实数组(x ,y ,z )使得OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(3)四点中任意两点的方向向量与另外两点的方向向量共线,如PA →∥BC →.3.已知向量a ,b ,c 不共面,且p =3a +2b +c ,m =a -b +c ,n =a +b -c ,试判断p ,m ,n 是否共面.[提示] 设p =x m +y n ,即3a +2b +c =x (a -b +c )+y (a +b -c )=(x +y )a +(-x +y )b +(x -y )c . 因为a ,b ,c 不共面,所以⎩⎪⎨⎪⎧x +y =3,-x +y =2,x -y =1,而此方程组无解,所以p 不能用m ,n 表示, 即p ,m ,n 不共面.【例4】 已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若点M 满足OM →=13OA →+13OB →+13OC →. (1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.[思路探究] (1)根据向量共面的充要条件,即判断是否MA →=xMB →+yMC →;(2)根据(1)的结论,也可以利用OM →=xOA →+yOB →+zOC →中x +y +z 是否等于1.[解] (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1.[变条件]若把本例中条件“OM →=13OA →+13OB →+13OC →”改为“OA →+2OB →=6OP →-3OC →”,点P是否与点A 、B 、C 共面.[解] ∵3OP →-3OC →=OA →+2OB →-3OP →=(OA →-OP →)+(2OB →-2OP →), ∴3CP →=PA →+2PB →,即PA →=-2PB →-3PC →.根据共面向量定理的推论知:点P 与点A ,B ,C 共面.2.[变条件]若把本例条件变成“OP →+OC →=4OA →-OB →”,点P 是否与点A 、B 、C 共面. [解] 设OP →=OA →+xAB →+yAC →(x ,y ∈R ),则OA →+xAB →+yAC →+OC →=4OA →-OB →,∴OA →+x (OB →-OA →)+y (OC →-OA →)+OC →=4OA →-OB →,∴(1-x -y -4)OA →+(1+x )OB →+(1+y )OC →=0,由题意知OA →,OB →,OC →均为非零向量,所以x ,y 满足:⎩⎪⎨⎪⎧ 1-x -y -4=0,1+x =0,1+y =0,显然此方程组无解,故点P 与点A ,B ,C 不共面.3.[变解法]上面两个母题探究,还可以用什么方法判断?[解] (1)由题意知,OP →=16OA →+13OB →+12OC . ∵16+13+12=1,∴点P 与点A 、B 、C 共面. (2)∵OP →=4OA →-OB →-OC →,而4-1-1=2≠1.∴点P 与点A 、B 、C 不共面.解决向量共面的策略1若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →x +y +z =1,然后利用指定向量表示出已知向量,用待定系数法求出参数.2证明三个向量共面或四点共面,需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的.(2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.3.证明(或判断)A ,B ,C 三点共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明A ,B ,C 三点共线.4.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.5.直线的方向向量是指与直线平行或共线的非零向量,一条直线的方向向量有无穷多个,它们的方向相同或相反.6.向量p 与向量a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.1.下列条件中使M 与A ,B ,C 一定共面的是( )A .OM →=2OA →-OB →-OC →B .OM →=15OA →+13OB →+12OC → C .MA →+MB →+MC →=0D .OM →+OA →+OB →+OC →=0C [由MA →+MB →+MC →=0得MA →=-MB →-MC →,故M ,A ,B ,C 共面.]2.已知正方体ABCD ­A 1B 1C 1D 1,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-nAA 1→,则m ,n的值分别为( )A .12,-12B .-12,-12C .-12,12D .12,12A [由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故答案为A.]3.化简:12(a +2b -3c )+5⎝ ⎛⎭⎪⎫23a -12b +23c -3(a -2b +c )=________. 56a +92b -76c [原式=12a +b -32c +103a -52b +103c -3a +6b -3c =⎝ ⎛⎭⎪⎫12+103-3a +⎝ ⎛⎭⎪⎫1-52+6b +⎝ ⎛⎭⎪⎫-32+103-3c =56a +92b -76c .]4.给出下列四个命题:①方向相反的两个向量是相反向量;②若a,b满足|a|>|b|且a,b同向,则a>b;③不相等的两个空间向量的模必不相等;④对于任何向量a,b,必有|a+b|≤|a|+|b|.其中正确命题的序号为________.④[对于①,长度相等且方向相反的两个向量是相反向量,故①错;对于②,向量是不能比较大小的,故不正确;对于③,不相等的两个空间向量的模也可以相等,故③错;只有④正确.]5.设两非零向量e1,e2不共线,且k e1+e2与e1+k e2共线,求k的值.[解]∵两非零向量e1,e2不共线,且k e1+e2与e1+k e2共线,∴k e1+e2=t(e1+k e2),则(k-t)e1+(1-tk)e2=0.∵非零向量e1,e2不共线,∴k-t=0,1-kt=0,解得k=±1.。

3.2立体几何中的向量方法第3课时 空间向量与空间角 教案(人教A版选修2-1)

3.2立体几何中的向量方法第3课时 空间向量与空间角 教案(人教A版选修2-1)

