伺服电机综述
伺服电机知识
伺服电机知识一、伺服电机的原理伺服电机的原理是应用反馈控制的技术来实现对电机的精确控制。
它通过对电机的位置、速度、加速度等参数进行实时监测,并将监测到的数据反馈给控制系统,从而实现对电机的精确控制。
根据反馈控制的原理,伺服电机可以分为位置伺服电机、速度伺服电机和力矩伺服电机等几种类型。
位置伺服电机是利用编码器等装置来实时监测电机的位置,并根据监测到的位置数据来控制电机的运动。
速度伺服电机是利用速度传感器等装置来监测电机的速度,并根据监测到的速度数据来控制电机的转速。
力矩伺服电机是利用力矩传感器等装置来监测电机的扭矩,并根据监测到的扭矩数据来控制电机的扭矩输出。
可以说,伺服电机的原理就是通过反馈控制技术来实现对电机的精确控制,以满足各种不同的运动要求。
二、伺服电机的结构伺服电机的结构主要包括电机本体、编码器、控制器等几个部分。
1. 电机本体:伺服电机的电机本体通常由定子和转子两部分组成。
定子是电机的静止部分,通常由铁芯、线圈等材料组成。
转子是电机的运动部分,通常由永磁体、转子铁芯等材料组成。
电机本体的结构设计直接影响着电机的性能和特性。
2. 编码器:编码器是伺服电机中的一个重要设备,它主要用于监测电机的位置、速度等参数,并将监测到的数据反馈给控制系统。
根据监测的参数不同,编码器可以分为位置编码器、速度编码器等几种类型。
3. 控制器:控制器是伺服电机中的核心部件,它主要用于接收编码器反馈的数据,并根据监测到的数据来控制电机的运动。
控制器的设计和性能直接影响着伺服电机的控制精度和稳定性。
以上是伺服电机的基本结构,不同的应用场合可能会有不同的结构设计。
例如,机器人中的伺服电机通常还会包括减速器、联轴器等辅助部件,以满足机器人对运动精度和可靠性的要求。
三、伺服电机的控制技术伺服电机的控制技术是实现对电机精确控制的关键。
目前,伺服电机的控制技术主要包括位置控制、速度控制和力矩控制等几种类型。
1. 位置控制:位置控制是伺服电机中最基本的控制技术,它主要用于控制电机的位置。
伺服电机知识点总结
伺服电机知识点总结一、伺服电机的概念和原理1. 伺服电机是一种能够通过电子控制系统精确控制旋转角度、转速和位置的电动机,其主要用于需要精确控制位置和速度的机械设备中。
伺服电机的工作原理是通过控制电流和电压来实现精确的位置和速度调节。
2. 伺服电机的原理是基于反馈系统,通过测量输出轴的位置或速度,并将测量结果与期望值进行比较,然后通过调整控制信号来实现调节。
3. 伺服电机通常由电机、编码器、控制器和驱动器四个部分组成。
其中电机负责提供动力,编码器用于测量位置或速度,控制器用于接收输入信号并计算控制信号,而驱动器则用于将控制信号转换为适合电机的电流和电压。
二、伺服电机的特点和优势1. 精确控制:伺服电机能够实现非常精确的位置、速度和转角控制,通常能够达到几千分之一甚至更高的精度。
2. 高性能:伺服电机具有良好的动态特性和响应速度,能够快速进行调节并适应各种工况。
3. 可靠性:伺服电机能够稳定工作在各种环境条件下,并具有较高的寿命和可靠性。
4. 灵活性:伺服电机能够根据不同的应用需求进行灵活的调节和控制,适用范围广。
5. 低能耗:伺服电机能够在工作时根据需要调整功率和能耗,相比传统的电动机能够实现更高的节能效果。
6. 自动化控制:伺服电机可以与各种自动化控制系统集成,实现全面的智能化控制。
三、伺服电机的应用领域1. 机床设备:伺服电机广泛应用于数控机床、加工中心、车床等机械设备中,能够实现精确的切削和加工控制。
2. 包装设备:伺服电机能够在包装机、封口机、打码机等设备中实现高速精准的控制,提高了包装生产效率和质量。
3. 机械手臂:伺服电机可以用于各种类型的机械手臂中,能够实现精确的位置和角度控制,满足不同工厂的自动化生产需求。
4. 自动化设备:伺服电机可以应用于各种自动化生产线,包括装配线、输送线、搬运机等设备中,实现高效的自动化生产。
5. 医疗设备:伺服电机广泛应用于医疗器械、手术机器人等设备中,能够实现高精度的操作和控制。
伺服电机概述范文
伺服电机概述范文伺服电机是一种专用的电动机,具有高精度、高速度控制和高力矩输出的特点。
它广泛应用于自动化控制系统中,包括机器人技术、数控机床、纺织设备、印刷设备、医疗仪器和航空航天设备等领域。
首先,伺服电机的基本原理是通过电流和位置反馈系统来实现精确控制。
它由电机本体、编码器、控制器和驱动器等组成。
电机本体负责转换电能为机械能,编码器用于反馈电机位置信息,控制器根据位置反馈信息计算控制信号,驱动器将控制信号转换为电流输出到电机。
其次,伺服电机具有高精度控制的特点。
通过精确的位置反馈和控制信号计算,伺服电机可以实现非常小的位置偏差和速度波动。
这使得它在需要精确位置控制的应用中非常有优势,例如自动化装配线上的零件定位和玻璃钢机械上的纤维拉伸控制等。
伺服电机还具有高速度控制的特点。
它可以根据控制信号快速调整电机的转速和位置,以适应高速运动和频繁的位置改变。
这使得伺服电机在需要快速响应的应用中非常有效,例如数字摄像机中的自动对焦和机器人上的高速运动控制等。
此外,伺服电机还具有高力矩输出的特点。
根据应用需求,伺服电机可以提供不同的力矩输出,以适应不同的负载要求。
这使得它可以在需要高力矩输出的应用中发挥重要作用,例如数控机床上的切削过程和机械臂上的物体抓取等。
总的来说,伺服电机是一种高性能的电机,具有精确控制、高速度和高力矩输出的特点。
它广泛应用于自动化领域,为各种工业设备和机械系统提供了可靠的运动控制解决方案。
随着技术的不断进步,伺服电机在精密、高速和高力矩方面的性能将进一步提高,为更多领域的应用带来更大的发展空间。
伺服电机知识汇总(直流-交流伺服电机)
伺服电机知识汇总(直流/交流伺服电机)伺服电机servomotor“伺服”一词源于希腊语“奴隶”的意思。
“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动;当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。
伺服电机是自动控制装置中被用作执行元件的微特电机,其功能是将电信号转换成转轴的角位移或角速度。
伺服电机分为交流伺服和直流伺服两大类交流伺服电机的基本构造与交流感应电动机(异步电机)相似。
在定子上有两个相空间位移90°电角度的励磁绕组Wf和控制绕组WcoWf,接恒定交流电压,利用施加到Wc上的交流电压或相位的变化,达到控制电机运行的目的。
