初中反比例函数和相似三角形综合检测卷附答案
中考数学复习《反比例函数》专项测试卷(带答案)
![中考数学复习《反比例函数》专项测试卷(带答案)](https://img.taocdn.com/s3/m/c788697a66ec102de2bd960590c69ec3d4bbdb72.png)
中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。
反比例函数背景下的全等、相似问题(原卷版)-2023年中考数学重难点解题大招复习讲义-函数
![反比例函数背景下的全等、相似问题(原卷版)-2023年中考数学重难点解题大招复习讲义-函数](https://img.taocdn.com/s3/m/188f651dbc64783e0912a21614791711cc797930.png)
例题精讲考点1反比例函数与全等三角形综合问题【例1】.如图,把一个等腰直角三角形放在平面直角坐标系中,∠ACB=90°,点C(﹣1,0),点B在反比例函数y=的图象上,且y轴平分∠BAC,则k的值是________变式训练【变1-1】.如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠BAC=30°,点A的坐标为(﹣3,0),将△ABC沿直线AC翻折,点B的对应点D 恰好落在反比例函数的图象上,则k的值为()A.B.﹣2C.4D.﹣4【变1-2】.如图,点A是反比例函数y=图象上的一动点,连接AO并延长交图象的另一支于点B.在点A的运动过程中,若存在点C(m,n),使得AC⊥BC,AC=BC,则m,n满足_______(填等量关系)考点2反比例函数与相似三角形综合问题【例2】.如图,在平面直角坐标系中,四边形AOBD的边OB与x轴的正半轴重合,AD∥OB,DB⊥x轴,对角线AB,OD交于点M.已知AD:OB=2:3,△AMD的面积为4.若反比例函数y=的图象恰好经过点M,则k的值为()A.B.C.D.12变式训练【变2-1】.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,=,则k的值为()A.B.﹣C.﹣D.﹣3【变2-2】.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延=8,则k等于长线交y轴负半轴于E,双曲线的图象经过点A,若S△BEC ()A.8B.16C.24D.28【变2-3】.如图,在等腰△AOB中,AO=AB,顶点A为反比例函数y=(x>0)图象上一点,点B在x轴的正半轴上,过点B作BC⊥OB,交反比例函数y=的图象上于点C,连接OC交AB于点D,若△BCD的面积为2,则k的值为()A.18B.20C.22D.211.如图,AB⊥x轴,B为垂足,双曲线y=(x>0)与△AOB的两条边OA,AB分别相交于C,D两点,OC=CA,且△ABC的面积为3,则k等于()A.4B.2C.3D.12.如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,则k的值为()A.3B.2C.D.43.如图所示,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=﹣(x<0)的图象上,则tan∠BAO的值为()A.B.C.D.4.如图,函数y=﹣(x<0)的图象经过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连接AD.若AD=3,则△ABO的周长为()A.12B.6+C.6+2D.6+25.如图,长方形ABCD的顶点A、B均在y轴的正半轴上,点C在反比例函数y=(x>0)的图象上,对角线DB的延长线交x轴于点E,连接AE,已知S△ABE=1,则k的值是()A.1B.C.2D.46.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P,若OP=,则k的值为.7.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为.8.在平面直角坐标系xOy中,点A,B在反比例函数y=(x>0)的图象上,且点A与点B关于直线y=x对称,C为AB的中点,若AB=4,则线段OC的长为.9.如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为.10.如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y =图象上,且y轴平分∠ACB,求k=.11.如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=.12.如图,在平面直角坐标系中,∠OAB=60°,∠AOB=90°,反比例函数y1=的图象经过点A,反比例函数y2=﹣的图象经过点B,则m的值为.13.如图,线段OA与函数y=(x>0)的图象交于点B,且AB=2OB,点C也在函数y =(x>0)图象上,连结AC并延长AC交x轴正半轴于点D,且AC=3CD,连结BC,若△BCD的面积为3,则k的值为.14.如图,在平面直角坐标系中,点A、B在函数y=(k>0,x>0)的图象上,过点A作x轴的垂线,与函数y=﹣(x>0)的图象交于点C,连接BC交x轴于点D.若点A的横坐标为1,BC=3BD,则点B的横坐标为.15.如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=(x>0)=6,则k=.的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC16.如图,A为反比例函数(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.过点B作BC⊥OB,交反比例函数(其中x>0)的图象于点C,连接OC交AB于点D,则的值为.17.如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=和y=(k<0)上,=,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为.18.如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=.19.如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于x轴,直线AC交x轴=2,于点E,BC⊥AC,连接BE,反比例函数y=(x>0)的图象经过点D,已知S△BCE 则k的值是.20.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB.过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,则的值为.21.如图,点A在反比例函数第一象限内图象上,点B在反比例函数第三象限内图象上,AC⊥y轴于点C,BD⊥y轴于点D,交于点E,若BO =CE,则k的值为.22.如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数的图象经过线段DC的中点N,若BD =4,则ME的长为.23.如图,平面坐标系中,AB交矩形ONCM于E、F,若=(m>1),且双曲线y==S1,S△OEF=S2,用含m的代数式表示.也过E、F两点,记S△CEF24.如图,在平面直角坐标系中,点P、Q在函数y=(x>0)的图象上,PA、QB分别垂直x轴于点A、B,PC、QD分别垂直y轴于点C、D.设点P的横坐标为m,点Q的纵坐标为n,△PCD的面积为S1,△QAB的面积为S2.(1)当m=2,n=3时,求S1、S2的值;(2)当△PCD与△QAB全等时,若m=3,直接写出n的值.25.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;:S△BOP=1:4,求点P的坐标.(3)若点P在线段AB上,且S△AOP26.如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k >0)的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k=;(2)连接CA、DE与CA是否平行?请说明理由;(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.27.如图,点A和点E(2,1)是反比例函数y=(x>0)图象上的两点,点B在反比例函数y=(x<0)的图象上,分别过点A、B作y较的垂线,垂足分别为点C、D,AC =BD,连接AB交y轴于点F.(1)求k;(2)设点A的横坐标为a,点F的纵坐标为m,求证:am=﹣2.(3)连接CE、DE,当∠CED=90°时,求A的坐标.28.已知在平面直角坐标系xOy中,点A是反比例函数y=(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数y=(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.(1)如图1,过点B作BF⊥x轴,于点F,连接EF.①若k=1,求证:四边形AEFO是平行四边形;②连结BE,若k=4,求△BOE的面积.(2)如图2,过点E作EP∥AB,交反比例函数y=(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.。
初中数学反比例函数基础测试题含答案
![初中数学反比例函数基础测试题含答案](https://img.taocdn.com/s3/m/17af4efdb84ae45c3a358c4e.png)
初中数学反比例函数基础测试题含答案一、选择题1.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x上一点,k 的值是( )A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q , OCQ BDQ ∴∆∆∽,∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+, 6AB =Q ,2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.2.如图,点A 在双曲线4y x =上,点B 在双曲线(0)k y k x=≠上,AB x P 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D【解析】【分析】 过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE 是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形,∵AB=2AC ,∴BC=3AC ,∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4,同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12,∴k=12,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k 的几何意义,作出辅助线,构建矩形是解题的关键.3.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( )A .y =x 2B .y =xC .y =x+1D .1y x = 【答案】D【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数.【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误; B 、y =x 是一次函数k =1>0,y 随x 的增大而增大,错误;C 、y =x+1是一次函数k =1>0,y 随x 的增大而减小,错误;D 、1y x=是反比例函数,图象无语一三象限,在每个象限y 随x 的增大而减小,正确; 故选D .【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.4.如图直线y =mx 与双曲线y=k x交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A.1 B.2 C.3 D.4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=12|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.5.给出下列函数:①y=﹣3x+2:②y=3x;③y=﹣5x:④y=3x,上述函数中符合条件“当x>1时,函数值y随自变量x增大而增大”的是()A.①③B.③④C.②④D.②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;③y=﹣5x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;④y=3x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;故选:B.【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.6.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x =<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( )A .3个B .2个C .1个D .没有【答案】D【解析】【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择.【详解】∵()20y x x =<,过整点(-1,-2),(-2,-1),当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b-≤≤-时图形W增大过程中,图形内没有整点,故选:D.【点睛】此题考查函数图象,根据函数解析式正确画出图象是解题的关键.7.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l与底面半径r之间的函数关系图象大致是()A.B.C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=270180lπ⋅⋅,整理得l=43r(r>0),然后根据正比例函数图象求解.【详解】解:根据题意得2πr=270180lπ⋅⋅,所以l=43r(r>0),即l与r为正比例函数关系,其图象在第一象限.故选A.【点睛】本题考查圆锥的计算;函数的图象.8.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B【解析】【分析】 根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.9.如图,ABDC Y 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【解析】【分析】 过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ABDC QY ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒Q,DCF ABO ∴∆≅∆,,CF BO DF AO ∴== 设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m ++, Q 四边形ACDE 的面积是ABE ∆面积的3倍,11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==Q3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++=Q ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++Q , 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.下列函数:①y=-x ;②y=2x ;③1y x=-;④y=x 2 . 当x<0时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】【分析】分别根据一次函数、反比例函数及二次函数的性质进行逐一判断即可.【详解】一次函数y =-x 中k <0,∴y 随x 的增大而减小,故本选项正确;∵正比例函数y =2x 中,k =2,∴当x <0时,y 随x 的增大而增大,故本选项错误;∵反比例函数1y x=中,k =-1<0,∴当x <0时函数的图像在第二象限,此时y 随x 的增大而增大,故本选项错误; ∵二次函数y =x 2,中a =1>0,∴此抛物线开口向上,当x <0时,y 随x 的增大而减小,故本选项正确.故选B .【点睛】本题考查的是一次函数、反比例函数及二次函数的性质,解题关键是根据题意判断出各函数的增减性.11.如图,平行于x 轴的直线与函数y =1k x(k 1>0,x >0),y =2k x (k 2>0,x >0)的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为6,则k 1﹣k 2的值为( )A .12B .﹣12C .6D .﹣6【答案】A【解析】【分析】 △ABC 的面积=12•AB•y A ,先设A 、B 两点坐标(其y 坐标相同),然后计算相应线段长度,用面积公式即可求解.【详解】 解:设:A 、B 点的坐标分别是A (1k m ,m )、B (2k m ,m ), 则:△ABC 的面积=12•AB•y A =12•(1k m ﹣2k m )•m =6, 则k 1﹣k 2=12.故选:A .【点睛】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A 、B 两点坐标,表示出相应线段长度即可求解问题.12.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S ∆=,则k 的值为( )A .2B .3C .4D .5【答案】C【解析】【分析】 根据2AOB S ∆=,利用反比例函数系数k 的几何意义即可求出k 值,再根据函数在第一象限可确定k 的符号.【详解】解:由AB x ⊥轴于点B ,2AOB S ∆=,得到122AOB S k ∆== 又因图象过第一象限, 122AOB S k ∆==,解得4k = 故选C【点睛】本题考查了反比例函数系数k 的几何意义.13.反比例函数k y x=在第一象限的图象如图所示,则k 的值可能是( )A .3B .5C .6D .8【答案】B【解析】【分析】 根据点(1,3)在反比例函数图象下方,点(3,2)在反比例函数图象上方可得出k 的取值范围,即可得答案.【详解】∵点(1,3)在反比例函数图象下方,∴k>3,∵点(3,2)在反比例函数图象上方, ∴3k <2,即k<6, ∴3<k<6,故选:B.【点睛】 本题考查了反比例函数的图象的性质,熟记k=xy 是解题关键.14.已知反比例函数k y x=的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ∆的面积为3,则6k=-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命题个数是( ) A .0B .1C .2D .3 【答案】D【解析】【分析】根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案.【详解】 ∵反比例函数k y x=的图象分别位于第二、第四象限, ∴k<0,∵()11,A x y 、()22,B x y 两点在该图象上, ∴y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x , ∴x 1y 1=k ,x 2y 2=k ,①过点A 作AC x ⊥轴,C 为垂足,∴S △AOC =1OC?AC 2=11x ?y k =322=, ∴6k =-,故①正确;②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=,∴()121212120k x x k k y y x x x x ++=+==,故③正确, 故选D.【点睛】 本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键.15.若A (-3,y 1)、B (-1,y 2)、C (1,y 3)三点都在反比例函数y=k x (k >0)的图象上,则y 1、y 2、y 3的大小关系是( )A . y 1>y 2>y 3B . y 3>y 1>y 2C . y 3>y 2>y 1D . y 2>y 1>y 3 【答案】B【解析】【分析】反比例函数y=k x(k >0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y 随x 的增大而减小,而A (-3,y 1)、B (-1,y 2)在第三象限双曲线上的点,可得y 2<y 1<0,C (1,y 3)在第一象限双曲线上的点y 3>0,于是对y 1、y 2、y 3的大小关系做出判断.【详解】∵反比例函数y=k x(k >0)的图象在一、三象限, ∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上,∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上,∴y 3>0,∴y 3>y 1>y 2,故选:B .【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.16.反比例函数21k y x+=的图象上有两点()11,A a y -,()21,B a y +,若12y y <,则a 的取值范围( )A .1a <-B .1a >C .11a -<<D .这样的a 值不存在【答案】C【解析】【分析】由210k +>得出在同一分支上,反比例函数y 随x 的增大而减小,然后结合反比例函数的图象进行求解.【详解】210k +>Q ,∴在同一分支上,反比例函数y 随x 的增大而减小,11a a -<+Q ,12y y <,∴点A ,B 不可能在同一分支上,只能为位于不同的两支上,10a ∴-<且10a +>,11a ∴-<<,故选C .【点睛】本题考查反比例函数的图象与性质,熟练掌握反比例函数的性质是解题的关键,注意反比例函数的图象有两个分支.17.如图,矩形ABCD 的边AB 在x 轴上,反比例函数(0)k y k x=≠的图象过D 点和边BC 的中点E ,连接DE ,若△CDE 的面积是1,则k 的值是( )A .3B .4C .25D .6【答案】B【解析】【分析】 设E 的坐标是m n k mn =(,),, 则C 的坐标是2m n (,),求得D 的坐标,然后根据三角形的面积公式求得mn 的值,即k 的值.【详解】设E 的坐标是m n k mn =(,),,, 则C 的坐标是(m ,2n ),在mn y x = 中,令2y n =,解得:2m x =, ∵1CDE S =V ,∴111,12222m m n m n -=⨯=g 即 ∴4mn =∴4k =故选:B【点睛】本题考查了待定系数法求函数的解析式,利用mn 表示出三角形的面积是关键.18.已知反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限,该交点横坐标为1,抛物线2y ax bx c =++与x 轴只有一个交点,则一次函数b c y x a a=+的图象可能是( ) A . B . C . D .【答案】B【解析】【分析】根据题意得b <0,a+c <0,240b ac =>,可得a <0,c <0,进而即可判断一次函数b c y x a a=+的图象所经过的象限. 【详解】 ∵反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限, ∴反比例函数的图象在二、四象限,即b <0,∵该交点横坐标为1,∴y=a+c <0,∵抛物线2y ax bx c =++与x 轴只有一个交点, ∴240b ac -=,即:240b ac =>,∴a <0,c <0,∴0b a>,0c a >, ∴b c y x a a=+的图象过一、二、三象限. 故选B .【点睛】本题主要考查反比例函数与一次函数的图象和性质,掌握函数图象上点的坐标特征以及函数解析式的系数的几何意义,是解题的关键.19.如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数k yx =在第一象限内的图象经过点D,交BC于点E.若4AB=,2CEBE=,34ADOA=,则线段BC的长度为()A.1 B.32C.2 D.23【答案】B【解析】【分析】设OA为4a,则根据题干中的比例关系,可得AD=3a,CE=2a,BE=a,从而得出点D和点E 的坐标(用a表示),代入反比例函数可求得a的值,进而得出BC长.【详解】设OA=4a根据2CEBE=,34ADOA=得:AD=3a,CE=2a,BE=a∴D(4a,3a),E(4a+4,a)将这两点代入解析得;3444kaakaa⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D、E的坐标,然后代入解析式求解.20.若函数2myx+=的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<2【答案】B【解析】【分析】根据反比例函数的性质,可得m+2<0,从而得出m的取值范围.【详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+2<0,解得m<-2.故选B.。