第3课时空间向量与空间角●三维目标1.知识与技能(1)理解直线与平面所成角的概念.(2)能够利用向量方法解决线线、线面、面面的夹角求法问题.(3)体会空间向量解决立体几何问题的三步曲.2.过程与方法经历规律方法的形成推导过程、解题的思维过程,体验向量的指导作用.3.情感、态度与价值观通过学习向量及其运算由平面向空间推广的过程,逐步认识向量的科学价值、应用价值和文化价值,提高学习数学的兴趣,树立学好数学的信心.●重点难点重点:向量法求解线线、线面、面面的夹角.难点:线线、线面、面面的夹角与向量夹角的关系.(教师用书独具)●教学建议按照传统方法解立体几何题,需要有较强的空间想象能力、演绎推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难.用向量法处理立体几何问题,实现了几何问题代数化,把对空间图形的研究从“定性推理”转化为“定量计算”,即将复杂的几何论证转化为代数运算,从而避免了几何作图,减少了逻辑推理,降低了难度,学生易于操作,容易接受.本节课宜采取的教学方法:(1)诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.(2)分组讨论法:有利于学生进行交流,及时发现问题,解决问题,培养学生的互相合作精神.(3)讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.学法方面,自主探索、观察发现、类比猜想、合作交流.建构主义学习理论认为,学习是学生积极主动的建构知识的过程,学习应该与学生熟悉的背景相联系.在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、归纳、思考、探索、交流、反思、参与学习,认识和理解数学知识、学会学习,发展能力.●教学流程创设问题情境,提出空间中两条异面直线的夹角、直线与平面的夹角、二面角的取值范围各是多少?⇒通过引导学生回答问题,分析空间角大小与向量夹角的关系,并进一步得出用向量求空间角的方法.⇒通过例1及其变式训练,使学生掌握利用向量求异面直线所成角的方法及注意事项.⇒通过例2及其变式训练,使学生掌握利用向量求直线与平面所成的角.⇒通过例3及其变式训练,解决利用向量求二面角问题.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.课标解读1.理解直线与平面所成角的概念.(重点)2.会用向量法求线线、线面、面面夹角.(重点、难点)3.正确区分向量夹角与所求线线角、面面角的关系.(易错点)空间角的向量求法【问题导思】1.空间中两条异面直线所成角的范围是多少?【提示】(0,π2].2.直线与平面的夹角是怎样定义的?夹角的范围是多少?【提示】 平面外一条斜线与它在该平面内的射影所成的角叫斜线与平面所成的角,其取值范围为[0,π2].3.怎样作出二面角α-l -β的平面角?其平面角的取值范围是多少?【提示】 在二面角α-l -β的棱l 上任取一点O ,在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 就是二面角α-l -β的平面角.它的取值范围是[0,π].角的分类向量求法范围 两异面直线l 1与l 2所成的角θ设l 1与l 2的方向向量为a ,b ,则cos θ=|cos a ,b|=|a·b ||a ||b |(0,π2]直线l 与平面α所成的角θ设l 的方向向量为a ,平面α的法向量为n ,则sin θ=|cos a ,n|=|a·n ||a ||n |[0,π2]二面角α-l -β的平面角θ设平面α,β的法向量为n 1,n 2,则|cos θ|=|cos n 1,n 2|=|n 1·n 2||n 1|·|n 2|[0,π]求异面直线所成的角图3-2-17如图3-2-17,在三棱锥V -ABC 中,顶点C 在空间直角坐标系的原点处,顶点A ,B ,V 分别在x 轴、y 轴、z 轴上,D 是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.【自主解答】 由于AC =BC =2,D 是AB 的中点, 所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0)当θ=π3时,在Rt △VCD 中,CD =2,∴V (0,0,6),∴AC →=(-2,0,0),VD →=(1,1,-6), ∴cos 〈AC →,VD →〉=AC →·VD →|AC →||VD →|=-22×22=-24.∴异面直线AC 与VD 所成角的余弦值为24.1.几何法求异面直线的夹角时,需要通过作平行线将异面直线的夹角转化为平面角,再解三角形来求解,过程相当复杂;用向量法求异面直线的夹角,可以避免复杂的几何作图和论证过程只需对相应向量运算即可.2.由于两异面直线夹角θ的范围是(0,π2],而两向量夹角α的范围是[0,π],故应有cosθ=|cos α|,求解时要特别注意.在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,求异面直线A 1B 与B 1C 所成角的余弦值.【解】 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,如图,则A 1(4,0,3),B (4,4,0),B 1(4,4,3),C (0,4,0),得A 1B →=(0,4,-3),B 1C →=(-4,0,-3).设A 1B →与B 1C →的夹角为θ,则cos θ=A 1B →·B 1C →|A 1B →||B 1C →|=925,故A 1B →与B 1C →的夹角的余弦值为925,即异面直线A 1B 与B 1C 所成角的余弦值为925.求线面角图3-2-18(2013·泰安高二检测)如图3-2-18所示,三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB ,BC 的中点.(1)证明:CM ⊥SN ;(2)求SN 与平面CMN 所成角的大小. 【思路探究】 (1)怎样建立坐标系?(2)向量CM →与SN →满足什么关系时有CM ⊥SN 成立? (3)SN →的坐标是多少?平面CMN 的一个法向量怎么求?SN →与平面CMN 的法向量的夹角就是SN 与平面CMN 所成的角吗?【自主解答】 设P A =1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空间直角坐标系(如图).则P (0,0,1),C (0,1,0),B (2,0,0),又AN =14AB ,M 、S 分别为PB 、BC 的中点,∴N (12,0,0),M (1,0,12),S (1,12,0),(1)CM →=(1,-1,12),SN →=(-12,-12,0),∴CM →·SN →=(1,-1,12)·(-12,-12,0)=0,因此CM ⊥SN .(2)NC →=(-12,1,0),设a =(x ,y ,z )为平面CMN 的一个法向量,∴CM →·a =0,NC →·a =0.则⎩⎨⎧x -y +12z =0,-12x +y =0.∴⎩⎪⎨⎪⎧x =2y ,z =-2y . 取y =1,则得a =(2,1,-2). 因为cos a ,SN →=-1-123×22=-22.∴〈a ,SN →〉=34π.所以SN 与平面CMN 所成角为34π-π2=π4.1.本题中直线的方向向量SN →与平面的法向量a 的夹角并不是所求线面角θ,它们的关系是sin θ=|cos 〈SN →,a 〉|.2.若直线l 与平面α的夹角为θ,利用法向量计算θ的步骤如下:如图3-2-19,正方体ABCD -A 1B 1C 1D 1中,E 是C 1C 的中点,求BE 与平面B 1BDD 1所成角的余弦值.图3-2-19【解】 如图,建立空间直角坐标系,设正方体的棱长为2,则B (2,2,0),B 1(2,2,2),E (0,2,1),BD →=(-2,-2,0),BB 1→=(0,0,2),BE →=(-2,0,1).AC →=(-2,2,0)即平面B 1BDD 1的一个法向量,设n =(-1,1,0). cos 〈n ,BE →〉=n ·BE →|n ||BE →|=105.设BE 与平面B 1BD 所成角为θ,cos θ=sin 〈n ,BE →〉=155,即BE 与平面B 1BD 所成角的余弦值为155.求二面角图3-2-20如图3-2-20,若正方形ACDE所在的平面与平面ABC垂直,M是CE和AD 的交点,AC⊥BC,且AC=BC,求二面角A-EB-C的大小.【思路探究】(1)根据已知条件,你能建立空间直角坐标系吗?A、B、C、E、M的坐标分别为多少?(2)怎样用法向量法求二面角A-EB-C的大小?【自主解答】∵四边形ACDE是正方形,∴EA⊥AC.又∵平面ACDE⊥平面ABC,∴EA⊥平面ABC.以点A为坐标原点,以过A点平行于BC的直线为x轴,分别以直线AC,AE为y轴、z轴,建立如图所示的空间直角坐标系Axyz.设EA=AC=BC=2,则A(0,0,0),B(2,2,0),C(0,2,0),E(0,0,2).∵M是正方形ACDE的对角线的交点,∴M(0,1,1).设平面EAB的法向量为n=(x,y,z),则n⊥AE→且n⊥AB→,从而有n·AE→=0且n·AB→=0.又∵AE →=(0,0,2),AB →=(2,2,0),∴⎩⎪⎨⎪⎧ (x ,y ,z )·(0,0,2)=0,(x ,y ,z )·(2,2,0)=0,即⎩⎪⎨⎪⎧z =0,x +y =0.取y =-1,则x =1,则n =(1,-1,0). 又∵AM →为平面EBC 的一个法向量, 且AM →=(0,1,1),∴cos 〈n ,AM →〉=n ·AM →|n ||AM →|=-12.设二面角A -EB -C 的平面角为θ,则cos θ=12,即θ=60°.故二面角A -EB -C 为60°.用向量法求二面角的大小,可以避免作出二面角的平面角这一难点,转化为计算两半平面法向量的夹角问题,具体求解步骤如下:(1)建立空间直角坐标系;(2)分别求出二面角的两个半平面所在平面的法向量; (3)求两个法向量的夹角;(4)判断所求二面角的平面角是锐角还是钝角; (5)确定二面角的大小.图3-2-21已知正三棱柱ABC -A 1B 1C 1的各条棱长均为a ,D 是侧棱CC 1的中点,求平面AB 1D 与平面ABC 所成二面角(锐角)的大小.【解】 以B 为原点,过点B 与BC 垂直的直线为x 轴,BC 所在的直线为y 轴,BB 1所在直线为z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),C (0,a,0),B 1(0,0,a ),C 1(0,a ,a ),A (-32a ,a 2,0),A 1(-32a ,a2,a ),D (0,a ,a2).故AB 1→=(32a ,-a 2,a ),B 1D →=(0,a ,-a 2).设平面AB 1D 的法向量为n =(x ,y ,z ), 则n ·AB 1→=0,n ·B 1D →=0, 即⎩⎨⎧32ax -a 2y +az =0,ay -a2z =0.得x =-3y ,z =2y .取y =1,则n =(-3,1,2). ∵平面ABC 的法向量是AA 1→=(0,0,a ), ∴二面角θ的余弦值为 cos θ=AA 1→·n |AA 1→||n |=22.∴θ=π4.∴平面AB 1D 与平面ABC 所成二面角(锐角)的大小为π4.对所求角与向量夹角的关系不理解致误正方体ABCD —A 1B 1C 1D 1中,求二面角A -BD 1-C 的大小.【错解】 以D 为坐标原点建立如图所示的空间直角坐标系,设正方体的棱长为1, 则D (0,0,0),A 1(1,0,1),C 1(0,1,1).由题意知DA 1→是平面ABD 1的一个法向量,DA 1→=(1,0,1), DC 1→是平面BCD 1的一个法向量,DC 1→=(0,1,1), 所以cos 〈DA 1→,DC 1→〉=DC 1→·DA 1→|DC 1→|·|DA 1→|=12.所以〈DA 1→,DC 1→〉=60°.即二面角A -BD 1-C 的大小为60°.【错因分析】 用法向量的夹角判断二面角的大小时出现错误,根据法向量的方向可知,二面角为钝角,而不是锐角.【防范措施】 利用法向量求二面角时,要注意法向量的夹角与二面角的大小关系是相等或互补,在求出两向量的夹角后,一定要观察图形或判断法向量的方向来确定所求二面角与其相等还是互补.【正解】 以D 为坐标原点建立如图所示的空间直角坐标系, 设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),C 1(0,1,1).由题意知DA 1→=(1,0,1)是平面ABD 1的一个法向量, DC 1→=(0,1,1)是平面BCD 1的一个法向量.所以cos 〈DA 1→,DC 1→〉=DC 1→·DA 1→|DC 1→|·|DA 1→|=12,所以〈DA 1→,DC 1→〉=60°.所以二面角A -BD 1-C 的大小为120°.利用空间向量求空间角的基本思路是把空间角转化为两个向量夹角的关系,解决方法一般有两种,即坐标法和基向量法,当题目中有明显的线面垂直关系时,尽量建立空间直角坐标系,用坐标法解决.需要注意的是要理清所求角与向量夹角之间的关系,以防求错结果.1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( ) A .30° B .150° C .30°或150° D .以上均不对【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且异面直线所成角的范围为(0,π2].应选A.【答案】 A2.已知向量m ,n 分别是直线l 与平面α的方向向量、法向量,若cos 〈m ,n 〉=-32,则l 与α所成的角为( )A .30°B .60°C .150°D .120°【解析】 设l 与α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=32, ∴θ=60°,应选B. 【答案】 B3.已知平面α的法向量u =(1,0,-1),平面β的法向量v =(0,-1,1),则平面α与β所成的二面角的大小为________.【解析】 cos 〈u ,v 〉=-12·2=-12,∴〈u ,v 〉=23π,而所成的二面角可锐可钝,故也可以是π3.