交流伺服电机具有运行稳定、可控性好、响应快速、灵敏度高以及机械特性和调节特性的非线性度指标严格(要求分别小于10%~15%和小于15%~25%)等特点。
直流伺服电机基本构造与一般直流电动机相似。
电机转速n=E/K1j=(Ua-IaRa)/K1j,式中E 为电枢反电动势,K为常数,j为每极磁通,Ua、Ia为电枢电压和电枢电流,Ra为电枢电阻,改变Ua或改变φ,均可控制直流伺服电动机的转速,但一般采用控制电枢电压的方法,在永磁式直流伺服电动机中,励磁绕组被永久磁铁所取代,磁通φ恒定。
直流伺服电动机具有良好的线性调节特性及快速的时间响应。
直流伺服电机的优点和缺点优点:速度控制精确,转矩速度特性很硬,控制原理简单,使用方便,价格便宜。
缺点:电刷换向,速度限制,附加阻力,产生磨损微粒(无尘易爆环境不宜)交流伺服电机的优点和缺点优点:速度控制特性良好,在整个速度区内可实现平滑控制,几乎无振荡,90%以上的高效率,发热少,高速控制,高精确度位置控制(取决于编码器精度),额定运行区域内,可。
伺服电机概述
伺服电机概述2.1.1 伺服电机的用途与分类伺服电机(又称为执行电机)是一种应用于运动控制系统中的控制电机,它的输出参数,如位置、速度、加速度或转矩是可控的。
伺服电机在自动控制系统中作为执行元件,把输入的电压信号变换成转轴的角位移或角速度输出。
输入的电压信号又称为控制信号或控制电压,改变控制电压可以变更伺服电机的转速及转向。
伺服电机按其使用的电源性质不同,可分为直流伺服电机的交流伺服电机两大类。
交流伺服电机按结构和工作原理的不同,可分为交流异步伺服电机和交流同步伺服电机。
交流异步伺服电机又分为两相交流异步伺服电机和三相交流异步伺服电机,其中两相交流异步伺服电机又分为笼型转子两相伺服电机和空心杯形转子两相伺服电机等。
同步伺服电机又分为永磁式同步电机、磁阻式同步电机和磁滞式同步电机等。
直流伺服电机有传统型和低惯量型两大类。
直流伺服电机按励磁方式可分为永磁式和电磁式两种。
传统式直流伺服电机的结构形式和普通直流电机基本相同,传统式直流伺服电机按励磁方式可分为永磁式和电磁式两种。
常用的低惯量直流伺服电机有以下几种。
①盘形电枢直流伺服电机。
②空心杯形电枢永磁式直流伺服电机。
③无槽电枢直流伺服电机。
随着电子技术的飞速发展,又出现了采用电子器件换向的新型直流伺服电机。
此外,为了适应高精度低速伺服系统的需要,又出现了直流力矩电机。
在某些领域(例如数控机床),已经开始用直线伺服电机。
伺服电机正在向着大容量和微型化方向发展。
伺服电机的种类很多,本章介绍几种常用伺服电机的基本结构、工作原理、控制方式、静态特性和动态特性等。
2.1.2 自动控制系统对伺服电机的基本要求伺服电机的种类虽多,用途也很广泛,但自动控制系统对它们的基本要求可归结为以下几点。
①宽广的调速范围,即要求伺服电机的转速随着控制电压的改变能在宽广的范围内连续调节。
②机械特性和调节特性均为线性。
伺服电机的机械特性是指控制电压一定时,转速随转矩的变化关系;调节特性是指电机转矩一定时,转速随控制电压的变化关系。
文献综述 基于永磁伺服电机的研究
[12]GUO Ji-feng ,GAO Cun-chen .Design of variable structure controller for uncertain time-delay singular system[J].Journal of Harbin Institute of Technology(New Series),2009,3(16):331-337.
[6]樊冲唐硕.空面导弹模型参考变结构控制器设计[J].科学技术与工程2010,10(13):3077-3080.
[8]李敏,刘和平,陈永刚,刘寻.基于神经网络的滑模控制在水下机器人中的应用[J].河南科技大学学报:自然科学版,2010,31(03):18-21. [9]张庆丰,高峰,王燕,杨庆华.机器人关节滑模变结构的位置控制[J].机电工程,2010,27(10):11-15.
通过对伺服系统第分析,可以用matlab进行仿真[2-3],并进行测试。根据仿真第结果,可以方便得修改系统参数,或者认为第加入不同扰动因素来考察不同实验条件下电机系统的动,静态性能,或者模拟相同的实验条件,比较不同控制策略的优劣,为分析和设计交流异步电机控制系统提供了有效地手段和工具,也为实际电机控制系统的设计和调试提供了新的思路
Thisissue to the motor control,useing the sliding mode control method. Based on variable structure system theory of sliding mode control, realize the robust control methods and conditions. Because the variable structure system is a parameter switchedtype of feedback control system, the biggest difference from the traditional control system is that the system is in the selected state space hyperplanes of the sides, in the transient process of the jump to a way to have a change the structure of the destination control, which causes the sliding mode action, to origin. Because sliding mode movement isrestrainttedin the plane ,so the changes of model parameters movement, nonlinear and outside disturbance noise the system to is not sensitive, and it gets a very strong robustness, andit leads the system to response quickly, and advantages of simple physical realization.