中考数学总复习《反比例函数综合》专项测试卷(附答案)
![中考数学总复习《反比例函数综合》专项测试卷(附答案)](https://img.taocdn.com/s3/m/3a05d27fb80d6c85ec3a87c24028915f804d8432.png)
中考数学总复习《反比例函数综合》专项测试卷(附答案)(考试时间:90分钟;试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题,每小题3分,共30分)。
1.若点A(1,3)是反比例函数y=(k≠0)图象上一点,则常数k的值为()A.3B.﹣3C.D.2.下列各点中,在反比例函数y=图象上的是()A.(3,1)B.(﹣3,1)C.(3,)D.(,3)3.如果点A(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数图象上的三个点,则下列结论正确的是()A.y1>y3>y2B.y3>y2>y1C.y2>y1>y3D.y3>y1>y24.如图,反比例函数与正比例函数y=ax(a≠0)相交于点和点B,则点B的坐标为()A.B.C.D.5.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞赛人数x的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是()A.甲B.乙C.丙D.丁6.已知反比例函数,下列说法不正确的是()A.图象经过点(﹣3,2)B.图象分别位于第二、四象限内C.在每个象限内y的值随x的值增大而增大D.x≥﹣1时,y≥67.反比例函数y=中,当x>0时,y随x的增大而增大,则m的取值范围是()A.m>B.m<2C.m<D.m>28.如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A、B两点,其中A点的横坐标为3,当y1<y2时,x的取值范围是()A.x<﹣3或x>3B.x<﹣3或0<x<3C.﹣3<x<0或0<x<3D.﹣3<x<0或x>39.在同一平面直角坐标系中,函数y=ax+b与(其中a,b是常数,ab≠0)的大致图象是()A.B.C.D.10.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值是()A.1B.2C.4D.8二、填空题(本题共6题,每小题2分,共12分)。
反比例函数和相似三角形综合题(教师版)
![反比例函数和相似三角形综合题(教师版)](https://img.taocdn.com/s3/m/230bb1167e21af45b307a8ce.png)
反比例函数和相似三角形综合题1.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n与k的值;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y>﹣2时,请直接写出自变量x的取值范围.2.如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A.B两点,与反比例函数y2=的图象分别交于C.D两点,点D(2,﹣3),OA=2.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)直接写出k1x+b﹣≥0时自变量x的取值范围.(3)动点P(0,m)在y轴上运动,当|PC﹣PD|的值最大时,直接写出P点的坐标.3.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交雨点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数解析式;(2)直接写出当>kx+b时x的取值范围;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;若不存在,请说明理由.4.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,▱ABCD 的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M 是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.5.如图1,直线y=﹣x+4与x轴交于点B,与y轴交于点C,交双曲线y=(x <0)于点N,S=10.△OBN(1)求双曲线的解析式.=,求点H的坐标.(2)已知点H是双曲线上一动点,若S△HON(3)如图2,平移直线BC交双曲线于点P,交直线y=﹣6于点Q,连接PC,QB,并延长PC,QB交于第一象限内一点G,若PG=GQ,求平移后的直线PQ的解析式.6.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD;(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.7.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)8.如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.9.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.一.解答题(共9小题)1.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n与k的值;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y>﹣2时,请直接写出自变量x的取值范围.【分析】(1)把A点坐标代入一次函数解析式可求得n,则可求得A点坐标,代入反比例函数解析式则可求得k的值;(2)由一次函数解析式可先求得B点坐标,从而可求得AB的长,则可求得C 点坐标,利用平移即可求得D点坐标;(3)在y=中,当y>﹣2时可求得对应的x的值,结合图象即可求得x的取值范围.【解答】解:(1)把A点坐标代入一次函数解析式可得n=×4﹣3=3,∴A(4,3),∵A点在反比例函数图象上,∴k=3×4=12;(2)在y=x﹣3中,令y=0可得x=2,∴B(2,0),∵A(4,3),∴AB==,∵四边形ABCD为菱形,且点C在x轴正半轴上,点D在第一象限,∴BC=AB=,∴点C由点B向右平移个单位得到,∴点D由点A向右平移个单位得到,∴D(4+,3);(3)由(1)可知反比例函数解析式为y=,令y=﹣2可得x=﹣6,结合图象可知当y>﹣2时,x的取值范围为x<﹣6或x>0.2.如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A.B两点,与反比例函数y2=的图象分别交于C.D两点,点D(2,﹣3),OA=2.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)直接写出k1x+b﹣≥0时自变量x的取值范围.(3)动点P(0,m)在y轴上运动,当|PC﹣PD|的值最大时,直接写出P点的坐标.【分析】(1)把点D的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作DE⊥x轴于E,根据题意求得A的坐标,然后利用待定系数法求得一次函数的解析式;(2)根据图象即可求得k1x+b﹣≥0时,自变量x的取值范围;(3)作C(﹣4,)关于y轴的对称点C'(4,),延长C'D交y轴于点P,由C'和D的坐标可得,直线C'D为y=x﹣,进而得到点P的坐标.【解答】解:(1)∵点D(2,﹣3)在反比例函数y2=的图象上,∴k2=2×(﹣3)=﹣6,∴y2=﹣;如图,作DE⊥x轴于E∵OA=2∴A(﹣2,0),∵A(﹣2,0),D(2,﹣3)在y1=k1x+b的图象上,,解得k1=﹣,b=﹣,∴y=﹣x﹣;(2)由图可得,当k1x+b﹣≥0时,x≤﹣4或0<x≤2.(3)由,解得或,∴C(﹣4,),作C(﹣4,)关于y轴的对称点C'(4,),延长C'D交y轴于点P,∴由C'和D的坐标可得,直线C'D为y=x﹣,令x=0,则y=﹣,∴当|PC﹣PD|的值最大时,点P的坐标为(0,﹣).3.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交雨点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数解析式;(2)直接写出当>kx+b时x的取值范围;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;若不存在,请说明理由.【分析】(1)先根据题意得出P点坐标,再将A、P两点的坐标代入y=kx+b求出kb的值,故可得出一次函数的解析式,把点P(4,2)代入反比例函数y=即可得出m的值,进而得出结论;(2)利用图象法,写出反比例函数图象想一次函数图象的上方的自变量的取值范围即可;(3)根据PB为菱形的对角线与PC为菱形的对角线两种情况进行讨论即可.【解答】解:(1)∵AC=BC,CO⊥AB,A(﹣4,0),∴O为AB的中点,即OA=OB=4,∴P(4,2),B(4,0),将A(﹣4,0)与P(4,2)代入y=kx+b得:,解得:,∴一次函数解析式为y=x+1,将P(4,2)代入反比例解析式得:m=8,即反比例解析式为y=.(2)观察图象可知:>kx+b时x的取值范围0<x<4.(3)如图所示,∵点C(0,1),B(4,0)∴BC==,PC=,∴以BC、PC为边构造菱形,当四边形BCPD为菱形时,∴PB垂直且平分CD,∵PB⊥x轴,P(4,2),∴点D(8,1).把点D(8,1)代入y=,得左边=右边,∴点D在反比例函数图象上.,∵BC≠PB,∴以BC、PB为边不可能构造菱形,同理,以PC、PB为边也不可能构造菱形.综上所述,点D(8,1).4.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M 是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.【分析】(1)先根据非负数的性质求出a、b的值,故可得出A、B两点的坐标,设D(1,t),由DC∥AB,可知C(2,t﹣2),再根据反比例函数的性质求出t的值即可;(2)由(1)知k=4可知反比例函数的解析式为y=,再由点P在双曲线y=上,点Q在y轴上,设Q(0,y),P(x,),再分以AB为边和以AB为对角线两种情况求出x的值,故可得出P、Q的坐标;(3)连NH、NT、NF,易证NF=NH=NT,故∠NTF=∠NFT=∠AHN,∠TNH=∠TAH=90°,MN=HT由此即可得出结论.【解答】解:(1)∵+(a+b+3)2=0,∴,解得:,∴A(﹣1,0),B(0,﹣2),∵E为AD中点,∴x D=1,设D(1,t),又∵DC∥AB,∴C(2,t﹣2),∴t=2t﹣4,∴t=4,∴k=4;(2)∵由(1)知k=4,∴反比例函数的解析式为y=,∵点P在双曲线上,点Q在y轴上,∴设Q(0,y),P(x,),①当AB为边时:如图1,若ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6);如图2,若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3,当AB为对角线时,AP=BQ,且AP∥BQ;∴,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);故P1(1,4),Q1(0,6);P2(﹣1,﹣4),Q2(0,﹣6);P3(﹣1,﹣4),Q3(0,2);(3)的值不发生改变,理由:如图4,连NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,,∴△BFN≌△BHN,∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TNH=360°﹣180°﹣90°=90°.∴MN=HT,∴.5.如图1,直线y=﹣x+4与x轴交于点B,与y轴交于点C,交双曲线y=(x <0)于点N,S=10.△OBN(1)求双曲线的解析式.=,求点H的坐标.(2)已知点H是双曲线上一动点,若S△HON(3)如图2,平移直线BC交双曲线于点P,交直线y=﹣6于点Q,连接PC,QB,并延长PC,QB交于第一象限内一点G,若PG=GQ,求平移后的直线PQ的解析式.【分析】(1)如图1中,作NG⊥x轴于H.由S=•OB•NG,可得×4×NG=10,△NOB推出NG=5,推出N(﹣1,5),由此即可解决问题;(2)如图2中,作NM⊥x轴于M,HE⊥x轴于E.设H(m,﹣).首先证明S△OHN=S梯形NMHE,由此构建方程即可解决问题;(3)首先证明OG垂直平分BC,推出P、Q关于直线OG对称,由点P在y=﹣上,推出点Q也在y=﹣上,又点Q在直线y=﹣6上,可得Q(,﹣6),由此即可解决问题;【解答】解:(1)如图1中,作NG⊥x轴于H.∵直线y=﹣x+4与x轴交于点B,与y轴交于点C,∴B(4,0),C(0,4),=•OB•NG,∵S△NOB∴×4×NG=10,∴NG=5,∴N(﹣1,5),∵反比例函数y=经过点N(﹣1,5),∴k=﹣5,(2)如图2中,作NM ⊥x 轴于M ,HE ⊥x 轴于E .设H (m ,﹣).∵S △HEO =S △NMO ,又∵S 四边形HEON =S △HNO +S △HEO =S △NMO +S 梯形MNHE ,∴S △OHN =S 梯形NMHE , ∴•(5﹣)•|m +1|=,当m <﹣1时,整理得3m 2+8m ﹣3=0,解得m=﹣3或(舍弃),当0>m >﹣1时,整理得3m 2﹣8m ﹣3=0,解得m=﹣或3(舍弃).综上所述,满足条件的点H 的坐标为(﹣3,)或(﹣,15);(3)如图3中,∴∠GPQ=∠GQP,∵BC∥PQ,∴∠GCB=∠GPQ,∠GBC=GQP,∴∠GCB=∠GBC,∴GC=GB,∵OC=OB,∴OG垂直平分BC,∴P、Q关于直线OG对称,∵点P在y=﹣上,∴点Q也在y=﹣上,又∵点Q在直线y=﹣6上,∴Q(,﹣6),设直线PQ的解析式为y=﹣x+b,∴﹣6=﹣+b,∴b=﹣,∴直线PQ的解析式为y=﹣x﹣.6.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD;(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.【分析】(1)根据菱形的性质得出∠DAP=∠PAB,AD=AB,再利用全等三角形的判定得出△APB≌△APD;(2)①首先证明△DFP≌△BEP,进而得出=,=,进而得出=,即=,即可得出答案;②根据①中所求得出PF=PE=4,DP=PB=6,进而得出==,求出即可.【解答】(1)证明:∵点P是菱形ABCD对角线AC上的一点,∴∠DAP=∠PAB,AD=AB,∵在△APB和△APD中,∴△APB≌△APD(SAS);(2)解:①∵△APB≌△APD,∴DP=PB,∠ADP=∠ABP,∵在△DFP和△BEP中,,∴△DFP≌△BEP(ASA),∴PF=PE,DF=BE,∵四边形ABCD是菱形,∴GD∥AB,∴=,∵DF:FA=1:2,∴=,=,∴=,∵=,即=,∴y=x;②当x=6时,y=×6=4,∴PF=PE=4,DP=PB=6,∵==,∴=,解得:FG=5,故线段FG的长为5.7.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)【分析】(1)首先过点D作DF⊥BC,交AB于点F,得出∠BDE=∠ADF,以及∠EBD=∠AFD,再得出△BDE≌△FDA(ASA),求出即可;(2)首先过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE ∽△GDA即可得出答案;(3)首先过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE ∽△GDA即可得出答案.【解答】(1)证明:如图1,过点D作DF⊥BC,交AB于点F,则∠BDE+∠FDE=90°,∵DE⊥AD,∴∠FDE+∠ADF=90°,∴∠BDE=∠ADF,∵∠BAC=90°,∠ABC=45°,∴∠C=45°,∵MN∥AC,∴∠EBD=180°﹣∠C=135°,∵∠BFD=45°,DF⊥BC,∴∠BFD=45°,BD=DF,∴∠AFD=135°,∴∠EBD=∠AFD,在△BDE和△FDA中,∴△BDE≌△FDA(ASA),∴AD=DE;(2)解:DE=AD,理由:如图2,过点D作DG⊥BC,交AB于点G,则∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠BAC=90°,∠ABC=30°,∴∠C=60°,∵MN∥AC,∴∠EBD=180°﹣∠C=120°,∵∠ABC=30°,DG⊥BC,∴∠BGD=60°,∴∠AGD=120°,∴∠EBD=∠AGD,∴△BDE∽△GDA,∴=,在Rt△BDG中,=tan30°=,∴DE=AD;(3)AD=DE•tanα;理由:如图2,∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠EBD=90°+α,∠AGD=90°+α,∴∠EBD=∠AGD,∴△EBD∽△AGD,∴=,在Rt△BDG中,=tanα,则=tanα,∴AD=DE•tanα.8.如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.【分析】(1)根据等腰三角形的性质,可得AM是高线、顶角的角平分线,根据直角三角形的性质,可得∠EAB+∠EBA=90°,根据三角形外角的性质,可得答案;(2)根据三角形中位线的性质,可得MF与AC的关系,根据等量代换,可得MF与BD的关系,根据等腰直角三角形,可得BM与NM的关系,根据等量代换,可得NM与BC的关系,根据同角的余角相等,可得∠CBD与∠NMF 的关系,根据两边对应成比例且夹角相等的两个三角形相似,可得答案.【解答】(1)答:△BMN是等腰直角三角形.证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,AM平分∠BAC.∵BN平分∠ABE,∠EBN=∠ABN.∵AC⊥BD,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∴∠MNB=∠NAB+∠ABN=(∠BAE+∠ABE)=45°.∴△BMN是等腰直角三角形;(2)答:△MFN∽△BDC.证明:∵点F,M分别是AB,BC的中点,∴FM∥AC,FM=AC.∵AC=BD,∴FM=BD,即.∵△BMN是等腰直角三角形,∴NM=BM=BC,即,∴.∵AM⊥BC,∴∠NMF+∠FMB=90°.∵FM∥AC,∴∠ACB=∠FMB.∵∠CEB=90°,∴∠ACB+∠CBD=90°.∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD.∴△MFN∽△BDC.9.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.【分析】(1)△ABC是等腰直角三角形,四边形ADEF是正方形,易证得△BAD ≌△CAF,根据全等三角形的对应边相等,即可证得BD=CF;(2)①由△BAD≌△CAF,可得∠ABM=∠GCM,又由对顶角相等,易证得△BMA ∽△CMG,根据相似三角形的对应角相等,可得BGC=∠BAC=90°,即可证得BD⊥CF;②首先过点F作FN⊥AC于点N,利用勾股定理即可求得AE,BC的长,继而求得AN,CN的长,又由等角的三角函数值相等,可求得AM=AB=,然后利用△BMA∽△CMG,求得CG的长,再由勾股定理即可求得线段BG的长.【解答】解(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°,∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS).∴BD=CF.(2)①证明:设BG交AC于点M.∵△BAD≌△CAF(已证),∴∠ABM=∠GCM.∵∠BMA=∠CMG,∴△BMA∽△CMG.∴∠BGC=∠BAC=90°.∴BD⊥CF.②过点F作FN⊥AC于点N.∵在正方形ADEF中,AD=DE=,∴AE==2,∴AN=FN=AE=1.∵在等腰直角△ABC 中,AB=4,∴CN=AC﹣AN=3,BC==4.∴在Rt△FCN中,tan∠FCN==.∴在Rt△ABM中,tan∠ABM==tan∠FCN=.∴AM=AB=.∴CM=AC﹣AM=4﹣=,BM===.∵△BMA∽△CMG,∴.∴.∴CG=.∴在Rt△BGC中,BG==.。
反比例函数与相似的综合
![反比例函数与相似的综合](https://img.taocdn.com/s3/m/8cc98552f12d2af90242e691.png)