【答案】 π3或23π图3-2-224.如图3-2-22直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AC =BC =1,CC 1=2,求直线A 1B 与平面BB 1C 1C 所成角的正弦值.【解】 以CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则B (0,1,0),C 1(0,0,2),A 1(1,0,2).则A 1B →=(-1,1,-2),平面BB 1C 1C 的法向量n =(1,0,0). 设直线A 1B 与平面BB 1C 1C 所成角为θ,A 1B →与n 的夹角为φ, 则cos φ=A 1B →·n |A 1B →||n |=-66,∴sin θ=|cos φ|=66.∴直线A 1B 与平面BB 1C 1C 所成角的正弦值为66.一、选择题1.(2013·济南高二检测)已知A (0,1,1),B (2,-1,0),C (3,5,7),D (1,2,4),则直线AB 与直线CD 所成角的余弦值为( )A.52266 B .-52266 C.52222 D .-52222【解析】 AB →=(2,-2,-1),CD →=(-2,-3,-3), ∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=53×22=52266,∴直线AB 、CD 所成角的余弦值为52266.【答案】 A2.已知A ∈α,P ∉α,P A →=(-32,12,2),平面α的一个法向量n =(0,-12,-2),则直线P A 与平面α所成的角为( )A .30°B .45°C .60°D .150°【解析】 设直线P A 与平面α所成的角为θ,则sin θ=|cos 〈P A →,n 〉|=|0×(-32)-12×12-2×2|(-32)2+(12)2+(2)2·(-12)2+(-2)2=32.∴θ=60°. 【答案】 C3.正方形ABCD 所在平面外一点P ,P A ⊥平面ABCD ,若P A =AB ,则平面P AB 与平面PCD 的夹角为( )A .30°B .45°C .60°D .90°【解】 如图所示,建立空间直角坐标系,设P A =AB =1.则A (0,0,0),D (0,1,0),P (0,0,1).于是AD→=(0,1,0).取PD中点为E,则E(0,12,1 2),∴AE→=(0,12,1 2),易知AD→是平面P AB的法向量,AE→是平面PCD的法向量,∴cos AD→,AE→=22,∴平面P AB与平面PCD的夹角为45°.【答案】 B4.(2013·西安高二检测)一个二面角的两个面分别垂直于另一个二面角的两个面,那么这两个二面角()A.相等B.互补C.相等或互补 D.无法确定【解析】举例说明,如图所示两个二面角的半平面分别垂直,则半平面γ绕轴l旋转时,总有γ⊥β,故两个二面角大小无法确定关系.【答案】 D5.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为()A.60°B.90°C.45°D.以上都不对【解析】以点D为原点,分别以DA,DC,DD1所在直线为x轴、y轴、z轴,建立空间直角坐标系,如图.由题意知,A 1(1,0,2),E (1,1,1),D 1(0,0,2),A (1,0,0),所以A 1E →=(0,1,-1),D 1E →=(1,1,-1),EA →=(0,-1,-1).设平面A 1ED 1的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1E →=0,n ·D 1E →=0⇒⎩⎪⎨⎪⎧y -z =0,x +y -z =0.令z =1,得y =1,x =0,所以n =(0,1,1), cos 〈n ,EA →〉=n ·EA →|n ||EA →|=-22·2=-1.所以〈n ,EA →〉=180°.所以直线AE 与平面A 1ED 1所成的角为90°. 【答案】 B 二、填空题6.(2013·荆州高二检测)棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为A 1B 1、BB 1的中点,则异面直线AM 与CN 所成角的余弦值是________.【解析】 依题意,建立如图所示的坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12), ∴AM →=(0,12,1),CN →=(1,0,12),∴cos 〈AM →,CN →〉=1252·52=25,故异面直线AM 与CN 所成角的余弦值为25.【答案】 25图3-2-237.如图3-2-23,在三棱锥O -ABC 中,OA =OB =OC =1,∠AOB =90°,OC ⊥平面AOB ,D 为AB 的中点,则OD 与平面OBC 的夹角为________.【解析】 ∵OA ⊥平面OBC , ∴OA →是平面OBC 的一个法向量. 而D 为AB 的中点,OA =OB , ∴∠AOD =〈OD →,OA →〉=45°.∴OD 与平面OBC 所成的角θ=90°-45°=45°. 【答案】 45°8.在空间中,已知平面α过(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a >0),如果平面α与平面xOy 的夹角为45°,则a =________.【解析】 平面xOy 的法向量为n =(0,0,1),设平面α的法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧-3x +4y =0,-3x +az =0, 即3x =4y =az ,取z =1,则u =(a 3,a4,1).而cos 〈n ,u 〉=1a 29+a 216+1=22, 又∵a >0,∴a =125.【答案】125三、解答题图3-2-249.如图3-2-24所示,在四面体ABCD 中,O ,E 分别是BD ,BC 的中点,CA =CB =CD =BD =2,AB =AD = 2.(1)求证AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值.【解】 (1)证明 连结OC ,由题意知BO =DO ,AB =AD ,∴AO ⊥BD . 又BO =DO ,BC =CD ,∴CO ⊥BD .在△AOC 中,由已知可得AO =1,CO =3, 又AC =2,∴AO 2+CO 2=AC 2, ∴∠AOC =90°,即AO ⊥OC . ∵BD ∩OC =O ,∴AO ⊥平面BCD . (2)以O 为坐标原点建立空间直角坐标系, 则B (1,0,0),D (-1,0,0),C (0,3,0),A (0,0,1), E (12,32,0), ∴BA →=(-1,0,1),CD →=(-1,-3,0), ∴cos 〈BA →,CD →〉=BA →·CD →|BA →|·|CD →|=24.∴异面直线AB 与CD 所成角的余弦值为24. 10.四棱锥P —ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上.(1)求证:平面AEC ⊥平面PDB ;(2)当PD =2AB 且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.【解】 如图,以D 为原点建立空间直角坐标系Dxyz ,设AB =a ,PD =h ,则 A (a,0,0),B (a ,a,0),C (0,a,0),D (0,0,0),P (0,0,h ), (1)∵AC →=(-a ,a,0),DP →=(0,0,h ),DB →=(a ,a,0), ∴AC →·DP →=0,AC →·DB →=0,∴AC ⊥DP ,AC ⊥DB ,又DP ∩DB =D ,∴AC ⊥平面PDB , 又AC ⊂平面AEC ,∴平面AEC ⊥平面PDB .(2)当PD =2AB 且E 为PB 的中点时,P (0,0,2a ),E (12a ,12a ,22a ),设AC ∩BD =O ,O (a 2,a2,0)连结OE ,由(1)知AC ⊥平面PDB 于O ,∴∠AEO 为AE 与平面PDB 所成的角,∵EA →=(12a ,-12a ,-22a ),EO →=(0,0,-22a ),∴cos ∠AEO =EA →·EO →|EA →|·|EO →|=22,∴∠AEO =45°,即AE 与平面PDB 所成的角的大小为45°.图3-2-2511.如图3-2-25,在长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱BC ,CC 1上的点,CF =AB =2CE ,AB ∶AD ∶AA 1=1∶2∶4.(1)求异面直线EF 与A 1D 所成角的余弦值; (2)证明:AF ⊥平面A 1ED ; (3)求二面角A 1-ED -F 的正弦值.【解】 如图所示,建立空间直角坐标系,点A 为坐标原点,设AB =1,依题意得D (0,2,0),F (1,2,1,)A 1(0,0,4),E (1,32,0).(1)易得EF →=(0,12,1),A 1D →=(0,2,-4).于是cos 〈EF →,A 1D →〉=EF →·A 1D →|EF →||A 1D →|=-35.所以异面直线EF 与A 1D 所成角的余弦值为35.(2)已知AF →=(1,2,1),EA 1→=(-1,-32,4),ED →=(-1,12,0).于是AF →·EA 1→=0,AF →·ED →=0,因此,AF ⊥EA 1,AF ⊥ED ,又EA 1∩ED =E . 所以AF ⊥平面A 1ED .(3)设平面EFD 的法向量u =(x ,y ,z ),则⎩⎪⎨⎪⎧ u ·EF →=0u ·ED →=0,即⎩⎨⎧ 12y +z =0-x +12y =0.不妨令x =1,可得u =(1,2,-1).由(2)可知,AF →为平面A 1ED 的一个法向量.于是cos 〈u ,AF →〉=u ·AF →|u ||AF →|=23, 从而sin 〈u ,AF →〉=53. 所以二面角A 1-ED -F 的正弦值为53.三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)求证AP ⊥BC . (2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.【自主解答】 (1)由AB =AC ,D 是BC 的中点得AD ⊥BC ,因为PO ⊥平面ABC , 又BC ⊂平面ABC ,所以PO ⊥BC ,又PO ∩AD =O ,所以BC ⊥平面P AO ,又AP ⊂平面P AO ,所以BC ⊥AP .(2)存在.以O 为坐标原点,以OD ,OP 所在直线分别为y 轴、z 轴,以过O 点且垂直于面POD 的直线为x 轴,建立如图所示的空间直角坐标系,则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4),所以AP →=(0,3,4),BP →=(-4,-2,4),设PM →=λP A →(λ≠1),则PM →=λ(0,-3,-4),所以BM →=BP →+PM →=BP →+λP A →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0),BC →=(-8,0,0),设平面BMC 的一个法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0, 即⎩⎪⎨⎪⎧ -4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0, 令y 1=4-4λ,得⎩⎪⎨⎪⎧ x 1=0,z 1=2+3λ,可取n 1=(0,4-4λ,2+3λ),由题意知平面AMC 与平面APC 是一个平面,∴设平面APC 的一个法向量为n 2=(x 2,y 2,z 2)则⎩⎪⎨⎪⎧AP →·n 1=0AC →·n 2=0即⎩⎪⎨⎪⎧ 3y 2+4z 2=0-4x 2+5y 2=0. 所以⎩⎨⎧ x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由题意得n 1·n 2=0,即4(4-4λ)-3(2+3λ)=0,解得λ=25,故AM =3. 综上所述,存在点M 符合题意,AM =3.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)求直线BE 和平面ABB 1A 1所成的角的正弦值.(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.【解】 设正方体的棱长为1,如图所示,以AB →,AD →,AA 1→分别为x 轴,y 轴,z 轴建立空间直角坐标系.(1)依题意,得B (1,0,0),E (0,1,12),A (0,0,0),D (0,1,0), 所以BE →=(-1,1,12),AD →=(0,1,0). 在正方体ABCD -A 1B 1C 1D 1中,因为AD ⊥平面ABB 1A 1,所以AD →是平面ABB 1A 1的一个法向量.设直线BE 和平面ABB 1A 1所成的角为θ,则sin θ=|BE →·AD →||BE →|·|AD →|=132×1=23, 即直线BE 和平面ABB 1A 1所成的角的正弦值为23. (2)依题意,得A 1(0,0,1),BA 1→=(-1,0,1),BE →=(-1,1,12). 设n =(x ,y ,z )是平面A 1BE 的一个法向量,则由n ·BA 1→=0,n ·BE →=0,得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0.所以x =z ,y =12z .取z =2,得n =(2,1,2). 设F 是棱C 1D 1上的点,则F (t,1,1)(0≤t ≤1).又B 1(1,0,1),所以B 1F →=(t -1,1,0).而B1F⊄平面A1BE,由已知B1F∥平面A1BE⇔B1F→·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=12⇔F为C1D1的中点.这说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.。