简述伺服电机的工作方式和工作原理
简述伺服电机的工作方式和工作原理
伺服电机是一种将电能转化为机械能的电动机,通过控制器对电机进行精准的位置、速度和力矩的控制。
伺服电机的工作方式有以下几个步骤:
1. 接受指令:控制器通过输入指令,将所需的位置、速度和力矩信息传送给伺服电机。
2. 传感器反馈:伺服电机内置有传感器,可以实时检测电机的转子位置和转速,将检测得到的信号作为反馈信号传输给控制器。
3. 控制器计算:控制器通过计算实际位置和期望位置之间的误差,以及实际速度和期望速度之间的偏差,来确定电机运行的控制策略。
4. 电源供电:控制器会根据计算结果来输出控制信号,让电机驱动器提供所需的电源供电,以驱动电机运动。
5. 精确控制:根据控制信号,电机驱动器会调整电机的电流、电压和频率等参数,来精确控制电机的位置、速度和力矩,以满足控制器的要求。
伺服电机的工作原理基于闭环控制系统,利用反馈信号进行调整,达到精确控制的目的。
它包括电机驱动器、电机、编码器等关键组件。
通过编码器检测电机的实际转动情况,将检测结
果反馈给控制器,控制器利用这些信息与设定值进行对比,产生误差信号并进行处理,输出控制信号控制电机驱动器,使电机按预定的速度、位置和力矩进行运动。
这样,伺服电机实现了高精度、高可靠性的运动控制。
伺服电机的发展及研究综述
129机械装备研发Research & Development of Machinery and Equipment伺服电机的发展及研究综述彭小武,刘江涛,赖德全(西华大学机械工程学院,四川 成都 610039)摘 要:随着社会的不断发展和进步,伺服驱动技术在工业发展中的作用愈加明显。
高速加工技术和以高速、高精度为基础的其他技术的发展,推动了伺服电机的快速发展,世界各国都将其作为发展工业技术的重要战略。
文章针对伺服电机的发展及研究做了综述,希望对我国伺服电机的发展起到一定的推动作用。
关键词:伺服电机;发展;对策中图分类号:TM383.4 文献标志码:A 文章编号:1672-3872(2019)12-0129-01——————————————作者简介: 彭小武(1996—),男,四川成都人,本科,研究方向:机械电子工程。
伺服系统在数控机床、工业机器人、坐标测量机等自动化制造、装配及测量设备中,应用非常广泛,伺服电机是电气伺服系统中的重要执行机构。
在当今快速发展的信息社会下,伺服电机将会朝着数位化、自动化路径发展,使其可以更加多方位地满足在工业发展中的需求[1]。
1 国内发展研究情况由于我国伺服电机的发展相对滞后,因此被欧美和日本的外企占据主要市场份额。
自2013年以来,得益于产业升级带来的积极影响,国内伺服电机自主支撑能力已经形成。
大以内,并有超过20个更大规模的伺[2]。
GM7系列交流伺国只有自主开发和设计专利知识产权和自主设施。
2)广州数控在1997~1999年不断探索,于1999年交流伺服研发成功,填补此产品在国家的空白,将同类国外产品的价格降低50%。
2002年,其被评为国家863重点项目“中档数控系统产业化支撑技术”的承接企业。
2010年,中档数控系统产业化已成为中国市场的主流,建立广州CNC、发那科、西门子三足鼎立局面。
迄今,我国较佳的伺服品牌主要有汇川技术、台达伺服,南京埃斯顿等。
伺服电机毕业论文
伺服电机毕业论文伺服电机毕业论文伺服电机作为一种重要的电动机,具有广泛的应用领域和潜力。
它在工业自动化、机器人技术、航空航天等领域中发挥着重要的作用。
本文将从伺服电机的原理、特点以及应用领域等方面进行探讨,旨在为读者提供一些有关伺服电机的基本知识和理解。
一、伺服电机的原理伺服电机是一种能够根据输入信号控制输出转矩或速度的电动机。
其工作原理基于反馈控制系统,通过传感器获取电机的实际转速或位置信息,然后将其与期望值进行比较,并通过控制器对电机进行调节,使其输出与期望值一致。
这种闭环控制系统可以实现精确的位置和速度控制,提高电机的响应速度和稳定性。
二、伺服电机的特点1. 高精度:伺服电机具有较高的转矩控制精度和位置控制精度,能够实现精确的位置和速度控制,满足高精度要求的应用场景。
2. 高响应速度:伺服电机具有快速的响应特性,能够在短时间内达到设定的转速或位置,适用于需要快速响应的应用场景。
3. 广泛的调速范围:伺服电机的转速范围较宽,可以根据需要进行调速,适用于不同转速要求的场合。
4. 良好的负载适应性:伺服电机具有较好的负载适应性,能够在负载变化时自动调整输出转矩,保持稳定的运行状态。
5. 高效能:伺服电机具有较高的效率,能够将输入的电能转化为机械能的效率较高,减少能源的浪费。
三、伺服电机的应用领域1. 工业自动化:伺服电机广泛应用于工业自动化领域,如数控机床、包装机械、印刷设备等。
其高精度、高响应速度和良好的负载适应性能够满足工业自动化对于位置和速度控制的要求。
2. 机器人技术:伺服电机是机器人技术中不可或缺的关键部件,用于控制机器人的运动和姿态。
其高精度和高响应速度能够实现精确的运动控制,提高机器人的灵活性和准确性。
3. 航空航天:伺服电机在航空航天领域中也有重要的应用,如飞行控制系统、导航系统等。
其高精度和高可靠性能够满足航空航天对于飞行姿态和导航精度的要求。
4. 医疗设备:伺服电机在医疗设备中的应用也逐渐增多,如手术机器人、医疗影像设备等。
伺服系统总结
伺服系统总结伺服系统是一种控制系统,由电机和驱动器组成。
它可以将机械运动与电子控制相结合,实现精确的位置、速度和力控制。
本文将对伺服系统的电机和驱动器进行详细总结。
电机是伺服系统的核心组件,它将电能转化为机械能,驱动机械执行器实现各种运动。
常见的伺服电机有直流无刷电机(BLDC)、步进电机、交流伺服电机等。
不同类型的电机适用于不同的应用场景。
直流无刷电机(BLDC)是一种先进的伺服电机,具有高效、高速、高扭矩和低维护成本的特点。
它通过电子换向器实现自动换向,不需要传统的机械换向器,使得其运行更加平稳和可靠。
BLDC电机的控制方式一般有开环控制和闭环控制两种。
开环控制是指根据电机的电压、电流和转速等参数进行控制,适用于一些简单的应用场景。