反比例函数与相似的综合题型一利用平行线构造A型或X型相似1.(2020•鞍山一模)如图,点A在双曲线y=3x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=32CD,则k的值为152.【解析】解:设点A的坐标为(a,3a ),则点B的坐标为(ak3,3a),∵AB∥x轴,∴∠BAC=∠ODC,∠ACB=∠DCO,∴ABOD =ACDC,∵AC=32CD,∴ABDO=32,∵OD=a,∴AB=1.5a,∴点B的横坐标是2.5a,∴2.5a=ak3,解得,k=152,故答案为:152.2.(220•黔东南州)如图,已知点A,B分别在反比例函数y1=−2x和y2=kx的图象上,若点A是线段OB的中点,则k的值为﹣8.【解析】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=−2x的图象上,∴ab=﹣2;∵B点在反比例函数y2=kx的图象上,∴k=2a•2b=4ab=﹣8.故答案是:﹣8.题型二 利用平行线构造相似3.(2020•柯桥区一模)如图,已知B 、A 分别在反比例函数y =−9x,y =k x上,当AO ⊥BO 时,BO :AO =3:4,则k = 16 .【解析】解:设点A 的坐标为(a ,ka),点B 的坐标为(b ,−9b ),作BC ⊥x 轴于点C ,作AD ⊥x 轴于点D ,∵∠AOB =90°,∠BOC +∠OBC =90°,∴∠BOC +∠AOD =90°,∴∠BOC =∠OAD ,∵∠BCO =∠ODA =90°,BO :AO =3:4,∴△BOC ∽△OAD ,∴OCAD=BC OD=OB AO,即−bk a=−9ba=34,解得,k =16,故答案为:16.4.(2020•历下区期中)如图,在平面直角坐标系中,等边三角形OAB 的顶点A 的坐标为(5,0),顶点B 在第一象限,函数y =kx (x >0)的图象分别交边OA 、AB 于点C 、D .若OC =2AD ,则k = 4√3【解析】解:如图,过C 作CE ⊥x 轴于E ,过D 作DF ⊥x 轴于F ,则∠CEO =∠DF A =90°,又∵∠COE =∠DAF =60°,∴△COE ∽△DAF ,又∵OC =2AD ,∴DF =12CE ,AF =12OE ,设OE =a ,则CE =√3a ,∴AF =12a ,DF =√32a ,∴C (a ,√3a ),D (5−12a ,√32a ), ∵函数y =k x(x >0)的图象分别交边OA 、AB 于点C 、D ,∴a •√3a =(5−12a )•√32a ,解得a =2, ∴C (2,2√3),∴k =2×2√3=4√3,故答案为4√3.5.(2020•如东县一模)如图,点A (1,n )和点B 都在反比例函数y =kx (x >0)的图象上,若∠OAB =90°,OA AB=23,则k 的值是 2 .【解析】解:如图,过A 作AC ⊥x 轴,过B 作BD ⊥AC 于D ,则∠ACO =∠BDA =90°,OC =1,AC =n ,∵∠BAO =90°,∴∠CAO +∠BAC =∠ABD +∠BAC =90°,∴∠CAO =∠DBA ,∴△AOC ∽△BAD ,∴AD OC=BD AC=AB OA,即AD 1=BD n=32,∴AD =32,BD =32n ,∴B (1+32n ,n −32),∵k =1×n =(1+32n )(n −32),解得n =2或n =﹣0.5(舍去),∴k =1×2=2故答案为:2.6.(2020•泗阳县一模)如图,点A在反比例函数y=3x(x>0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PB:P A=2:1,则正方形OABC的边长AB=√10.【解析】解:由题意可得,OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,3m),作AE⊥x轴于点E,∵∠P AO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴APAO =OEEA,即a3a=m3m,解得,m=1或m=﹣1(舍去),∴点A的坐标为(1,3),∴OA=√10,故答案为:√10.巩固练习1.(2020•滨州模拟)如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为12.【解析】解:设点A的坐标为(a,4a ),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴ABOD =ACDC,∴ABOD=21,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得,k=12,故答案为:12.2.(2020•岳麓区校级模拟)如图,已知第一象限内的点A在反比例函数y=4x上,第二象限的点B在反比例函数y=kx上,且OA⊥OB,OBOA=34,则k的值为−94.【解析】解:作AC⊥x轴于C,BD⊥x轴于D,如图,∵OA⊥OB,∴∠BOD+∠AOC=90°,∵∠BOD+∠OBD=90°,∴∠AOC=∠OBD,∴Rt△OBD∽Rt△AOC,∴S△OBDS△AOC=(OBOA)2=(34)2=916,∵S△OBD=12|k|,S△AOC=12×4=2,∴12|k|2=916,而k<0,∴k=−94.故答案为−94.3.(2020•洛宁县期中)已知反比例函数y=kx(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且有x1<x2<0,则y1和y2的大小关系是y1<y2.【解析】解:∵反比例函数y=kx(k<0)的k<0,可见函数位于二、四象限,∵x1<x2<0,可见A(x1,y1)、B(x2,y2)位于第二象限,由于在二四象限内,y随x的增大而增大,∴y1<y2.故答案为y1<y2.4.(2020•渝中区校级月考)如图,△ABC 是等边三角形,顶点C 在y 轴的负半轴上,点A (1,5√32),点B 在第一象限,经过点A 的反比例函数y =kx(x >0)的图象恰好经过顶点B ,则△ABC 的边长为 2√7 .【解析】如图延长AB 到D ,使得AB =BD ,连接CD ,作AH ⊥y 轴于H ,DE ⊥y 轴于E .设C (0,c ). ∵△ABC 是等边三角形,∴AB =AC =BC ,∵AB =BD ,∴BA =BC =BD ,∴△ACD 是直角三角形, ∵∠CAD =60°,∴DC =√3AC ,∵∠ACD =∠AHC =∠DEC =90°,∴∠ACH +∠DCE =90°,∵∠ECD +∠CDE =90°,∴∠ACH =∠CDE ,∴△ACH ∽△CDE ,∴AH EC=HC DE=AC CD=√33, ∵A (1,5√32),∴AH =1,CH =5√32−c ,∴EC =√3,DE =152−√3c ,∴D (152−√3c ,c −√3), ∵BA =BD ,∴B (17−2√3c4,3√3−2√3c4), ∵A 、B 在y =kx上,∴5√32=17−2√3c 4×3√3−2√3c4, 整理得:4√3c 2﹣16c ﹣11√3=0,解得c =−√32或11√36(舍弃),∴C (0,−√32), ∴AC =2+CH 2=√12+(3√3)2=2√7,故答案为2√7.5.(2020•碑林区校级一模)如图,反比例函数y=kx,(k>0)经过正方形ABCD的顶点C,D,若正方形的边长为4,则k的值为16.【解析】解:作CE⊥x轴于E,DF⊥y轴于F,如图,设A(0,m),B(n,0),∵四边形ABCD为正方形,∴BC=BA,∠ABC=90°,∵∠ABO+∠CBE=90°,∠ABO+∠OAB=90°,∴∠CBE=∠OAB,而∠AOB=∠BEC,∴△AOB≌△BEC(AAS),∴OA=BE=m,OB=CE=n,∴C(m+n,n),同理方法可证明△AOB≌△DF A(AAS),∴OA=DF=m,OB=AF=n,∴D(m,m+n),∵反比例函数y=kx,(k>0)经过正方形ABCD的顶点C,D,∴m(m+n)=(m+n)n,∴m=n,∵OA2+OB2=AB2,∴m2+n2=42,即m2+m2=16,解得m=2√2,∴C(4√2,2√2),∴k=4√2×2√2=16.故答案为16.6.(2020•深圳)如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=kx图象上,且y轴平分∠ACB,求k=4√77.【解析】解:过A作AE⊥x轴,垂足为E,∵C(0,﹣3),∴OC=3,∵∠AED =∠COD =90°,∠ADE =∠CDO ∴△ADE ∽△CDO ,∴AE CO=DE OD=AD CD=13,∴AE =1;又∵y 轴平分∠ACB ,CO ⊥BD ,∴BO =OD ,∵∠ABC =90°,∴∠OCD =∠DAE =∠ABE ,∴△ABE ~△COD ,∴AEOD=BE OC设DE =n ,则BO =OD =3n ,BE =7n ,∴13n=7n3,∴n =√77∴OE =4n =4√77∴A (4√77,1)∴k =4√77×1=4√77.故答案为:4√77.。
完整版)九年级数学相似三角形综合练习题及答案
![完整版)九年级数学相似三角形综合练习题及答案](https://img.taocdn.com/s3/m/1372450266ec102de2bd960590c69ec3d5bbdb37.png)
完整版)九年级数学相似三角形综合练习题及答案1.填空题:1) 若$a=8$cm,$b=6$cm,$c=4$cm,则$a$、$b$、$c$的第四比例项$d=\underline{12}$;$a$、$c$的比例中项$x=\underline{5}$。
2) $(2-x):x=x:(1-x)$。
则$x=\underline{1}$。
3) 在比例尺为1:的地图上,距离为3cm的两地实际距离为\underline{30}公里。
4) 圆的周长与其直径的比为\underline{$\pi$}。
5) $\frac{a^5-ab}{b^3}=\frac{a^4}{b^2}$,则$\frac{a}{b}=\underline{a^2}$。
6) 若$a:b:c=1:2:3$,且$a-b+c=6$,则$a=\underline{2}$,$b=\underline{1}$,$c=\underline{3}$。
7) 如图1,则$\frac{AB}{AC}=\frac{BC}{CE}=\underline{\frac{3}{2}}$;若$BD=10$cm,则$AD=\underline{6}$cm;若$\triangle ADE$的周长为16cm,则$\triangle ABC$的周长为\underline{24}cm。
8) 若点$c$是线段$AB$的黄金分割点,且$AC>CB$,则$\frac{AC}{AB}=\underline{\frac{1+\sqrt{5}}{2}}$,$\frac{CB}{AB}=\underline{\frac{\sqrt{5}-1}{2}}$。
2.选择题:1) 根据$ab=cd$,共可写出以$a$为第四比例项的比例式的个数是()A.$1$,B.$2$,C.$3$,D.$4$。
答案:B。
2) 若线段$a$、$b$、$c$、$d$成比例,则下列各式中一定能成立的是()A.$abcd=1$,B.$a+b=c+d$,C.$\frac{a}{b}=\frac{c}{d}$,D.$a^2+b^2=c^2+d^2$。
(必考题)初中数学九年级数学上册第六单元《反比例函数》检测(有答案解析)
![(必考题)初中数学九年级数学上册第六单元《反比例函数》检测(有答案解析)](https://img.taocdn.com/s3/m/c8965c37856a561253d36f95.png)
一、选择题1.如图,在平面直角坐标系中,正方形OABC 的顶点О在原点,A ,C 分别在x 轴和y 轴的正半轴上,反比例函数()0ky k x=>图象交AB 边于点D ,交BC 边于点E ,连接EO 并延长,交()0ky k x=>的图象于点F ,连接DE ,DO ,DF ,若:1:2CE BE =,8DOF S =△,则k 的值等于( )A .3B .4.6C .6D .8【答案】C 【分析】 由反比例函数()0ky k x=>图象的中心对称性质,则OE=OF ,由四边形OABC 为正方形,可得OA=OC ,∠OCA=∠OAB=90°由点E ,D 在反比例函数图像上,可证CE=AD ,可证△OCE ≌△OAD (SAS )可得OE=OD=OF ,由中线性质S △ODE =S △ODF =8,由:1:2CE BE =,可知CE 13BC =,BE=23BC 设正方形的边长为m ,利用正方形面积构造方程,求出2=18m 进而求 211=633k m m m ⋅==即可. 【详解】解:由反比例函数()0ky k x=>图象的中心对称性质, 则OE=OF ,∵四边形OABC 为正方形,∴OA=OC ,∠OCA=∠OAB=90°, 由点E ,D 在反比例函数图像上,∴CE=AD==k k OA OC, 在△OCE 和△OAD 中,OC OA OCE OAD CE AD =⎧⎪∠=∠⎨⎪=⎩, ∴△OCE ≌△OAD (SAS ), ∴OE=OD=OF , ∴S △ODE =S △ODF =8, ∵:1:2CE BE =,∴CE=()11+33CEBE BC =,BE=23BC ,设正方形的边长为m ,S 正方形OABC =2S △OCE +S △BED +S △OED ,即m 2=2×21112·82323m m m ⎛⎫⨯++⨯ ⎪⎝⎭,∴2=18m ,∵点E 在反比例函数图像上E (1,3m m ),∴211633k xy m m m ==⋅==. 故选择:C .【点睛】本题考查反比例函数性质,正方形性质,三角形中线性质,掌握反比例函数性质,正方形性质,三角形中线性质,掌握关键是抓住正方形面积构造方程.2.已知点1232,1,(),(),)1(y y y -,都在反比例函数1y x=-的图象上,则123、、y y y 的大小关系正确的是( ) A .132y y y >> B .231y y y >>C .312y y y >>D .213y y y >>【答案】D 【分析】根据反比例函数的性质,图象在二、四象限,在双曲线的同一支上,y 随x 的增大而增大,则y 2>0,而y 1<y 3<0,则可比较三者的大小.【详解】 解:∵k =-1<0, ∴图象在二、四象限, ∵2>1>0 ∴y 3<y 1<0, ∵-1<0, ∴y 2>0, ∴213y y y >>, 故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.3.如果点()12,A y -,()21,B y -,()33,C y 都在反比例函(0)ky k x=<的图象上,那么1y 、2y 与3y 的大小关系是( )A .123y y y <<B .312y y y <<C .213y y y <<或312y y y <<D .123y y y ==【答案】B 【分析】根据k <0,判定图像分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,从判定120y y <<,3y <0,整体比较判断即可. 【详解】 ∵k <0, ∴反比例函(0)ky k x=<的图象分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,∴120y y <<,3y <0, ∴312y y y <<, 故选B . 【点睛】本题考查了反比例函数图像的分布,函数的增减性,熟练掌握图像的分布和增减性是解题的关键.4.如图,正比例函数y =kx 与反比例函数y =﹣8x相交于A ,C 两点,过点A 作x 轴的垂线交x 轴于B 点,连接BC ,则△ABC 的面积等于( )A .4B .8C .12D .16【答案】B 【分析】 设A 点坐标为(8,a a -),则C 点坐标为(8,a a-),利用坐标求面积即可. 【详解】解:∵正比例函数y =kx 与反比例函数y =﹣8x相交于A ,C 两点, ∴A ,C 两点关于原点对称,设A 点坐标为(8,a a -),则C 点坐标为(8,a a-), S △ABC =18()82a a a -⨯--⨯=, 故选:B . 【点睛】本题考查了反比例函数k 的几何意义和对称性,解题关键是通过设坐标求三角形面积.5.若函数ky x=的图象经过点A (-1,2),则k 的值为( ) A .1 B .-1C .2D .-2【答案】D 【分析】把已知点的坐标代入计算即可. 【详解】 ∵函数ky x=的图象经过点A (-1,2), ∴21k =-, ∴k= -2; 故选D . 【点睛】本题考查了反比例函数与点的关系,根据图像过点,点的坐标满足函数的解析式求解是解题的关键.6.经过原点的直线l 与反比例函数ky x=的图象交于点(3,)A a -,(,2)B b -,则k 的值为( ) A .-2 B .-3C .-5D .-6【答案】D 【分析】设正比例函数解析式为y mx =,联立方程组,然后根据两图像的交点坐标代入求解. 【详解】解:由题意,设经过原点的直线l 的解析式为y mx =将(3,)A a -代入y mxk y x =⎧⎪⎨=⎪⎩中,可得33a m k a =-⎧⎨=-⎩,即9k m = 将(,2)B b -代入y mxk y x =⎧⎪⎨=⎪⎩中,可得22bm k b -=⎧⎨=-⎩,即4k m = ∴4=9m m,解得:23m =±(经检验均是原方程的解)又∵经过原点的直线l 与反比例函数ky x=的图象交于点(3,)A a -,(,2)B b - ∴直线l 经过第二四象限,即0m <,0k <∴23m =-,9=6k m =- 故选:D . 【点睛】本题考查反比例函数和一次函数的综合,掌握函数图像的性质,利用数形结合思想解题是关键.7.关于反比例函数2y x=-,下列说法中错误的是( ) A .当0x <时,y 随x 的增大而增大 B .图象位于第二、四象限 C .点(2,1)-在函数图象上 D .当1x <-时,2y >【答案】D 【分析】根据反比例函数的图像性质判断即可; 【详解】∵2k =-<0,∴当0x <时,y 随x 的增大而增大,故A 不符合题意; ∵2k =-,∴图象位于第二、四象限,故B 不符合题意; 当2x =时,212y =-=-,故C 不符合题意;当1x<-时,y<2,故D错误,符合题意;故答案选D.【点睛】本题主要考查了反比例函数的图像性质,准确分析判断是解题的关键.8.下列图形中,阴影部分面积最大的是()A.B.C.D.【答案】C【分析】分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可:【详解】A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=3.B、根据反比例函数系数k的几何意义,阴影部分面积和为: |xy|=3 .C、如图,过点M作MA⊥x轴于点A,过点N作NB⊥x轴于点B,根据反比例函数系数k的几何意义,S△OAM=S△OBM= 12|xy|=32,从而阴影部分面积和为梯形MABN的面积:12(1+3)×2=4 .D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:12×1×6=3 .综上所述,阴影部分面积最大的是C.故选:C.【点睛】此题主要考查了反比例函数系数k的几何意义以及三角形面积求法等知识,将图形正确分割得出阴影部分面积是解题关键.9.对于反比例函数5y x=-,下列说法正确的是( ) A .点(1,5)在它的图象上 B .它的图象在第一、三象限 C .当0x <时,y 随x 的增大而增大 D .当0x >时,y 随x 的增大而减小【答案】C 【分析】利用反比例函数的性质分别 判断后即可确定正确的选项. 【详解】A 、把(1,5)代入得:左边≠右边,故A 选项错误,不符合题意;B 、k =−5<0,图象在第二、四象限,故B 选项错误,不符合题意;C 、当x <0时,y 随着x 的增大而增大,故C 选项正确,符合题意;D 、当x >0时,y 随着x 的增大而增大,故D 选项错误,不符合题意; 故选:C . 【点睛】本题考查了反比例函数图象的性质:①、当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②、当k >0时,在同一个象限内,y 随x 的增大而减小;当k <0时,在同一个象限,y 随x 的增大而增大.注意反比例函数的图象应分在同一象限和不在同一象限两种情况分析.10.如图,反比例函数(0)ky x x=>的图象经过矩形OABC 对角线的交点M ,分别与AB ,BC 交于点D ,E ,若四边形ODBE 的面积为6,则OAD △的面积为( )A .1B .2C .3D .4【答案】A 【分析】根据k 的几何意,用k 表示出COE 与OAD △的面积,据反比例函数过点M 用k 表示出矩形OABC 的面积,最后由四边形ODBE 的面积为6列关于k 的方程,可以求得k 的值,从而可以求得OAD △的面积,本题得以解决. 【详解】解:设OA a =,OC b =,点M 矩形OABC 对角线的交点,∴点,22a b M ⎛⎫⎪⎝⎭,反比例函数(0)ky x x=>的图象经过点M22b k a =,得4=ab k ,又四边形ODBE 的面积为6,COE 的面积与OAD △的面积都是2k , 6422k kab k ∴++==, 解得,2k =,OAD ∴的面积是1, 故选:A . 【点睛】本题考查反比例函数系数k 的几何意义,属于中档题.其关键是运用k 的几何意义表示出相关图形面积.11.下列函数中,是反比例函数的是( ) A .y =2x+1 B .y =0.75xC .x :y =8D .xy =﹣1【答案】D 【分析】根据反比例函数的定义即可得. 【详解】A 、函数21y x =+是一次函数,此项不符题意;B 、函数0.75y x =是正比例函数,此项不符题意;C 、函数:8x y =可变形为8xy =,是正比例函数,此项不符题意; D 、函数1xy =-可变形为1y x=-,是反比例函数,此项符合题意; 故选:D . 【点睛】本题考查了反比例函数,熟记定义是解题关键.12.在反比例函数2y x=-图象上有三个点()11,A x y ,()22,B x y ,()33,C x y ,若1230x x x <<<,则下列结论正确的是( )A .321y y y <<B .132y y y <<C .231y y y <<D .312y y y <<【答案】C 【分析】根据反比例函数图象上点的坐标特征解答即可. 【详解】解:∵A (x 1,y 1)在反比例函数2y x=-图象上,x 1<0, ∴y 1>0,对于反比例函数2y x=-,在第四象限,y 随x 的增大而增大, ∵0<x 2<x 3, ∴y 2<y 3<0, ∴y 2<y 3<y 1 故选:C . 【点睛】本题考查的是反比例函数图象上点的坐标特征,掌握反比例函数的性质、反比例函数的增减性是解题的关键.二、填空题13.如图,在反比例函数14y x=和2ky x =的图象上取,A B 两点,若//AB x 轴,AOB ∆的面积为5,则k =________.14.如图,点A 在反比例函数ky x=(k ≠0)的图象上,且点A 是线段OB 的中点,点D 为x 轴上一点,连接BD 交反比例函数图象于点C ,连接AC ,若BC :CD =2:1,S △AD C =53.则k 的值为________.15.如图,一次函数(0)y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数kyx=的图象在第一象限内交于点C,CD x⊥轴,CE y⊥轴.垂足分别为点D,E.当矩形ODCE的面积是OAB的面积2倍时,k的值为______________.16.如图,ABCD的顶点A在反比例函数2yx=-的图象上,顶点B在x轴的正半轴上,顶点C和D在反比例函数8yx=的图象上,且对角线//AC x轴,则ABCD的面积等于______.17.如图是函数1(0)y xx=>和函数2(0)y xx=-<的图象,在x轴的上方有一条平行于x轴的直线l与它们分别交于点A、B,过点A、B作x轴的垂线,垂足分别为C、D.若四边形ABCD的周长为8,则点B的坐标为________.18.如图,反比例函数(0)ky k x=<的图象经过Rt ABO 斜边OA 的中点(5,)D m -,且与直线AB 相交于点C ,已知AOC △的面积为15,则k 的值为______.19.如图,已知等边11OA B ,顶点1A 在双曲线()30y x =>上,点1B 的坐标为(2,0).过1B 作121//B A OA ,交双曲线于点2A ,过2A 作2211//A B A B 交x 轴于2B ,得到第二个等边122B A B .过2B 作2312//B A B A 交双曲线于点3A ,过3A 作3322//A B A B 交x 轴于点3B 得到第三个等边233B A B ;以此类推,…,则点2B 的坐标为______,n B 的坐标为______.20.如图,在平面直角坐标系xOy 中,点A 在函数y =2x(x >0)的图象上,AC ⊥x 轴于点C ,连接OA ,则△OAC 面积为_____.三、解答题21.如图,在平面直角坐标系中,一次函数y kx b =+与反比例函数6y x=-的图象交于(1,)A m -,(),3B n -两点,一次函数y kx b =+的图象与y 轴交于点C .(1)求一次函数的解析式;(2)根据函数的图象,直接写出不等式6kx b x+≥-的解集; (3)点P 是x 轴上一点,且BOP ∆的面积等于BOA ∆面积,求点P 的坐标. 22.已知一次函数()0y kx n k =+≠与反比例函数my (m 0)x=≠的图象交于点(,2)A a ,()1,3B .(1)求这两个函效的表达式; (2)直接写出关于x 的不等式mkx n x+≤的解; (3)若点1(2,)P h y -在一次函数y kx n =+的图象上,若点()22,Q h y -在反比例函数m y x=的图象上,12h <,请比较1y 与2y 的大小.23.如图,一次函数2y x b =-的图象与反比例函数ky x=的图象交于点A 、B 两点,与x 轴、y 轴分别交于C 、D 两点,且点A 的坐标为()3,2.(1)求一次函数和反比例函数的表达式. (2)求AOB 的面积.(3)点P 为反比例函数图像上的一个动点,PM x ⊥轴于M ,是否存在以P 、M 、O 为顶点的三角形与COD △相似,若存在,直接写出P 点的坐标,若不存在,请说明理由.24.