人教A版高中数学选修空间向量及其运算教案人教新课标A

人教A版高中数学选修空间向量及其运算教案人教新课标A

第三章空间向量与立体几何课题:3.1.1空间向量及其运算(一)第课时总序第个教案课型:新授课编写时时间:年月日执行时间:年月日教学目标:教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.批注教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学用具:多媒体,三角板,直尺教学方法:讨论法.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,其长度和方向规定如下:(1)|λa |=|λ||a |(2)当λ>0时,λa 与a 同向;当λ<0时,λa 与a 反向;当λ=0时,λa =0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c )数乘分配律:λ(a +b )=λa +λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.[师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.[师]空间向量的加法、减法、数乘向量各是怎样定义的呢?[生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样: AB OA OB +==a +b ,OA OB AB -=(指向被减向量),=OP λa )(R ∈λ[师]空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律.[生]空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:(a + b ) + c =a + (b +c );(课件验证)⑶数乘分配律:λ(a + b ) =λa +λb .[师]空间向量加法的运算律要注意以下几点:⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:n n n A A A A A A A A A A 11433221=++++-Λ因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量. ⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即: 011433221=+++++-A A A A A A A A A A n n n Λ.⑶两个向量相加的平行四边形法则在空间仍然成立.因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则.例1已知平行六面体''''D C B A ABCD -(如图),化简下列向量表达式,并标出化简结果的向量:;⑴BC AB +;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++ 说明:平行四边形ABCD 平移向量 a 到A’B’C’D’的轨迹所形成的几何体,叫做平行六面体.记作ABCD —A’B’C’D’.平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.解:(见课本P 27)说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.Ⅲ.巩固练习课本P 86 练习Ⅳ. 教学反思平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.关于向量算式的化简,要注意解题格式、步骤和方法.Ⅴ.课后作业⒈课本P 106 1、2、⒉预习课本P 86~P 89,预习提纲:⑴怎样的向量叫做共线向量?⑵两个向量共线的充要条件是什么?⑶空间中点在直线上的充要条件是什么?⑷什么叫做空间直线的向量参数表示式?⑸怎样的向量叫做共面向量?⑹向量p与不共线向量a、b共面的充要条件是什么?⑺空间一点P在平面MAB内的充要条件是什么?教学后记:。

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法学案新人教A版选修2-1(2021年整理)

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法学案新人教A版选修2-1(2021年整理)