闭环控制是在开环控制的基础上加入编码器或传感器,实时监测电机的位置和速度,并进行反馈调整,以实现更精确的控制。
闭环控制广泛应用于需要高精度位置和速度控制的场合,如机床、印刷设备等。
步进电机是一种常见的伺服电机,其工作原理是根据电机的步进角度进行控制。
步进电机的控制方式有全步进和半步进两种。
全步进是每次给电机施加一个步进脉冲,使电机转动一个步进角度。
半步进是在全步进的基础上,通过控制电流的大小和方向,使电机转动一半的角度。
步进电机的优点是结构简单、控制方便,缺点是转速较低,不能实现高速和高精度的运动。
交流伺服电机是一种高性能的伺服电机,具有响应快、精度高和可靠性强的特点。
它通过电子控制器对电机供电进行频率、幅值和相位的调节,从而实现位置和速度的精确控制。
交流伺服电机适用于要求高速和高精度的应用,如机器人、自动化设备等。
驱动器是伺服系统的另一个重要组成部分,它接受来自控制器的信号,并将信号转化为电流或电压,驱动电机实现相应的运动。
驱动器的功能主要包括电源转换、信号放大、电流控制和保护等。
不同类型的电机需要不同的驱动器来实现最佳性能。
在选择驱动器时,需要考虑的因素包括电压和电流的要求、控制方式、保护功能和对外部环境的适应性。
简述伺服电动机的种类特点及应用
简述伺服电动机的种类特点及应用伺服电动机是一种能够精确控制运动位置、速度和加速度的电动机。
它具有高精度、高速度和高可靠性的特点,广泛应用于工业机械、机器人、自动化设备、医疗设备等领域。
根据结构和控制方式的不同,伺服电动机可以分为直流伺服电动机、交流伺服电动机和步进伺服电动机。
1. 直流伺服电动机:直流伺服电动机是应用最广泛的一种伺服电动机。
它的特点是转矩波动小、动态性能好,可以快速响应外部控制信号,适用于高精度、高速度控制的场合。
直流伺服电动机的控制比较简单,通常采用闭环控制系统,通过编码器反馈信号来实时监测电机转速和位置,进而调整电机的电流和电压。
直流伺服电动机的应用非常广泛,如CNC机床、注塑机、纺织机、纸张机械等工业设备,以及医疗设备、机器人、印刷设备等。
它可以实现高速度、高精度的运动控制,满足不同领域的精确定位和稳定运动需求。
2. 交流伺服电动机:交流伺服电动机逐渐取代直流伺服电动机在某些领域的应用,因为它具有结构简单、体积小、维护方便等优点,同时具备较高的动态性能和较大的功率范围。
交流伺服电动机通常采用矢量控制或矢量直流控制方式,通过闭环反馈控制系统来实现位置和速度的精确控制。
交流伺服电动机的应用范围广泛,如自动化机械、半导体设备、食品包装设备、纺织设备等。
它能够实现高精度、高性能的运动控制,在工业生产过程中提高生产效率和产品质量。
3. 步进伺服电动机:步进伺服电动机是将步进电机与伺服控制器相结合的一种电机。
它具有步进电机的精密定位能力和伺服电机的动态性能,能够实现高精度、高分辨率的位置控制。
步进伺服电动机通过闭环控制系统来保证位置的准确性,通常采用编码器或位置传感器来实时反馈位置信息。
步进伺服电动机广泛应用于自动化设备、医疗设备、印刷设备、纺织设备等领域。
它可用于需要高分辨率、高精度定位的场合,如3D打印机、数控雕刻机、纺织机械等。
总的来说,伺服电动机是一种能够实现高精度、高速度和高可靠性运动控制的电动机。
伺服电机销售知识点总结
伺服电机销售知识点总结一、伺服电机的定义和应用伺服电机是一种能够控制位置、速度和加速度的电动机,它通常用于需要高精度、高速度和高转矩的应用领域,如工业自动化、机器人、数控机床、印刷设备和包装机械等。
伺服电机能够根据控制系统的反馈信号,实现精确的位置控制和精密的运动控制,因此在许多高精度的工业应用中得到广泛应用。
二、伺服电机的优势和特点1. 高精度:伺服电机能够实现高精度的运动控制,可以控制位置、速度和加速度,满足精密加工和高精度生产的需求。
2. 高速度:伺服电机具有快速响应和高速度的特点,能够在短时间内完成快速准确的运动。
3. 高转矩:伺服电机具有较高的转矩输出能力,可以驱动额定负载和惯性负载,适用于各种负载要求。
4. 灵活性:伺服电机可以根据不同的控制要求进行自适应调节,能够适应复杂的工作环境和工艺要求。
5. 可靠性:伺服电机采用先进的控制算法和高性能的驱动器设备,具有良好的稳定性和可靠性,能够长时间稳定运行。
6. 可调节性:伺服电机的控制系统可以对参数进行实时调节和优化,能够满足不同工况下的控制需求。
三、伺服电机的类型和规格1. 伺服电机根据控制方式可分为伺服交流电机和伺服直流电机两种类型,其中伺服直流电机通常具有更广泛的应用范围和更灵活的控制方式。
2. 伺服电机的规格包括额定功率、额定转矩、额定转速、惯性质量、电压等参数,并且根据实际的应用要求进行选型和配置。
3. 伺服电机的安装方式包括直联式、法兰式、挂装式等多种方式,能够适应不同的安装环境和空间要求。
4. 伺服电机的控制系统通常包括伺服驱动器、编码器、传感器、控制器等部件,需要根据实际的控制要求进行配置和调试。
1. 随着工业自动化和智能制造的不断发展,伺服电机在机器人、智能制造、自动化设备等领域的应用需求不断增加。
2. 伺服电机市场的需求逐渐向高性能、高精度、高可靠性的产品发展,同时也对产品的成本、功率密度和节能性能提出了更高的要求。
3. 伺服电机的发展趋势包括高性能、数字化、网络化、智能化和节能化等方向,能够满足不断增长的市场需求和技术创新要求。
伺服电机综述
伺服电机综述luqingsong@摘要:文章对伺服电机及其工作原理进行了简要介绍,并介绍了伺服控制系统同时分析了国内外伺服电机的研究现状。
关键词:伺服电机伺服系统研究现状1伺服电机简介伺服电机(servo motor)是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。
伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。
伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。