如图,反比例函数()0ky k x=≠的图象与正比例函数2y x =的图象相交于()1,,A a B 两点.(1)求反比例函数的解析式; (2)求不等式2kx x>的解集.25.如图,一次函数1y x =+与反比例函数ky x=的图像相交于点()2,3A 和点B . (1)求反比例函数的解析式; (2)过点B 作BC x ⊥轴于C ,求ABCS;(3)是否在y 轴上存在一点D ,使得BD CD +的值最小,并求出D 坐标.26.如图,已知点A 在反比例函数()0ky k x=<的图象上,点B 在直线4y x =-的图象上,点B 的纵坐标为1-,AB x ⊥轴,且92OAB S ∆=()1求k 的值; ()2点P 在y 轴上,AOP 是等腰三角形,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无二、填空题13.【分析】根据S△OBC-S△OAC=5求解即可【详解】解:∵轴∴S△OBC=kS△OAC=×4=2∵的面积为∴S△OBC-S△OAC=5∴k-2=5∴k=14故答案为:14【点睛】本题考查了反比例函解析:14【分析】根据S△OBC-S△OAC=5求解即可.【详解】解:∵//AB x轴,∴S△OBC=12k,S△OAC=12×4=2,∵AOB的面积为5,∴S△OBC-S△OAC=5,∴12k-2=5,∴k=14,故答案为:14.【点睛】本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数kyx(k为常数,k≠0)图象上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数k,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于12k.14.8【分析】作AE⊥OD于ECF⊥OD于F由BC:CD=2:1S△ADC=可求S△ACB=由OA=OBS△AOC=S△ACB=设B(2m2n)可得A(mn)由AC在y=上BC=2CD可求k=mnC(m解析:8【分析】作AE⊥OD于E,CF⊥OD于F.由BC:CD=2:1,S△ADC=53,可求S△ACB=103,由OA=OB,S△AOC=S△ACB=103,设B(2m,2n),可得A(m,n),由A、C在y=kx上,BC=2CD,可求k=mn,C(32m,23n),可推得S△AOC= S梯形AEFC即可解决问题.【详解】解:作AE⊥OD于E,CF⊥OD于F.∵BC:CD=2:1,S△ADC=53,∴S△ACB=103,∵OA=OB,∴B(2m,2n),S△AOC=S△ACB=103,A(m,n),∵A、C在y=kx上,BC=2CD,∴k=mn,∴C(32m,23n),∵S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,∴12•(n+23n)×12m=103,∴mn=8,∴k=8.故答案为:8.【点睛】过反比例函数y=kx(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x y k.过反比例函数过一点,作垂线,三角形的面积为12k.所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数从而有k的绝对值.在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便.15.1【分析】根据题意由反比例函数的几何意义得:再求解AB的坐标及建立方程求解即可【详解】解:如图矩形在上把代入:∴B(0k)把代入:∴A(-k0)由题意得:2×解得:k=1k=0(舍去)故答案为:1【解析:1【分析】根据题意由反比例函数k 的几何意义得:ODCE S k =矩形再求解A ,B 的坐标及212ABOS k =建立方程求解即可. 【详解】 解:如图矩形ODCE ,C 在kyx=上, S k ∴=矩形ODCE把0x =代入:y x k =+y k ∴=∴B(0,k)把0y =代入:y x k =+x k ∴=- ∴A(-k ,0)212ABOSk ∴=由题意得:2×212k k = 解得:k=1,k=0(舍去)1k ∴=故答案为:1 【点睛】本题考查的是一次函数与反比例函数的性质,掌握反比例函数中k 的几何意义,一次函数与坐标轴围成的三角形面积的计算是解题的关键.16.10【分析】作轴于轴于于设AC 交y 轴于点P 可得四边形AMNC 四边形AMOP 四边形OPNC 都是矩形根据平行四边形的性质得则再根据反比例函数系数k 的几何意义解答即可【详解】解:作轴于轴于于设AC 交y 轴于解析:10 【分析】作AM x ⊥轴于M ,CN x ⊥轴于N ,BE AC ⊥于E ,设AC 交y 轴于点P ,可得四边形AMNC ,四边形AMOP ,四边形OPNC 都是矩形,根据平行四边形的性质得CAD ACB △≌△,则AMNC 1222ABCDACB SS AC BE S ==⨯⋅=△矩形,再根据反比例函数系数k 的几何意义解答即可.【详解】解:作AM x ⊥轴于M ,CN x ⊥轴于N ,BE AC ⊥于E ,设AC 交y 轴于点P ,∵//AC x 轴,∴AC AM ⊥,AC CN ⊥,BE x ⊥轴,AC OP ⊥, ∴四边形AMNC ,四边形AMOP ,四边形OPNC 都是矩形, ∵ABCD ,∴CAD ACB △≌△, ∴AMNC 1222ABCDACB SS AC BE S ==⨯⋅=△矩形,∵顶A 在反比例函数2y x =-的图象上,顶点C 和D 在反比例函数8y x=的图象上,AMNC AMOP OPNC S S S =+矩形矩形矩形,∴AMNC 2810S =+=矩形. 故答案为:10. 【点睛】本题考查平行四边形的性质,据反比例函数系数k 的几何意义,作辅助线把平行四边形的面积转化为两个矩形的面积的和是解题的关键.17.或【分析】设点A 的坐标为则点B 的坐标为表示出AB 与AC 的长根据矩形的周长列出方程即可求解【详解】设点A 的坐标为则点B 的坐标为∵四边形的周长为8∴∴解得∴当时;B 点坐标为;当时;B 点坐标为故答案为:或解析:()2,1-或2,33⎛⎫- ⎪⎝⎭【分析】设点A 的坐标为1,x x ⎛⎫ ⎪⎝⎭,则点B 的坐标为12,x x ⎛⎫- ⎪⎝⎭,表示出AB 与AC 的长,根据矩形的周长列出方程即可求解. 【详解】 设点A 的坐标为1,x x ⎛⎫ ⎪⎝⎭,则点B 的坐标为12,x x ⎛⎫- ⎪⎝⎭,∵四边形ACDB 的周长为8, ∴228AB AC +=, ∴12(2)28x x x++⋅=, 解得12131x x ⎧=⎪⎨⎪=⎩,∴1231y y =⎧⎨=⎩, 当13x =时,1,3AB AC ==;B 点坐标为2,33⎛⎫- ⎪⎝⎭; 当1x =时,3,1AB AC ==;B 点坐标为()2,1-. 故答案为:()2,1-或2,33⎛⎫- ⎪⎝⎭.【点睛】本题考查的是反比例函数的综合题:点在反比例函数图像上,点的横纵坐标满足解析式;利用矩形的性质建立方程求解是解答本题的关键.18.【分析】先表示出点的坐标利用三角形的面积公式求出的长即可表示出的坐标然后再根据反比例函数图像上点的坐标特征即可求得的值【详解】斜边OA 的中点∴∴的面积为15∴解得∴∴用待定系数法将点代入得解得故答案 解析:10-【分析】先表示出点A 的坐标,利用三角形的面积公式求出AC 的长,即可表示出C 的坐标,然后再根据反比例函数图像上点的坐标特征即可求得k 的值. 【详解】Rt ABO 斜边OA 的中点()5,D m -,∴()10,2A m -, ∴10OB =,AOC 的面积为15,∴1152AC OB =, 解得,3AC =, ∴23BC m =-,∴()10,23C m --,用待定系数法将点()10,23C m --,(5,)D m -代入,得,23105k m k m ⎧-=⎪⎪-⎨⎪=⎪-⎩, 解得2,10m k ==-, 故答案为:10-. 【点睛】本题主要考查了反比例函数系数k 的几何意义、反比例函数图像上点的坐标特征、三角形面积等知识,解题的关键是表示出C 的坐标.19.(20)(20)【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2B3B4的坐标得出规律进而求出点Bn 的坐标【详解】解:如图作A2C ⊥x 轴于点C 设B1C=a 则A2C=aOC=O解析:(,0), (,0). 【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B 2、B 3、B 4的坐标,得出规律,进而求出点B n 的坐标. 【详解】解:如图,作A 2C ⊥x 轴于点C ,设B 1C=a ,则A 2, OC=OB 1+B 1C=2+a ,A 2(2+a). ∵点A 2在双曲线)0y x =>上, ∴(2+a )解得,或-1(舍去), ∴OB 2=OB 1+2B 1∴点B 2的坐标为(0);作A 3D ⊥x 轴于点D ,设B 2D=b ,则A 3b , OD=OB 2+B 2+b ,A 2(). ∵点A 3在双曲线y=x(x >0)上, ∴(+b )解得∴OB 3=OB 2+2B 2, ∴点B 3的坐标为(0);同理可得点B 4的坐标为(24,0)即(4,0); 以此类推…,∴点B n 的坐标为(2n ,0), 故答案为(22,0),(2n ,0).【点睛】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B 2、B 3、B 4的坐标进而得出点B n 的规律是解题的关键.20.1【分析】根据反比例函数比例系数k 的几何意义可得S △OAC =×2=1再相加即可【详解】解:∵函数y =(x >0)的图象经过点AAC ⊥x 轴于点C ∴S △OAC =×2=1故答案为1【点睛】本题考查了反比例函解析:1 【分析】根据反比例函数比例系数k 的几何意义可得S △OAC =12×2=1,再相加即可. 【详解】 解:∵函数y =2x(x >0)的图象经过点A ,AC ⊥x 轴于点C , ∴S △OAC =12×2=1, 故答案为1. 【点睛】本题考查了反比例函数比例系数k 的几何意义,掌握过反比例函数图象上的点向x 轴或y 轴作垂线,这一点和垂足、原点组成的三角形的面积的计算方法是解本题的关键.三、解答题21.(1)33y x =-+;(2)1x ≤-或02x <≤;(3)(3,0)P 或(3,0)- 【分析】(1)利用待定系数法求出A ,B 的坐标即可解决问题;(2)观察图象写出一次函数的图象在反比例函数的图象上方的自变量的取值范围即可解决问题;(3)根据S △AOB =S △AOC +S △BOC ,求出△OAB 的面积,设P (m ,0),构建方程即可解决问题.【详解】解:(1)把(1,)A m -,(),3B n -代入反比例函数6y x=-, 得m=6,n=2, 即A(-1,6),B(2,-3)(1,6)A -,(2,3)B -在直线y kx b =+上. 623k b k b -+=⎧∴⎨+=-⎩解得33k b =-⎧⎨=⎩∴一次函数的解析式为33y x =-+.(2)不等式6kx b x+≥-的解集为:1x ≤-或02x <≤. (3)连接OA ,OB ,由题意()0,3C ,1193132222AOB AOC BOC S S S ∆∆∆=+=⨯⨯+⨯⨯=设(,0)P m , 由题意19||322m ⋅⋅=, 解得3m =±,(3,0)P ∴或(3,0)-【点睛】本题考查了反比例函数的性质,三角形的面积,一次函数的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.(1)3yx=,25y x=-+;(2)01x<或32x;(3)21y y>【分析】(1)先把B点坐标代入my(m0)x=≠求出m得到反比例函数解析式,再通过反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)大致画出两函数图象,利用函数图象,写出反比例函数在一次函数上方(含交点)所对应的自变量的范围得到不等式mkx nx+的解集;(3)利用12h<得到322h->,然后利用函数图象得到1y与2y的大小.【详解】解:(1)把()1,3B代入my(m0)x=≠得133m=⨯=,∴反比例函数解析式为3yx=,把(,2)A a代入3yx=得23a=,解得32a=,则3(2A,2),把3(2A,2),()1,3B代入y kx b=+得3223k bk b⎧+=⎪⎨⎪+=⎩,解得25kb=-⎧⎨=⎩,∴一次函数解析式为25y x=-+;(2)由图可知:不等式mkx nx+的解集为01x<或32x;(3)12h<,322h∴->,21y y∴>.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式. 23.(1)24y x =-,6y x=;(2)8AOB S =△;(3)存在,P点的坐标为或(-或(或(-. 【分析】(1)把()3,2A 分别代入直线2y x b =-和反比例函数ky x=进行求解即可; (2)连接OA 、OB ,由246y x y x =-⎧⎪⎨=⎪⎩解得:1132x y =⎧⎨=⎩,2216x y =-⎧⎨=-⎩,进而可得()1,6B --,然后由一次函数可得2OC =,最后根据割补法可求解△AOB 的面积; (3)当以P 、M 、O 为顶点的三角形与COD △相似时,始终有90PMO COD ∠=∠=︒,由(2)可得OC=2,OD=4,设点6,P a a ⎛⎫⎪⎝⎭,则6,PM OM a a ==,12OC OD =,则可分①当OPM OCD ∠=∠时,②当OPM ODC ∠=∠时,然后根据相似三角形的性质进行求解即可.【详解】解:(1)把()3,2A 代入2y x b =-得:62b -=, 解得:4b =,∴一次函数的表达式为24y x =-, 把()3,2A 代入k y x=得:23k =,解得:6k =,∴反比例函数的表达式为6y x=; (2)连接OA 、OB ,如图所示:由246yxyx=-⎧⎪⎨=⎪⎩解得:1132xy=⎧⎨=⎩,2216xy=-⎧⎨=-⎩,∴()3,2A,()1,6B--,在24y x=-上,当0y=时,240x-=,解得:2x=∴()2,0C∴2OC=∴1222OACS OC=⨯=△,1662OBCS OC=⨯=△,∴8AOB OAC OBCS S S=+=△△△;(3)由题意可得如图所示:当以P、M、O为顶点的三角形与COD△相似时,始终有90PMO COD∠=∠=︒,由(2)可得OC=2,OD=4,设点6,P aa⎛⎫⎪⎝⎭,则6,PM OM aa==,12OCOD=,①当OPM OCD∠=∠时,∴12OC PMOD OM==,即612aa=,解得:a =±,∴点(P或(P -; ②当OPM ODC ∠=∠时, ∴12OC OM OD PM ==,即62a a =,解得:a = ∴点P或(P -;综上所述:当以P 、M 、O 为顶点的三角形与COD △相似时,P点的坐标为或(-或(或(-.【点睛】本题主要考查反比例函数与几何综合及相似三角形的性质,熟练掌握反比例函数与几何综合及相似三角形的性质是解题的关键. 24.(1)2y x=;(2)01x <<或1x <- 【分析】(1)先利用正比例函数解析式确定A (1,2),再根据A 点坐标即可得到反比例函数解析式;(2)结合两个函数,先求出点B 的坐标,然后结合图像,即可得到答案. 【详解】解:()1把()1,A a 代入2y x =, 解得:2,a = 则()1,2A 把()1,2A 代入k y x=, 得:122,k =⨯=∴反比例函数解析式为2y x=; ()2解方程组22y xy x =⎧⎪⎨=⎪⎩, 得:12x y =⎧⎨=⎩或12x y =-⎧⎨=-⎩,B ∴点坐标为(1,2)--,观察图象可知,不等式2kx x>的解集为:01x <<或1x <-.【点睛】本题考查了反比例函数和正比例函数的性质,解题的关键是掌握待定系数法求函数的解析式. 25.(1)6y x=;(2)5;(3)存在,()0,1D - 【分析】(1)将A 的坐标代入反比例函数解析式中,求出k 的值,即可确定出反比例函数解析式;(2)将反比例函数解析式与一次函数解析式联立组成方程组,求出方程组的解,根据B 所在的象限即可得到B 的坐标;三角形ABC 的面积可以由BC 为底边,A 横坐标绝对值与B 横坐标绝对值之和为高,利用三角形的面积公式求出即可.(3)作C 关于y 轴的对称点C′,连接BC′交y 轴上一点D ,连接CD ,求出BC′的直线解析式,即可求出D 的坐标. 【详解】(1)∵一次函数1y x =+与反比例函数ky x=相交于()2,3A 6k x y =⋅=6y x∴=(2)如图:16yx y x =+⎧⎪∴⎨=⎪⎩,∴123,2x x =-=. ∴()3,2B -- 过B 作BC x ⊥轴12552ABCS∴=⨯⨯= (3)存在.作C 关于y 轴的对称点C ',连接BC '交y 轴上一点D , 连接CD ,()3,0C '设BC '的直线方程(0)y mx n m =+≠3032m n m n +=⎧⎨-+=-⎩∴131m n ⎧=⎪⎨⎪=-⎩ 113y x ∴=-令0,1x y ==-∴()0,1D - 【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:因式分解法解一元二次方程,待定系数法确定函数解析式,坐标与图形性质,以及三角形面积公式,待定系数法是数学中重要的思想方法,学生做题时注意灵活运用.26.(1)-12;(2)点P 的坐标为()()()12340,5, 0,5,0,8,250,8P P P P ⎛⎫-- ⎝-⎪⎭【分析】()1可先求得B 点坐标,再结合△OAB 的面积可求得AB 的长,则可求得A 点坐标,把A 点坐标代入反比例函数解析式可求得k 的值;()2分三种情况: ①OP=OA ;②AP=OA ;③AP=OP 三种情况进行讨论【详解】 解:()1点B 在直线4y x =-的图象上,点B 的纵坐标为1-,41,x ∴-=- 3,x ∴=3,(1).B ∴-设点A 的坐标为(3,)t , 则1,1t AB t <-=--.92OAB S ∆= ()191322t ∴--⨯=, 解得4,t =-∴点A 的坐标为(3,4)-.4,123kk -=-∴=12y x∴=-()2分三种情况:①点O 为顶点时:如图1,12OP OP OA ==.∵点A 的坐标为(3,4)-,∴5OA =;∴125==OP OP()()120,5,0,5P P ∴-.②点A 为顶点时:如图2.35,AP OA ==作AH y ⊥轴于H ,则34==HP HO ;()30,8P ∴-③点P 为顶点时:如图3.44AP OP =作OA 的垂直平分线PQ ,交y 轴于点4P ,∵点A 的坐标为(3,4)-,∴OA 的表达式为43y x =-; ∴OA 的中点坐标为3,22⎛⎫- ⎪⎝⎭,设PQ 的表达式为34y x b =+,将3,22⎛⎫- ⎪⎝⎭代入得,258b =- 4P Q ∴的表达式为32548y x =-. 4250,8P ⎛⎫∴- ⎪⎝⎭ 综上得出,点P 的坐标为()()()1234250,5,0,5,0,8,0,8P P P P ⎛⎫---⎪⎝⎭. 【点睛】 本题考查反比例函数和几何、反比例函数和一次函数相结合等知识,解题的关键是灵活运用所学知识解决问题,学会利用分类讨论的数学思想,属于中考常考题型.。
(必考题)初中数学九年级数学上册第六单元《反比例函数》检测卷(有答案解析)(4)
![(必考题)初中数学九年级数学上册第六单元《反比例函数》检测卷(有答案解析)(4)](https://img.taocdn.com/s3/m/77cbfe9ebe1e650e53ea99ad.png)
一、选择题1.关于反比例函数y =4x,下列说法不正确的是( ) A .图象关于原点成中心对称 B .当x >0时,y 随x 的增大而减小C .图象与坐标轴无交点D .图象位于第二、四象限 【答案】D【分析】根据反比例函数图象的性质判断即可.【详解】解:根据反比例函数的性质可知,图象关于原点成中心对称,图象与坐标轴无交点,所以A 、C 不符合题意;因为比例系数是4,大于0,所以当x >0时,y 随x 的增大而减小,故B 不符合题意; 因为比例系数是4,大于0,所以图象位于第一、三象限,故D 错误,符合题意; 故选:D .【点睛】本题考查了反比例函数图象的性质,解题关键是掌握反比例函数图象的性质并熟练运用.2.如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=( )A .4B .3C .2D .1【答案】A【分析】 先根据反比例函数系数k 的几何意义得S 1+S 阴影及S 2+S 阴影的值,进而可得出S 1+S 2的值.【详解】解:∵点A 、B 是双曲线3y x=上的点, ∴S 1+S 阴影=S 2+S 阴影=3,∵S 阴影=1∴S 1=S 2=3-S 阴影=3-1=2,∴12224S S +=+=.故选A .【点睛】本题考查反比例函数系数k 的几何意义,是常考点,需要学生熟练掌握.3.若点()12,y -()21,y -、()31,y 都在反比例函数()0k y k x =<的图象上,则有( ) A .123y y y >>B .312y y y >>C .213y y y >>D .132y y y >> 【答案】C【分析】 先根据反比例函数y =k x中k <0判断出函数图象所在的象限,再得出在每一象限内函数的增减性,再根据三点横坐标的值即可判断出y 1,y 2,y 3的大小.【详解】 解:∵反比例函数y =k x中k <0, ∴函数图象的两个分支位于二四象限,且在每一象限内y 随x 的增大而增大,∵﹣2<﹣1<0,∴y 2>y 1>0,∵1>0,∴y 3<0,∴y 2>y 1>y 3.故选:C .【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.4.已知ABC 为直角三角形,且30A ∠=︒,若ABC 的三个顶点均在双曲线(0)k y k x=>上,斜边AB 经过坐标原点,且B 点的纵坐标比横坐标少3个单位长度,C 点的纵坐标与B 点横坐标相等,则k =( )A .4B .92C .32D .5【答案】B【分析】 设(,)(0)k B x k x>,再分别表示出B ,C ,由直角三角形的性质得出BC OB =,联立方程组求出k 的值即可.【详解】 解:在k y x=中,设(,)(0)k B x k x >, 则3k x x +=,(,)k C x x∵AB 经过坐标原点, ∴(,)k A x x-- ∵ABC 为直角三角形,且30A ∠=︒,∴∠60B =︒ ∴1,22BC AB AB BC == 又∵2AB OB =∴BC OB = ∴22222()3k k x x x x k x x +=-⎪+=⎪⎩解得,92=k【点睛】本题属于反比例函数综合题,考查了反比例函数的性质,待定系数法,中心对称的性质等知识,解题的关键是学会利用中心对称的性质解决问题.5.某班“数学兴趣小组”探究出了有关函数1223y x =-+(图象如图)的三个结论:①方程12203x -=+有1个实数根,该方程的根是3x =;②如果方程1223a x -=+只有一个实数根,则a 的取值范围是2a =或0a =;③如果方程1223a x -=+有2个实数根,则a 的取值范围是02a <<或2a >.你认为正确的结论个数有( )A .3B .2C .1D .0 【答案】A【分析】 利用函数图像结合图像性质分析求解.【详解】解:结合函数图像可以看出当y=12203x -=+时,函数图像与x 轴有1个交点,(3,0),∴方程12203x -=+有1个实数根,该方程的根是3x =,故①正确; 如果方程1223a x -=+只有一个实数根,由①可得a=0, 若a=2,则12223x -=+,此时只有12=43x +,解得x=0(经检验,是原方程的解) ∴方程1223a x -=+只有一个实数根,则a 的取值范围是2a =或0a =,故②正确; 由②可得当2a =或0a =时,y=1223a x -=+有一个实数根∴方程1223a x -=+有2个实数根,则a 的取值范围是02a <<或2a >,故③正确 正确的共3个,故选:A .【点睛】本题考查了函数的性质,函数与方程等知识,学会利用图象,数形结合思想解题是关键.6.