(浙江专版)2018年高中数学第三章空间向量与立体几何3.2 立体几何中的向量方法学案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2018年高中数学第三章空间向量与立体几何3.2 立体几何中的向量方法学案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2018年高中数学第三章空间向量与立体几何3.2 立体几何中的向量方法学案新人教A版选修2-1的全部内容。

3。

2 错误!第一课时空间向量与平行、垂直关系预习课本P102~108,思考并完成以下问题1.平面的法向量的定义是什么?2.设直线l的方向向量u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l∥α,l ⊥α的充要条件分别是什么?错误!1.平面的法向量(1)直线的方向向量直线的方向向量是指和这条直线平行或共线的向量.(2)平面的法向量直线l⊥α,取直线l的方向向量a,则a叫做平面α的法向量.2.空间平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔a∥b⇔a=λb ⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔a⊥u⇔a·u=0⇔a1a2+b1b2+c1c2=0.(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔u∥v⇔u =λv⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).3.空间垂直关系的向量表示(1)线线垂直设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b=(b1,b2,b3),则l⊥m⇔a·b=0⇔a1b1+a2b2+a3b3=0。

人教A版高中数学选修第三章立体几何中的向量方法教案新

人教A版高中数学选修第三章立体几何中的向量方法教案新

3.2立体几何中的向量方法空间距离利用向量方法求解空间距离问题,可以回避此类问题中大量的作图、证明等步骤,而转化为向量间的计算问题.例1如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离.分析:由题设可知CG 、CB 、CD 两两互相垂直,可以由此建立空间直角坐标系.用向量法求解,就是求出过B 且垂直于平面EFG 的向量,它的长即为点B 到平面EFG 的距离.解:如图,设=CD 4i ,=CB 4j ,=CG 2k ,以i 、j 、k 为坐标向量建立空间直角坐标系C -xyz .由题设C(0,0,0),A(4,4,0),B(0,4,0),D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2).∴ (2,0,0)BE =u u u r ,(4,2,0)BF =-u u u r,(0,4,2)BG =-u u u u r ,(2,4,2)GE =-u u u r,(2,2,0)EF =-u u u r.设BM ⊥平面EFG ,M 为垂足,则M 、G 、E 、F 四点共面,由共面向量定理知,存在实数a 、b 、c ,使得BM aBE bBF cBG =++u u u u r u u u r u u u r u u u u r(1)a b c ++=,∴ (2,0,0)(4,2,0)(0,4,2)BM a b c =+-+-u u u u r=(2a +4b ,-2b -4c ,2c ).由⊥BM 平面EFG ,得BM GE ⊥,BM EF ⊥,于是0BM GE ⋅=u u u u r u u u r ,0BM EF ⋅=u u u u r u u u r.∴ (24,24,2)(2,4,2)0(24,24,2)(2,2,0)01a b b c c a b b c c a b c +--⋅-=⎧⎪+--⋅-=⎨⎪++=⎩整理得:⎪⎩⎪⎨⎧=++=++=-102305c b a c b a c a ,解得1511711311a b c ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩.∴ BM =(2a +4b ,-2b -4c ,2c )=)116,112,112(. ∴ 222226211||11111111BM ⎛⎫⎛⎫⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭u u u u r故点B 到平面EFG 的距离为11112. 说明:用向量法求点到平面的距离,常常不必作出垂线段,只需利用垂足在平面内、共面向量定理、两个向量垂直的充要条件解出垂线段对应的向量就可以了.例2已知正方体ABCD -''''A B C D 的棱长为1,求直线'DA 与AC 的距离.分析:设异面直线'DA 、AC 的公垂线是直线l ,则线段'AA 在直线l 上的射影就是两异面直线的公垂线段,所以此题可以利用向量的数量积的几何意义求解.解:如图,设=''A B i ,=''C B j ,=B B 'k ,以i 、j 、k 为坐标向量建立空间直角坐标系'B -xyz ,则有'(1,0,0)A ,(1,1,1)D ,(1,0,1)A ,(0,1,1)C .∴ '(0,1,1)DA =--u u u u r ,(1,1,0)AC =-u u u u r ,'(0,0,1)A A =u u u u r.设n (,,)x y z =是直线l 方向上的单位向量,则2221x y z ++=. ∵ n 'DA ⊥,n AC ⊥,∴ ⎪⎩⎪⎨⎧=++=+-=--100222z y x y x z y ,解得33=-==z y x 或33x y z ==-=-.取n 333(,,)333=-,则向量A A '在直线l 上的投影为 n ·A A ')33,33,33(-=·)1,0,0(33-=. 由两个向量的数量积的几何意义知,直线'DA 与AC 的距离为33.向量的内积与二面角的计算在《高等代数与解析几何》课程第一章向量代数的教学中,讲到几何空间的内积时,有一个例题(见[1],p53)要求证明如下的公式:,cos sin sin cos cos cos ϕβαβαθ+= (1)其中点O 是二面角P-MN-Q 的棱MN 上的点,OA 、OB 分别在平面P 和平面Q 内。

人教A版高中同步学案数学选择性必修第一册精品课件 第1章 空间向量与立体几何 空间向量基本定理

人教A版高中同步学案数学选择性必修第一册精品课件 第1章 空间向量与立体几何 空间向量基本定理
【例 2】 如图,在三棱柱 ABC-A'B'C'中,已知'=a, =b, =c,点 M,N 分别
是线段 BC',B'C'的中点,试用基底{a,b,c}表示向量 , .
解 连接 A'N(图略).
=
=
1
+ 2 '
1
+ 2 (
=
1
+ 2 (
1
− )+2 '
+ -
2 2
=
1
+ =-k- j.

1 2 1 2 1 2
|i| + |j| + |k| =3,∴| |=
4
4
4
1 2
4
2 1 2
-- 3 =|k| +9|j| =4+9
=
3.
40
,
9
1+1-1 ·--1
4
2 10
·1
30
2 2 2
3
3
∴|1 |= 3 ,∴cos< , 1 >=
所以 ·1 =a·(b+c)=a·b+a·c.
因为 AA1⊥平面 ABC,∠BAC=90°,所以 a·b=0,a·c=0,得 ·1 =0,则 ⊥
1 ,故 AB⊥AC1.
1 2 3 4
4.(例4对点题)已知空间四边形ABCD,∠ACD=∠BDC=90°,且AB=2,CD=1,
(3)若要求异面直线所成的角,则转化为两向量的夹角(或其补角).
探究点四
应用空间向量基本定理求距离、夹角
问题6选取适当的基底表示未知向量,根据数量积定义,如何求线段的距离

人教A版高中数学选修立体几何中的向量方法教案人教新课标A(1)(1)

人教A版高中数学选修立体几何中的向量方法教案人教新课标A(1)(1)