[1]2伺服电机工作原理伺服电机在控制系统的控制下,实现相应的动作,其相应的命令就是输入的电压信号,一般由单片机提供,有几伏电压到几千伏电压驱动的伺服电机,伺服电机通过接受到的电压信号,识别信号的占空比,从而实现伺服电机的转速的输出控制,伺服电机把输入的电压信号转换为伺服电机的转矩,其占空比比较大,时间常数相应比较小,能够快速的响应,其归根结底则是根据输入的信号电平转化为伺服电机电机轴的角位移或者角速度输出,达到信号旋转驱动后面负载的元器件的功能,其作为一个动力驱动源,应用很广泛。
伺服电机一般度较小,现今使用的多为交流伺服电机,交流伺服电机有着优良的特性,体积小,执行相应时间小,其功率值的调动范围很大,相对于交流伺服电机而言直流伺服电机体积比较大,其执行的精度虽高,但在成本和实用下,性能比远远低于交流伺服电机。
现如今,工业企业等大小的实验,均采用的是交流伺服电机,交流伺服电机分为同步交流伺服电机和异步交流伺服电机。
交流伺服电机采用的是单片机输入的PWM脉宽数,执行相应的反应动作,交流伺服电机通过接收到的PWM脉宽数,执行电机的主轴输出轴的转速的控制。
伺服电机概述
伺服电机(Servo Motor)伺服电机定义转速和转矩受输入信号控制,并能快速反应,在自动控制系统中做执行元件的一种补助马达间接变速装置。
特点:控制信号消失,立即停止转动。
伺服电机分类直流伺服电机交流伺服电机直流伺服电机结构和工作原理伺服电机接收到一个脉冲,就会旋转相应的角度;伺服电机本身具备发出脉冲的功能,每旋转一定的角度,都会发出对应数量的脉冲。
通过对比发出和接受的脉冲可以实时控制监控调整伺服电机的转动。
这样,形成了闭环,就能够很精确的控制电机的转动,从而实现精确的定位。
交流伺服电机结构和工作原理内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度(线数)。
伺服电机产品高性能的电伺服系统大多采用永磁同步交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。
典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。
交流伺服系统的加速性能较好,从静止加速到其额定转速需几毫秒,可用于要求快速启停的控制场合。
伺服电机选型计算方法1、确认转速和编码器分辨率。
2、计算电机轴上负载力矩的折算和加减速力矩。
3、计算负载惯量,惯量的匹配。
4、再生电阻的计算和选择。
5、电缆选择。
伺服电机安装使用1、确保在安装和运转时加到伺服电机轴上的径向和轴向负载控制在每种型号的规定值以内。
2、在安装一个刚性联轴器时要格外小心,特别是过度的弯曲负载可能导致轴端和轴承的损坏或磨损。
最好用柔性联轴器,以便使径向负载低于允许值。
3、在安装/拆卸耦合部件到伺服电机轴端时,不要用锤子直接敲打。
4、竭力使轴端对齐到最佳状态(对不好可能导致振动或轴承损坏)。
伺服电机惯量匹配在伺服系统选型和调配过程中,要计算机械系统换算到伺服电机轴的转动惯量,选择合适的型号,调试时设置合适的惯量比参数。
伺服电机是什么
伺服电机是什么
伺服电机是一种具有闭环控制功能的电机,能够精确控制转速和位置。
它由电机本体、编码器、控制器和功率放大器等部分组成,通过这些部件的协调工作实现精准的位置控制。
工作原理
伺服电机的工作原理基于电磁感应和反馈控制的原理。
当控制器发送控制信号给伺服电机时,电机根据编码器的反馈信号调整自身的转速和位置,确保与设定值的一致性。
应用领域
伺服电机广泛应用于自动化设备、机器人、医疗设备、航空航天等领域。
由于其高精度、高响应速度和稳定性,被视为控制精度要求较高的设备的首选。
优势
相比于普通电机,伺服电机具有以下优势:
1.精准控制:能够实现高精度的位置控制,适用于需要精准定位的应
用场景。
2.高动态响应:响应速度快,能够快速调整转速和位置。
3.稳定性强:通过反馈机制实时调整,保持稳定性和准确性。
4.节能环保:效率高,能够节约能源并减少排放。
结语
伺服电机在现代工业自动化领域中扮演着重要角色,其优越的性能使其成为众多应用的首选。
通过不断创新和改进,伺服电机在各个领域的应用将得到进一步扩大和提升。
伺服电机相关知识点总结
伺服电机相关知识点总结一、工作原理1. 构成要素伺服电机主要由电机本体、编码器、控制器和电源组成。
其中电机本体是用来提供驱动力的核心部件,编码器用来测量电机转动的位置和速度,控制器通过对编码器反馈信号的处理和输入信号进行比较计算,控制电机输出所需的位置、速度和力,电源则为整个系统提供电能。
2. 工作原理伺服电机主要通过控制器对电机的输出信号进行监控和调节,使其按照要求的位置、速度和力进行运动。
当接收到输入信号后,控制器会根据编码器反馈的实际状态和输入信号进行计算,然后输出相应的控制信号给电机,以调整电机的转速和转动位置,从而达到控制所需的运动状态。
二、特点1. 高精度伺服电机具有高精度的运动控制能力,可以实现高速运动和高精度的定位。
这使得它在需要精准位置控制的场合下具有重要应用价值,比如数控机床、印刷设备等领域。
2. 高可靠性伺服电机采用闭环控制系统,具有良好的抗干扰能力和自动调节能力,可对系统的参数进行在线调整,能够保证系统在不同负载、速度和环境条件下都能稳定、可靠地工作。
3. 高响应速度伺服电机的响应速度很快,能够在微秒级的时间内对输入信号作出快速准确的反应,因此它适用于需要高速反应的控制系统,比如自动装配线、机器人等。
4. 高功率密度伺服电机的功率密度较高,具有较小的体积和重量,因此适用于限定空间内的应用场合。
5. 多种控制模式伺服电机支持位置控制、速度控制和力控制等多种控制模式,能够满足不同应用场合的需求。
三、应用领域1. 机器人伺服电机在工业机器人、服务机器人和特种机器人等各种类型的机器人中得到广泛应用,用于实现机器人的各种运动功能,如运动控制、夹持操作、轨迹规划等。
2. 自动化装配线伺服电机在汽车工业、电子工业、食品包装等领域的自动化装配线上得到广泛应用,用于控制输送带、机械手、夹具等设备的运动。
3. 数控机床伺服电机在数控机床的主轴、进给系统和切削运动等方面得到广泛应用,能够实现高速、高精度的工件加工。