如图,在x 轴正半轴上依次截取1122320202021OA A A A A A A ====,过点1A .2A ,3A 、、2020A 、2021A 分别作x 轴的垂线,与反比例函数2y x =的图象依次相交于1P ,2P 、3P 、 、2021P ,得到11OP A ∆、122O P A ∆、、202020212021A P A ∆,并设其面积分别为1S 、2S 、、2021S ,则2021S 的值为( )A .12021B .12020C .22021D .11010【答案】A【分析】 设OA 1=A 1A 2=A 2A 3=…=A 2020A 2021=t ,利用反比例函数图象上点的坐标特征得到P 1(t ,2t ),P 2(2t ,22t ),P 3(3t ,23t),…,P 2021(2021t ,22021t ),然后根据三角形面积公式可计算出S 2021.【详解】解:设OA 1=A 1A 2=A 2A 3=…=A 2010A 2021=t ,则P 1(t ,2t ),P 2(2t ,22t),P 3(3t ,23t),…,P 2021(2021t ,22021t ), 所以S 2021=121=220212021t t ⨯⨯.【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=k x的图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象上点的坐标特征.7.如图,点P 在反比例函数y =k x的图象上,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,且△APB 的面积为2,则k 等于( )A .-4B .-2C .2D .4【答案】A【分析】 根据反比函数定义去思考求解即可.【详解】设点P 的坐标为(x ,y),∵PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,∴PA=y ,PB=-x ,∵△APB 的面积为2,∴122PA PB ⋅=, ∴-xy=4,即xy=-4, ∵点P 在反比例函数y =k x的图象上, ∴k=xy=-4,故选A.【点睛】本题考查了根据反比例函数图像一点,向坐标轴引垂线构成三角形面积求k ,熟练运用点与函数的关系,坐标与线段之间的关系,三角形面积的定义是解题的关键.8.对于反比例函数2y x=-,下列说法正确的是( ) A .图象经过点()2,1--B .已知点()12,P y -和点()26,Q y ,则12y y <C .其图象既是轴对称图形也是中心对称图形D .当0x >时,y 随x 的增大而减小【答案】C【分析】根据反比例函数的性质进行判断即可.【详解】 解: A 、把点 ()2,1-- 代入反比例函数y=2x-,得-1≠2--2,故不正确; B 、把点 ()12,P y - 代入反比例函数y 1=221--=,把点 ()26,Q y 代入反比例函数y 2=2361-=-,12y y >,故不正确; C 、其图象既是轴对称图形也是中心对称图形,符合题意;D 、k=-2<0,∴在每一象限内y 随x 的增大而增大,故不正确;故选C .【点睛】 本题考查了反比例函数y= k x(k≠0)的性质: ①当k>0 时,图象分别位于第一、 三象限;当k<0时, 图象分别位于第二、 四象限;②当k>0时,在同一个象限内, y 随x 的增大而减小;当k<0时, 在同一个象限, y 随x 的增大而增大.9.已知点A 、点B 在反比例函数(0)k y k x=≠图象的同一支曲线上,则点A 、点B 的坐标有可能是( )A .A (2,3)、B (-2,-3)B .A (1,4)、B (4,1)C .A (4,3)、B (4,-3)D .A (3,3)、B (2,2) 【答案】B【分析】在反比例函数图象的同一支上,一定满足同一函数解析式且在同一象限.【详解】解:A. A (2,3)、B (-2,-3)两点均在同一反比例函数图象上,但不在同一支上,故选项A 不符合题意;B. A (1,4)、B (4,1)两点均在同一反比例函数图象上,且在同一支上,故选项B 符合题意;C. A (4,3)、B (4,-3)两点不在同一反比例函数图象上,故选项C 不符合题意;D. A (3,3)、B (2,2)两点不在同一反比例函数图象上,故选项D 不符合题意. 故选:B .【点睛】本题主要考查了反比例函数图象的特点,掌握两点在反比例函数图象的同一支曲线上的条件是解答本题的关键.10.如图所示,反比例函数k y x =(0k ≠,0x ≥)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为等于8,则k 的值等于( )A .1B .2C .3D .4 【答案】B【分析】过D 作DE ⊥OA 于E ,设,k D a a ⎛⎫ ⎪⎝⎭,于是得到OA=2a ,2k OC a=,根据矩形的面积列方程即可得到结论.【详解】解:过D 作DE OA ⊥于点E ,如图,设,k D a a ⎛⎫ ⎪⎝⎭, ∴OE a =,k DE a=, ∵点D 是矩形OABC 的对角线AC 的中点,∴2OA a =,2k OC a=, ∵矩形OABC 的面积为8, ∴228k OA OC a a⋅=⨯=,解得2k =, 故选:B .【点睛】本题考查了反比例函数系数k 的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.11.下列各点中,在反比例函数12y x =-图象上的是( ) A .()2,6--B .()2,6-C .()3,4D .()4,3-- 【答案】B【分析】利用反比例函数图象上点的坐标特征进行判断.【详解】解:∵-2×(-6)=12,-2×6=-12,3×4=12,-4×(-3)=12,∴点(-2,6)在反比例函数12y x=-图象上. 故选:B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=-(k 为常数,k≠0)的图象是双曲线;图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .12.函数1y x =与函数1y x=-的图像可以通过图形变换得到,给出下列变换:①平移,②旋转,③轴对称,④相似(相似比不为1),则可行的是( ) A .①②B .②③C .①④D .③④ 【答案】B【分析】 由于反比例函数的图象是一个中心对称图形,也是轴对称图形,即函数1y x =的图象可以经过旋转得到1y x=-的图象,而不能经过平移,由于两函数表达式相同,故两函数的图象相似,且相似比为1.【详解】解:已知函数1y x =与函数1y x=-, 且反比例函数图象是中心对称图形,也是轴对称图形,故函数图象不可以通过平移来完成,故①错误;②正确;③正确;又因为两函数图象完全相同,即两函数图象相似,且相似比为1,故④错误; 综上所述,可行的是②③.故选:B .【点睛】本题通过反比例函数图象的性质和图象的旋转问题,要求学生具有一定的猜想和探究能力.二、填空题13.如图,在平面直角坐标系中,Rt △ABC 的顶点A ,B 分别在y 轴、x 轴上,OA =2,OB =1,斜边AC ∥x 轴.若反比例函数y =k x(k >0,x >0)的图象经过AC 的中点D ,则k 的值为 ___________.14.若点(4,3)A ,(2,)B m 在同一个反比例函数的图象上,则m 的值为_______. 15.已知点,C D 分别在反比例函数(32550,2)p p p y y p x x -=≠=≠⎛⎫ ⎪⎝⎭的图象上,若点C 与点D 关于x 轴对称,则p 的值为______.16.若点()5,A a -,()3,B b ,()6,C c 都在反比例函数4y x=的图象上,则a ,b ,c 中最大的是___.17.如图,在以O 为原点的平面直角坐标系中,矩形OABC 的两边OC .OA 分别在x 轴、y轴的正半轴上,反比例函数(0)k y x x =>的图象与AB 相交于点D ,与BC 相交于点E ,若3BD AD =,且ODE 的面积是6,则k 的值为________.18.如图所示,点A 、B 在反比例函数y =k x(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为______.19.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P 1(x 1 , y 1)、P 2(x 2 , y 2)两点,若x 1>x 2 , 则y 1________y 2(填“>”或“<”).20.分别以矩形OABC 的边OA ,OC 所在的直线为x 轴,y 轴建立平面直角坐标系,点B 的坐标是(4,2),将矩形OABC 折叠使点B 落在G(3,0)上,折痕为EF ,若反比例函数k y x=的图象恰好经过点E ,则k 的值为_______.三、解答题21.已知一次函数223y x =+的图象分别与坐标轴相交于A 、B 两点(如图所示),与反比例函数()0k y x x=>的图象相交于C 点.(1)直接写出A 、B 两点的坐标;(2)作CD x ⊥轴,垂足为D ,如果OB 是ACD △的中位线,求反比例函数()0k y k x =>的关系式. (3)请根据图象直接写出在第一象限内,反比例函数值大于一次函数值时自变量x 的取值范围.22.如图,直线11y k x b =+与反比例函数22k y x=的图象交于A 、B 两点,已知点(),4A m ,(),2B n ,AD x ⊥轴于点D ,BC x ⊥轴于点C ,3DC =.(1)求m ,n 的值及反比例函数的解析式;(2)结合图象,当21k k x b x+≤时,直接写出自变量x 的取值范围; (3)若P 是x 轴上的一个动点,当ABP △的周长最小时,求点P 的坐标.23.已知双曲线k y x=与直线14y x =相交于A 、B 两点.第一象限上的点(),M m n (在A 点左侧)是双曲线k y x=点上的动点,过点B 作//BD y 轴交x 轴于点D .过()0,N n -作//NC x 轴交双曲线k y x =于点E ,交BD 于点C . (1)若点D 坐标是()8,0-,求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.24.如图,一次函数1y x =+与反比例函数k y x =的图像相交于点()2,3A 和点B . (1)求反比例函数的解析式; (2)过点B 作BC x ⊥轴于C ,求ABC S ;(3)是否在y 轴上存在一点D ,使得BD CD +的值最小,并求出D 坐标.25.直线y kx b =+与反比例函数4(0)y x x=>的图象分别交于点(,4)A m 和点(4,)B n ,与坐标轴分别交于点C 和点D .(1)求直线AB 的解析式;(2)观察图象,当0x >时,直接写出4kx b x+>的解集; (3)若点P 是y 轴上一动点,当COD △与ACP △相似时,直接写出点P 的坐标.26.如图,直线y=12x与双曲线y=kx(k>0)交于A、B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线y=kx(k>0)上一点C的纵坐标为8,求△AOC的面积.(3)若12kxx>>,直接写出x的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无二、填空题13.5【分析】作CE ⊥x 轴于E 根据平行于x 轴的直线上任意两点纵坐标相同即可求得CE=OA=2T 通过证得△AOB ∽△BEC 求得BE=4进而得到D 点坐标代入y=利用待定系数法求出k 【详解】解:作CE ⊥x 轴于解析:5【分析】作CE ⊥x 轴于E ,根据平行于x 轴的直线上任意两点纵坐标相同,即可求得CE =OA =2,T 通过证得△AOB ∽△BEC ,求得BE =4,进而得到D 点坐标,代入y =k x,利用待定系数法求出k .【详解】解:作CE ⊥x 轴于E ,∵AC ∥x 轴,OA =2,OB =1,∴OA =CE =2,∵∠ABO +∠CBE =90°=∠OAB +∠ABO ,∴∠OAB =∠CBE , ∵∠AOB =∠BEC , ∴△AOB ∽△BEC ,∴BE CE OA OB =,即221BE =, ∴BE =4,∴OE =5,∵点D 是AB 的中点, ∴D (52,2). ∵反比例函数y =k x(k >0,x >0)的图象经过点D ,∴k =52×2=5. 故答案为:5.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形相似的判定和性质等知识,求出D 点坐标是解题的关键.14.;【分析】设反比例函数解析式为y=根据反比例函数图象上点的坐标特征得到k=4×3=2m 然后解关于m 的方程即可【详解】解:设反比例函数解析式为y=根据题意得k=4×3=2m 解得m=6故答案为6【点睛】解析:6;【分析】设反比例函数解析式为y=k x ,根据反比例函数图象上点的坐标特征得到k=4×3=2m ,然后解关于m 的方程即可.【详解】解:设反比例函数解析式为y=k x, 根据题意得k=4×3=2m ,解得m=6.故答案为6.【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 15.1【分析】根据题意设出点C 和点D 的坐标再根据点C 与点D 关于x 轴对称即可求得p 的值【详解】解:∵点分别在反比例函数的图象上∴设点C 的坐标为点D 的坐标为∵点与点关于轴对称∴∴p=1故答案为:1【点睛】本 解析:1【分析】根据题意,设出点C 和点D 的坐标,再根据点C 与点D 关于x 轴对称,即可求得p 的值【详解】解:∵点,C D 分别在反比例函数(32550,2)p p p y y p x x -=≠=≠⎛⎫ ⎪⎝⎭的图象上, ∴设点C 的坐标为3m m ,⎛⎫ ⎪⎝⎭p ,点D 的坐标为2p 5(,)-n n , ∵点C 与点D 关于x 轴对称,∴3p 2p 5-m n mn =⎧⎪-⎨=⎪⎩ ∴p=1故答案为:1【点睛】本题考查反比例函数图象上点的坐标特征、关于x 轴、y 轴对称的点的坐标特点,解答本题的关键是明确题意,利用函数的思想解答.16.b 【分析】先根据反比例函数中k >0判断出函数图象所在的象限及增减性再根据各点横坐标的特点即可得出结论【详解】解:∵k=4>0∴图象在第一三象限在每个象限内y 随x 的增大而减小∵-5<0∴A (-5a )位解析:b【分析】先根据反比例函数中k >0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:∵k=4>0,∴图象在第一、三象限,在每个象限内,y 随x 的增大而减小,∵-5<0,∴A (-5,a )位于第三象限,∴a <0,∵0<3<6,∴点B (3,b ),C (6,c )位于第一象限,∴b >c >0.∴a ,b ,c 中最大的是b .故答案为:b .【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.【分析】根据所给的三角形面积等于长方形面积减去三个直角三角形的面积然后即可求出B 的横纵坐标的积即是反比例函数的比例系数【详解】解:∵四边形OCBA 是矩形∴AB=OCOA=BC 设B 点的坐标为(ab )∵ 解析:165【分析】根据所给的三角形面积等于长方形面积减去三个直角三角形的面积,然后即可求出B 的横纵坐标的积即是反比例函数的比例系数.【详解】解:∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (14a ,b ) ∵D 、E 在反比例函数的图象上, ∴4ab =k , 设E 的坐标为(a ,y ),∴ay=k∴E (a ,k a), ∵1113()62224ODE AOD OCE BDE OCBA a k S S S S S ab k k b a ∆∆∆∆=--=---⋅-=-⋅矩形, ∴334688ab k k k --+=, 解得:165k =. 故答案为:165【点睛】 本题考查反比例函数系数k 的几何意义,矩形在平面直角坐标系中的坐标,解题的关键是利用过某个点,这个点的坐标应适合这个函数解析式;所给的面积应整理为和反比例函数上的点的坐标有关的形式.18.4【分析】设OM 的长度为a 利用反比例函数解析式表示出AM 的长度再求出OC 的长度然后利用三角形的面积公式列式计算恰好只剩下k 然后计算即可得解【详解】设∵点A 在反比例函数的图象上∴∵∴∴∴故答案为:4【 解析:4【分析】设OM 的长度为a ,利用反比例函数解析式表示出AM 的长度,再求出OC 的长度,然后利用三角形的面积公式列式计算恰好只剩下k ,然后计算即可得解.【详解】设OM a =,∵点A 在反比例函数k y x =的图象上, ∴k AM a=, ∵OM MN NC ==,∴3OC a =, ∴11336222AOC k S OC AM a k a =⋅=⋅⋅==, ∴4k =.故答案为:4.【点睛】本题综合考查了反比例函数与三角形的面积,根据反比例函数的特点,用OM 的长度表示出AM 、OC 的长度,相乘恰好只剩下k 是解题的关键,本题设计巧妙,是不错的好题. 19.<【分析】根据一次函数的性质当k <0时y 随x 的增大而减小进行判断即可【详解】解:∵一次函数y=-2x+1中k=-2<0∴y 随x 的增大而减小∵x1>x2∴y1<y2故答案为<【点睛】此题主要考查了一次解析:<【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小进行判断即可.【详解】解:∵一次函数y =-2x +1中k =-2<0,∴y 随x 的增大而减小,∵x 1>x 2,∴y 1<y 2.故答案为<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.20.3【分析】设CE 的长为a 利用折叠的性质得到EG=BE=4-aED=3-a 在Rt △EGD 中利用勾股定理可求得a 的值得到点E 的坐标即可求解【详解】过G 作GD ⊥BC 于D 则点D(32)设CE 的长为a 根据折叠解析:3【分析】设CE 的长为a ,利用折叠的性质得到EG=BE=4-a ,ED=3-a ,在Rt △EGD 中,利用勾股定理可求得a 的值,得到点E 的坐标,即可求解.【详解】过G 作GD ⊥BC 于D ,则点D(3,2),设CE 的长为a ,根据折叠的性质知:EG=BE=4-a ,ED=3-a ,在Rt △EGD 中,222EG ED DG =+,∴()()2224a 3a 2-=-+, 解得:32a =, ∴点E 的坐标为(32,2), ∵反比例函数k y x =的图象恰好经过点E , ∴3232k xy ==⨯=, 故答案为:3.【点睛】本题考查了矩形的性质,折叠的性质,勾股定理的应用,反比例函数图象上点的特征,作出辅助线构造直角三角形是解题的关键.三、解答题21.(1)()30A -,,()0,2B ;(2)()120y x x =>;(3)03x << 【分析】(1)分别令一次函数解析式中y=0、x=0求出x 、y 的值,从而得出点A 、B 的坐标; (2)由A 、B 点的坐标结合中位线的性质,找出线段OD 、DC 的长度,从而找出点C 的坐标,再由点C 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的系数k ,从而得出结论;(3)观察函数图象,根据两函数图象的上下关系结合交点的坐标,即可得出结论.【详解】解:(1)令一次函数223y x =+中y=0,则23x+2=0, 解得:x=-3,∴点A 的坐标为(-3,0); 令一次函数223y x =+中x=0,则y=2, ∴点B 的坐标为(0,2); (2)∵OB 是ACD △的中位线,∴2224CD BO ==⨯=,3==OD OA ,∴C 点坐标()3,4,∴3412k =⨯=,∴反比例函数的关系式()120y x x =>.(3)由图象可知,当03x <<时,反比例函数值大于一次函数值. 【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数与一次函数的交点问题以及三角形中位线的性质,本题属于基础题,难度不大,解决该题型题目时,找出点的坐标,根据反比例函数图象上点的坐标特征求出反比例系数k 是关键. 22.(1)3m =,6n =,212y x=;(2)03x <≤或6x ≥;(3)点P 的坐标为()5,0.【分析】(1)把点A 、B 的坐标代入反比例函数中,得到2n m =,由CD=3可知 ,3n m -=即可求出m 、n 的值;(2)根据图象可直接写出x 的取值范围;(3)作点B 关于x 轴的对称点()62F -,,连接AF 交x 轴于点P ,此时ABP △的周长最小,求出坐标即可; 【详解】(1)∵点()4A m ,,()2B n ,在反比例函数22k y x=的图象上, ∴242k m n ==, 即2n m =; ∵3DC =, ∴3n m -=, ∴3m =,6n =,∴点()34A ,,点()62B ,, ∴23412k =⨯=, ∴反比例函数的解析式为212y x=; (2)∵点()34A ,,点()62B ,, ∴当21k k x b x+≤时:03x <≤或6x ≥; (3)如图,作点B 关于x 轴的对称点()62F -,,连接AF 交x 轴于点P ,此时ABP △的周长最小;设直线AF 的解析式为y kx a =+,3462k a k a +=⎧⎨+=-⎩解得210k a =-⎧⎨=⎩∴直线AF 的解析式为210y x =-+, 当0y =时,5x =,∴点P 的坐标为()50,.【点睛】本题考查了反比例函数与一次函数的解析式以及求x 的取值范围,还有在反比例函数中出现的动点问题,属于中等难度.23.(1)()8,2A ;B ()8,2--;k=16;(2)2233y x =+ 【分析】(1)根据D 点的横坐标为-8,求出点B 的横坐标代入14y x =中,得2y =-,得出B 点的坐标,即可得出A 点的坐标,再根据求出即可;(2)根据111122,,2222∆∆======DCNO DBO OEN S mn k S mn k S mn k ,即可得出k 的值,进而得出B ,C 点的坐标,再求出解析式即可. 【详解】解:(1)∵(),80D -, ∴B 点的横坐标为8-,代14y x =入中,得2y =-. ∴B 点坐标为()8,2--. ∵A 、B 两点关于原点A 对称, ∴()8,2A . ∴8216k xy ==⨯=;(2)∵()0,N n -,B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上,∴mn k =,2,2n B m ⎛⎫-- ⎪⎝⎭,()2,C m n --,(),E m n --.22DCNO S mn k ==矩形,1122DBO S mn k ==△,1122OEN S mn k ==△,∴4DBOOENDCNO OBCE S S S Sk =--==矩形四边形.∴4k =.∵2,2n B m ⎛⎫-- ⎪⎝⎭在双曲线4y x =与直线14y x =上, ∴()()2421242n m n m ⎧⎛⎫-⨯-= ⎪⎪⎪⎝⎭⎨⎪⨯-=-⎪⎩, 解得1122m n =⎧⎨=⎩或2222m n =-⎧⎨=-⎩(舍去) ∴()4,2C --,()2,2M .设直线CM 的解析式是y ax b =+,把()4,2C --和()2,2M 代入得:4222a b a b -+=-⎧⎨+=⎩,解得23a b ==. ∴直线CM 的解析式是2233y x =+. 【点睛】本题考查反比例函数解析式,一次函数解析式,掌握反比例函数解析式,一次函数解析式待定系数求法,关键是点B 横纵坐标关系,以及4DBOOENDCNO OBCE S S S Sk =--==矩形四边形构造方程组解决问题. 24.(1)6y x=;(2)5;(3)存在,()0,1D - 【分析】(1)将A 的坐标代入反比例函数解析式中,求出k 的值,即可确定出反比例函数解析式;(2)将反比例函数解析式与一次函数解析式联立组成方程组,求出方程组的解,根据B 所在的象限即可得到B 的坐标;三角形ABC 的面积可以由BC 为底边,A 横坐标绝对值与B 横坐标绝对值之和为高,利用三角形的面积公式求出即可.(3)作C 关于y 轴的对称点C′,连接BC′交y 轴上一点D ,连接CD ,求出BC′的直线解析式,即可求出D 的坐标. 【详解】(1)∵一次函数1y x =+与反比例函数ky x=相交于()2,3A 6k x y =⋅=6y x∴=(2)如图:16y x y x =+⎧⎪∴⎨=⎪⎩,∴123,2x x =-=. ∴()3,2B -- 过B 作BC x ⊥轴12552ABCS∴=⨯⨯= (3)存在.作C 关于y 轴的对称点C ',连接BC '交y 轴上一点D , 连接CD ,()3,0C '设BC '的直线方程(0)y mx n m =+≠3032m n m n +=⎧⎨-+=-⎩∴131m n ⎧=⎪⎨⎪=-⎩ 113y x ∴=-令0,1x y ==-∴()0,1D - 【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:因式分解法解一元二次方程,待定系数法确定函数解析式,坐标与图形性质,以及三角形面积公式,待定系数法是数学中重要的思想方法,学生做题时注意灵活运用.25.(1)5y x =-+;(2)14x <<;(3)点P 的坐标为(0,4)或(0,3). 【分析】(1)将点A ,B 坐标代入双曲线中即可求出m ,n ,最后将点A ,B 坐标代入直线解析式中即可得出结论;(2)根据点A ,B 坐标和图象即可得出结论;(3)根据直线AB 的解析式先求出点C ,D 坐标,进而求出CO ,DO ,设出点P 坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论. 【详解】解:(1)∵点(,4)A m 和点(4,)B n 在4y x=图象上, ∴441,144m n ====, 即(1,4),(4,1)A B把(1,4),(4,1)A B 两点分别代入y kx b =+中得441k b k b +=⎧⎨+=⎩解得:15k b =-⎧⎨=⎩,所以直线AB 的解析式为:5y x =-+; (2)由图象可得,当0x >时,4kx b x+>的解集为14x <<;(3)设点P 的坐标为P(0,a), ①如图:当COD △与CPA 相似时,∵直线AB 的解析式为:5y x =-+ ∴C(0,5),D (5,0) ∴CO=DO=5 则CP CO AP DO = 即5-515a = ,解得:a=4∴P(0,4);②如图:由①得2222112CP AP+=+=当COD△与CAP相似时,222=2,∴OP=CO-CP=5-2=3∴P(0,3);∴点P的坐标为(0,4)或(0,3)时,COD△与ACP△相似.【点睛】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.26.(1)8;(2)15;(3)0<x<4【分析】(1)把点A的横坐标代入y=12x,求出A点坐标,再用待定系数法求k值;(2)把纵坐标代入,求出C点坐标,过点C作CM⊥x轴于M,过点A作AN⊥x轴于N,根据△AOC的面积等于梯形CMNA的面积可求;(3)观察图象可直接得出答案.【详解】解:(1)∵点A的横坐标为4,点A在直线y=12x上,∴点A的纵坐标为y=12×4=2,即A(4,2).又∵点A(4,2)在双曲线y=kx上,∴k=2×4=8;(2)∵点C在双曲线y=8x上,且点C纵坐标为8,∴C(1,8).如已知图,过点C作CM⊥x轴于M,过点A作AN⊥x轴于N.∵S △COM =12CM OM ⨯⨯=4, S △AON =12AN ON ⨯⨯=4, S △AOC =S 四边形OCAN - S △AON ,S 梯形CMNA =S 四边形OCAN - S △COM , ∴S △AOC =S 梯形CMNA =1()2AN CM MN +⨯, =1(28)32⨯+⨯, =15.(3)根据图象,直线y =12x 与双曲线y =k x的函数值大于0时,图象在第一象限,即x>0, 在交点A 的左侧,直线y =12x 比双曲线y =k x的函数值小,即x<4, 故当0<x <4时,102k x x >>. 【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数比例系数k 的几何意义,平面直角坐标系中三角形面积的求法,利用图象比较函数大小,解题关键是树立数形结合思想,把面积进行转化,利用两个函数的交点比较函数大小.。