课题:3.2立体几何中的向量方法(一) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:向量运算在几何证明与计算中的应用.掌握利用向量运算解几何题的方法,并能解简单的立体几何问题. 批 注 教学重点:向量运算在几何证明与计算中的应用. 教学难点: 向量运算在几何证明与计算中的应用.教学用具: 三角板教学方法: 分析,证明教学过程:一、复习引入1. 用向量解决立体几何中的一些典型问题的基本思考方法是:⑴如何把已知的几何条件(如线段、角度等)转化为向量表示; ⑵考虑一些未知的向量能否用基向量或其他已知向量表式; ⑶如何对已经表示出来的向量进行运算,才能获得需要的结论?2. 通法分析:利用两个向量的数量积的定义及其性质可以解决哪些问题呢?⑴利用定义a ·b =|a ||b |cos <a ,b >或cos <a ,b >=a b a b⋅⋅,可求两个向量的数量积或夹角问题;⑵利用性质a ⊥b ⇔a ·b =0可以解决线段或直线的垂直问题;⑶利用性质a ·a =|a |2,可以解决线段的长或两点间的距离问题.二、例题讲解1. 出示例1:已知空间四边形OABC 中,OA BC ⊥,OB AC ⊥.求证:OC AB ⊥.证明:·OC AB =·()OC OB OA - =·OC OB -·OC OA . ∵OA BC ⊥,OB AC ⊥, ∴·0OA BC =,·0OB AC =, ·()0OA OC OB -=,·()0OB OC OA -=. ∴··OA OC OA OB =,··OB OC OB OA =. ∴·OC OB =·OC OA ,·OC AB =0. ∴OC AB ⊥ 2. 出示例2:如图,已知线段AB 在平面α内,线段AC α⊥,线段BD ⊥AB ,线段'DD α⊥,'30DBD ∠=,如果AB =a ,AC =BD =b ,求C 、D 间的距离.解:由AC α⊥,可知AC AB ⊥.由'30DBD ∠=可知,<,CA BD >=120,∴2||CD =2()CA AB BD ++=2||CA +2||AB +2||BD +2(·CA AB +·CA BD +·AB BD ) =22222cos120b a b b +++=22a b +.∴22CD a b =+.3. 出示例3:如图,M 、N 分别是棱长为1的正方体''''ABCD A B C D -的棱'BB 、''B C 的中点.求异面直线MN 与'CD 所成的角.解:∵MN =1(')2CC BC +,'CD ='CC CD +, ∴·'MN CD =1(')2CC BC +·(')CC CD +=12(2|'|CC +'CC CD +·'BC CC +·BC CD ). ∵'CC CD ⊥,'CC BC ⊥,BC CD ⊥,∴'0CC CD =,·'0BC CC =,·0BC CD =,∴·'MN CD =122|'|CC =12. …求得 cos <,'MN CD >12=,∴<,'MN CD >=60.4. 小结:利用向量解几何题的一般方法:把线段或角度转化为向量表示式,并用已知向量表示未知向量,然后通过向量的运算去计算或证明.三、巩固练习 作业:课本P 104 练习 1、2题.教学后记:。

高中数学 第一章 空间向量与立体空间向量研究距离、夹角问题课件 新人教A版选择性必修第一册

高中数学 第一章 空间向量与立体空间向量研究距离、夹角问题课件 新人教A版选择性必修第一册

,1 2
,1 2
,故
PB
DE 0 1 1 0 . 22
所以 PB DE .
由已知 EF PB,且 EF DE E ,所以 PB 平面 EFD.
25
(3)解:已知 PB EF ,由(2)可知 PB DF ,故 EFD 是平面 CPB 与平面
PBD 的夹角. 设点 F 的坐标为 (x ,y ,z) ,则 PF (x ,y ,z 1) .
2
2
设向量 CN 与 MA 的夹角为 ,
则直线 AM 和 CN 夹角的余弦值等于| cos | .
13
步骤二:进行向量运算
CN MA 1 (CA CD) (CA 1 CB)
2
2
1
2
CA
1
CA
CB 1 CD
CA 1 CD
CB
2
4
2
4
11111. 2848 2
又 △ABC 和△ACD 均为等边三角形,所以| MA | | CN | 3 . 2
则 n2 n2
PQ PR
0 0
,所以
2x y
y
2z
z 0
0
,所以
x y
3z 2 2z
.
取 n2
(3,4 ,2) ,则 cos n1 ,n2
n1 n1
n2 (0 ,0 ,1)
n2
1
(3,4 ,2) 2 29 .
29Biblioteka 29步骤三:回到图形问题
设平面
PQR
与平面
A1B1C1 的夹角为
,则 cos