伺服电机的种类和优缺点
伺服电机的种类和优缺点伺服电机是一种用于控制系统中的电动机,具有精确的位置控制和速度调节功能。
根据不同的工作原理和使用场景,伺服电机可以分为几种不同的类型。
本文将介绍伺服电机的种类和各自的优缺点。
一、直流伺服电机(DC Servo Motor)直流伺服电机是最常见的伺服电机之一,由直流电源驱动。
这种电机结构简单,成本较低,适用于一些中低端的控制系统。
直流伺服电机响应速度较快,控制精度较高,可以实现较为精确的位置控制。
然而,直流伺服电机需要定期维护,且有一定的磨损和寿命限制。
二、交流伺服电机(AC Servo Motor)交流伺服电机采用交流电源供电,并通过调整电源频率和电压来实现速度和位置控制。
这种电机结构复杂,成本较高,但在高精度和高性能的应用中表现出色。
交流伺服电机具有较大的输出扭矩和过载能力,稳定性较好,适用于一些对运动平稳性和响应速度要求较高的场合。
三、步进伺服电机(Stepper Servo Motor)步进伺服电机是一种特殊的伺服电机,通过逐步驱动电机转子来控制位置和速度。
步进伺服电机具有良好的低速性能和高精度,适用于一些要求定位准确性的应用场景。
然而,步进伺服电机的最大缺点是只能以离散的步进方式进行轴的旋转,对于部分应用来说,这种离散控制不够平滑。
四、直线伺服电机(Linear Servo Motor)直线伺服电机是一种将转动运动转换为直线运动的伺服电机。
它具有较高的加速度和响应速度,能够实现精确的位置控制,并且在一些直线运动控制领域有着广泛的应用。
直线伺服电机精度高、噪音低,但成本较高,安装和维护也相对复杂一些。
五、柔性伺服电机(Flexible Servo Motor)柔性伺服电机是近年来发展起来的一种新型伺服电机。
它采用柔性材料作为传动部件,具有较高的运动自由度和灵活性,可以实现对复杂曲线轨迹的控制。
柔性伺服电机结构紧凑,适用于一些有限空间或者特殊形状要求的场景。
然而,柔性伺服电机技术还在不断发展中,需要进一步验证其可靠性和稳定性。
伺服电机_精品文档
伺服电机概述伺服电机是一种具有较高控制精度和快速响应的电动机。
它们常用于需要精确位置控制和速度调节的应用中,例如工业机器人、自动化设备、医疗设备等。
本文将介绍伺服电机的工作原理、分类、应用领域以及一些常见的优缺点。
工作原理伺服电机使用闭环控制系统,通过传感器对电机的位置、速度和加速度进行反馈,实现对电机的精确控制。
传感器通常是编码器或者霍尔传感器,用于检测电机转子的位置或速度。
当控制器接收到输入信号后,会根据设定的目标位置或速度计算出电机实际应该达到的位置或速度。
然后,控制器会根据传感器的反馈信号对电机进行调节,不断修正电机的输出以使其与设定值保持一致。
分类根据不同的控制方式和应用需求,伺服电机可以分为直流伺服电机和交流伺服电机。
直流伺服电机(DC Servo Motor):直流伺服电机是最常见的伺服电机类型。
它具有较高的动态响应和较为简单的控制方式。
直流伺服电机通常采用直流电源供电,并通过改变电枢电流来控制电机的位置和速度。
交流伺服电机(AC Servo Motor):交流伺服电机适用于需要更高精度和更大功率输出的应用。
它使用交流电源供电,并通过改变交流电压的频率和幅值来控制电机的位置和速度。
应用领域伺服电机广泛应用于各个领域,下面列举了一些典型的应用场景:1. 工业自动化:伺服电机在工业自动化领域中得到了广泛应用,用于驱动机器人、CNC机床、印刷机械等各种自动化设备。
由于伺服电机具有高速响应和高精度的特点,它们能够提供稳定的运动控制和位置定位,满足工业生产的高要求。
2. 医疗设备:伺服电机在医疗设备中起到了至关重要的作用。
例如,手术机器人中的关节和运动部件通常由伺服电机驱动,以提供精确的控制和操作。
3. 无人驾驶车辆:在无人驾驶车辆中,伺服电机用于控制转向系统和刹车系统等关键部件。
伺服电机的高精度控制能够确保车辆的稳定性和安全性。
4. 舞台灯光:伺服电机广泛应用于舞台灯光领域。
通过控制伺服电机的速度和位置,舞台灯光可以实现各种变化和效果,提高演出的视觉效果。
伺服电机结构及工作原理
伺服电机结构及工作原理伺服电机是一种将电能转换为机械能的电动机,它通过控制电机运转的位置、速度和力矩,实现对机器设备的精密控制。
伺服电机一般由电机本体、编码器、控制器和驱动器组成,下面将详细介绍伺服电机的结构和工作原理。
一、伺服电机的结构伺服电机的结构一般包括电机本体、编码器、控制器和驱动器。
1.电机本体:伺服电机的核心部分是电机本体,它是将电能转换为机械能的关键组件。
根据不同的使用要求,伺服电机的电机本体可能是直流电机、交流电机或步进电机,其中最常用的是直流伺服电机和交流伺服电机。
2.编码器:编码器是伺服电机的反馈装置,用于实时感知电机转动的位置信息。
它可以将电机的转动角度或位置转换为电信号输出给控制器,以实时监测电机的运动状态。
3.控制器:控制器是伺服电机的核心控制部件,负责接收来自编码器的反馈信号,并根据设定的控制算法计算出电机的控制信号。
控制器通常由一个微处理器和相关的电路组成,可以实现复杂的控制算法,并且具备良好的实时性和稳定性。
4.驱动器:驱动器是控制器和电机之间的桥梁,将控制器输出的信号转换为适合电机驱动的电流或电压。
驱动器通常由功率放大电路和保护电路组成,能够根据控制信号的变化来控制电机的运转速度和力矩。
二、伺服电机的工作原理伺服电机的工作原理是通过控制器对电机的控制信号进行调整,实现电机的精确控制。
1.位置控制:伺服电机常用的控制方式之一是位置控制。
在位置控制中,控制器接收编码器的位置反馈信号,并根据设定的目标位置和控制算法计算出电机的控制信号。
驱动器将这个信号转换为适合电机驱动的电流或电压,使电机按设定的位置和速度进行运转。
2.速度控制:伺服电机的另一种常用控制方式是速度控制。
在速度控制中,控制器接收编码器的速度反馈信号,并根据设定的目标速度和控制算法计算出电机的控制信号。
驱动器根据这个信号调整电机的输入电压或电流,使电机保持稳定的运行速度。