2019年11月29日九年级数学相似三角形与反比例函数精选试题周末辅导培优训练含答案
![2019年11月29日九年级数学相似三角形与反比例函数精选试题周末辅导培优训练含答案](https://img.taocdn.com/s3/m/9452db6e6c85ec3a87c2c5c2.png)
11月29日九年级数学相似三角形与反比例函数精选试题周末辅导培优训练含答案一、填空题1.如图,直线AB与y轴平行,且与反比例函数y=和y=﹣的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是.第1题图第3题图第4题图第5题图第6题图2.如果A(﹣2,y1),B(3,y2)两点都在反比例函数y=(m>0)的图象上,那么y1与y2的大小关系是.3.如图,在平面直角坐标系中,边长为4的等边△OAB的OA边在x轴的正半轴上,反比例函数y=(x>0)的图象经过AB边的中点C,且与OB边交于点D,则点D的坐标为.4.如图,在▱ABCD中,A(1,0),B(0,﹣2),反比例函数y=(x<0)的图象经过点C,D在y轴上,若▱ABCD 的面积为6,求k的值.5.如图,直线y=2x+8分别交x轴于A点,交y轴于B点,交双曲线y=(x<0)于C,D两点,若S△OCD=2S△OCA,则k=.6.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=的图象相交于点A(2,3)和点B(n,﹣1),则关于x的不等式kx+b>的解集是.7.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC=.第7题图第8题图第10题图8.如图,AC、BD相交于O点,CD∥AB,AO=4,OC=2,OD=3,则BD=.9.已知==3,则(b+d≠0)的值是.10.边长为2的正方形ABCD中E是AB的中点,P在射线DC上从D出发以每秒1个单位长度的速度运动,过P 作PF⊥DE,当运动时间为秒时,以点P,F,E为顶点的三角形与△AED相似.二、解答题11.如图,在平面直角坐标系中,双曲线y=和直线y=kx+b交于A,B两点,点A的坐标为(﹣3,2),BC⊥y 轴于点C,且OC=6BC.(1)求双曲线和直线的解析式;(2)求△AOB的面积.(3)直接写出不等式>kx+b的解集.12.如图,一次函数y1=﹣x+b的图象与反比例函数y2=(x>0)的图象交于A、B两点,与x轴交于点C,且点A的坐标为(1,2),点B的横坐标为3.(1)在第一象限内,当x取何值时,y1>y2?(2)求反比例函数的解析式及△AOB的面积.13.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.14.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.15.如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.(1)求证:△ODM∽△MCN;(2)设DM=x,OA=R,求R关于x的函数关系式;(3)在动点O逐渐向点D运动(OA逐渐增大)的过程中,△CMN的周长如何变化?说明理由.16.如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.11月29日九年级数学相似三角形与反比例函数精选试题周末辅导培优训练答案一.填空题(共10小题)1.如图,直线AB与y轴平行,且与反比例函数y=和y=﹣的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是4.【分析】依据AB∥y轴,可得△AOB与△APB的面积相等,再根据反比例函数y=和y=﹣的图象分别过A、B 两点,即可得到S△AOC=3.5,S△BOC=0.5,进而得出△PAB的面积4.【解答】解:如图,连接AO,BO,∵AB∥y轴,∴△AOB与△APB的面积相等,又∵反比例函数y=和y=﹣的图象分别过A、B两点,∴S△AOC=3.5,S△BOC=0.5,∴S△AOB=4,∴△PAB的面积4,故答案为:4.【点评】本题考查了反比例函数y=(k≠0)中比例系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.2.如果A(﹣2,y1),B(3,y2)两点都在反比例函数y=(m>0)的图象上,那么y1与y2的大小关系是y1<y2.根据反比例函数图象的性质:k>0时,在每个象限内,y随x的增大而减小,判断y1和y2的大小关系即可.【解答】解:∵m>0,∴反比例函数y=(m>0)的图象在每个象限内,y随x的增大而减小,∵﹣2<0<3,∴y1<y2.故答案是:y1<y2.【点评】此题主要考查了反比例函数图象上点的坐标特征,关键是掌握k>0时,在每个象限内,y随x的增大而减小.3.如图,在平面直角坐标系中,边长为4的等边△OAB的OA边在x轴的正半轴上,反比例函数y=(x>0)的图象经过AB边的中点C,且与OB边交于点D,则点D的坐标为(,3).【分析】利用待定系数法求出直线OB的解析式,反比例函数的解析式,构建方程组求出解得D坐标即可;【解答】解:∵△AOB是等边三角形,边长为4,∴B(2,2),∵BC=CA,∴C(3,),把点C坐标代入y=上,得到k=3,∵直线OB的解析式为y=x,由,解得或(舍弃)∴D(,3),故答案为(,3).【点评】本题考查反比例函数图象上的点的特征、等边三角形的性质、一次函数的应用等知识,解题的关键是熟练掌握待定系数法,学会构建一次函数,利用方程组确定交点坐标.4.如图,在▱ABCD中,A(1,0),B(0,﹣2),反比例函数y=(x<0)的图象经过点C,D在y轴上,若▱ABCD 的面积为6,求k的值﹣2.【分析】根据A(1,0),B(0,﹣2),得到OA=1,OB=2,根据▱ABCD的面积为6,求出BD=6,得到D(0,4),根据平行四边形的性质得到CD=AB,CD∥AB,推出△CDE≌△ABO,根据全等三角形的性质得到CE=AO=1,DE=BO=2,求出C(﹣1,2),即可得到结论.【解答】解:∵A(1,0),B(0,﹣2),∴OA=1,OB=2,∵▱ABCD的面积为6,∴S△ABD=▱ABCD的面积=3,∴BD=6,∴OD=4,∴D(0,4),∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴∠CDE=∠ABO,过C作CE⊥BD于E,在△CDE与△ABO中,,∴△CDE≌△ABO,∴CE=AO=1,DE=BO=2,∴OE=2,∴C(﹣1,2),∵反比例函数y=(x<0)的图象经过点C,∴k=﹣2.故答案为﹣2.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,反比例函数图象上点的坐标特征,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.5.如图,直线y=2x+8分别交x轴于A点,交y轴于B点,交双曲线y=(x<0)于C,D两点,若S△OCD=2S△OCA,则k=﹣6.【分析】由题意CD=2AC,推出C、D两点的纵坐标是两倍关系,设点C的纵坐标为m,则点D的纵坐标为3m,因为C、D在直线y=2x+8上,推出C(m﹣4,m),D(,3m),根据C、D两点的横坐标与纵坐标的乘积相等,构建方程即可解决问题;【解答】解:∵S△OCD=2S△OCA,∴CD=2AC,∴C、D两点的纵坐标是两倍关系,设点C的纵坐标为m,则点D的纵坐标为3m,∵C、D在直线y=2x+8上,∴C(m﹣4,m),D(,3m),∵C、D都在y=上,∴(m﹣4)m=•3m,解得m=2或0(舍弃),∴C(﹣3,2),∴k=﹣6,故答案为﹣6.【点评】本题考查反比例函数与一次函数的交点问题、三角形的面积、等高模型等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.6.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=的图象相交于点A(2,3)和点B(n,﹣1),则关于x的不等式kx+b>的解集是﹣6<x<0或x>2.【分析】先根据待定系数法求得反比例函数y=的解析式,进一步求得点B的坐标,关于x的不等式kx+b>的解集,在图象上即为一次函数的图象在反比例函数图象的上方时的自变量的取值范围.【解答】解:把点A(2,3)代入反比例函数y=得3=,解得m=6,则反比例函数y=,﹣1=,解得n=﹣6,点B(﹣6,﹣1),则关于x的不等式kx+b>的解集是﹣6<x<0或x>2.故答案为:﹣6<x<0或x>2.【点评】此题考查了反比例函数与一次函数的交点问题,关键是注意掌握数形结合思想的应用.7.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC=6.【分析】首先证明BD=DE=2AD,再由DE∥BC,可得=,求出EC即可解决问题;【解答】解:∵DE∥BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴=,∴=,∴EC=4,∴AC=AE+EC=2+4=6,故答案为6.【点评】本题考查平行线分线段成比例定理,角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.如图,AC、BD相交于O点,CD∥AB,AO=4,OC=2,OD=3,则BD=9.【分析】根据平行线分线段成比例解答即可.【解答】解:∵CD∥AB,∴,即,解得:BO=6,∴BD=6+3=9,故答案为:9【点评】此题考查平行线分线段成比例,关键是根据平行线分线段成比例计算.9.已知==3,则(b+d≠0)的值是3.【分析】由已知可知:3b=a,3d=c,得到(b+d≠0)的值.【解答】解:由==3,得3b=a,3d=c,∴.故答案为:3【点评】此题考查比例线段问题,本题的关键是利用分式的基本性质求得a+c与b+d之间的关系.10.边长为2的正方形ABCD中E是AB的中点,P在射线DC上从D出发以每秒1个单位长度的速度运动,过P 作PF⊥DE,当运动时间为1或秒时,以点P,F,E为顶点的三角形与△AED相似.【分析】分两种情形分别求解即可;【解答】解:①如图,当△PFE∽△EAD时,可知此时PE⊥CD,t=DP=1;②如图,当△EFP∽△EAD时,可知,此时F为DE中点,EF=DF=DE=,∵==,即=,解得t=DP=综上所述,满足条件的t的值为1s或s.【点评】本题考查相似三角形的性质、正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二.解答题(共6小题)11.如图,在平面直角坐标系中,双曲线y=和直线y=kx+b交于A,B两点,点A的坐标为(﹣3,2),BC⊥y 轴于点C,且OC=6BC.(1)求双曲线和直线的解析式;(2)求△AOB的面积.(3)直接写出不等式>kx+b的解集.【分析】(1)先把A点坐标代入y=求出m,从而得到反比例函数解析式;再利用OC=6BC可设B点坐标为(t,﹣6t)(t>0),然后把B(t,﹣6t)代入反比例函数解析式求出t,得到B点坐标为(1,﹣6),再利用待定系数法求一次函数解析式;(2)先确定直线y=﹣2x﹣4与x轴的交点D的坐标,然后根据三角形面积公式和△AOB的面积=S△AOD+S△BOD进行计算;(3)根据一次函数与反比例函数的两交点A与B的横坐标,以及0,将x轴分为四个范围,找出反比例图象在一次函数图象上方时x的范围即可.【解答】解:(1)∵点A(﹣3,2)在双曲线y=上,∴2=,即m=﹣6,∴双曲线的解析式为:y=﹣,∵点B在双曲线y=﹣上,且OC=6BC,设点B的坐标为(a,﹣6a),∴﹣6a=﹣,解得:a=±1(负值舍去),∴点B的坐标为(1,﹣6),∵直线y=kx+b过点A,B,∴,解得:,∴直线的解析式为y=﹣2x﹣4;(2)直线y=﹣2x﹣4交x轴于点D,如图,把y=0代入y=﹣2x﹣4得﹣2x﹣4=0,解得x=﹣2,则D点坐标为(﹣2,0),△AOB的面积=S△AOD+S△BOD=×2×2+×2×6=8.(3)根据图象得:不等式>kx+b的解集为﹣3<x<0或x>1.【点评】此题考查了一次函数与反比例函数的交点问题,利用了待定系数法及数形结合的思想,熟练掌握待定系数法是解本题的关键.12.如图,一次函数y1=﹣x+b的图象与反比例函数y2=(x>0)的图象交于A、B两点,与x轴交于点C,且点A的坐标为(1,2),点B的横坐标为3.(Ⅰ)在第一象限内,当x取何值时,y1>y2?(根据图直接写出结果)(Ⅱ)求反比例函数的解析式及△AOB的面积.【分析】(Ⅰ)根据交点坐标,由函数图象即可求解;(Ⅱ)运用待定系数法,求得一次函数和反比例函数的解析式,再根据解方程组求得C(0,4),最后根据S△AOB=S ﹣S△BOC进行计算即可求解.△AOC【解答】解:(Ⅰ)根据图象得:在第一象限内,当1<x<3时,y1>y2.(Ⅱ)把A(1,2)代入中得k2=1×2=2,∴反比例函数的解析式为,分别过点A、B作AE⊥x轴于E,BF⊥x轴于F,则AE=y A=2,把x B=3代入中,得,则BF=,把A(1,2)代入中,得:,∴.∴一次函数的解析式为;当y c=0时,,得:x=4,则OC=4,∴S△AOB=S△AOC﹣S△BOC==.【点评】本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是运用待定系数法求得一次函数和反比例函数的解析式.解题时注意:求正比例函数,只要一对x,y的值就可以;而求一次函数y=kx+b,则需要两组x,y的值.13.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.【分析】(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.【点评】本题考查了正方形的性质、相似三角形的判定与性质、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.14.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.【分析】(1)根据圆周角定理求得AD⊥BC,根据等腰三角形三线合一的性质即可证得结论;(2)先求得∠E=∠C,根据等角对等边求得BD=DC=DE=3,进而求得AD=1,然后根据勾股定理求得AB,即可求得圆的半径;(3)根据题意得到AC=,BC=6,DC=3,然后根据割线定理即可求得EC,进而求得AE.【解答】(1)证明:∵AB是圆O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC;(2)解:∵AB=AC,∠B=∠C,∵∠B=∠E,∴∠E=∠C,∴BD=DC=DE=3,∵BD﹣AD=2,∴AD=1,在RT△ABD中,AB==,∴⊙O的半径为;(3)解:∵AB=AC=,BD=DC=3,∴BC=6,∵∠B=∠E,∠C=∠C,∴△EDC∽△BAC,∵AC•EC=DC•BC,∴•EC=3×6,∴EC=,∴AE=EC﹣AC=﹣=.【点评】本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理的应用以及割线定理的应用,熟练掌握性质定理是解题的关键.15.如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.(1)求证:△ODM∽△MCN;(2)设DM=x,OA=R,求R关于x的函数关系式;(3)在动点O逐渐向点D运动(OA逐渐增大)的过程中,△CMN的周长如何变化?说明理由.【分析】(1)根据切线的性质得出∠OMN=90,从而证得∠OMD=∠MNC;则△ODM∽△MCN;(2)由DM=x,设OA=OM=R;则得出OD,由勾股定理得R与x的关系;(3)可分为两种解法得出答案.由△ODM∽△MCN,得,用含x的式子表示出CN,MN,从而得出△CMN 的周长是一个定值.【解答】(1)证明:∵MN切⊙O于点M,∴∠OMN=90°;∵∠OMD+∠CMN=∠OMN=90°,∴∠OMD+∠CMN=90°,∠CMN+∠CNM=90°;∴∠OMD=∠MNC;又∵∠D=∠C=90°;∴△ODM∽△MCN;(2)解:在Rt△ODM中,DM=x,设OA=OM=R;∴OD=AD﹣OA=8﹣R,由勾股定理得:(8﹣R)2+x2=R2,∴64﹣16R+R2+x2=R2,∴<<;(3)解法一:∵CM=CD﹣DM=8﹣x,又∵且有△ODM∽△MCN,∴,∴代入得到;同理,∴代入得到;∴△CMN的周长为P==(8﹣x)+(x+8)=16.在点O的运动过程中,△CMN的周长P始终为16,是一个定值.解法二:在Rt△ODM中,,设△ODM的周长P′=;而△MCN∽△ODM,且相似比;,∵△ 的周长△ 的周长∴△MCN的周长为P=.在点O的运动过程中,△CMN的周长P始终为16,是一个定值.【点评】本题考查了相似三角形的判定和性质、勾股定理、正方形的性质以及切线的性质,是一道综合题,难度较大.16.如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=(n+2),然后根据S△AMN=S△ABN﹣S△BMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,考查了待定系数法求解析式,勾股定理和逆定理,等腰三角形的性质,三角形相似的判定和性质以及函数的最值等,熟练掌握性质定理是解题的关键.。
反比例函数和相似三角形综合检测试题整理
![反比例函数和相似三角形综合检测试题整理](https://img.taocdn.com/s3/m/cac1b5dd172ded630b1cb639.png)