m
(x,
y,
z)
是平面
A1BE
的法向量,则

学高中数学空间向量与立体几何空间向量与空间角教学用书教案新人教A版选修

学高中数学空间向量与立体几何空间向量与空间角教学用书教案新人教A版选修

第3课时空间向量与空间角学习目标核心素养1.会用向量法求线线、线面、面面的夹角.(重点、难点)2.正确区分向量夹角与所求线线角、面面角的关系.(易错点)通过利用空间向量求异面直线所成的角、直线与平面所成的角和二面角的学习,提升学生的逻辑推理、数学运算的核心素养.空间角的向量求法角的分类向量求法范围两异面直线l1与l2所成的角θ设l1与l2的方向向量为a,b,则cos θ==错误!错误!直线l与平面α所成的角θ设l的方向向量为a,平面α的法向量为n,则sin θ==错误!错误!二面角α­l­β的平面角θ设平面α,β的法向量为n1,n2,则|cos θ|==错误![0,π](2)二面角与二面角的两个半平面的法向量所成的角有怎样的关系?[提示] (1)设n为平面α的一个法向量,a为直线a的方向向量,直线a与平面α所成的角为θ,则θ=错误!(2)条件平面α,β的法向量分别为u,υ,α,β所构成的二面角的大小为θ,〈u,υ〉=φ,图形关系θ=φθ=π—φ计算cos θ=cos φcos θ=—cos φ1.如图所示,在正方体ABCD­A1B1C1D1中,M,N,P分别是棱CC1,BC,A1B1上的点,若∠B1MN=90°,则∠PMN的大小是()A.等于90°B.小于90° C.大于90° D.不确定A[A1B1⊥平面BCC1B1,故A1B1⊥MN,则错误!·错误!=(错误!+错误!)·错误!=错误!·错误!+错误!·错误!=0,∴MP⊥MN,即∠PMN=90°.]2.已知二面角α­l­β等于θ,异面直线a,b满足a⊂α,b⊂β,且a⊥l,b⊥l,则a,b所成的角等于()A.θB.π—θC.错误!—θD.θ或π—θD[应考虑0≤θ≤错误!与错误!<θ≤π两种情况.]3.已知向量m,n分别是直线l与平面α的方向向量、法向量,若cos〈m,n〉=—错误!,则l 与α所成的角为()A.30° B.60°C.150° D.120°B[设l与α所成的角为θ,则sin θ=|cos〈m,n〉|=错误!,∴θ=60°,应选B.]4.正方体ABCD­A′B′C′D′中,M,N分别是棱BB′和B′C′的中点,则异面直线MN与AD所成角的大小为________.45°[以错误!,错误!,错误!为正交基底建立空间直角坐标系O­xyz,设正方体棱长为1,则A (1,0,0),M错误!,N错误!,∴错误!=(—1,0,0),错误!=错误!.∵cos〈错误!,错误!〉=错误!=错误!=错误!,∴〈错误!,错误!〉=45°,即MN和AD所成角的大小为45°.]求两条异面直线所成的角【例1】如图,在三棱柱OAB­O1A1B1中,平面OBB1O1⊥平面OAB,∠O1OB=60°,∠AOB =90°,且OB=OO1=2,OA=错误!,求异面直线A1B与AO1所成角的余弦值的大小.[解] 建立如图所示的空间直角坐标系,则O(0,0,0),O1(0,1,错误!),A(错误!,0,0),A1(错误!,1,错误!),B(0,2,0),∴错误!=(—错误!,1,—错误!),错误!=(错误!,—1,—错误!).∴|cos〈错误!,错误!〉=错误!=错误!=错误!.∴异面直线A1B与AO1所成角的余弦值为错误!.1.几何法求异面直线的夹角时,需要通过作平行线将异面直线的夹角转化为平面角,再解三角形来求解,过程相当复杂;用向量法求异面直线的夹角,可以避免复杂的几何作图和论证过程,只需对相应向量进行运算即可.2.由于两异面直线夹角θ的范围是错误!,而两向量夹角α的范围是[0,π],故应有cos θ=|cos α|,求解时要特别注意.错误!1.如图所示,在平行六面体ABCD­A1B1C1D1中,平面ABCD与平面D1C1CD垂直,且∠D1DC=错误!,DC=DD1=2,DA=错误!,∠ADC=错误!,求异面直线A1C与AD1所成角的余弦值.[解] 建立如图所示的空间直角坐标系,则A(错误!,0,0),D1(0,1,错误!),C(0,2,0),D(0,0,0),由错误!=错误!得A1(错误!,1,错误!).因为错误!=错误!—错误!=(—错误!,1,—错误!),错误!=错误!—错误!=(错误!,—1,—错误!).所以cos〈错误!,错误!〉=错误!=错误!=—错误!.所以异面直线A1C与AD1所成角的余弦值为错误!.求直线与平面所成的角PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.思路探究:(1)线面平行的判定定理⇒MN∥平面PAB.(2)利用空间向量计算平面PMN与AN方向向量的夹角⇒直线AN与平面PMN所成角的正弦值.[解] (1)证明:由已知得AM=错误!AD=2.如图,取BP的中点T,连接AT,TN,由N为PC的中点知TN∥BC,TN=错误!BC=2.又AD∥BC,故TN綊AM,所以四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)如图,取BC的中点E,连接AE.由AB=AC得AE⊥BC,从而AE⊥AD,且AE=错误!=错误!=错误!.以A为坐标原点,错误!的方向为x轴正方向,建立如图所示的空间直角坐标系A­xyz.由题意知P(0,0,4),M(0,2,0),C(错误!,2,0),N错误!,错误!=(0,2,—4),错误!=错误!,错误!=错误!.设n=(x,y,z)为平面PMN的法向量,则错误!即错误!可取n=(0,2,1).于是|cos〈n,错误!〉|=错误!=错误!.所以直线AN与平面PMN所成角的正弦值为错误!.若直线l与平面α的夹角为θ,利用法向量计算θ的步骤如下:错误!2.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.[解] (1)证明:由已知可得,BF⊥PF,BF⊥EF,又PF⊂平面PEF,EF⊂平面PEF,且PF∩EF=F,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,错误!的方向为y轴正方向,|错误!|为单位长,建立如图所示的空间直角坐标系H­xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=错误!.又PF=1,EF=2,PF2+PE2=EF2,故PE⊥PF.可得PH=错误!,EH=错误!.则H(0,0,0),P错误!,D错误!,错误!=错误!,错误!=错误!为平面ABFD的法向量.设DP与平面ABFD所成角为θ,则sin θ=错误!=错误!=错误!.所以DP与平面ABFD所成角的正弦值为错误!.求二面角[1.建立空间直角坐标系时,如何寻找共点的两两垂直的三条直线?[提示] 应充分利用题目给出的条件,如线面垂直,面面垂直,等腰三角形等,作出适当的辅助线然后证明它们两两垂直,再建系.2.如何确定二面角与两个平面的法向量所成角的大小关系?[提示] 法一:观察法,通过观察图形,观察二面角是大于错误!,还是小于错误!.法二:在二面角所含的区域内取一点P,平移两个平面的法向量,使它们的起点为P,然后观察法向量的方向,若两个法向量同时指向平面内侧或同时指向外侧,则二面角与法向量的夹角互补,若两个法向量方向相反,则二面角与法向量的夹角相等.【例3】如图,在四棱锥P­ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A­PB­C的余弦值.思路探究:(1)先证线面垂直,再证面面垂直;(2)建立空间直角坐标系,利用向量法求解.[解] (1)证明:由已知∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD.因为AB∥CD,所以AB⊥PD.又AP∩DP=P,所以AB⊥平面PAD.因为AB⊂平面PAB,所以平面PAB⊥平面PAD.(2)在平面PAD内作PF⊥AD,垂足为点F.由(1)可知,AB⊥平面PAD,故AB⊥PF,又AD∩AB=A,可得PF⊥平面ABCD.以F为坐标原点,错误!的方向为x轴正方向,|错误!|为单位长度建立如图所示的空间直角坐标系F­xyz.由(1)及已知可得A错误!,P错误!,B错误!,C错误!,所以错误!=错误!,错误!=(错误!,0,0),错误!=错误!,错误!=(0,1,0).设n=(x1,y1,z1)是平面PCB的一个法向量,则错误!即错误!所以可取n=(0,—1,—错误!).设m=(x2,y2,z2)是平面PAB的一个法向量,则错误!即错误!所以可取m=(1,0,1),则cos〈n,m〉=错误!=错误!=—错误!.所以二面角A­PB­C的余弦值为—错误!.利用坐标法求二面角的步骤设n1,n2分别是平面α,β的法向量,则向量n1与n2的夹角(或其补角)就是二面角的大小,如图.用坐标法解题的步骤如下:(1)建系:依据几何条件建立适当的空间直角坐标系.(2)求法向量:在建立的坐标系下求两个平面的法向量n1,n2.(3)计算:设n1与n2所成锐角θ,cos θ=错误!.(4)定值:若二面角为锐角,则为θ;若二面角为钝角,则为π—θ.错误!3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是错误!的中点.(1)设P是错误!上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E­AG­C的大小.[解] (1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP.又BP⊂平面ABP,所以BE⊥BP.又∠EBC=120°,所以∠CBP=30°.(2)以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,错误!,3),C(—1,错误!,0),故错误!=(2,0,—3),错误!=(1,错误!,0),错误!=(2,0,3).设m=(x1,y1,z1)是平面AEG的一个法向量,由错误!可得错误!取z1=2,可得平面AEG的一个法向量m=(3,—错误!,2).设n=(x2,y2,z2)是平面ACG的一个法向量,由错误!可得错误!取z2=—2,可得平面ACG的一个法向量n=(3,—错误!,—2).所以cos〈m,n〉=错误!=错误!.故所求二面角E­AG­C的角为60°.利用空间向量求空间角的基本思路是把空间角转化为两个向量夹角的关系,解决方法一般有两种,即坐标法和基向量法,当题目中有明显的线面垂直关系时,尽量建立空间直角坐标系,用坐标法解决.需要注意的是要理清所求角与向量夹角之间的关系,以防求错结果.1.如图,在正四棱柱ABCD­A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.错误!B.错误!C.错误!D.错误!D[以D为坐标原点,DA,DC,DD1所在直线为x轴,y轴,z轴建立空间直角坐标系D­xyz(图略),设AB=1.则B(1,1,0),A1(1,0,2),A(1,0,0),D1(0,0,2),错误!=(0,1,—2),错误!=(—1,0,2),cos〈错误!,错误!〉=错误!=错误!=—错误!,∴异面直线A1B与AD1所成角的余弦值为错误!.]2.正方体ABCD­A1B1C1D1中,BB1与平面ACD1所成角的正弦值为()A.错误!B.错误!C.错误!D.错误!B[设正方体的棱长为1,依题意,建立如图所示的坐标系,则A(1,0,0),B(1,1,0),C(0,1,0),D1(0,0,1),B1(1,1,1)∴错误!=(—1,0,1),错误!=(—1,1,0)设平面ACD的法向量为n=(x,y,z),∴错误!令x=1,∴n=(1,1,1),又∵错误!=(0,0,1),∴BB1与平面ACD1所成角的正弦值为错误!=错误!.]3.在一个二面角的两个面内都和二面角的棱垂直的两个向量分别为(0,—1,3),(2,2,4),则这个二面角的余弦值为________.±错误![设a=(0,—1,3),b=(2,2,4),则cos〈a,b〉=错误!=错误!,又因为两向量的夹角与二面角相等或互补,所以这个二面角的余弦值为±错误!.]4.如图所示,直三棱柱ABC­A1B1C1,∠BCA=90°,点F1是A1C1的中点,BC=CA=2,CC=1.1(1)求异面直线AF1与CB1所成角的余弦值;(2)求直线AF1与平面BCC1B1所成的角.[解] (1)如图所示,分别以错误!,错误!,错误!为x,y,z轴的非负半轴建立空间直角坐标系,由BC=CA=2,CC1=1,得A(2,0,0),B(0,2,0),C1(0,0,1),A1(2,0,1),B1(0,2,1).因为F1为A1C1的中点,所以F1(1,0,1).所以错误!=(0,2,1),错误!=(—1,0,1).所以cos〈错误!,错误!〉=错误!=错误!=错误!,即异面直线AF1与CB1所成角的余弦值为错误!.(2)因为三棱柱ABC­A1B1C1为直三棱柱,所以BB1⊥平面ABC,AC⊂平面ABC,所以BB1⊥AC.因为∠BCA=90°,所以BC⊥AC,因为BC∩BB1=B,BC,BB1⊂平面BCC1B1,所以AC⊥平面BCC1B1,所以错误!=(2,0,0)是平面BCC1B1的一个法向量.设直线AF1与平面BCC1B1所成的角为θ,则sin θ=|cos〈错误!,错误!〉|=错误!=错误!,所以θ=错误!,所以直线AF1与平面BCC1B1所成的角为错误!.。