3.力矩控制:伺服电机还可以通过力矩控制实现对机械设备的精密控制。
伺服电机原理范文
伺服电机原理范文伺服电机是一种能够根据输入的控制信号,以非常精确的方式控制输出轴位置和速度的电动机。
它通过不断监测输出轴的位置和速度,并与预设值进行比较,通过调整电机驱动器的输入信号来实现精确的控制。
伺服电机的原理可以归纳为以下几个关键步骤:1.传感器检测:伺服电机系统通常配备了位置和速度传感器。
位置传感器用于监测输出轴的位置,通常采用光电编码器或霍尔传感器等。
速度传感器用于监测输出轴的转速,通常采用霍尔传感器或编码器等。
传感器通过对电机输出轴进行实时监测,将所得到的位置和速度信息反馈给控制系统。
2.控制系统:控制系统是伺服电机的核心部分,它通过处理传感器反馈的位置和速度信息,并与设定值进行比较,计算出控制误差。
控制系统通常由一个微处理器或PLC以及相应的控制算法组成。
控制系统会根据控制误差计算出驱动器的输入信号,从而控制输出轴的位置和速度。
3.驱动器:驱动器是将控制系统的输出信号转换为电机所需的电流和电压,并将其传递给电机的设备。
驱动器通常由功率放大器、逆变器和电流传感器等组成。
驱动器根据控制系统的指令,控制电机的转矩和速度,使输出轴按照预定的位置和速度移动。
4.反馈控制:伺服电机系统具有闭环反馈控制的特点,即通过反馈传感器实时监测输出轴的位置和速度,并将这些信息返回给控制系统,以实现精确控制。
当输出轴偏离预设值时,控制系统会根据控制算法计算出驱动器的输入信号,通过不断调整电机的控制参数,使输出轴返回到预设值。
5.固定环节:在一些伺服电机系统中,还会包括固定环节,用于固定输出轴的位置和方向。
固定环节通常由制动器或刹车器等组成,可确保输出轴在停止或失去驱动力时能够保持在固定的位置或保持静止。
总的来说,伺服电机通过传感器不断监测输出轴的位置和速度,并将其反馈给控制系统。
控制系统根据传感器反馈的信息计算出控制误差,并通过调整驱动器的输入信号,实现对输出轴位置和速度的精确控制。
这种闭环反馈的控制方式使得伺服电机能够在各种工业应用中实现高精度的位置和速度控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伺服电机综述luqingsong@摘要:文章对伺服电机及其工作原理进行了简要介绍,并介绍了伺服控制系统同时分析了国内外伺服电机的研究现状。
关键词:伺服电机伺服系统研究现状1伺服电机简介伺服电机(servo motor)是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。
伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。
伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。
[1]2伺服电机工作原理伺服电机在控制系统的控制下,实现相应的动作,其相应的命令就是输入的电压信号,一般由单片机提供,有几伏电压到几千伏电压驱动的伺服电机,伺服电机通过接受到的电压信号,识别信号的占空比,从而实现伺服电机的转速的输出控制,伺服电机把输入的电压信号转换为伺服电机的转矩,其占空比比较大,时间常数相应比较小,能够快速的响应,其归根结底则是根据输入的信号电平转化为伺服电机电机轴的角位移或者角速度输出,达到信号旋转驱动后面负载的元器件的功能,其作为一个动力驱动源,应用很广泛。
伺服电机一般度较小,现今使用的多为交流伺服电机,交流伺服电机有着优良的特性,体积小,执行相应时间小,其功率值的调动范围很大,相对于交流伺服电机而言直流伺服电机体积比较大,其执行的精度虽高,但在成本和实用下,性能比远远低于交流伺服电机。
现如今,工业企业等大小的实验,均采用的是交流伺服电机,交流伺服电机分为同步交流伺服电机和异步交流伺服电机。
交流伺服电机采用的是单片机输入的PWM脉宽数,执行相应的反应动作,交流伺服电机通过接收到的PWM脉宽数,执行电机的主轴输出轴的转速的控制。
3伺服电机控制系统简介3.1开环伺服系统开环伺服系统不设置检测反馈装置,不构成运动反馈控制回路,电动机按装置发出的指令脉冲工作,对运动误差没有检测反馈和处理修正过程,采用步进电机作为驱动器件,精度完全取决于步进电动机的步距角精度和机械部分的传动精度,难以达到高精度要求。
步进电动机的转速不可能很高,运动部件的速度受到限制。
但步进电机结构简单、可靠性高、成本低,且其控制电路也简单。
所以开环控制系统多用于精度和速度要求不高的经济型设备。
3.2半闭环伺服系统半闭环伺服系统采用内装于电机内的脉冲编码器,无刷旋转变压器或测速发电机作为位置/速度检测器件来构成半闭环位置控制系统,其系统的反馈信号取自电机轴或丝杆上,进给系统中的机械传动装置处于反馈回路之外,其刚度等非线性因素对系统稳定性没有影响,安装调试比较方便。
定位精度与机械传动装置的精度有关,而数控装置都有螺距误差补偿和间隙补偿等项功能,在传动装置精度不太高的情况下,可以利用补偿功能将加工精度提高到满足的程度。
故半闭环伺服系统在数控机床中应用很广。
3.3全闭环伺服系统闭环伺服系统主要由比较环节、伺服驱动放大器,进给伺服电动机、机械传动装置和直线位移测量装置组成。
对机床运动部件的移动量具有检测与反馈修正功能,采用直流伺服电动机或交流伺服电动机作为驱动部件。
可以采用直接安装在工作台的光栅或感应同步器作为位置检测器件,来构成高精度的全闭环位置控制系统。
系统的直线位移检测器安装在移动部件上,其精度主要取决于位移检测装置的精度和灵敏度,其产生的加工精度比较高。
但机械传动装置的刚度、摩擦阻尼特性、反向间隙等各种非线性因素,对系统稳定性有很大影响,使闭环进给伺服系统安装调试比较复杂。
4国内外研究现状4.1国外国外伺服驱动技术发展的比较早,到20世纪80年代中后期,各公司都已有完整的系列产品。
日本安川日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。
之后又推出M、F、S、H、C、G 六个系列。
20世纪90年代先后推出了新的D系列和R系列。