WORD 格式整理版2014-2015学年度启东市滨海实验学校共同体第一学期第二次质量检测卷九年级数学学科试卷考试时间:120分钟 总分:150分 命题人:施金金一、选择题(每题3分,共30分)1、已知点),1(1y -,),2(2y ,),3(3y 在反比例函数xk y 12--=的图像上. 下列结论中正确的是 ( ) A .321y y y >> B .231y y y >> C .213y y y >> D . 132y y y >>2、在反比例函数1ky x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( )A .1-B .0C .1D .23、如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F , S △DEF :S △ABF =4:25,则DE :EC= ( ) A 2:5 B 2:3 C 3:5 D 3:24、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如右上图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应 ( )A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m35、如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值 ( ) A. 只有1个 B. 可以有2个 C. 可以有3个 D. 有无数个6、下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( ) A .(5,1) B .(-1,5) C .(35,3) D .(-3,35-) 7、小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O 、准星A 、目标B 在同一条直线上,如图4所示,在射击时,小明有轻微的抖动,致使准星A 偏离到A ′,若OA=0.2米,OB=40米,AA ′=0.0015米,则小明射击到的点B ′偏离目标点B 的长度BB ′为 ( ) A .3米B .0.3米C .0.03米D .0.2米8、如图一,在△ABC 中,DE∥BC,AD =3,BD =2,则△ADE 与四边形DBCE 的面积比是 ( )(A )3︰2; (B )3︰5; (C )9︰16; (D )9︰4. 9、如下图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为 ( )A .12B .9C .6D . 4DBAyxOC10、如上图,Rt△ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A→B→A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为 ( ) A 2 B 2.5或3.5 C 3.5或4.5 D 2或3.5或4.5BCADE(图一)二、填空题(每题3分,共30分) 11、若点(4,m )在反比例函数8y x= (x ≠0)的图象上,则m 的值是 . 12、如图,反比例函数ky x=)0(<k 的图象与经过原点的直线l 相交于A 、B 两点,已知A 点坐标为)1,2(-,那么B 点的坐标为.13、如图,D E ,两点分别在ABC △的边AB AC ,上,DE 与BC 不平行,当满足_____________条件(写出一个即可)时,ADE ACB △∽△.14、已知22)1(--=a xa y 是反比例函数,则a=____15、如图,△ABC 中,DE∥BC,DE=1,AD=2,DB=3,则BC 的长是____________y 216、函数()()1240y x x y x x==>≥0,的图象如下图所示,则结论: ①两函数图象的交点A 的坐标为()22,;②当2x >时,21y y >; ③当1x =时,3BC =;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号是 .AECBD17、两个相似三角形一对对应边分别为35cm ,14cm ,它们的周长相差60cm , 则较大三角形周长为 cm18、如右图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD, AC 交BD 于点E ,CE=4,CD=6,则AE 的长为____________________19、如下图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A 、C 分别在x ,y 轴的正半轴上.点Q 在对角线OB 上,且QO=OC ,连接CQ 并延长CQ 交边AB 于点P . 则点P 的坐标为____________20、如右上图,已知双曲线)0k (xky >经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =____________ 三、解答题(共90分)(8分)21、网格图中每个方格都是边长为1的正方形.若A ,B ,C ,D ,E ,F 都是格点, 试说明△ABC ∽△DEF .A B C D E F(11分)22、如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.(10分)23、如图,小华家(点A处)和公路(l)之间竖立着一块30m长且平行于公路的巨型广告牌(DE).广告牌挡住了小华的视线,图中画出视点A的盲区,并将盲区内的那段公路计为BC.一辆以72km/h匀速行驶的汽车经过公路段BC的时间是3s,已知广告牌和公路的距离是40m,求小华家到公路的距离(8分)24、如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.(12分)25、如图,一次函数2y kx =+的图象与反比例函数my x=的图象交于点P ,点P 在第一象限.PA ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D ,且S △PBD =4,12OC OA =.(1)求点D 的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当0x >时,一次函数的值大于反比例函数的值的x 的取值范围.(12分)26、如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题: (1)当t =2时,判断△BPQ 的形状,并说明理由;(2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?y xPBD AO C (第24题)(15分)27、如图12,已知直线12y x =与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值;(2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)ky k x =>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.图12OxAyB(14分)28、如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.。
相似与反比例综合题练习(含答案)
![相似与反比例综合题练习(含答案)](https://img.taocdn.com/s3/m/736437fba58da0116c174969.png)
相似与反比例综合题练习(含解析)一.选择题(共12小题)1.如图所示,已知双曲线y=(x<0)和y=(x>0),直线OA与双曲线y=交于点A,将直线OA向下平移与双曲线y=交于点B,与y轴交于点P,与双曲=6,=,则k=()线y=交于点C,S△ABCA.﹣6 B.﹣4 C.6 D.42.如图,点A在反比例函数y=(k≠0)的图象上,且点A是线段OB的中点,点D为x轴上一点,连接BD交反比例函数图象于点C,连接AC,若BC:CD=2:1,S△ADC=.则k的值为()A.B.16 C.D.103.如图,O为坐标原点,点C在x轴上.四边形OABC为菱形,D为菱形对角线AC与OB的交点,反比例函敬y=在第一象限内的图象经过点A与点D,若菱形OABC的面积为24,则点A的坐标为()A.(1,6)B.(,5)C.(2,4)D.(3,3)4.如图,平面直角坐标系中,矩形OABC的边与函数y=(x>0)图象交于E,F两点,且F是BC的中点,则四边形ACFE的面积等于()A.4 B.6 C.8 D.不能确定5.如图,点A是反比例函数y=(x>0)的图象上一点,过点A作直线y=﹣x 的垂线,垂足为点B,再过点A作AC⊥AB交y=(x>0)的图象于点C,若△ABC是等腰三角形,则点B的坐标是()A.(﹣,)B.(﹣,)C.(﹣2,2)D.(﹣3,3)6.如图,菱形四边形ABCD的四个顶点分别在反比例函数y=,y=﹣的图象上,若该菱形的面积为78,则这个菱形的边长为()A.B.C.13 D.137.如图,已知A,B为反比例函数y1=图象上两点,连接AB,线段AB经过点O,C是反比例函数y2=(k<0)在第二象限内的图象上一点,当△CAB是以AB 为底的等腰三角形,且=时,k的值为()A.﹣ B.﹣3 C.﹣4 D.﹣8.已知,直线y=k1x(k1>0)与反比例函数y=图象交于点A、B两点,以AB 为边作等边△ABC,随着k1的取值不同,点C在反比例函数y=运动,则k2的值是()A.﹣2B.﹣3C.﹣6 D.﹣39.如图,反比例函数y=上有一点A,连接并延长OA,使得OA=AB,过点B作x轴的垂线,分别交反比例函数和x轴于点C、点D.若CD=,∠B=60°,则△AOD的面积为()A.9 B.10C.11D.1210.如图,△ABC是等边三角形,顶点C在y轴的负半轴上,点A(1,),点B在第一象限,经过点A的反比例函数y=(x>0)的图象恰好经过顶点B,则△ABC的边长为()A.3 B.2 C.4 D.311.如图,以矩形OABC的顶点O为坐标原点建立平面直角坐标系,使点A、C 分别在x轴、y轴的正半轴上,双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E.过OC边上一点F,把△BCF沿直线BF翻折,使点C落在点C′处(点C′在矩形OABC内部),且C′E∥BC,若点C′的坐标为(2,3),则k的值为()A.B.C.D.12.如图,A、B、C是反比例函数y=(k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条 B.3条 C.2条 D.1条二.解答题(共8小题)13.如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连接AB.点P 从点B出发,以每秒4个单位长度的速度沿BC的方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于点D,作DE⊥AC于点E.F为射线CB上一点,使得∠CEF=∠ABC.设点P运动的时间为x秒.(1)用含有x的代数式表示CE的长.(2)求点F与点B重合时x的值.(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式.14.如图,射线AM平行于射线BN,AB⊥BN,且AB=3,C是射线BN上的一个动点,连接AC,作CD⊥AC,且CD=AC,过C作CE⊥BN交AD于点E,设BC 长为t.(1)AC长为,△ACD的面积为(用含有t的代数式表示);(2)求点D到射线BN的距离(用含有t的代数式表示);(3)是否存在点C,使△ACE为等腰三角形?若存在,请求出此时BC的长度;若不存在,请说明理由.15.如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm,BC=9cm,P是线段DE上的动点.设DP=x cm,梯形BCDP 的面积为ycm2.①求y关于x的函数关系式.②y是否存在最大值?若有求出这个最大值,若不存在请说明理由.16.如图,在矩形ABCD(AB<AD)中,将△ABE沿AE对折,使AB边落在对角线AC上,点B的对应点为F,同时将△CEG沿EG对折,使CE边落在EF所在直线上,点C的对应点为H.(1)证明:AF∥HG(图(1));(2)证明:△AEF∽△EGH(图(1));(3)如果点C的对应点H恰好落在边AD上(图(2)).求此时∠BAC的大小.17.如(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周.(1)点C坐标是,当点D运动8.5秒时所在位置的坐标是;(2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值时,S最大;(3)点E在线段AB上以同样速度由点A向点B运动,如(b)图,若点E与点D同时出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD 相似?(只考虑以点A、O为对应顶点的情况)18.如图,在平面直角坐标系中,点A,B坐标分别为(8,4),(0,4),点C,D在x轴上,C(t,0),D(t+3,0)(0<t≤5),过点D作x轴的垂线交线段AB 于点E,交OA于点G,连接CE交OA于点F(1)请用含t的代数式表示线段AE与EF的长;(2)若当△EFG的面积为时,点G恰在的图象上,求k的值;(3)若存在点Q(0,2t)与点R,其中点R在(2)中的的图象上,以A,C,Q,R为顶点的四边形是平行四边形,求R点的坐标.19.如图,点A(m,m+1),B(m+3,m﹣1)都在反比例函数的图象上.(1)求m,k的值;(2)求三角形ABO的面积.20.如图,将透明三角形纸片PAB的直角顶点P落在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x于点C,PA⊥y于点D,AB分别与x轴,y轴相交于点E、F.已知B(1,3).(1)k=;(2)试说明AE=BF;(3)当四边形ABCD的面积为时,求点P的坐标.相似与反比例练习参考答案与试题解析一.选择题(共12小题)1.如图所示,已知双曲线y=(x<0)和y=(x>0),直线OA与双曲线y=交于点A,将直线OA向下平移与双曲线y=交于点B,与y轴交于点P,与双曲线y=交于点C,S△ABC=6,=,则k=()A.﹣6 B.﹣4 C.6 D.4【解答】解:设A(x a,y a),B(x b,y b),C(x c,y c),则有x a y a=x b y b=5,x c y c=k,∵OA∥BC∴=,整理得到:y a x b﹣y a x c=x a y b﹣x a y c①过点A作AF⊥x轴于点F,BE⊥x轴于点E,CD⊥x轴于点D,∵S△ABC =S梯形AFEB+S梯形BEDC﹣S梯形AFDC=6∴(AF+BE)×EF+(BE+CD)×DE﹣(AF+CD)×DF=6代入坐标可得到:(y a+y b)(x b﹣x a)+(y b+y c)(x c﹣x b)﹣(y a+y c)(x c﹣x a)=6,整理得:y a x b﹣x a y b+y b x c﹣y c x b﹣y a x c+x a y c=6,②①②联立得:y b x c﹣y c x b=12,③由=,可得:=,即x b=x c,∴y b==,代入③得:10+x c y c=12,解得:x c y c=4,即k=﹣4.故选:B.2.如图,点A在反比例函数y=(k≠0)的图象上,且点A是线段OB的中点,点D为x轴上一点,连接BD交反比例函数图象于点C,连接AC,若BC:CD=2:1,S△ADC=.则k的值为()A.B.16 C.D.10【解答】解:作AE⊥OD于E,CF⊥OD于F.∵BC:CD=2:1,S△ADC=,∴S△ACB=,∵OA=OB,∴B(2m,2n),S△AOC =S△ACB=,∵A、C在y=上,BC=2CD,∴C(m,n),∵S△AOC =S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,∴•(n+n)×m=,∴mn=16,故选:B.3.如图,O为坐标原点,点C在x轴上.四边形OABC为菱形,D为菱形对角线AC与OB的交点,反比例函敬y=在第一象限内的图象经过点A与点D,若菱形OABC的面积为24,则点A的坐标为()A.(1,6)B.(,5)C.(2,4)D.(3,3)【解答】解:作AE⊥OC于E,DF⊥OC于F.设A(a,b).∵四边形ABCO是菱形,∴AD=DC,∵AE∥DF,∴EF=FC,∴DF=AE=b∵反比例函敬y=在第一象限内的图象经过点A与点D,∴D (2a ,b ),∴OE=EF=FC=a ,∴OA=OC=3a ,∴AE==2a ,∵OC•AE=24, ∴3a•2a=24, ∴a 2=4,∵a >0,∴a=2,∴A (2,4), 故选:C .4.如图,平面直角坐标系中,矩形OABC 的边与函数y=(x >0)图象交于E ,F 两点,且F 是BC 的中点,则四边形ACFE 的面积等于( )A .4B .6C .8D .不能确定【解答】解:连接OF 、OB 、OE .∵四边形ABCO 是矩形,∴S △ABO =S △BCO ,∵BF=CF ,∴S △CFO =S △BFO ,∵E 、F 在y=(x >0)上,∴S △AEO =S △FCO =S △ABO ,∴AE=EB ,∵BF=CF ,∴EF ∥AC ,∴△BEF ∽△BAC , ∴=,∵S 矩形ABCO =16,∴S △BEF =×8=2,∴S 四边形ACFE =8﹣2=6,故选:B .5.如图,点A 是反比例函数y=(x >0)的图象上一点,过点A 作直线y=﹣x 的垂线,垂足为点B ,再过点A 作AC ⊥AB 交y=(x >0)的图象于点C ,若△ABC 是等腰三角形,则点B 的坐标是( )A .(﹣,)B .(﹣,)C .(﹣2,2)D .(﹣3,3)【解答】解:由题意,△ABC 是等腰直角三角形,BC ∥x 轴,设B (a ,﹣a ), ∵AC ∥OB ,∴AC ⊥直线y=x ,∴A 、C 关于直线y=x 对称,作OH ⊥AC 于H ,则四边形ABOH 是矩形,∴AH=HC=OB,AB=2OB,∴A(﹣a,﹣3a),∴3a2=6,∴a2=2,∵a<0,∴a=﹣,∴B(﹣,),故选:A.6.如图,菱形四边形ABCD的四个顶点分别在反比例函数y=,y=﹣的图象上,若该菱形的面积为78,则这个菱形的边长为()A.B.C.13 D.13【解答】解:根据对称性可知,反比例函数y=,y=﹣的图象是中心对称图形,菱形是中心对称图形,∴菱形ABCD的对角线AC与BD的交点即为原点O.如图:作DM⊥x轴于M,CN⊥x轴于N.连接OD,OC.∵DO ⊥OC ,∴∠DOM +∠CON=90°,∠CON +∠OCN=90°,∴∠DOM=∠OCN ,∵∠DMO=∠CNO=90°,∴△DOM ∽△OCN ,∵S △DOM =2,S △OCN =, ∴()2=,∴可以假设OD=2k ,OC=3k ,∵S 菱形ABCD =4••2k•3k=78,∴k=, ∴CD==k=,故选:B .7.如图,已知A ,B 为反比例函数y 1=图象上两点,连接AB ,线段AB 经过点O ,C 是反比例函数y 2=(k <0)在第二象限内的图象上一点,当△CAB 是以AB 为底的等腰三角形,且=时,k 的值为( )A.﹣ B.﹣3 C.﹣4 D.﹣【解答】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∵∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF=∠OAE,∴△CFO∽△OEA,∴=()2,∵CA:AB=5:8,AO=OB,∴CA:OA=5:4,∴CO:OA=3:4,∴=()2=,∵S△AOE=2,=,∴S△COF∴=,∵k<0,∴k=﹣,故选:A.。
反比例函数和相似三角形综合检测试题
![反比例函数和相似三角形综合检测试题](https://img.taocdn.com/s3/m/2becf9ed0740be1e640e9ad8.png)
2021-2021 学年度启东市滨海实验学校共同体第一学期第二次质量检测卷九年级数学学科试卷考试时间: 120 分钟总分: 150 分命题人:施金金一、选择题〔每题 3分.共 30分〕1、点 (1, y 1) . (2, y 2 ) . (3, y 3 ) 在反比率函数 yk 2 1x的图像上 . 以下结论中正确的是〔 〕A .y1y 2y 3 B .y1y 3y2C .y3y 1y2D .y2y 3 y 12 、在反比率函数y1 k的图象的每一条曲线上 . y 都随 x 的增大而增大 . 那么 k 的值能够x是〔〕A . 1B . 0C . 1D . 23、如图 . 在平行四边形 ABCD 中 .E 为 CD 上一点 . 连结 AE 、BD.且 AE 、 BD 交于点 F. S △DEF : S △ABF =4: 25. 那么 DE :EC=( )A 2:5B 2:3C 3:5D 3:24、某气球内充满了必定质量的气体. 当温度不变时 . 气球内气体的气压3将爆炸.为了安全起见. 气球的体积应 ()P ( kPa )120 kPa是气体时.气球5 35 3 434 3A .不小于m B .小于4 mC .不小于mD .小于m4555、假如一个直角三角形的两条边长分别是 6和8. 另一个与它相像的直角三角形边长分别是 3、 4 及 x . 那么 x 的值( )A. 只有 1个B. 能够有 2个C.能够有 3个 D. 有无数个k6、以下四个点中 . 有三个点在同一反比率函数yx的图象上 . 那么不在这个函数图象上的点是()A.B.(-C.( 5.3)D.( -3.5) 337、小明在一次军事夏令营活动中. 进行打靶训练 . 在用枪对准目标点 B 时 . 要使眼睛 O、准星 A、目标 B 在同一条直线上 . 如图 4 所示 . 在射击时 . 小明有稍微的颤动. 以致准星 A 偏离到 A′ . 假定 OA=米 .OB=40 米 .AA ′ =米. 那么小明射击到的点B′偏离目标点 B 的长度 BB′为〔〕A.3 米B.米 C.米D.米A(D E 图一)B C8、如图一.在△ABC中.DE∥==2.那么△ADE与四边形DBCE的面积比是〔〕(A〕 3︰2;〔B〕3︰5;〔C〕9︰16;〔D〕9︰4.9、如以下列图 . 双曲线yk ( k 0) 经过直角三角形OAB斜边OA的中点D.且与直角边ABx订交于点C.假定点 A的坐标为〔6 .4〕.那么△ AOC的面积为()A.12B.9C.6D.4yADCB O x10、如上图 . Rt△ABC中. ∠ACB=90° . ∠ABC=60° .BC=为 BC的中点 . 假定动点 E 以 1cm/s 的速度从 A 点出发 . 沿着 A→B→A的方向运动 . 设 E 点的运动时间为t 秒〔 0≤t < 6〕 . 连结 DE.当△ BDE是直角三角形时 .t的值为()A2B或C或D2或或二、填空题〔每题3分.共30 分)11、假定点〔〕在反比率函数y8(x≠0)的图象上.那么m的值是.x12、如图. 反比率函数y k(k0) 的图象与经过原点的直线l订交于A、B 两点.A x点坐标为 ( 2,1) .那么B点的坐标为.ADEBC 13、如图 . D,E两点分别在△ABC的边AB,AC上. DE与BC不平行.当知足_____________条件〔写出一个即可〕时 . △ADE∽△ACB.14、y (a1) x a22是反比率函数.那么a=____15、如图 . △ABC中 . DE∥===3. 那么 BC的长是 ____________y216、函数y1x x ≥ 0 , y24. 那么结论:x 0 的图象如以下列图所示x①两函数图象的交点 A 的坐标为2 2x 2时 .y2 y1;,;②当③当 x 1 时. BC 3 ;④当 x 渐渐增大时.y1跟着x的增大而增大. y2跟着x的增大而减小.此中正确结论的序号是.17、两个相像三角形一对对应边分别为. 它们的周长相差60cm.那么较大三角形周长为cm18、如右图 . 点为⊙O 上的四个点 .AC 均分∠ BAD.AC交 BD于点 ==6. 那么 AE的长为 ____________________19、如以下列图 . 在平面直角坐标系中 . 四边形 OABC是边长为 2 的正方形 . 极点 A、C 分别在轴的正半轴上.点 Q在对角线 OB上 . 且 QO=OC连.接 CQ并延伸 CQ交边 AB于点 P.那么点 P 的坐标为 ____________20、如右上图 . 双曲线y k( k>0 ) 经过直角三角形OAB斜边 OB的中点 D. 与直角边 AB x订交于点 C.假定△ OBC的面积为 3. 那么 k= ____________三、解答题〔共 90 分〕〔 8 分〕 21、网格图中每个方格都是边长为 1 的正方形.假定都是格点 .试说明△ ABC∽△ DEF.E DCFA B〔 11 分〕 22、如图 . 在平行四边形ABCD中 . 过点 A作 AE⊥BC. 垂足为 E. 连结为线段 DE上一点 . 且∠ AFE=∠B(1〕求证:△ ADF∽△ DEC;(2〕假定 AB== =4 . 求 AE的长.〔 10 分〕 23、如图 . 小华家〔点 A 处〕和公路〔 l 〕之间直立着一块路的巨型广告牌〔 DE〕.广告牌挡住了小华的视野 . 图中画出视点 A 的盲区段公路计为 BC.一辆以 72km/h 匀速行驶的汽车经过公路段 BC的时间是30m长且平行于公. 并将盲区内的那3s. 广告牌和公路的距离是40m. 求小华家到公路的距离〔 8 分〕 24、如图 . 在平面直角坐标系中. △ ABC三个极点的坐标分别为A〔﹣〕 .B〔﹣〕C〔﹣〕〔 1〕画出△ ABC 绕点 A 顺时针旋转90°后获得的△A1B1C1〔 2〕以原点O为位似中心 . 画出将△A1B1C1三条边放大为本来的 2 倍后的△A2B2C2.〔 12 分〕 25、如图 . 一次函数y kx 2 的图象与反比率函数y mP.点 P 的图象交于点x在第一象限. PA⊥ x 轴于点⊥ y 轴于点 B.一次函数的图象分别交x轴、y轴于点C、D.且S =4.OC1.△ PBDOA2(1〕求点D的坐标;(2〕求一次函数与反比率函数的分析式;〔 3〕依据图象写出当x 0 时.一次函数的值大于反比率函数的值的x 的取值范围.yB PDC O A x(12 分〕 26、如图 . △ABC是边长为 6cm的等边三角形 . 动点P、Q同时从A、B两点出发 . 分别沿AB、BC匀速运动 . 此中点P运动的速度是 1cm/s. 点Q运动的速度是 2cm/s.当点 Q抵达点 C时. P、 Q两点都停止运动.设运动时间为t 〔s〕.解答以下问题:〔 1〕当t= 2 时 . 判断△BPQ的形状 . 并说明原因;2〔 2〕设△BPQ的面积为S〔cm〕.求 S与 t 的函数关系式;〔 3〕作QR结PR. 当t为什么值时 . △APR∽△PRQ〔第 24 题〕〔 15 分〕 27、如图 12. 直线y 1ykx 与双曲线(k 0) 交于A,B两点.且点A的横坐标为 4 .2x 〔 1〕求k的值;〔 2〕假定双曲线y k(k 0) 上一点 C 的纵坐标为8. 求△AOC的面积;x〔 3〕过原点O的另一条直线l交双曲线y k(k0) 于 P, Q 两点〔P点在第一象限〕. x y假定由点 A, B, P, Q 为极点构成的四边形面积为24. 求点P的坐标.AO xB图 12(14 分〕 28、如图 . 在 Rt△ABC中 . ∠C=90° .AC==3cm.动点从点 C同时出发 . 均以每秒 1cm 的速度分别沿 CA、 CB向终点挪动 . 同时动点 P 从点 B 出发 . 以每秒 2cm 的速度沿 BA向终点 A 挪动 . 连结 . 设挪动时间为 t 〔单位:秒 .0 < t <〕.(1〕当 t 为什么值时 . 认为极点的三角形与△ ABC 相像(2〕能否存在某一时辰 t. 使四边形 APNC的面积 S 有最小值假定存在 . 求 S 的最小值;假定不存在 . 请说明原因.。