选修2-1第三章 空间向量与立体几何全章教案

选修2-1第三章 空间向量与立体几何全章教案

§3.1 空间向量及其运算§3.1.1空间向量及其加减运算【学情分析】:向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等方面也有着广泛的应用。

在人教A版必修四中,读者已经认知了平面向量,现在,学习空间向量时要注意与平面向量的类比,体会空间向量在解决立体几何问题中的作用。

【教学目标】:(1)知识与技能:理解和掌握空间向量的基本概念,向量的加减法(2)过程与方法:通过高一学习的平面向量的知识,引申推广,理解和掌握向量的加减法(3)情感态度与价值观:类比学习,注重类比、推广等思想方法的学习,运用向量的概念和运算解决问题,培养学生的开拓创新能力。

【教学重点】:空间向量的概念和加减运算【教学难点】:空间向量的应用【课前准备】:Powerpoint课件【教学过程设计】:练习1-3.如图,在三棱柱111C B A ABC -中,M 是1BB 的中点,化简下列各式,并在图中标出化简得到的向量:GC BD AB ++;练习与测试:(基础题)1.举出一些实例,表示三个不在同一平面的向量。

2.说明数字0与空间向量0的区别与联系。

答:空间向量0有方向,而数字0没有方向;空间向量0的长度为0。

3.三个向量a,b,c 互相平行,标出a+b+c. ‘解:分同向与反向讨论(略)。

4.如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA +; (2)121AA CB AC ++; (3)AA --1解:(1)11CA BA CB =+ (2)AM AA CB AC =++121(3)11BA AA =--(中等题)5.如图,在长方体///B D CA OADB -中,3,4,2,OA i OB j OC k ===,点E,F 分别是//,B D DB 的中点,试用向量,,表示和解:j i OE 423+=2423++=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如有你有帮助,请购买下载,谢谢!
教学要求:了解共线或平行向量的概念,掌握表示方法;理解共线向量定理及其推论;掌握空间直线的向量参数方程;会运用上述知识解决立体几何中有关的简单问题. 教学重点:空间直线、平面的向量参数方程及线段中点的向量公式. 教学过程: 一、复习引入
1. 回顾平面向量向量知识:平行向量或共线向量?怎样判定向量b 与非零向量a
是否共
线?
方向相同或者相反的非零向量叫做平行向量.由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量.
向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b =λa .称平面向量共线定理, 二、新课讲授
1.定义:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,
则这些向量叫做共线向量或平行向量.a 平行于b 记作a //b

2.关于空间共线向量的结论有共线向量定理及其推论:
共线向量定理:空间任意两个向量a 、b (b ≠0),a //b
的充要条件是存在实数λ,
使a
=λb .
理解:⑴上述定理包含两个方面:①性质定理:若a ∥b (a ≠0),则有b =λa

其中λ是唯一确定的实数。

②判断定理:若存在唯一实数λ,使b =λa (a
≠0),则有
a ∥
b (若用此结论判断a 、b 所在直线平行,还需a (或b )上有一点不在b (或a
)上).
⑵对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa
|,当λ>0时与a 同向,当λ<0时与a
反向的所有向量.
3. 推论:如果l 为经过已知点A 且平行于已知非零向量a
的直线,那么对于任意一点O ,
点P 在直线l 上的充要条件是存在实数t 满足等式 OP OA t =+a

其中向量a
叫做直线l 的方向向量. 推论证明如下:
∵ l //a ,∴ 对于l 上任意一点P ,存在唯一的实数t ,使得
AP t =a
.(*)
又∵ 对于空间任意一点O ,有AP OP OA =-,
∴ OP OA t -=a , OP OA t =+a
. ①
如有你有帮助,请购买下载,谢谢!
若在l 上取AB =a
,则有OP OA t AB =+.(**)
又∵ AB OB OA =- ∴ ()OP OA t OB OA =+-(1)t OA tOB =-+.② 当1
2t =时,1()2
OP OA OB =+.③
理解:⑴ 表达式①和②都叫做空间直线的向量参数表示式,③式是线段的中点公式.事实上,表达式(*)和(**)既是表达式①和②的基础,也是直线参数方程的表达形式.
⑵ 表达式①和②三角形法则得出的,可以据此记忆这两个公式. ⑶ 推论一般用于解决空间中的三点共线问题的表示或判定. 空间向量共线(平行)的定义、共线向量定理与平面向量完全相同, 是平面向量相关知识的推广.
4. 出示例1:用向量方法证明顺次连接空间四边形四边中点的四边形 是平行四边形. ( 分析:如何用向量方法来证明?)
5. 出示例2:如图O 是空间任意一点,C 、D 是线段AB 的三等分点,分别用OA 、OB 表示OC 、OD .
三、巩固练习: 作业:
教学要求:了解向量与平面平行、共面向量的意义,掌握向量与平面平行的表示方法;理解共面向量定理及其推论;掌握点在已知平面内的充要条件;会用上述知识解决立几中有关的简单问题.
教学重点:点在已知平面内的充要条件.
教学难点:对点在已知平面内的充要条件的理解与运用. 教学过程: 一、复习引入
1. 空间向量的有关知识——共线或平行向量的概念、共线向量定理及其推论以及空间直线的向量表示式、中点公式.
2. 必修④《平面向量》,平面向量的一个重要定理——平面向量基本定理:如果e 1、e 2是同一平面内两个不共线的向量,那么对这一平面内的任意一个向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中不共线向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 二、新课讲授
1. 定义:如果表示空间向量a 的有向线段所在直线与已知平面α平行或在平面α
内,
如有你有帮助,请购买下载,谢谢!则称向量a平行于平面α,记作a//α.
向量与平面平行,向量所在的直线可以在平面内,而直线与平面平
行时两者是没有公共点的.
2. 定义:平行于同一平面的向量叫做共面向量.共面向量不一定是
在同一平面内的,但可以平移到同一平面内.
3. 讨论:空间中任意三个向量一定是共面向量吗?请举例说明.
结论:空间中的任意三个向量不一定是共面向量.例如:对于空间四边形ABCD,AB、AC、AD这三个向量就不是共面向量.
4. 讨论:空间三个向量具备怎样的条件时才是共面向量呢?
5. 得出共面向量定理:如果两个向量a、b不共线,则向量p与向
量a、b共面的充要条件是存在实数对x,y,使得p= x a+y b.
证明:必要性:由已知,两个向量a、b不共线.
∵向量p与向量a、b共面
∴由平面向量基本定理得:存在一对有序实数对x,y,使得p= x a+y b.
充分性:如图,∵x a,y b分别与a、b共线,∴x a,y b都在a、b确定的平面内.
又∵x a+y b是以|x a|、|y b|为邻边的平行四边形的一条对角线所表示的向量,
并且此平行四边形在a、b确定的平面内,
∴ p= x a+y b在a、b确定的平面内,即向量p与向量a、b共面.
说明:当p、a、b都是非零向量时,共面向量定理实际上也是p、a、b所在的三条直
线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所
确定的平面内.
6. 共面向量定理的推论是:空间一点P在平面MAB内的充要条件是存在有序实数对x,
y,使得MP xMA yMB
=++.②=+,①或对于空间任意一定点O,有OP OM xMA yMB
分析:⑴推论中的x、y是唯一的一对有序实数;⑵由OP OM xMA yMB
=++得:
=--++③
OP x y OM xOA yOB
()()
=+-+-,∴(1)
OP OM x OA OM y OB OM
公式①②③都是P、M、A、B四点共面的充要条件.
7. 例题:课本P88例1 ,解略.
小结:向量方法证明四点共面
三、巩固练习
1. 练习:课本P89练习3题.
2. 作业:课本P89练习2题.。

相关文档
最新文档