由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可靠性。
这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足了工作机械、搬运机构、焊接机械人、装配机器人、电子部件、加工机械、印刷机、高速卷绕机、绕线机等的不同需要。
✧日本松下近年日本松下公司推出的全数字型MINAS系列交流伺服系统,其中永磁交流伺服电动机有MSMA系列小惯量型,功率从0.03~5kW,共18种规格;中惯量型有MDMA、MGMA、MFMA三个系列,功率从0.75~4.5kW,共23种规格,MHMA系列大惯量电动机的功率范围从0.5~5kW,有7种规格。
✧德国西门子德国西门子(Siemens)公司的IFT5系列三相永磁交流伺服电动机分为标准型和短型两大类,共8个机座号98种规格。
据称该系列交流伺服电动机与相同输出力矩的直流伺服电动机IHU系列相比,重量只有后者的1/2,配套的晶体管脉宽调制驱动器6SC61系列,最多的可供6个轴的电动机控制。
✧美国科尔摩根I.D.(Industrial Drives)是美国著名的科尔摩根(Kollmorgen)的工业驱动分部,曾生产BR-210、BR-310、BR-510 三个系列共41个规格的无刷伺服电动机和BDS3型伺服驱动器。
自1989年起推出了全新系列设计的掺鹣盗袛(Goldline)永磁交流伺服电动机,包括B(小惯量)、M(中惯量)和EB(防爆型)三大类,有10、20、40、60、80五种机座号,每大类有42个规格,全部采用钕铁硼永磁材料,力矩范围为0.84~111.2N.m,功率范围为0.54~15.7kW。
配套的驱动器有BDS4(模拟型)、BDS5(数字型、含位置控制)和Smart Drive(数字型)三个系列,最大连续电流55A。
Goldline系列代表了当代永磁交流伺服技术最新水平。
4.2国内上世纪90年代末,国产交流伺服电机及其全数字式伺服驱动器基本自主开发成功,但产业化方面比较滞后,尚未形成商品化和批量生产能力,国内对精密交流伺服电机控制系统的需求还主要依赖进口,如日本三菱、松下、富士和德国西门子等。
近几年,华中数控、广州数控、航天数控、兰州电机等的伺服驱动器及电机产品已相继进入产业化阶段,但还主要是集中在数控机床行业,功率规格在400W以上,没有针对整个自动化控制行业形成全系列规格标准产品。
[]近年来国产数控系统厂商加大自主技术研发力度和资金投入,在开发和生产上取得明显进展,国产数控系统市场占有率稳步提高。
为适应数控系统的配套要求,华中数控、广州数控、北京凯奇数控等企业相继开发出交流伺服驱动系统和交流主轴伺服控制系统,完成了20-200A交流伺服系统和与之相配套的交流伺服电机系列型谱的开发,并形成了系列化产品和批量生产能力,2008年国产伺服驱动单元生产超过20万台。
武汉登奇电机、华大电机等企业形成了交流伺服电机规模生产能力,2008年国产伺服电机生产超过40万台。
但是目前国产的伺服电机大多数是仿制国外产品,在技术上没有太多的中国特色。
目前国内在伺服控制技术方面的研究人员的研究工作主要集中在伺服电机原理、误差的分析和产品选型(王勇、许),研究伺服电机的发展方向(宁,刘扬),伺服电机系统建模仿真分析(王永强、黄),伺服电机在检测、生产制造、液压控制等方面的应用研究(姚振、黄俊豪、张友根)。
还很少有创新结构的新型伺服电机研究成果。
5结论伺服电机因其低频特性好,速度响应快,控制精度高,过载能力强,矩频特性佳等优点在工业生产控制领域的应用越来越广泛。
国外的伺服电机技术已十分成熟,有了完整的系列产品,我国运动控制技术的发展主要在近十年,应用普及还在初始阶段,技术水平远远落后于西方。
但随着市场需要和技术的发展,国产伺服电机技术日臻成熟。
参考文献[1]百度百科. 伺服电机[OB/OL]./view/515079.htm?fr=Aladdin, 2013-08-05/2014-11-11. [2]安川電機(中国)有限公司. 伺服驱动[OB/OL]./product/list2sifu.aspx,2014/2014-11-11.[3]苏州世协商贸有限公司. 伺服电机[OB/OL]., 2012/2014-11-11.[4]西门子(中国)有限公司. 伺服电机和主轴电机[OB/OL].https:///drives/cn/zh/electric-motor/Servo-and-main-spindle-motors/Pages/Default.aspx,2014/2014-11-11.[5]国际自动化工业网. 伺服系统[OB/OL]./productCG0000161.shtml,2014/2014-11-11. [6]百度文库. 2011年中国伺服电机市场运行情况分析[OB/OL]./view/fbe9fa2d915f804d2b16c134.html, 2012-03-22/2014-11-11.[7]王勇. 步进电机和伺服电机的比较[J]. 西部煤化工,2010,(2):311-312.[8]许国雄. 伺服电机的运动误差分析[J]. 企业导报,2014,(9).[9]宁蜀悦,王孝伟. 集成永磁伺服电机的发展与现状[J].伺服控制,2014,(6):37-40.[10]刘扬. 浅析伺服电机在自动控制系统中的应用[J]. 科技视界,2014,(18).[11]王永强,张承瑞等. 伺服电动机系统模型参考自适应建模方法[J]. 农业机械学报,2013,4(4):275-279.[12]黄玉钏,曲道奎等. 伺服电机的预测控制与比例-积分-微分控制[J]. 计算机应用,2012,32(10): 2944-2947.[13]姚振,马朝永等. 伺服电机在汽车制动零部件检测中的应用[J]. 机械设计与制造,2011,(1):102-104.[14]黄俊豪,杨鹏等. 伺服电机直驱式电液执行器的研究[J]. 流体传动与控制,2011,(3):5-9.[15]张友根. 注塑机交流伺服电动机驱动液压泵系统的应用及设计研究[J]. 液压气动与密封,2010,(12).。