初中数学一次函数反比例函数相似三角形练习题(附答案)
![初中数学一次函数反比例函数相似三角形练习题(附答案)](https://img.taocdn.com/s3/m/d5ed60b8b52acfc789ebc9e6.png)
初中数学一次函数反比例函数相似三角形练习题一、填空题1.如图,过x 轴正半轴上的任意一点P 作y 轴的平行线交反比例函数2(0)y x x=>和4(0)y x x=->的图象交于,A B 两点,C 是y 轴上任意一点,则ABC △的面积为 .2.判断下面哪些式子表示y 是x 的反比例函数: ①12xy =-;②3y x =+;③34y x -=;④5a y x=(a 为常数且0a ≠). 其中 是反比例函数(填序号). 3.若反比例函数k y x =与一次函数2y x =+的图象没有公共点,则k 的取值范围是 . 4.反比例函数4a y x+=的图象如图所示,,A P 为该图象上的点,且关于原点成中心对称.在PAB △中,//PB y 轴,//AB x 轴,PB 与AB 相交于点B .若PAB △的面积大于12,则关于x 的方程21(1)04a x x --+=的根的情况是 .5.如图,面积为5的矩形OABC 的一个顶点B 在反比例函数k y x=的图象上,另三点在坐标轴上,则k = .6.如图,矩形OABC 的顶点,A C 的坐标分别是(4,0)和(0,2),反比例函数(0)k y x x=>的图象过对角线的交点P 并且与,AB BC 分别交于,D E 两点,连接,,OD OE DE ,则ODE △的面积为 .7.已知函数1(0)y x x =≥,24(0)y x x=>的图象如图所示,则以下结论: ①两函数图象的交点A 的坐标为(2,2);②当2x >时,12y y >;③图中2BC =;④两函数图象构成的图形是轴对称图形;⑤当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号是 .8.如图,过原点O 的直线与两反比例函数的图象在第一象限内分别交于点,A B ,且A 为OB 的中点,若函数11y x=,则2y 与x 的函数表达式是 。
浙教版数学九年级上册 第四章 相似三角形 综合测试卷(原卷+答案)
![浙教版数学九年级上册 第四章 相似三角形 综合测试卷(原卷+答案)](https://img.taocdn.com/s3/m/f923fa432379168884868762caaedd3382c4b504.png)
第四章综合测试卷 相似三角形班级 学号 得分 姓名一、选择题(本大题有10小题,每小题3分,共30分)1.己知 ab =25,则a +b b的值为( )A 25B 35C 75D 232.如图,已知△ABC∽△DEF,AB:DE=1:2,则下列等式一定成立的是( )A.BC DF=12 B.∠A 的度数∠D 的度数=12C.△ABC的面积△def 的面积= 12 D. △ABC 的周长△def 的周长= 123.如图,在直角坐标系中,△OAB 的顶点为O(0,0),A(4,3),B(3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比 13的位似图形△OCD,则点C 坐标为( )A. (-1,-1)B.(−43,−1)C.(−1,−43) D. (-2,-1)4. 如图,四边形ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出 △ABP 与△ECP 相似的是( )A.∠APB=∠EPCB. ∠APE=90°C. 点 P 是BC 的中点D. BP: BC=2:35.如图,在△ABC 中,点D 在BC 边上,连结AD,点E 在AC 边上,过点E 作EF∥BC,交 AD 于点F,过点E 作EG∥AB,交BC 于点G,则下列式子一定正确的是( ) A.AE EC=EF CDB.EF CD=EG ABC.AFFD=BG GCD.CG BC=AF AD6. 如图,小明为了测量一凉亭的高度AB(顶端A 到水平地面BD 的距离),在凉亭的旁边放置一个与凉亭台阶BC 等高的台阶DE(DE=BC=0.5m ,A ,B ,C 三点共线),把一面镜子水平放置在平台上的点 G 处,测得CG=15m ,然后沿直线CG 后退到点E 处,这时恰好在镜子里看到凉亭的顶端A ,测得 EG=3m ,小明身高EF=1.6m,则凉亭的高度AB 约为( )A. 8.5mB. 9mC. 9.5mD. 10m7. 在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似( )A. ①处B. ②处C. ③处D. ④处8. 如图,在△ABC 中,AD 平分∠BAC,按如下步骤作图:第一步,分别以点A ,D 为圆心,以大 12AD 的长为半径在AD 两侧作弧,交于两点M ,N第二步,连结MN 分别交AB,AC 于点E,F;第三步,连结DE,DF.若BD=6,AF=4,CD=3,则BE 的长是( )A. 2B. 4C. 6D. 89. 如图,在△ABC 中,点 D 为BC 边上的一点,且AD=AB=2,AD⊥AB,过点 D 作DE⊥AD,DE 交AC 于点E,若DE=1,则△ABC 的面积为( )A. 2B. 4C.25D. 810. 在四边形 ABCD 中,∠B=90°,AC=4,AB∥CD,DH 垂直平分 AC,点 H 为垂足.设AB=x ,AD=y ,则y 关于x 的函数关系用图象大致可以表示为( )二、填空题(本大题有6小题,每小题4分,共24分)11. 如图所示,点 E 是平行四边形ABCD 的边BC 延长线上一点,连结AE ,交 CD 于点F ,连结BF.写出图中任意一对相似三角形: .12. 已知 a6=b5=c4,且a+b-2c=6,则a 的值为 .13. 如图,在平行四边形ABCD 中,AB=10,AD=6,点E 是AD 的中点,在AB 上取一点F,使△CBF∽△CDE,则 BF 的长是 .14. 如图,在一块斜边长为30cm 的直角三角形木板(Rt△ACB)上截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若AF :AC=1:3,则这块木板截取正方形 CDEF 后,剩余部分的面积为 .15.如图①,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图②是此时的示意图,则图②中水面高度为16. 如图所示,在直角坐标系中有两点A(4,0),B(0,2).如果点C 在x 轴上,且点 C 与点O 及点A 不重合,当点 C 的坐标为 时,使得由点B ,O ,C 构成的三角形与△AOB 相似(至少找出两个符合条件的点).三、解答题(本大题有8小题,共66分)17.(6分)如图,在△ABC中,DE‖BC,EF‖AB,求证:△ADEO△EFC.18. (6分)如图,一块材料的形状是锐角三角形 ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?19.(6分)如图,点 P 是⊙O的直径AB 延长线上一点,且AB=4,点 M为A AB上一个动点(不与A,B重合),射线 PM与⊙O交于点 N(不与M重合).(1)当M在什么位置时,△MAB的面积最大? 并求出这个最大值;(2)求证:△PAN∽△PMB.20. (8 分)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.21. (8分)如图,在△ABC中,点 D,E分别在边AB,AC上,且∠ABE=∠ACD,BE,CD交于点G,连结DE.(1)求证:△AEDO△ABC;(2)如果BE平分∠ABC,求证:DE=CE.22.(10分)如图,在 △ABC 中,点D,E,F 分别在AB,BC,AC 边上, DE‖AC,EF‖AB.(1)求证: △BDEO △EFC.(2)设AF FC=12,①若. BC =12,,求线段BE 的长;②若△EFC 的面积是20,求△ABC 的面积.23.(10分)在矩形ABCD 中,AE⊥BD 于点E,点 P 是边AD 上一点.(1)若BP 平分∠ABD,交 AE 于点G,PF⊥BD 于点F,如图①,证明四边形 AGFP 是菱形;(2)如图②,若PE⊥EC,求证:AE·AB=DE·AP;(3)在(2)的条件下,若AB=1,BC=2,求AP 的长.24.(12分)如图,已知 △ABC 是边长为6cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB,BC 匀速运动,其中点 P 运动的速度是 1cm/s,点 Q 运动的速度是2cm/s,当点 Q 到达点C 时,P ,Q 两点都停止运动.设运动时间为t(s),解答下列问题:(1) 当 t =2时,判断 △BPQ 的形状,并说明理由;(2)设 △BPQ 的面积为 S (cm²),求S 与t 的函数表达式;(3)如图,作 QR//BA 交AC 于点R,连结PR,当t 为何值时,△APR∽△PRQ?第四章综合测试卷 相似三角形1. C2. D3. B4. C5. C6. A7. B8. D9. B 10. D 11. △ADF∽△ECF(答案不唯一)12. 12 13. 1.8 14. 100cm² 15.24516. (-1,0)或(1,0)或(-4,0)(答案不唯一)17. 证明:∵DE∥BC,∴△ADE∽△ABC,∵EF∥AB,∴△EFC∽△ABC,∴△ADE∽△EFC.18. 解:设这个正方形零件的边长为 xmm ,则△AEF 的边EF 上的高AK=(80-x) mm.∵四边形EF-HG是正方形,∴EF∥GH,即 EF∥BC.∴△AEF CABC.∴EF BC=AK AD,即 x 120=80−x 80⋅∴x =48.∴这个正方形零件的边长是48mm.19. (1)解:当点 M 在 AB 的中点处时,△MAB 的面积最大,此时( OM⟂AB,∵OM =12AB =12×4=2,∴S ABM =12AB ⋅OM =12×4×2=4. (2)证明:∵∠PMB=∠PAN,∠P=∠P,∴△PAN∽△PMB.20. 解: ∵BD 为∠ABC 的平分线,∴∠ABD =∠CBD,∵AB∥CD,∴∠D=∠ABD,∴∠D=∠CBD,∴BC=CD.∵BC=4,∴CD=4.∵AB∥ CD,∴ABECDE,∴AB CD=AE CE,∴84=AE CE,∴AE=2CE,∵AC=6=AE+CE,∴AE=4.21. 证明:(1)∵∠ABE=∠ACD,且∠A 是公共角, ∴ABEACD.∴AE AD=AB AC,即AEAB =ADAC ,又∵∠A 是公共角,∴△AED∽△ABC. (2)∵∠ABE=∠ACD,∠BGD=∠CGE,∴△BGD∽ CGE.:DG EG=BG CG,即DG BG=EG CG.又∵∠DGE=∠BGC,∴△DGE∽△BGC.∴∠GBC=∠GDE,∵BE 平分∠ABC,∴∠GBC=∠ABE,∵∠ABE=∠ACD,∴∠GDE=∠ACD.∴DE=CE.22. (1)证明:∵DE∥AC,∴∠BED=∠C.∵EF∥AB,∴∠B=∠FEC,∴△BDE∽△EFC.(2)解:①∵EF//AB,∴BE EC=AF FC=12.∵BC = 12,∴BE12−BE =12,∴BE =4.②∵EF∥AB,∴△EFC∽△BAC,∴S△BC= (EC BC)2⋅∴BE EC=12,∴EC BC=23.又∵△EFC 的面积是20, ∴20SABC=(23)2,∴SABC=45,即△ABC 的面积是45.23. (1)证明:∵四边形 ABCD 是矩形,∴∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠BAE+∠EAD=90°,∠EAD+∠ADE=90°,∴∠BAE=∠ADE,∵BP 平分∠ABD,∴∠ABG=∠PBD.∵∠AGP=∠BAG+∠ABG,∠APB =∠ADE+∠PBD,∠ABG=∠PBD,∴∠AGP=∠APG,∴AP=AG,∵PA⊥AB,PF⊥BD,BP 平分∠ABD,∴PA=PF,∴PF=AG,∵AE⊥BD,PF⊥BD,∴PF∥AG,∴四边形AGFP 是平行四边形,∵PA=PF,∴四边形AGFP 是菱形.(2)证明:∵AE⊥BD,PE⊥EC,∴∠AED=∠PEC=90°,∴∠AEP=∠DEC,∵∠EAD+∠ADE=90°,∠ADE+∠CDE=90°,∴∠EAP=∠EDC,∴△AEP∽△DEC,∴DE·AP.(3)解:∵四边形 ABCD 是矩形,∴AD=BC=2,∠BAD=90°,∴BD=√AB²+AD² =5,∵AE ⊥BD,∴S ABD =12⋅BD ⋅AE = 12⋅AB ⋅AD,∴AE =255,∴DE =AD 2−AE 2=455,∵AE ⋅AB =DE ⋅AP,∴ AP =255×1455=12.24. 解:(1)△BPQ 是等边三角形.当t=2时,AP=21 =2( cm),BQ=2×2=4( cm),∴BP=AB-AP=6-2=4( cm),∴BQ=BP,又∵∠B = 60°,∴△BPQ 是等边三角形.(2)如图,过点 Q 作QE⊥AB,垂足为 E,由 QB=2tcm,∠B=60°,∠BEQ=90°,得 QE =3tcm,由AP= tcm,得 PB =(6−t )cm,∴S =12BP ⋅QE = 12×(6−t )×3t =−32t 2+33t.(3)∵QR‖BA,∴∠QRC=∠A=60°,∠RQC=∠B=60°,∴△QRC是等边三角形,∴QR=RC=QC=(6-2t)cm⋅:BE=12BQ=12×2t=t(cm),∴EP=AB−AP−BE=6−t−t=6−2t(cm),∵EP‖QR,EP=QR,∴四边形 EPRQ是平行四边形,∴PR=EQ3tcm.又∵∠PEQ=90°,∴∠APR∠PRQ=90°,∴△APR∽△PRQ,∴∠QPR=∠A=60∘,QRPR=6−2t3t=3,解得t=65.∴当t=65时,△APR∽△PRQ.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数与相似三角形一、选择题(本题有10小题,每小题3分,共30分)1.下列函数中,反比例函数是()A.2y x=- B.11yx=+C.3y x=- D.13yx=2.如果32ab=,那么aa b+等于 ( )A.32B.52C.53D.353.矩形面积为4,它的长与宽之间的函数关系用图象大致可表示为()4.如图,F是平行四边形ABCD对角线BD上的点,BF∶FD=1∶3,则BE∶EC=()A.21B.31C.32D.415.如图,小正方形的边长均为l,则下列图中的三角形(阴影部分)与△ABC相似的是( )6.已知反比例函数()0ky kx=<的图象上有两点A(1x,1y),B(2x,2y),且12x x<,则12y y-的值是()A.正数 B.负数 C.非正数 D.不能确定7.如图,正方形OABC的面积是4,点B在反比例函数)0(<=xxky的图象上.则反比例函数的解析式是()A.xy4= B.xy2= C.xy2-= D.xy4-=8.函数y1=xk和y2=kx-k在同一坐标系中的图象大致是( )9.如图,在△ABC中,090=∠BAC,AD⊥BC与D,DE⊥AB与E,若AD=3,DE=2,则AC=()AB COxyA .221 B .215 C . 29D .1510.如图,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形1∆,2∆,3∆(图中阴影部分)的面积分别是4,9和49,则△ABC 的面积是( )A .81B .121C .124D .144 二、填空题(本题有6小题,每小题4分,共24分)11.已知a =4,b =9,c 是a b 、的比例中项,则c = .12.若点P 是线段AB 的黄金分割点,且AP >BP ,AB=2,则AP= .(保留根号) 13.点A (2,1)在反比例函数y kx=的图像上,当y<2时,x 的取值范围是 . 14.反比例函数22)12(--=m xm y ,在每个象限内,y 随x 的增大而增大,则m 的值是 .15.如图,已知双曲线)0k (xky >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =____________.16.如图,将△ABC 沿EF 折叠,使点B 落在边AC 上的点B ’处,已知AB=AC=3,BC=4,若以点B ’, F, C 为顶点的三角形与△ABC 相似,那么BF 的长是 .二、解答题:(本题有8小题,共66分)17.(本小题6分)一定质量的氧气,其密度ρ(kg/m,)是它的体积v (m,)的反比例函数.当V=10m 3时ρ=m.(1)求ρ与v 的函数关系式;(2)求当V=2m 3时,氧气的密度.18.(本小题6分)若,632,5:7:2::=+-=z y x z y x 求2z y x +的值.19.(本小题6分)如图,已知在△ABC 中,AD 是∠BAC 平分线,点E 在AC 边上,且∠AED=∠ADB 。
CAEB'OA DE求证:(1)△ABD ∽△ADE ;(2)AD 2=AB ·AE.20.(本小题8分)已知函数12y y y =-,其中1x y 与成正比例,22x y -与成反比例,且当21.(本小题8分)如图,在梯形ABCD 中,AD ∥BC ,对角线AC 与BD 相交于点O ,过点O 作OE ∥AD 交AB 于点E ,若AD=6cm ,BC=12cm ,△AOD 的面积为6cm 2, (1)求△BOC 和△DOC 的面积; (2)求OE 的长.22.(本小题10分)如图,已知A(-4,2)、B(n ,-4)是一次函数y kx b =+的图象与反比例函数my x=的图象的两个交点. (1)求此反比例函数和一次函数的解析式; (2)求△AOB 的面积;(3)根据图象写出使一次函数的值小于反比 例函数的值的x 的取值范围.23.(本小题10分)如图,直线122y x =+分别交轴于A 、C ,点P 是该直线与反比例函数在第一象限内的一个交点,PB ⊥x 轴于B,且9ABP S ∆=.(1) 求证:△AOC ∽△ABP ;.4.7,3;1,1的值时求当时时y x y x y x =====(第18题图)(2)求点P 的坐标;(3)设点R 与点P 在同一个反比例函数的图象上,且点R 在直线PB 的右侧,作RT ⊥x 轴于T,当△BRT 与△AOC 相似时,求点R 的坐标.24.(本小题12分)如图,在Rt ABC △中,90BAC ∠=°,AD BC ⊥于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE OB ⊥交BC 边于点E . (1)求证: ABF COE △∽△;(2)当O 为AC 边中点,2AC AB =时,如图2,求OFOE 的值; (3)当O 为AC 边中点,AC n AB =时,请直接写出OFOE的值.四、自选题(本题5分)请注意:本题为自选择题,供考生选做自选题得分将计入本学科总分,但考试总分最多为120分. 25.若k b ac a c b c b a =+=+=+,则k 的值为________. 26.如图,正方形ABCD 中,过点D 作DP 交AC 于点M ,交AB 于点N , 交CB 的延长线于点P ,若MN=1,PN=3,则DM 的长为________.参考答案一、选择题(本题有10小题,每小题3分,共30分) 1.D 2.C 3.B 4.A 5.B 6.D 7.A 8.D 9.C 10.DBBAACE D DE CF图1 图2F第27题图 分)(的平分线,是ADB AED ∠=∠∠=∠∴∠ 2 DAC BAD BAC AD 二、填空题(本题有6小题,每小题4分,共24分) 11.6 12.15- 13.1>x 或0<x 14.1- 15.216.2或712 三、解答题(本题有8小题,共66分) 17.(1)v3.14=ρ (3分) (2))/(15.73m kg (3分)18.解:19.解(1)∴△ABD ∽△ADE (2分)(2) △ABD ∽△ADEAD AB AE AD =∴∴ AD 2=AB ·AE (2分)20.,2y 7,3;1,1 )(1 2y y -y y )(1 2,:2121212211得代入把分分设解--=====--=∴=-==x k x k y x y x x k x k x k y x k y )1( 50910144)1( 10,14,4)(1 2)2( 653722632)1( ,5,7,222分 分 分分 分 设=+=+∴===∴==⨯+⨯-∴=+-===z y x z y x k k k k z y x k z k y k x 分)(分)(解得分)(2 21724142,42122 122 371212121=-+==∴-+=∴⎩⎨⎧-==⎩⎨⎧-=+=x y x x x y k k k k k k21.(1) BC AD //∴△AOD ∽△COB (1分)2⎪⎭⎫⎝⎛=∴∆∆BC AD S S BOC AOD)(2 246412112,622分cm S cm S S S BC AD cm BC cm AD BOC AOD BOC AOD =∴==∴=∴==∆∆∆∆△AOD ∽△COB )(2 1221212分cm S S S BC AD OC OA DOC DOC AOD =∴=∴==∴∆∆∆(2) △AOD ∽△COBADOE BD OB AD BCDO OB //322 =∴==∴(1分) ∴△BOE ∽△BDA (1分))(1 4632分cm OE cmAD OD OB AD OE =∴===∴22.解:(1))(2 8842)2,4(分得代入把xy m m xm y A -=∴-=∴-==-2848)4,(得代入把=∴-=--=-n nxy n B(2)(3)224><<-x x 或 (2分)23.解(1)∴△AOC ∽△ABP(2)△AOC ∽△ABP22⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=∴∆∆AB OA PB OC S S ABP AOC)3,2(26,332,3294,9P OB AB PB AB OA PB OC S S S S ABP AOC AOC ABP ∴=∴==∴==∴=∴=∆∆∆ )(2 2212442)4,2(),2,4(分解得得代入把--=∴⎩⎨⎧-=-=⎩⎨⎧+=-+-=+=--x y b k bk b k b kx y B A )(2 642202分),(,则轴交于点与设=∴==∴=∴-∆∆∆AOB BOC AOC S S S OC C C x AB PBOC x PB x OC //,∴⊥⊥轴轴 42420044,0;2,0=∴==∴-∴-====∆AOC S OC OA B A x y y x ,),(),,(则令则令(3))坐标为(设点nn R xy p 6,6)3,2(∴=∴①当△BRT ∽△ACO 时,RTOCBT OA =即nn 6224=- 01222=--n n)(131,13121舍去-=+=∴n n②当△BRT ∽△CAO 时,BTOCRT OA =即2264-=n n0322=--n n )(1,321舍去-==∴n n综合①、②所述,3131或+=∴n)2,3()2113,131(或-+∴R 24.(1)AD BC ⊥,90DAC C ∴∠+∠=°.90BAC BAF C ∠=∴∠=∠°,. 90OE OB BOA COE ∴∠+∠=⊥,°,90BOA ABF ∠+∠=°,ABF COE ∴∠=∠. ABF COE ∴△∽△;(2)解法一:作OG AC ⊥,交AD 的延长线于G .BADE COF G2AC AB =,O 是AC 边的中点,AB OC OA ∴==. 由(1)有ABF COE △∽△,ABF COE ∴△≌△, BF OE ∴=.90BAD DAC ∠+∠=°,90DAB ABD DAC ABD ∠+∠=∴∠=∠°,, 又90BAC AOG ∠=∠=°,AB OA =. ABC OAG ∴△≌△,2OG AC AB ∴==. OG OA ⊥,AB OG ∴∥,ABF GOF ∴△∽△, OF OG BF AB ∴=,2OF OF OGOE BF AB===.解法二:902BAC AC AB AD BC ∠==°,,⊥于D ,Rt Rt BAD BCA ∴△∽△.2AD ACBD AB∴==. 设1AB =,则2AC BC BO ===,,12AD BD AD ∴===. 90BDF BOE BDF BOE ∠=∠=∴°,△∽△, BD BODF OE∴=. 由(1)知BF OE =,设OE BF x ==,5DF x=x ∴=. 在DFB △中2211510x x =+,3x ∴=.OF OB BF ∴=-==322OF OE ∴==.(3)OFn OE=.四、自选题(本题5分) 25.2或-1 26.2BADE COF。